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Interlayer RKKY interaction in ferromagnet/tilted Weyl semimetal/ferromagnet trilayer system
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We have investigated the interlayer RKKY interaction in ferromagnet/Weyl semimetal/ferromagnet
(FM/WSM/FM) trilayer system in the presence of the tilting effect of Weyl cones. Our investigation focuses
on the influence of the unique features of WSMs: anisotropy dispersion, tilt effect, intervalley transitions, and
Fermi arc states. Due to the separation of Weyl nodes, the RKKY behaviors, such as spin model, decaying rate,
and oscillation period, heavily depend on the stacked direction of FMs, exhibiting strong magnetic anisotropy.
Tilt of Weyl cones can increase the RKKY amplitude, change spin model, switch the antiferromagnetism
and ferromagnetism, and more importantly generate the noncollinear Dzyaloshinskii-Moriya or spin-frustrated
terms. Intervalley transition generates extra oscillation with period determined by separated distance between
Weyl nodes, which together with Fermi-energy-induced oscillation leads to an interesting battering pattern.
These signatures are significantly different from the interlayer RKKY interaction with single-node topological
insulators or impurity RKKY case reported in previous literatures. More importantly, we find that the interlayer
RKKY interaction decays more slowly with the spacer thickness than one reported extensively in WSMs doped
with magnetic impurities, which is explained by providing a general formula. In addition, we discuss the effect
from Weyl Fermi arcs. Compared to the bulk contributions, a more slowly decaying rate is found at the edges of
ferromagnetic layer if the edges are parallel to the line connecting two Weyl nodes. Our research suggests that
trilayer FM/WSM/FM is a more powerful platform to understand the WSM magnetic property and to extract
the parameters of WSM materials by measuring the RKKY interaction.
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I. INTRODUCTION

Weyl semimetals (WSMs), as one of the prominent
members of topological material family, have been studied
extensively due to their unique electronic band structure and
potential applications in spintronics. The simplest low-energy
model of WSMs can be described by two separated Weyl
points with opposite chirality in momentum space. Each Weyl
point corresponds to a magnetic or an antimagnetic monopole,
which can be characterized by the nonzero Berry curvature.
Due to the protection of the lattice-translation symmetry,
the Weyl points can be created or annihilated only in pairs.
Besides the chiral property, another fascinating feature for
WSMs is the nontrivial Fermi arc [1,2], which connects the
Weyl partners and contributes many novel transport phenom-
ena [3–5]. WSMs can be realized from Dirac semimetals by
breaking either the time-reversal or inversion symmetry [6–9],
where a fourfold degenerate Dirac point is split into two
Weyl points. So far, the WSMs with broken inversion sym-
metry have been extensively found in noncentrosymmetric
transition-metal monosphides, e.g., TaP [10], NbP [11], NbAs
[12], and TaAs [13–15]. Meanwhile, the WSMs with broken
time-reversal symmetry have also been proposed in various
magnetic materials, including HgCr2Se4, Y2Ir2O7, Co3Sn2S2,
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and Co2-based Heusler compounds [16–20]. Very recently,
Co3Sn2S2 has already been experimentally verified to be a
time-reversal broken WSM [21].

Besides the conventional WSMs with upright energy dis-
persions, a new type of tilted Weyl valleys with broken
Lorentz invariance has recently been reported [22]. Consid-
ering the tilting effect in a certain axis, the WSMs can be
divided into two categories by evaluating the ratio of the tilt
parameter vt and the Fermi velocity v f . Specifically speak-
ing, the valleys of type-I WSMs are only slightly tilted with
|vt/v f | < 1, where the sign of the energy remains unchanged
and the shapes of the Fermi surface at the Weyl points are
pointlike. Differently, the valleys of type-II WSMs are flipped
over as the tilting effect is strong enough with |vt/v f | > 1. In
this scenario, a part of the energy in the conduction (valence)
band becomes negative (positive) and the original pointlike
Fermi surfaces are changed to be electron and hole pockets.
Although the tilting effect does not change the topology of
Weyl points, it significantly changes the shape of the Fermi
surface, as well as the density of states (DOS) near the
Fermi energy. Correspondingly, the tilting effect gives rise
to many peculiar phenomena in the quantum transport, e.g.,
anomalous Nernst effect [23,24], planar Hall effect [25–27],
magnetotransport [28,29], exotic Josephson effect in a Weyl
superconductor junction [30], and specular Andreev reflection
induced by the intraband electron-hole conversion [31,32].
Nevertheless, the magnetic properties with respect to the tilted
WSMs has received little attention.
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In the area of magnetic properties, the indirect ex-
change interaction, namely, the Ruderman-Kittel-Kasuya-
Yosida (RKKY) interaction [33–35] mediated by the itinerant
electrons of host materials, has attracted great interest in Dirac
materials due to its potential applications in spin manipu-
lation. One of the well-known examples is the anomalous
Hall effect on the surface of the topological insulator [36,37],
where nonzero net ferromagnetism can be induced by the
Dzyaloshinskii-Moriya (DM) RKKY interaction. Besides ma-
nipulating the spins, the RKKY interaction has also been
explored extensively to characterize the intrinsic properties
of materials, including unique edge/surface states in topo-
logical materials [37–41], topological phase transitions [42],
the nontrivial topology of the Fermi surface [43], the Rashba
splitting [44], the spin-momentum locking [45,46], and so on.
Notice that all the above literatures are focused on the RKKY
interaction between magnetic impurities, whose signature is
always difficult to be detected since the RKKY interaction
decays fast with the increased impurity distance R. Interest-
ingly, the study for the RKKY interaction was generalized
to ferromagnet/spacer material/ferromagnet trilayer system,
where the spacer was used with conventional metals such as
Au or Cu in early works [47,48], and recently with topological
insulator film [49,50] or Rashba semiconductors [51]. This
seems to be an effective structure to generate the slowly de-
caying RKKY interaction. More importantly, this interlayer
exchange coupling is not only an interesting phenomenon
by itself, but also can be regarded as a probe to study the
properties of the spacer, such as the topological phase or the
tilting effect.

Motivated by this, we calculate the RKKY interaction be-
tween ferromagnetic layers in FM/WSM/FM trilayer system.
We have studied the intervalley and intravalley contributions
for tilted and untilted cases. The magnetic anisotropy of tilted
WSMs has been revealed by considering different arrange-
ments of the ferromagnetic layers. The qualitative differences
exhibited by different stacking directions of the ferromag-
netic layers highlight the role of the tilt in the magnetic
trilayer geometry. In this way, various magnetic signatures
characterizing the tilting effect are extracted. In addition, it
is found that the interlayer RKKY interaction decays slowly
with the spacer thickness R⊥ as R−2

⊥ (R−3
⊥ ) for finite (zero)

Fermi energy uF . It is significantly different from the RKKY
interaction of magnetic impurities in WSMs [45,46,52], which
decays fast with the impurity distance R as R−3 (R−5) for
uF �= 0 (uF = 0). Through this paper, trilayer systems are
suggested as more powerful platforms to characterize the in-
trinsic properties of materials, superior to extensively adopted
systems doping with magnetic impurities.

The paper is organized as follows. In Sec. II, we in-
troduce a low-energy model of tilted WSM and show the
method for calculating the interlayer RKKY interaction in
FM/WSM/FM trilayer system. The results of the interlayer
interaction in WSM with different arrangements of FMs have
been discussed in Secs. III A–III C, which consist of intraval-
ley and intervalley contributions. The cases of the tilted and
untilted valleys, as well as the finite and zero Fermi energies,
are also discussed. In Sec. III D we further explore the origin
of the slow-decaying law of the interlayer RKKY interaction.
In Sec. III E, the contribution from the Fermi arc to the inter-

layer RKKY interaction is discussed. Finally, a short summary
is given in Sec. IV.

II. MODEL AND METHOD

We start with a minimal low-energy model of tilted mag-
netic WSMs, whose Hamiltonian is [53]

HWeyl = v f (kxσx + kyσy) + λv f (kz − λQ)σz + vt ky, (1)

where σx,y,z are Pauli matrices acting on the real spin space.
The first two terms in the above equation describe a WSM
with broken time-reversal symmetry, whose dispersion is
composed of two Weyl points splitting along z axis, respec-
tively, located at (0, 0, λQ) with opposite chirality λ = ±.
The last term introduces the tilting effect of linear dispersion
assumed to along ky axis, and the ratio of |vt/v f | evaluates the
extent of the tilt. Here, we only consider the type-I WSM with
|vt/v f | < 1 and set vt > 0. By diagonalizing the Hamiltonian
H , the eigenvalues can be easily solved as

Es,λ = vt ky + sελ(k), (2)

with ελ(k) = v f

√
k2

x + k2
y + (kz − λQ)2. The corresponding

eigenfunction reads as

�s,λ(k) = 1√
2ελ[ελ + sλv f (kz − λQ)]

×
(

sελ + λv f (kz − λQ)
v f (kx + iky)

)
, (3)

where s = ± represent the conduction and valence bands.
Notice that the tilting parameter vt does not affect the eigen-
functions and only enters into the band energies by tilting the
Weyl valleys.

In this paper, we consider a system with sandwiched struc-
ture, where two ferromagnet metals (e.g., Fe, Co, Gd, and their
compounds [47,48,54,55]) are respectively placed on the top
(F T ) and bottom (F B ) of the structure, and a WSM acts as
the spacer material, as shown in Fig. 1. The distance between
two ferromagnets is R⊥ = (N + 1)a, where a is the thickness
of unit cell of WSM along its stacking direction and N is
an integer. The plane of the ferromagnetic layer adjacent to
WSM is assumed to be fully filled with classical spins Si. The
spin exchange interaction Hint = J0δ(r − Ri )s · Si describes
a direct coupling between Si (located at the atomic position
Ri) and the spins s of itinerant electrons of the WSM spacer,
where J0 is the coupling strength. For the case of weak cou-
pling J0, Hint can be regarded as a perturbation. Under the
standard perturbation theory, the indirect interlayer RKKY
interaction between ferromagnetic layers can be expressed as
[47,48,51]

J (R⊥) = −
∑

α,β=x,y,z

J2
0 ST

α SB
β a

2(2π )3V0

∫ π/a

−π/a
dq⊥eiq⊥R⊥

×
∫

2DBZ
dq‖χαβ (q‖, q⊥)

∑
R‖∈F T

eiq‖·R‖ , (4)
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FIG. 1. Schematic diagram for a trilayer structure with two ferro-
magnets F T and F B placed on the top and bottom, respectively, and a
WSM acts as the spacer material. Different stacking directions of the
ferromagnetic layers are considered as: (a) R⊥ = Rx , R‖ = (Ry, Rz );
(b) R⊥ = Ry, R‖ = (Rz, Rx ); (c) R⊥ = Rz, R‖ = (Rx, Ry ).

where V0 is the volume of the unit cell, ST
α (SB

β ) is the spin of
the top (bottom) ferromagnetic layer, χαβ (q‖, q⊥) describes
the static spin susceptibility tensor with the subscript ⊥ (‖)
representing the direction perpendicular (parallel) to the plane
of ferromagnetic layers. The electrons of the WSM participat-
ing in the exchange coupling enter into the χαβ (q‖, q⊥) term,
and are finally reflected in J (R⊥), from which we can extract
the information of the properties of WSMs.

The planar dimensions of the ferromagnetic layers satisfy
the periodic boundary conditions since they are assumed to
be large as compared to the spacer thickness R⊥. Considering
this periodic boundary condition and performing the integra-
tion of q within the first Brillouin zone, the effective q‖ in
Eq. (4) must satisfy [47,48,51] q‖ = 0, otherwise the sum-
mation

∑
R‖∈F T eiq‖·R‖ is zero for q‖ �= 0. In addition, when

the calculation is performed within the low-energy regime,
where the largest Fermi wave numbers in all directions are
much smaller than π/a, the integral range (−π/a, π/a) of q⊥
in Eq. (4) can be replaced with (−∞,∞). In this way, the

interlayer RKKY interaction J (R⊥) of Eq. (4) can be further
simplified as

J (R⊥) = −
∑

α,β=x,y,z

ST
α SB

β J2
0 a2

4πV 2
0

∫ ∞

−∞
dq⊥eiq⊥R⊥χαβ (0, q⊥),

(5)
and the static spin susceptibility χαβ can be calculated through

χαβ (0, q⊥) = −μ2
B

γ

∑
ikn,k

∑
λ,λ′

× Tr
[
Gλ

k⊥,k‖ (ikn)σαGλ′
k⊥+q⊥,k‖ (ikn)σβ

]
, (6)

where k = (k⊥, k‖), γ = 1/(kBT ), μB is the Bohr magneton,
and kn is the fermionic Matsubara frequency.

In calculating the static spin susceptibility χαβ , we should
obtain the Matsubara Green’s function Gk(ikn), which is
constructed by using the eigenvalues and eigenfunctions in
Eqs. (2) and (3), and given by

Gλ
k⊥,k‖ (ikn) =

∑
s=±

�s,λ(k)�†
s,λ(k)

ikn + uF − Es,λ

= ikn + uF − vt ky + H0(k)

(ikn + uF − vt ky)2 − ε2
λ,k

, (7)

where H0(k) is the Hamiltonian of nontilted WSMs. The
concrete form of (k⊥, k‖) depends on the stacking direction
of the ferromagnetic layers. Specifically, if the ferromagnetic
layers F T and F B are stacked along l axis, the corresponding
components of (k⊥, k‖) are k⊥ = kl and k‖ = (km, kn) with
l, m, n = x, y, z (l �= m �= n). Due to the anisotropy of the
WSMs with tilted dispersion, the interlayer RKKY interaction
for different arrangements of the ferromagnetic layers will be
discussed in the next section.

Notice that an energy gap would be opened at the Weyl
points due to the quantum confinement effect, when the WSM
film is thin enough. As reported in recent work [56,57], the
critical thickness of the film for maintaining the gapless WSM
state is at least 10 nm. To avoid destroying the Weyl points in
this paper, the interlayer RKKY interaction is discussed with a
safe range of the thickness R⊥, i.e., R⊥Q > 10 with the model
parameter [58] Q = 0.9 nm−1.

III. RESULTS AND DISCUSSION

A. Interlayer RKKY interaction with FMs stacked in the x axis

In this section, we consider the interlayer RKKY interac-
tion mediated by the WSM with two FMs stacked along the
x axis [Fig. 1(a)], i.e., k⊥ = kx and k‖ = (ky, kz ). Substituting
Eq. (7) to Eq. (6), the static spin susceptibility χαβ (0, qx ) can
be simplified as

χαβ (0, qx ) = −μ2
B

γ

∑
λ,kn,k

Tr{[ikn + uF − vt ky + H0(k)]σα[ikn + uF − vt ky + H0(kx + qx, k‖)]σβ}[
(kn − iuF + ivt ky)2 + ε2

λ
(k)

][
(kn − iuF + ivt ky)2 + ε2

λ
(kx + qx, k‖)

] , (8)

where k = (kx, k‖). Noting that all contributions to χαβ (0, qx ) stem from the intravalley process, i.e., λ′ = λ in Eq. (6), while
the intervalley one has no effect in this arrangement. The reason is that the projections of two Weyl valleys in the kx axis are
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completely overlapped. To avoid the divergent integrals in the Eq. (8), one can use the following Feynman parametrization [59]:

1

(kn − iuF + ivt ky)2 + ε2
λ
(k)

· 1

(kn − iuF + ivt ky)2 + ε2
λ
(kx + qx, k‖)

=
∫ 1

0
dg

1[
(kn − iuF + ivt ky)2 + ε2

λ
(k) + gqxv

2
f (2kx + qx )

]2 . (9)

In this way, the static spin susceptibility χαβ (0, qx ) can be expressed as

χαβ (0, qx ) = −μ2
B

(2π )4

∑
λ

∫
dkn

∫
dk

∫ 1

0
dg

Tr{[ikn + uF − vt ky + H0(kx, k‖)]σα[ikn + uF − vt ky + H0(kx + qx, k‖)]σβ}[
(kn − uF + ivt ky)2 + ε2

λ(kx, k‖) + gqxv
2
f (2kx + qx )

]2 .

(10)
Using the coordinate transformation (kx + gqx, kz − λQ) = (k′

x, k′
z ), the above equation can be further simplified as

χαβ (0, qx ) = −μ2
B

(2π )4

∑
λ

∫
dkn

∫
dk′

∫ 1

0
dg

Tr{[ikn + uF − v f gqxσx + h(k′)]σα[ikn + uF + v f qx(1 − g)σx + h(k′)]σβ}[
(kn − iuF + ivt ky)2 + v2

f |k′|2 + g(1 − g)v2
f q2

x

]2 , (11)

with

h(k′) = −vt ky + v f (k′
xσx + kyσy + λk′

zσz ). (12)

Plugging χαβ (0, qx ) into Eq. (5) and tracing over the Pauli
matrices, the interlayer RKKY interaction J (Rx ) can be ex-
pressed in the following form:

J (Rx ) =
∑

α=x,y,z

Jα (Rx )ST
α SB

α + JDM
x (Rx )(ST × SB)x, (13)

where Jα (Rx ) couples collinear spins and JDM
x (Rx ) describes

the DM (noncollinear) interaction, which has been revealed to
twist the spin orientations of neighboring spins and regarded
as an origin of the anomalous Hall effect on the surface of
three-dimensional topological insulators [36,37].

First, we discuss the case of uF = 0, which can let us to
obtain analytical expressions. After some algebraic calcula-
tions (see Appendix A), the analytical results of the interlayer
RKKY components can be obtained as

Jy,z(Rx, uF = 0) = −4π3Jc

3v f

1

R3
x

,

Jx(Rx, uF = 0) = 0,

JDM
x,y,z(Rx, uF = 0) = 0, (14)

with Jc = J2
0 μ2

Ba2/(16π5V 2
0 ). As shown above, the DM in-

teraction vanishes, and there only exists in-plane collinear
components, exhibiting the XYY spin model for the inter-
layer RKKY interaction. Notice that the vanished out-of-plane
collinear component Jx(Rx ) is attributed to the suppressed in-
travalley contribution by the two-dimensional structure of the
ferromagnetic layers, which distinguishes from the nonzero
out-of-plane RKKY component between zero-dimensional
magnetic impurities in WSMs [45,46]. In addition, the tilting
effect does not affect the interlayer RKKY interaction at zero
Fermi energy uF = 0 since the interaction is determined by
the energy difference [51] E+,λ(kx, k‖) − E−,λ(kx + qx, k‖),
independent on the parameter vt for uF = 0.

For uF �= 0 and vt = 0, all the interlayer RKKY compo-
nents have to be calculated numerically according to Eqs. (5)
and (11)–(13), and we plot the numerical results in Fig. 3.

Compared to the case of uF = 0, there are three main
differences: (i) Except for the vanished Jx(Rx ), the other com-
ponents Jy/z(Rx ) and JDM

x (Rx ) are nonzero. They exhibit an
oscillating behavior with the period of π/k0, where k0 =
uF /v f corresponds to the isotropic Fermi wave number. The
oscillation of the RKKY interaction is induced by the Kohn
anomaly [51], which corresponds to the singular point on
the Fermi surface, whose projection is denoted in Fig. 2(b);
(ii) The original fast-decaying interlayer components [R−3

x
in Eq. (14)] are prolonged as R−2

x ; (iii) The amplitude of
the nonzero interlayer RKKY components exhibit a linear
relation with the Fermi energy, i.e., Jy/z, JDM

x ∝ uF , as shown
in Fig. 3(b). In Fig. 3, The numerical results for the nonzero

FIG. 2. (a) The three-dimensional Fermi surfaces and (b) the
edge of its projection on the kx − ky plane for vt = 0 (blue color) and
vt �= 0 (red color). Only one Weyl valley (k′

z = kz − λQ for λ = + or
−) with finite Fermi energy is considered since the other one shares
the same response to the tilting term vt ky. (c) The energy-dependent
DOS for different vt .
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FIG. 3. Dependence of the interlayer RKKY components on
(a) the spacer thickness Rx and (b) the Fermi energy uF . The pe-
riod of the oscillation in (a) is π/k0. Other parameters are set as:
C = J2

0 μ2
Ba2/(32π 5V 2

0 v4
f ), uF = 5v f Q in (a) and RxQ = 10 in (b).

interlayer RKKY components of uF �= 0 can be fit in the
following function:

Jα (Rx, uF �= 0) ∝ uF

R2
x

sin(2k0Rx + η), (15)

where η is a constant. Interestingly, the interlayer RKKY
interaction here decays much more slowly than the RKKY
interaction of magnetic impurities in WSMs [45,46,52], where
the interaction decays fast with the impurity distance R as
R−3 (R−5) for uF �= 0 (uF = 0). The slowly decaying law in
Eqs. (14) and (15) means that the trilayer structure can prolong
the decay of the RKKY interaction and make it easier to detect
the magnetic signals characterizing the intrinsic properties of
spacer materials.

For uF �= 0 and vt �= 0, the tilt-modified interlayer RKKY
interaction can be calculated numerically according to Eqs. (5)
and (11)–(13). As shown in Fig. 4, the cases with and without
tilting effect are compared. The original Jy = Jz for vt = 0 is
changed to be Jy �= Jz by finite vt (except for some special
values of vanished Jy,z). The underlying physics is attributed
to the broken rotational symmetry around the kx axis by the
tilting effect of ky axis. Obviously, the tilting effect does not
change the decay of the interaction since the exponent ζ of the
DOS of WSMs can not be disturbed by nonzero vt .

Another main modification in Fig. 4 induced by the tilt
is that the oscillation period is decreased with the increased
tilting parameter vt . This is attributed to the deformation of
the Fermi surface. Specifically speaking, when vt varies from
zero to a finite value, the original spherical Fermi surface is
transformed into an ellipsoidal one, as shown in Figs. 2(a).
This deformation leads to the shift of the position of the
Kohn anomaly, whose projection in the stacking direction
(kx axis) is also changed from k0 to km

x , i.e., the short axis
of the ellipse in Fig. 2(b). When the transferred momentum
q⊥ = qx is integrated out in Eq. (5), km

x would enter into the

FIG. 4. The interlayer RKKY components versus the spacer
thickness Rx for tilted and untilted cases. The period of the oscillation
is π

√
v2

f − v2
t /uF . Other parameters are the same as Fig. 3(a).

phase factor ei2km
x Rx to display periodic functions sin(2km

x Rx )
or cos(2km

x Rx ). According to the properties of singular point,
one can use the partial differential equations of ∂kx/∂ky,z = 0
[kx = ±√

(uF − vt ky)2/v2
f − k2

y − k2
z ] to calculate km

x , which
is solved as km

x = uF /
√

v2
f − v2

t . The corresponding period of
the oscillation of the interaction is

T ′ = π/km
x = π

√
v2

f − v2
t /uF , (16)

which explains the oscillation period shown in Fig. 4. Im-
portantly, from this simply oscillation period, we can easy to
extract the tilt parameter vt . Since vt enters into the periodic
function sin(2km

x Rx ) or cos(2km
x Rx ), the magnetism of the

interaction would be changed when vt varies. As shown in
Fig. 5, all the finite RKKY components would be changed
between antiferromagnetism and ferromagnetism. In addition,
the amplitude of all the nonzero RKKY components increases
with vt . This can be understood by checking the DOS ρ(ω) =
ρ0(ω)/(1 − v2

t /v2
f )2 where ρ0(ω) = ω2/(2π2v3

f ) is the DOS
of untilted WSMs. As shown in Fig. 2(c), when vt increases,
the DOS would be enhanced correspondingly. Notice that the
magnetic indirect exchange interaction is mainly mediated by
the itinerant electrons near the Fermi surface. Large tilt means
that more electrons are allowed to participate in the scattering
between ferromagnetic layers and so enhance the amplitude
of the RKKY interaction.

FIG. 5. vt -dependent interlayer RKKY components with RxQ =
12 and uF = 1.5v f Q.
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B. Interlayer RKKY interaction with FMs stacked in y axis

For the arrangement of FMs with their stacking direction
parallel to the y axis [i.e., tilted direction, see Fig. 1(b)],
q⊥ = qy, k⊥ = ky and k‖ = (kz, kx ). Similar to the case with
ferromagnetic layers stacked in the x axis, the interlayer
RKKY interaction here is only contributed by the intravalley
coupling, i.e., λ = λ′. Following the similar procedure, one
can use the Eqs. (5)–(7) to simplify the interlayer RKKY
interaction J (Ry) as

J (Ry) =
∑

α=x,y,z

Jα (Ry)ST
α SB

α + JDM
y (Ry)(ST × SB)y. (17)

For vt = 0, the results of Jα (Ry) [JDM
y (Ry)] can be easily ob-

tained by simply rotating the direction of the RKKY compo-
nents Jα (Rx ) [JDM

x (Rx )] around the z axis by 90 degrees clock-
wise, i.e., Jx(Ry) = Jy(Rx )|Rx→Ry , Jy(Ry) = −Jx(Rx )|Rx→Ry ,
Jz(Ry) = Jz(Rx )|Rx→Ry and JDM

y (Ry) = −JDM
x (Rx )|Rx→Ry . This

is a reflection of the rotational symmetry of the energy disper-
sion around the kz axis.

For uF = 0 and vt �= 0, the analytical expressions of
J (Ry) can be obtained after some algebraic calculations (see
Appendix B), given by

Jx,z(Ry, uF = 0) = −4π3Jc

3v f

(
1 − v2

t /v2
f

)
R3

y

,

Jy(Ry, uF = 0) = 4π3Jc

3v3
f

v2
t

R3
y

,

JDM
y (Ry, uF = 0) = 0. (18)

Different from the case of FMs stacked in x axis, here the
interlayer RKKY interaction can be modified by the valley tilt
even for zero Fermi energy. The variation of the interaction
increases parabolically with vt in the form of Jα (vt �= 0) −
Jα (vt = 0) ∝ v2

t /R3
y . This is attributed to the tilt-dependent

energy difference [51] E+,λ(ky, k‖) − E−,λ(ky + qy, k‖) [see
Eq. (2)], where the transferred momentum qy couples tightly
with vt . Still, the collinear components exhibit a XXY spin
model and the DM interaction vanishes even in the presence
of the tilting effect.

For uF �= 0 and vt �= 0, the numerical results (not shown)
of J (Ry, uF �= 0) here are similar to the case in Sec. III A,
including the interaction with tilt-independent prolonged de-
caying rate [J (Ry, uF �= 0) ∝ R−2

y ], the similar tilt-modified
oscillation function sin(2km

y Ry) for J (Ry, uF �= 0) with km
y =

uF v f /(v2
f − v2

t ) being the largest Fermi wave number in the
stacking direction [Fig. 2(b)], and the magnetism switching
induced by the tilting parameter vt .

C. Interlayer RKKY interaction with FMs stacked in the z axis

For the FMs stacked parallel to the z axis (the line con-
necting two Weyl valleys, see Fig. 1(c), we take k⊥ = kz

and k‖ = (kx, ky). Under this consideration, one can use the
Eqs. (5)–(7) to simplify the interlayer RKKY interaction J (Rz )
as

J (Rz ) =
∑

α=x,y,z

Jα (Rz )ST
α SB

α + Jf r (Rz )
(
ST

y SB
z + ST

z SB
y

)
, (19)

FIG. 6. The spacer thickness Rz-dependent interlayer RKKY
components with different tilting parameters. The finite Fermi energy
is set as uF = 5v f Q.

where no DM term emerges but instead a spin-frustrated
term appears. The vanished DM term is guaranteed by
the protected inversion symmetry of the real-space Green’s
function, i.e., G(Rz, ikn) = G(−Rz, ikn) with G(±Rz, ikn) =∑

kz,k‖,λ e±ikzRz Gλ
kz,k‖ (ikn).

For uF = 0, performing some algebraic calculations (see
Appendix C), the RKKY components can be solved as

Jx,y(Rz, uF = 0) =
∑
λ,λ′

−π3(1 + 3λλ′)
6v f R3

z

ei(λ′−λ)QRz ,

= 2π3

3v f

cos (2QRz ) − 2

R3
z

,

Jz(Rz, uF = 0) =
∑
λ,λ′

π3(λλ′ − 1)Jc

6v f R3
z

ei(λ′−λ)QRz ,

= −2π3Jc

3v f

cos (2QRz )

R3
z

,

Jf r (Rz, uF = 0) = 0. (20)

Here, the RKKY components for uF = 0 is also vt indepen-
dent due to the elimination of vt in the energy difference
E+,λ(kz + qz, k‖) − E−,λ(kz + qz, k‖). Unlike the cases in
Secs. III A and III B where there only exists the intravalley
contributions, the interlayer RKKY interaction here include
both intravalley and intervalley contributions, i.e., λ = λ′ and
λ �= λ′ coexist at the same time. For intervalley case, there
emerges an oscillaion factor cos(2QRz ) or ei(λ′−λ)QRz , which is
induced by the separated projections of Weyl points in the kz

axis, very different from the cases with two FMs stacked in
the x and y axis.

For uF �= 0 and vt = 0, the interlayer RKKY behaviors
are significantly different for different components Jα (Rz ),
as shown by the dashed blue lines in Fig. 6. Specifically
speaking, the components Jx,y(Rz ) exhibit an oscillation with
a period T = πv f /uF , stemming from sin(2k0Rz ), which is
induced by the finite Fermi energy uF , similar to the cases
in previous sections. But, the case for the component Jz(Rz )
is different. Beside the uF -dependent oscillation sin(2k0Rz ),
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FIG. 7. The intravalley (λ = λ′) and intervalley (λ �= λ′) terms
versus the spacer thickness Rz with different tilting parameters. Other
parameters are the same as that in Fig. 6.

Jz(Rz ) exhibits another oscillation cos(2QRz ). The combina-
tion of these two oscillations constructs the battering pattern
for Jz(Rz ), as shown in Fig. 6(c). To understand this phe-
nomenon, it should be noted that both the intravalley (λ = λ′)
and intervalley (λ �= λ′) contributions can support the oscil-
lation sin(2k0Rz ) as long as uF �= 0, but the origin of the
oscillation cos(2QRz ) is only related to the intervalley contri-
bution. As shown in Fig. 7 (dashed lines), Jz(Rz ) is completely
contributed by the intervalley process, so naturally the two-
period oscillation survives. Differently, the intervalley part of
Jx,y(Rz ) decays fast as R−3

z and thus the intravalley one with
the oscillation sin(2k0Rz ) decaying as R−2

z dominates in the
long range. The results here are different from that in WSMs
with magnetic impurities [45,46], where all RKKY compo-
nents always exhibit a two-period oscillation. The underlying
physics is that when the zero-dimensional magnetic impuri-
ties are substituted by two-dimensional FMs, the intervalley
contributions in Jx,y would be suppressed.

For uF �= 0 and vt �= 0, there arises two new magnetic sig-
natures for characterizing the tilting effect, which are different
from the cases with FMs stacked in x and y axes. One is that
the original one-period oscillation of Jy(Rz ) is changed to be a
battering pattern [Fig. 6(b)]. The reason is that the finite vt can
generate a new intervalley term, whose amplitude is compara-
ble to that of the intravalley term due to the slow-decaying
law R−2

z , as shown in Fig. 7(d). The other signature is the

FIG. 8. vt -dependent interlayer RKKY components with RzQ =
12 and uF = 1.5v f Q.

nonzero frustrated term Jf r (Rz ) induced by the finite tilting
parameter vt . Notice that Jf r (Rz ) is vanished in the absence
of vt even for uF �= 0, different from the DM interaction as
addressed above where only finite uF is required. This can be
understood by checking the expression of Jf r (Rz ). According
to Eqs. (5)–(7), the simplest form of Jf r (Rz ) can be obtained
after some algebraic calculations, given by

Jf r (Rz ) ∝
∫∫

dkndkx

∫ ∞

−∞
dky

(λ′ − λ)e−2RzF (kx,ky,kn )

F (kx, ky, kn)
ky,

(21)
where F = [k2

x + k2
y − (ikn + uF − vt ky)2/v2

f ]1/2 and the con-
stant prefactor is dropped for simplicity. Obviously, the
integrand in the above equation is an odd function of ky for
vt = 0, leading to Jf r = 0. Once the tilting effect is turned on
(vt �= 0), the integrand is changed to be neither odd function
nor even function, and so nonzero Jf r arises. Notice that
the spin-frustrated term is unique in FM/WSM/FM systems
since this term always vanishes in tilted WSMs doping with
magnetic impurities no matter what axis the impurities are
placed in [52]. In addition, similar signatures as that in the pre-
vious two sections are also found, including the enhancement
of the amplitude of the interaction by the increased tilting
parameter vt (Fig. 6), the tilt-modified oscillation sin(2km

z Rz )
with km

z = km
x being the short axis of the projected ellipse in

Fig. 2(b), and the magnetism switching by the variation of vt

as shown in Fig. 8.

D. Decaying rate of the interlayer RKKY interaction

From the above results, we know that all the RKKY com-
ponents always decay with the distance between two FMs
as J (R⊥) ∝ R−3

⊥ for uF = 0 and ∝R−2
⊥ for finite uF , which

exhibit a slower decaying rate compared with the impurity
case [45,46] where J (R) ∝ R−5 for uF = 0 and ∝R−3 for
finite uF . The underlying physics of the difference between
them is attributed to the dimensionality effect of the ferro-
magnetic layers. We find the decaying rate not only depends
on the dimension dh of the spacer but also the one dF of
ferromagnetic layers. In the following discussion, we see that
finite dF not only modifies the amplitude of the interlayer
RKKY interaction, but also prolongs its decaying rate.

Before discussing, we first review the RKKY interaction
between zero-dimensional magnetic impurities [45,46], which
is assumed to be mediated by one Weyl valley for simplicity
since the intervalley process does not affect the decaying law.
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The results can be solved by the second-order perturbation
theory, given by

Jα (R, uF = 0) ∝ 1

Rdh+ζ

(
5R2

α

R2
− 3

)
, (22)

where α = x, y, z. Here, the decay of the RKKY interaction
between magnetic impurities is determined by the dimension-
ality dh = 3 of WSM host material and the exponent ζ = 2
of its DOS ρ(ω) ∝ ωζ . If the zero-dimensional impurities are
substituted by dF -dimensional ferromagnetic layers, this extra
FM’s dimensionality dF is expected to enter into the decaying
rate of the RKKY interaction.

To obtain a detailed understanding for the dimensionality
effect of deposited FMs, the ferromagnetic layers are assumed
to be in-plane infinite, where abundant pointlike magnetic
impurities with local spins are continuously and uniformly
distributed in. In this view, the interlayer RKKY interaction
Jα (R⊥) evaluates a net RKKY interaction contributed by the
total in-plane local spins. Choosing one of the local spins as
the origin S0, the other spins with position (R⊥, R‖) would
have a specific exchange interaction with S0. This interac-
tion acts as a R‖-dependent distribution function, which can
be approximately represented by Jα (R, uF = 0) in Eq. (22).
Thus, Jα (R⊥) can be obtained by considering an integral of
Jα (R, uF = 0) over R‖, i.e.,

Jα (R⊥, uF = 0) ∝
∫

Jα (R, uF = 0)ddF R‖. (23)

(R⊥, R‖) is assumed as R⊥ = Rx and R‖ = (Ry, Rz ) for sim-
plicity. In this way, the dimensionality dF is introduced to
connect the RKKY interaction Jα (R, uF = 0) of local spins
with the interlayer RKKY interaction Jα (R⊥, uF = 0). Using
Eqs. (22) and (23), we find that the net in-plane interaction
Jα (R⊥, uF = 0) has the following decaying rate,

Jy,z(R⊥, uF = 0) ∝ 1

Rdh+ζ−dF
⊥

, (24)

and Jx = 0. The obtained Eq. (24) has generality. In our
study, the layered FMs deposited in WSMs is two dimension
dF = 2, so Jy,z ∝ 1/Rdh+ζ−dF

⊥ = 1/R3+2−2
⊥ = 1/R3

⊥ recovers
the results in Eq. (14). Taking dF = 0, corresponding to
zero-dimensional pointlike magnetic impurities, the decay-
ing rate of RKKY interaction recalls the recent results in
WSMs [45,46]. Recently, the RKKY interaction between
one-dimensional ferromagnetic chains, which is mediated by
two-dimensional topological surface states (dh = 2, ζ = 1),
has been reported and falls off as [51] 1/R2

⊥ (uF = 0). This
interaction still follows the law of Eq. (24) by setting dF = 1.
Compared with Eq. (22), the dimension dF of FM layers in
Eq. (24) take an important role to prolong the decaying rate,
as stated in our results.

For uF �= 0, following the same calculation process as
above, the general law for the interlayer RKKY interaction
can be obtained as

Jα (R⊥, uF �= 0) ∝ udh−1−dF /2
F

Rdh−dF /2
⊥

sin(2k0R⊥ + η), (25)

where η is a fitted constant. This law explains the numerical
results in Fig. 3. Compared to the law of uF = 0 in Eq. (24),

FIG. 9. Schematic diagram for a semi-infinite WSM, which is
infinite along the x (or z) axis and is terminated in the y axis with its
surface at y = 0. The black (blue) edges of ferromagnetic layers are
parallel (perpendicular) to the line connected Weyl nodes.

the introduction of finite Fermi energy eliminates the decaying
term Rζ−dF /2, which further prolongs the decay of interlayer
interaction. For dF = 0, the result in Eq. (25) is reminiscence
of the RKKY interaction (uF �= 0) between magnetic impuri-
ties in WSMs [45,46].

E. Interlayer RKKY interaction mediated by Fermi arc

In above discussions, the WSM is assumed to be infinite.
In practice, the sample should be finite and Fermi arcs would
arise on the surface of WSMs, which will play a role on the
RKKY interaction. We find that the Fermi arcs lying on top or
bottom layer have negligible contribution. This is because the
RKKY interaction is an indirect magnetic interaction, which
is mediated by the itinerant electrons between two ferromag-
netic layers. In this section, we focus on the effect of Fermi
arcs lying between top and bottom ferromagnetic layers.

We consider a semi-infinite WSM, as shown in Fig. 9
where a WSM is placed in the right half-plane (y > 0) and the
other half (y < 0) is assumed to be a vacuum, and is infinite
in other two (x and z) directions. Surface states would appear
on the x − z plane due to the nontrivial topological properties
of WSMs. Since the surface mainly affects the RKKY inter-
action between the edges of top and bottom ferromagnetic
layers, we only need to consider how the Fermi arcs contribute
to the RKKY interaction between two ferromagnetic chains,
as shown in Fig. 9.

In order to calculate the surface state in the semi-infinite
WSM, one has to employ a WSM model with higher-order
momentums, which is generally described with [60]

H = ξ
(
k2

z − Q2
)
σz + v f (kxσx + kyσy) + C0k2

x , (26)

where the term C0k2
x breaks the electron-hole symmetry and

would bend the surface band to generate a Fermi arc con-
necting two Weyl nodes located at (0, 0,±Q). Expanding the
above Hamiltonian around the Weyl points and retaining the
linear terms, one can obtain the same linearized model as
that in Eq. (1). Here, we drop the tilting term vt ky and only
focus on the effect of the Fermi arc on the interlayer exchange
interaction. An incident wave Ce−ikyy is assumed to be injected
along −y direction. Near the interface, if the wave is bound
to the x − z surface, the solution of the operator ky becomes
imaginary. By considering the continuity conditions of the
boundary between y < 0 and y > 0 regions, the surface band
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can be derived as

Esur = v f kx + C0k2
x , (27)

in the range of −Q < kz < Q and vanishes otherwise. The
corresponding wave function of the surface state reads

�sur =
√

ξ
(
Q2 − k2

z

)
v f

(
1

1

)
. (28)

By using Eq. (5), one can obtain the formula for the RKKY
interaction between two magnetic chains [51], which is medi-
ated by the 2D surface band and given by

J (R⊥) = −
∑

α,β=x,y,z

ST
α SB

β J2
0 a2

4πA2
0

∫ ∞

−∞
dq⊥eiq⊥R⊥χαβ (q⊥),

(29)

where A0 is the area of the unit cell projected on the x − z
plane, ST

α (SB
β ) is the spin of the top (bottom) magnetic chain.

The static spin susceptibility tensor χαβ (q⊥) reads as

χαβ (q⊥) = −μ2
B

γ

∑
ikn,k

Tr[Gk⊥,k‖ (ikn)σαGk⊥+q⊥,k‖ (ikn)σβ],

(30)

where k = (k⊥, k‖) and the subscript ⊥ (‖) represents the
direction perpendicular (parallel) to magnetic chains. Using
the eigenvalues and eigenfunctions in Eqs. (27)–(28), the Mat-
subara Green’s function Gk⊥,k‖ (ikn) can be constructed as

Gk⊥,k‖ (ikn) = �sur�
+
sur

ikn − Esur
= ξ

(
Q2 − k2

z

)
�

(
Q2 − k2

z

)
ρ0/v f

ikn + uF − v f kx − C0k2
x

,

(31)

where ρ0 = σ0 + σx (σ0 is the identity matrix). Due to Fermi
arc arising along the separated Weyl points, there will appear
two types of arrangements of the magnetic chains, namely, the
magnetic chains are parallel to the line connected Weyl nodes,
corresponding to Figs. 1(a) and 1(b), and perpendicular to the
line as in Fig. 1(c).

For the case with two magnetic chains parallel to the line
connected Weyl nodes, as indicated by black color in Fig. 9,
we take (k⊥, k‖) = (kx, kz ). Substituting Eqs. (30)–(31) into
Eq. (29), the formula for the exchange RKKY interaction
mediated by the Fermi arc can be rewritten as

J (Rx ) =
∑

α,β=x,y,z

ST
α SB

β J ′
c

∫ ∞

−∞
dq′

x

∫ ∞

−∞
dkn

∫ ∞

−∞
dkx

∫ Q

−Q
dkz

ei(q′
x−kx )Rx

(
Q2 − k2

z

)2
Tr(ρ0σαρ0σβ )

32
(
ikn + uF − v f kx − C0k2

x

)(
ikn + uF − v f q′

x − C0q′2
x

) , (32)

where J ′
c = J2

0 a2μ2
Bξ 2/(π4v2

f A2
0) and the coordinate transfor-

mation kx + qx = q′
x is used.

Summing over the indices for spin, one can find that only
the RKKY component Jx(Rx )ST

x SB
x survives, which is the out-

of-plane component and is lacking for bulk states as discussed
in Secs. III A and III B in the absence of tilt. After some
algebraic calculations, Jx(Rx ) can be simplified as

Jx(Rx ) =
∫ ∞

−∞
dkn

−16π2Q5J ′
ce−Rx

√
−4C0(ikn+uF )−v2

f /C0

15
[
4C0(ikn + uF ) + v2

f

] . (33)

According to the above equation, we plot the numerical results
of Jx(Rx ) in Fig. 10. The exchange RKKY interaction Jx(Rx )
falls off slowly as 1/Rx, along with an oscillation cos(2k′

0Rx ).
Compared to the bulk contributions Jy(z)(Rx ) shown in Fig. 3,
there are two main differences: (i) The interaction here decays
much more slowly than the bulk contributions (1/R3

x or 1/R2
x ),

which is ascribed to the anisotropic surface band, i.e., nearly
linear dispersion in kx axis and dispersionless in kz axis. It
is worth noting that the surface contribution in WSM decays
much slowly than the interlayer RKKY interaction mediated
by the helical surface states of topological insulator (1/R3/2

for uF �= 0) [51]. This suggests that WSMs are more promis-
ing materials with application potential to manipulate spins of
magnetic chains. (ii) The amplitude of the RKKY component
Jx decreases with the increased Fermi energy uF , but does not
change the decay rate of R−1

x . The case here is in contrast to

bulk contributions, where J ∝ uF in Fig. 3(b). To understand
this phenomenon, one can check the DOS of the surface band
ρ(ω) = ρ0/

√
v2

f + 4C0ω, where ρ0 = 4ξQ3/(3v f π
2). Noting

that ρ(ω) decreases with ω, so the number of electrons partic-
ipated in the magnetic scattering is decreased as uF increases,
and then the amplitude of the interlayer RKKY interaction Jx

is decreased.
For the case with two magnetic chains perpendicular to

the line connected Weyl nodes, as indicated by blue color in
Fig. 9, i.e., (k⊥, k‖) = (kz, kx ), utilizing Eqs. (29)–(31) and
processing the similar calculations, one can obtain the ana-

FIG. 10. Dependence of the interlayer RKKY component Jx on
the spacer thickness Rx for different Fermi energies uF . The period
of the oscillation is π/k′

0 with k′
0 = √

v2
f + 4C0uF /(2C0). Other pa-

rameters are set as: C0 = 1 and J ′
c = J2

0 a2μ2
Bξ 2/(π 4v2

f A2
0).
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lytical result for the Jx(Rz )

Jx(Rz ) = −8πJ ′
c[−QRz cos (QRz ) + sin (QRz )]2√

4C0uF + v2
f R6

z

. (34)

Compared with the slowly decaying interaction Jx(Rx ) ∝
1/Rx, the interaction here falls off fast as Jx(Rz ) ∝ 1/R4

z .
The underlying physics is attributed to the weak dispersion
band along kz axis, where the scattering of electrons between
magnetic chains is limited by the zero Fermi velocity vz = 0.
In this case, the bulk contribution to J would play a leading
role even near the surface since J ∝ 1/R2

z for uF �= 0 (J ∝
1/R3

z for uF = 0), and so the effect of the Fermi arcs can be
ignored.

IV. CONCLUSION

We have investigated the interlayer RKKY interaction in
FM/WSM/FM trilayer system in the presence of the tilting
effect of Weyl cones. Our investigation focuses on the influ-
ence of the unique features of WSMs: anisotropy dispersion,
tilt effect, intervalley transitions, and Fermi arc states. We
notice that recently, the interlayer RKKY interaction has been
studied with TI film [49,50] or the bulk Rashba semiconduc-
tors [51] as the spacer. In Ref. [49], authors show that the
TI states contributing to the proximity effect can be directly
identified through the change of RKKY coupling with the
external magnetic field or Fermi level. In Ref. [50], they
focused on the thickness dependence of TI film and found that
the RKKY amplitude is not monotonically dependent on the
thickness due to the hybridization between surfaces of the TI
film. Both of these works did not discuss the RKKY properties
that we care about, such as spin models, oscillation period, and
decaying rate.

In Ref. [51], authors investigated the interlayer RKKY
coupling mediated by a bulk Rashba semiconductor, consist-
ing of intraband and interband contributions and discussed
the long-range dependence of different RKKY components
(controlled by the FM’s relative direction), including the os-
cillation period and spatial long-range decaying rate in trivial
and topological phases. In our paper, we use WSM as spacer
and also discuss spin models and long-range decaying rate
caused by the unique features of WSM: anisotropy dispersion,
tilt effect, and intervalley transitions. In spite of different
physics origin, it is interesting to compare our results with
Ref. [51]:

(i) Due to the separation of Weyl nodes, the RKKY be-
haviors, such as spin model, decaying rate, and oscillation
period, heavily depend on the stacked direction of FMs. In
the topological materials with a single Dirac cone [51], the
RKKY interaction is independent of the stacked direction of
FMs due to isotropy.

(ii) Noncollinear terms (DM or spin-frustrated terms) al-
ways emerge even for the contribution of bulk band. But
noncollinear terms vanish for bulk band and appear only for
surface states in Ref. [51]. Also, notice that the spin-frustrated
term is unique in our system since this term vanishes in
Ref. [51] and in tilted WSMs doping with magnetic impurities
[45,46].

(iii) We find the tilt has significant effect: (a) Tilt can
increase the RKKY magnitude and change XYY to XY Z spin
model. (b) Tilt can make RKKY interaction switch between
antiferromagnetism and ferromagnetism. (c) Tilt can lead to
spin-frustrated term and change one-period oscillation to bat-
tering pattern. Furthermore, we obtain a simply analytical
expression Eq. (16) about oscillation period, from which one
can easily extract the tilt parameter. But no tilt is presented in
Ref. [51].

(iv) Intervalley transition due to separated Weyl nodes gen-
erates extra oscillation with period determined by separated
distance Q between Weyl nodes. This new oscillation together
with Fermi-energy-induced oscillation leads to an interesting
battering pattern. Notice that it is essentially different from the
intraband and interband transitions stemming from the split-
ting of Rashba spin-orbit interaction in Ref. [51]. Although the
intraband and interband transitions can cause different periods
of oscillation, the total oscillation is their summation, which
cannot lead to battering pattern.

(v) Anisotropic surface states can lead to much slower
RKKY decaying rate (R−1) than those mediated by the helical
surface states of TIs (R−3/2) in Ref. [51]. Notice, in WSMs,
both bulk and surface states contribute to the RKKY inter-
action, but only the contribution either from bulk or surface
states exists in Ref. [51].

In addition, we find the decaying rate not only depends
on the dimension of the spacer but also the one of fer-
romagnetism, and obtained Eq. (24) has generality, which
recalls previous results. Thus, we explain the origin of slower-
decaying rate of interlayer RKKY interaction, compared with
the impurity case. Therefore, we exhibit significant unique
RKKY characteristics of WSMs, which are helpful to un-
derstand the WSM magnetic property and to extract the
parameters of WSM materials.

In summary, we have investigated the interlayer RKKY
interaction in FM/WSM/FM trilayer system. Different ar-
rangements of the ferromagnetic layers are considered to
discuss the magnetic anisotropy. By comparing the cases
of tilted with untilted WSMs, rich signatures are extracted
from the interlayer interaction to characterize the tilting ef-
fect, including anisotropic XY Z spin models, magnetization
switchings, modified oscillatory patterns, and newly emerged
spin-frustrated terms. Due to the dimensionality effect of the
ferromagnetic layers, the latter two signatures are significantly
different with that from the RKKY interaction of magnetic
impurities as reported in previous literatures. In addition, this
effect can result in a slower-decaying law for the interlayer
RKKY interaction, which makes the magnetic signatures eas-
ier to be detected. We further discuss the effect of surface
states on the interlayer RKKY interaction at the edges of
ferromagnetic layer. When the ferromagnetic layer edges are
parallel to the line connecting the Weyl nodes, we find a more
slowly decaying law, compared with bulk contribution. On
the whole, our work suggests that trilayer systems are more
powerful platforms for characterizing the intrinsic properties
of topological materials. All interlayer RKKY signatures are
expected to be probed experimentally with present techniques,
e.g., the broadband ferromagnetic resonance [54], which can
detect the acoustic and optic modes to evaluate the different
effective magnetizations of the two ferromagnetic layers, or
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the magneto-optic Kerr effect [55,61] to investigate the hys-
teresis loop.

ACKNOWLEDGMENTS

This work was supported, by the National Natural Sci-
ence Foundation of China (Grants No. 12104167, No.
12174121, and No. 11904107), by the Science and Tech-
nology Program of Guangzhou (No. 2019050001), by the
Guangdong NSF of China (Grants No. 2021A1515011566
No. 2021A1515010369, and No. 2021A1515010369).

Y.-J.W. and Q.-Y.X. contributed equally to this work.

APPENDIX A: INTERLAYER RKKY INTERACTION
WITH FMS STACKED IN THE x AXIS

In this section, we consider the arrangement of FMs with
their stacking direction parallel to the x axis, i.e., k⊥ = kx and
k‖ = (ky, kz ). Utilizing Eqs. (2), (3), and (7) of the main text,

one can obtain the Matsubara Green’s function of uF = 0 as

Gλ
kx+qx,k‖ (ikn) = ikn − vt ky + H0(kx + qx, k‖)

(ikn − vt ky)2 − ε2(kx + qx, k‖)
, (A1)

with

H0(kx, k‖) = v f [kxσx + kyσy + λ(kz − λQ)σz],

ε(kx, k‖) = ±v f

√
k2

x + k2
y + (kz − λQ)2.

(A2)

where H0(kx, k‖) is the Hamiltonian of nontilted WSMs with
the corresponding energy ε(kx, k‖). By simply setting qx = 0
in Eq. (A1), Gλ

kx,k‖ (ikn) can be obtained. Since the projections
of two Weyl valleys in the kx axis are completely overlapped,
they would contribute equally to the interlayer RKKY inter-
action, i.e., λ′ = λ in the Eq. (6) of the main text. Substituting
the Eq. (A1) to the Eq. (6) of the main text, the static spin
susceptibility χαβ (0, qx ) can be simplified as

χαβ (0, qx ) = −μ2
B

γ

∑
λ,kn,k

Tr{[ikn − vt ky + H0(kx, k‖)]σα[ikn − vt ky + H0(kx + qx, k‖)]σβ}
[(kn + ivt ky)2 + ε2(kx, k‖)][(kn + ivt ky)2 + ε2(kx + qx, k‖)]

,

= −μ2
B

(2π )4

∑
λ

∫
dkn

∫
dk

Tr{[ikn − vt ky + H0(kx, k‖)]σα[ikn − vt ky + H0(kx + qx, k‖)]σβ}
[(kn + ivt ky)2 + ε2(kx, k‖)][(kn + ivt ky)2 + ε2(kx + qx, k‖)]

, (A3)

where k = (kx, k‖) with k‖ = (ky, kz ).
To avoid the divergent integrals in the Eq. (A3), one can use the following Feynman parametrization [59]:

1

(kn + ivt ky)2 + ε2(kx, k‖)

1

(kn + ivt ky)2 + ε2(kx + qx, k‖)

=
∫ 1

0
dg

1

{g[(kn + ivt ky)2 + ε2(kx + qx, k‖)] + (1 − g)[(kn + ivt ky)2 + ε2(kx, k‖)]}2

=
∫ 1

0
dg

1[
(kn + ivt ky)2 + ε2(kx, k‖) + gqxv

2
f (2kx + qx )

]2 . (A4)

In this way, the static spin susceptibility χαβ (0, qx ) can be expressed as

χαβ (0, qx ) = −μ2
B

(2π )4

∑
λ

∫∫
dkndk

∫ 1

0
dg

Tr{[ikn − vt ky + H0(kx, k‖)]σα[ikn − vt ky + H0(kx + qx, k‖)]σβ}[
(kn + ivt ky)2 + ε2(kx, k‖) + gqxv

2
f (2kx + qx )

]2 . (A5)

Using the coordinate transformation (kx + gqx, kz − λQ) = (k′
x, k′

z ), the above equation can be further simplified as

χαβ (0, qx ) = −μ2
B

(2π )4

∑
λ

∫∫
dkndk′

∫ 1

0
dg

Tr{[ikn − v f gqxσx + h(k′)]σα[ikn + v f qx(1 − g)σx + h(k′)]σβ}[
(kn + ivt ky)2 + v2

f |k′|2 + g(1 − g)v2
f q2

x

]2 , (A6)

with

h(k′) = −vt ky + v f (k′
xσx + kyσy + λk′

zσz ), (A7)

where k′ = (k′
x, k′

‖) with k′
‖ = (ky, k′

z ). Plugging χαβ (0, qx ) into the Eq. (5) of the main text and tracing over the Pauli matrices,
the interlayer RKKY interaction J (Rx ) can be split into the following terms:

J (Rx ) =
∑

α=x,y,z

Jα (Rx )ST
α SB

α + JDM
x (Rx )(ST × SB)x, (A8)
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with

Jx(Rx )

Jc
=

∫ ∞

−∞
dqxeiqxRx

∫ ∞

−∞
dk′

∫ ∞

−∞
dkn

∫ 1

0
dg

(ikn − vt ky)2 + v2
f

[
(k′

x − gqx )(k′
x + qx − gqx ) − k2

y − kz
2
]

[
(kn + ivt ky)2 + v2

f |k′|2 + g(1 − g)v2
f q2

x )
]2 ,

Jy(Rx )

Jc
=

∫ ∞

−∞
dqxeiqxRx

∫ ∞

−∞
dk′

∫ ∞

−∞
dkn

∫ 1

0
dg

(ikn − vt ky)2 + v2
f

[
k2

y − k′2
z − (k′

x − gqx )(k′
x + qx − gqx )

]
[
(kn + ivt ky)2 + v2

f |k′|2 + g(1 − g)v2
f q2

x )
]2 ,

Jz(Rx )

Jc
=

∫ ∞

−∞
dqxeiqxRx

∫ ∞

−∞
dk′

∫ ∞

−∞
dkn

∫ 1

0
dg

(ikn − vt ky)2 + v2
f

[
k′2

z − k2
y − (k′

x − gqx )(k′
x + qx − gqx )

]
[
(kn + ivt ky)2 + v2

f |k′|2 + g(1 − g)v2
f q2

x )
]2 ,

JDM
x (Rx )

Jc
=

∫ ∞

−∞
dqxeiqxRx

∫ ∞

−∞
dk′

∫ ∞

−∞
dkn

∫ 1

0
dg

−iv f qx(ikn − vt ky)[
(kn + ivt ky)2 + v2

f |k′|2 + g(1 − g)v2
f q2

x )
]2 , (A9)

where Jc = J2
0 μ2

Ba2/(16π5V 2
0 ), Jα (Rx ) couples collinear spins and JDM

x (Rx ) describes the DM (noncollinear) interaction.
We take Jy(Rx ) as an example to show the detail calculation process, which is given by

Jy(Rx ) =
∫ ∞

−∞
dqxeiqxRx

∫ ∞

−∞
dk′

∫ ∞

−∞
dkn

∫ 1

0
dg

(ikn − vt ky)2 + v2
f

[
k2

y − k′
z
2 − (k′

x − gqx )(k′
x + qx − gqx )

]
[
(kn + ivt ky)2 + v2

f |k′|2 + g(1 − g)v2
f q2

x

]2
J−1

c

=
∫

dqxeiqxRx

∫
dk′

x

∫
dky

∫
dkn

∫ 1

0
dg

πJc
[
(ikn − vt ky)2 − v2

f k′2
x

]
v f

[
(kn + ivt ky)2 + v2

f k′2
x + v2

f k2
y + g(1 − g)v2

f q2
x

] 3
2

=
∫

dk′
x

∫
dky

∫
dkn

∫ ∞

−∞
dqxeiqxRx

[
(kn + ivt ky)2 + v2

f k′2
x + v2

f k2
y

]− 1
2
[
(ikn − vt ky)2 − v2

f k′2
x

]
v f

[
4(kn + ivt ky)2 + 4v2

f k′2
x + 4v2

f k2
y + v2

f q2
x

]
(4πJc)−1

=
∫ ∞

−∞
dk′

x

∫ ∞

−∞
dky

∫ ∞

−∞
dkn

e
−

2Rx

√
(kn+i vt

v f
ky )2+k′2

x +k2
y

v f 2π2
[(

ikn − vt
v f

ky
)2 − k′2

x

]
v4

f

[(
kn + i vt

v f
ky

)2 + k′2
x + k2

y

]
J−1

c

=
∫ π

0
sin (θ )dθ

∫ 2π

0
dϕ

∫ ∞

0
k2dk

(
2π2Jc/v

4
f

){[
i cos (θ ) − vt sin (θ ) sin (ϕ)

v f

]2 − [sin (θ ) cos (ϕ)]2
}

e

2Rx k

√
[cos (θ )+ ivt sin (θ ) sin (ϕ)

v f ]2+sin2 (θ )

v f
{[

cos (θ ) + ivt sin (θ ) sin (ϕ)
v f

]2 + sin2 (θ )
}

=
∫ π

0
dθ

∫ 2π

0
dϕ

−π2 sin (θ )
{

cos2 (ϕ) sin2 (θ ) + [
cos (θ ) + ivt sin (θ ) sin (ϕ)

v f

]2}
Jc

2v f R3
x

{
sin2 (θ ) + [

cos (θ ) + ivt sin (θ ) sin (ϕ)
v f

]2} 5
2

=
∫ 2π

0
dϕ

−π2[2 + cos (2ϕ)]Jc

3v f R3
x

= −4π3Jc

3v f

1

R3
x

. (A10)

As shown above, the tilting effect does not affect the interlayer
RKKY interaction of zero Fermi energy uF = 0. The reason
is that the interlayer interaction of uF = 0 is only determined
by the energy difference [51] E+,λ(kx, k‖) − E−,λ(kx + qx, k‖)
[Eq. (2) of the main text], which is independent on the param-
eter vt and naturally leads to unperturbed results even in the
presence of the tilting effect.

Following the similar integration process, one can obtain
Jz(Rx ) = Jy(Rx ), Jx(Rx ) = 0 and JDM

x (Rx ) = 0. Obviously, the
collinear interlayer RKKY components exhibit a XYY spin
model, i.e., Jx(Rx ) �= Jy(Rx ) = Jz(Rx ). Noting that the van-
ished out-of-plane collinear component Jx(Rx ) is induced by
the dimensional effect of ferromagnetic layers, as discussed in
the main text.

APPENDIX B: INTERLAYER RKKY INTERACTION
WITH FMS STACKED IN y AXIS

For the arrangement of FMs with their stacking direction
parallel to the y axis, i.e., k⊥ = ky and k‖ = (kz, kx ). Utilizing
Eqs. (2), (3), and (7) of the main text, the Matsubara Green’s
function Gλ

ky,k‖ (ikn) of uF = 0 can be constructed as

Gλ
ky+qy,k‖ (ikn) = ikn − vt (ky + qy) + H0(ky + qy, k‖)

[ikn − vt (ky + qy)]2 − ε2(ky + qy, k‖)
.

(B1)
Similar to the case with ferromagnetic layers stacked in the
x axis, the interlayer RKKY interaction here is only con-
tributed by the intravalley coupling, i.e., λ = λ′ still holds in
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the Eq. (6) of the main text. Following the similar process in the Appendix A, one can use the Eq. (B1) and Eqs. (5)–(6) of the
main text to simplify the interlayer RKKY interaction J (Ry) as

J (Ry) =
∑

α=x,y,z

Jα (Ry)ST
α SB

α + JDM
y (Ry)(ST × SB)y, (B2)

with

Jx(Ry)

Jc
=

∫ ∞

−∞
dqyeiqyRy

∫ ∞

−∞
dk′

∫ ∞

−∞
dkn

∫ 1

0
dg

f (g) f (g − 1) + v2
f k2

x − v2
f (k′

y − gqy)(k′
y − gqy + qy) − v2

f k′2
z[

(kn + ivt k′
y)2 + v2

f |k′|2 + (
v2

f − v2
t

)
g(1 − g)q2

y

]2 ,

Jy(Ry)

Jc
=

∫ ∞

−∞
dqyeiqyRy

∫ ∞

−∞
dk′

∫ ∞

−∞
dkn

∫ 1

0
dg

f (g) f (g − 1) − v2
f k2

x + v2
f (k′

y − gqy)(k′
y − gqy + qy) − v2

f k′2
z[

(kn + ivt k′
y)2 + v2

f |k′|2 + (
v2

f − v2
t

)
g(1 − g)q2

y

]2 ,

Jz(Ry)

Jc
=

∫ ∞

−∞
dqyeiqyRy

∫ ∞

−∞
dk′

∫ ∞

−∞
dkn

∫ 1

0
dg

f (g) f (g − 1) − v2
f k2

x − v2
f (k′

y − gqy)(k′
y − gqy + qy) + v2

f k′2
z[

(kn + ivt k′
y)2 + v2

f |k′|2 + (
v2

f − v2
t

)
g(1 − g)q2

y

]2 ,

JDM
y (Ry)

Jc
=

∫ ∞

−∞
dqyeiqyRy

∫ ∞

−∞
dk′

∫ ∞

−∞
dkn

∫ 1

0
dg

−v f qykn[
(kn + ivt k′

y)2 + v2
f |k′|2 + (

v2
f − v2

t

)
g(1 − g)q2

y

]2 ,

where f (g) = ikn − vt k′
y + gvt qy, k′ = (kx, k′

y, k′
z ), the Feynman parameterization is similar to the Eq. (A4) and the coordinate

transformation (ky + gqy, kz − λQ) = (k′
y, k′

z ) are used.
Taking Jx(Ry) as an example, the integration can be solved as

Jx(Ry) = Jc

∫ ∞

−∞
dqyeiqyRy

∫ ∞

−∞
dk′

∫ ∞

−∞
dkn

∫ 1

0
dg

f (g) f (g − 1) + v2
f k2

x − v2
f (k′

y − gqy)(k′
y − gqy + qy) − v2

f k′2
z[

(kn + ivt k′
y)2 + v2

f |k′|2 + (
v2

f − v2
t

)
g(1 − g)q2

y

]2

= Jc

∫
eiqyRy dqy

∫
dkx

∫
dk′

y

∫
dkn

∫ 1

0
dg

−π
{
2k2

n + ikn(4k′
y + qy − 2gqy)vt + k′

y(2k′
y + qy − 2gqy)

(
v2

f − v2
t

)}
2v f

{
(kn + ivt k′

y)2 + v2
f k2

x + v2
f k′2

y + (
v2

f − v2
t

)
g(1 − g)q2

y

} 3
2

= Jc

∫
dkx

∫
dk′

y

∫
dkn

∫ ∞

−∞
dqyeiqyRy

[
v2

f

(
k2

x + k′2
y

) − (ikn − vt k′
y)2

]− 1
2
[
4πv2

f k′2
y − 4π (ikn − vt ky)2

]
v f

[
4(ikn − vt k′

y)2 − 4v2
f

(
k2

x + k′2
y

) − (
v2

f − v2
t

)
q2

y

]

= Jc

∫ ∞

−∞
dkx

∫ ∞

−∞
dk′

y

∫ ∞

−∞
dkn

e
−2Ry

√
v2

f (k2
x +k′2

y )−(ikn−vt k′
y )2

v2
f −v2

t 2π2
[
(ikn − vt k′

y)2 − v2
f k′2

y

]
v f

√
v2

f − v2
t

[
v2

f

(
k2

x + k′2
y

) − (ikn − vt k′
y)2

]

= Jc

∫ ∞

0
k2dk

∫ π

0
sin θdθ

∫ 2π

0
dϕ

e
−2Ryk

√√√√ sin2 (θ )−[i cos (θ )− vt sin (θ ) sin (ϕ)
v f ]2

v2
f −v2

t 2π2
{[

i cos (θ ) − vt sin (θ ) sin (ϕ)
v f

]2 − [
sin (θ ) sin (ϕ)

]2}
v3

f

√
v2

f − v2
t

{
sin2 (θ ) − [

i cos (θ ) − vt sin (θ ) sin (ϕ)
v f

]2}

= Jc

∫ π

0
dθ

∫ 2π

0
dϕ

−π2 sin (θ )
{

sin2 (θ ) sin2 (ϕ) + [
cos (θ ) + ivt sin (θ ) sin (ϕ)

v f

]2}
2R3

yv
3
f

(
v2

f − v2
t

)−1{
sin2 (θ ) + [

cos (θ ) + ivt sin (θ ) sin (ϕ)
v f

]2}5/2

= Jc

∫ 2π

0
dϕ

π2
(
v2

f − v2
t

)
[−2 + cos (2ϕ)]

3v3
f R3

y

= −4π3Jc

3v f

(
1 − v2

t /v2
f

)
R3

y

. (B3)
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Following the similar process, one can obtain

Jx(Ry) = Jz(Ry),

Jy(Ry) = 4π3Jc

3v3
f

v2
t

R3
y

,

JDM
y (Ry) = 0. (B4)

Noting that the interlayer RKKY interaction here can be
modified by the tilt parameter vt . This is attributed to the tilt-
dependent energy difference [51] E+,λ(ky, k‖) − E−,λ(ky +
qy, k‖) [Eq. (2) of the main text], where the transferred mo-
mentum qy couples tightly with vt .

APPENDIX C: INTERLAYER RKKY INTERACTION
WITH FMS STACKED IN THE z AXIS

For the arrangement of FMs with their stacking direction
parallel to the z axis, i.e., k⊥ = kz and k‖ = (kx, ky). Utilizing

Eqs. (2), (3), and (7) in the main text, the Matsubara Green’s
function Gλ

kz+qz,k‖ (ikn) of uF = 0 can be constructed as

Gλ
kz+qz,k‖ (ikn) = ikn − vt ky + H0(kz + qz, k‖)

(ikn − vt ky)2 − ε2(kz + qz, k‖)
(C1)

Unlike the two cases in previous sections, the interlayer
RKKY interaction here include intravalley and intervalley
contributions, i.e., λ = λ′ and λ �= λ′ coexist at the same time
in the Eq. (6) of the main text. Under this consideration, one
can use the Eq. (C1) and Eqs. (5)–(6) of the main text to
simplify the interlayer RKKY interaction J (Rz ) as

J (Rz ) =
∑

α=x,y,z

Jα (Rz )ST
α SB

α + Jf r (Rz )
(
ST

y SB
z + ST

z SB
y

)
, (C2)

with

Jx(Rz )

Jc
=

∑
λ,λ′

∫ ∞

−∞
dq′

ze
iq′

zRz

∫ ∞

−∞
dk′

∫ ∞

−∞
dkn

∫ 1

0
dg

(ikn − vt ky)2 + v2
f

(
k2

x − k2
y

) − λλ′v2
f (k′

z − gqz )(k′
z + q′

z − gq′
z )

2e−i(λ′−λ)QRz
[
(kn + ivt ky)2 + v2

f |k′|2 + g(1 − g)v2
f q′2

z

]2 ,

Jy(Rz )

Jc
=

∑
λ,λ′

∫ ∞

−∞
dq′

ze
iq′

zRz

∫ ∞

−∞
dk′

∫ ∞

−∞
dkn

∫ 1

0
dg

(ikn − vt ky)2 − v2
f

(
k2

x − k2
y

) − λλ′v2
f (k′

z − gq′
z )(k′

z + q′
z − gq′

z )

2e−i(λ′−λ)QRz
[
(kn + ivt ky)2 + v2

f |k′|2 + g(1 − g)v2
f q′2

z

]2 ,

Jz(Rz )

Jc
=

∑
λ,λ′

∫ ∞

−∞
dq′

ze
iq′

zRz

∫ ∞

−∞
dk′

∫ ∞

−∞
dkn

∫ 1

0
dg

(ikn − vt ky)2 − v2
f

(
k2

x + k2
y

) + λλ′v2
f (k′

z − gq′
z )(k′

z + q′
z − gq′

z )

2e−i(λ′−λ)QRz
[
(kn + ivt ky)2 + v2

f |k′|2 + g(1 − g)v2
f q′2

z

]2 ,

Jf r (Rz )

Jc
=

∑
λ,λ′

∫ ∞

−∞
dq′

ze
iq′

zRz

∫ ∞

−∞
dk′

∫ ∞

−∞
dkn

∫ 1

0
dg

v2
f ky[(λ + λ′)k′

z + q′
z(λ′ − g(λ + λ′))]

2e−i(λ′−λ)QRz
[
(kn + ivt ky)2 + v2

f |k′|2 + g(1 − g)v2
f q′2

z

]2 ,

where k′ = (kx, ky, k′
z ), the Feynman parametrization is similar to the Eq. (A4) and the coordinate transformation (qz + λQ −

λ′Q, kz − λQ + gq′
z ) = (q′

z, k′
z ) are used. Here, the DM term always vanishes due to the protected inversion symmetry of the

Green’s function, i.e., G(Rz, ikn) = G(−Rz, ikn) with G(±Rz, ikn) = ∑
kz,k‖,λ e±ikzRz Gλ

kz,k‖ (ikn). Similar result has also been found
for the RKKY interaction of magnetic impurities in WSMs [46].

Taking the component Jx(Rz ) as an example, whose detailed calculation process is given by

Jx(Rz )

Jc
=

∑
λ,λ′

∫ ∞

−∞
dq′

ze
iq′

zRz

∫ 1

0
dg

∫ ∞

−∞
dk′

∫ ∞

−∞
dkn

(ikn − vt ky)2 + v2
f

(
k2

x − k2
y

) − λλ′v2
f (k′

z − gq′
z )(k′

z + q′
z − gq′

z )

2e−i(λ′−λ)QRz
[
(kn + ivt ky)2 + v2

f |k′|2 + g(1 − g)v2
f q′2

z

]2

=
∑
λ,λ′

∫
dq′

ze
iq′

zRz

∫
dkx

∫
dky

∫
dkn

∫ 1

0
dg

π
[
(ikn − vt ky)2(1 + λλ′) − v2

f

(
k2

y − k2
x

) − λλ′v2
f

(
k2

x + k2
y

)]
4e−i(λ′−λ)QRzv f

[
v2

f

(
k2

x + k2
y

) + v2
f g(1 − g)q′2

z − (ikn − vt ky)2
] 3

2

=
∑
λ,λ′

∫
dkx

∫
dky

∫
dkn

∫ ∞

−∞
dq′

z

ei(qz+λ′Q−λQ)Rzπ
[
(ikn − vt ky)2(1 + λλ′) − v2

f

(
k2

y − k2
x

) − λλ′v2
f

(
k2

x + k2
y

)]
4v f

√
v2

f

(
k2

x + k2
y

) − (ikn − vt ky)2
[
v2

f

(
k2

x + k2
y

) + v2
f q′2

z

4 − (ikn − vt ky)2
]

=
∑
λ,λ′

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dkn

π2
[
(ikn − vt ky)2(1 + λλ′) + v2

f

(
k2

x − k2
y

) − λλ′v2
f

(
k2

x + k2
y

)]

2v2
f e

2Rz

√
v2

f (k2
x +k2

y )−(ikn−vt ky )2

v2
f

−i(λ′−λ)QRz[
v2

f

(
k2

x + k2
y

) − (ikn − vt ky)2
]

=
∑
λ,λ′

∫ ∞

0
k2dk

∫ π

0
sin θdθ

∫ 2π

0
dϕ

e
−2Rzk

√
sin2 (θ )−[i cos (θ )− vt sin (θ ) sin (ϕ)

v f
]2

v2
f π2

[
i cos (θ ) − vt sin (θ ) sin (ϕ)

v f
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2e−i(λ′−λ)QRzv4
f

{
sin2 (θ ) − [

i cos (θ ) − vt sin (θ ) sin (ϕ)
v f
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+
∑
λ,λ′

∫ ∞

0
k2dk

∫ π

0
sin θdθ
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dϕ

e
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∫ π
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{
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]2} 5
2 e−i(λ′−λ)QRz sin−1 (θ )

=
∑
λ,λ′

∫ 2π

0
dϕ

π2[2cos(2ϕ) − 3λλ′ − 1]

12v f R3
z

ei(λ′−λ)QRz

=
∑
λ,λ′

−π3(1 + 3λλ′)
6v f R3

z

ei(λ′−λ)QRz

= 2π3

3v f

cos (2QRz ) − 2

R3
z

. (C3)

Performing some similar algebraic calculations, other RKKY components can be easily solved as

Jy(Rz ) = Jx(Rz ) Jz(Rz ) =
∑
λ,λ′

π3(λλ′ − 1)Jc

6v f R3
z

ei(λ′−λ)QRz = −2π3Jc

3v f

cos (2QRz )

R3
z

, Jf r (Rz ) = 0. (C4)

In contrast with the components Jα (Rx,y), there aries an extra oscillation cos(2QRz ) for Jα (Rz ), which is induced by the separated
projections of Weyl points in the kz axis, similar to the RKKY interaction of magnetic impurities in WSMs [45,46]. Here,
the response of the RKKY components (uF = 0) to the tilting parameter vt is similar to the case of Appendix A, i.e., the
vt -related terms are completely eliminated in the energy difference E+,λ(kz, k‖) − E−,λ(kz + qz, k‖), which naturally leads to
vt -independent RKKY components [Eq. (C3) and Eq. (C4)].
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