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Dynamic charge Kondo effect and a slave fermion approach to the Mott transition
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The Mott transition plays a key role in strongly correlated physics, but its nature is not yet fully understood.
Motivated by the recent development of the Schwinger boson approach for the Kondo lattice, we propose in
this paper a slave fermion algorithm to study the Mott transition. Upon local approximation, our method yields a
phase diagram with a zero-temperature continuous (Mott) metal-insulator transition at finite Coulomb interaction
U for the half-filled one-band Hubbard model on a square lattice, and the resistivity exhibits a critical scaling
around the quantum Widom line. We argue that the Mott transition may be associated with a dynamic charge
Kondo effect of local degenerate doublon and holon states, causing sharp resonances on the doublon, holon, and
electron spectra. The transition is pushed to U = 0 once intersite antiferromagnetic correlations are included,
in agreement with exact numerical calculations. Our approach captures some essential features of the Mott
transition and offers an alternative angle to view this important problem. It can be extended to study other
correlated electron models with more complicated local interactions.
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I. INTRODUCTION

The Mott transition is a metal-insulator transition driven
by local Coulomb interactions [1,2]. Its nature has remained
obscure for over half a century [3] due to the lack of an
obvious order parameter [4,5], which makes it a key problem
to explore new physics beyond the Landau paradigm of phase
transitions. Experimentally, it has been observed in a wide
spectrum of materials such as transition-metal oxides [6,7],
organic compounds [8–11], and transition-metal dichalco-
genides (TMDs) [12,13]. There are two major features in
the electron spectra associated with the Mott transition: the
high-energy lower and upper Hubbard bands and the low-
energy quasiparticle peak which is suppressed as the system
turns from a metal into an insulator [14,15]. Near the tran-
sition, a quantum critical scaling has also been reported in
resistivity [16]. Theoretically, the Mott transition has been
extensively explored using various analytical and numerical
methods [17,18], including studies based on parton theories
[19–40], the doublon-holon binding scenario [41–51], charge-
2e boson theory [52,53], the Hatsugai-Kohmoto (HK) model
[5,54,55], dynamical mean-field theory (DMFT) and its exten-
sions [56–59], comparison of different numerical approaches
[60,61], and many others [62–71]. Among them, DMFT can
yield both features as well as the resistivity scaling [72–77]
but predicted a first-order Mott transition [78,79] at finite
Coulomb interaction for the half-filled one-band Hubbard
model. On the other hand, exact determinant quantum Monte
Carlo (DQMC) simulation on a square lattice predicted a con-
tinuous transition at U = 0 [80–85], possibly due to intersite
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antiferromagnetic (AFM) correlations [83]. Since many ef-
fects are involved in these calculations, it is difficult to clarify
the role of each factor and establish a clear picture of the Mott
transition.

Slave particle approaches have also been applied to un-
derstand the Mott transition, which describe the electrons
by fractionalized spin and charge degrees of freedom such
as spinons, holons, doublons, or rotors [19–33]. These ap-
proaches are less rigorous compared with exact numerical
methods but may provide more intuitive pictures of the tran-
sition. To date, most of these works adopted a fermionic
representation of the spinons and treated the charge degrees
of freedom as bosons. As a result, the Mott transition may
be naturally characterized as boson condensation. By con-
trast, fermionic representation [86–93] is seldom used for
the charge degrees of freedom, although doublon and holon
excitations created by c†

iσ ni,−σ and ciσ (1 − ni,−σ ) have a
fermionlike form [45]. Here, ciσ and c†

iσ are the annihilation
and creation operators of electrons, and niσ is its density oper-
ator. In fact, a fermionic representation with self-consistent
Born approximation (SCBA) has recently been applied to
analyze the doublon-holon binding and found good agreement
with exact DQMC simulations [49,50].

In this paper, we propose an alternative approach based
on the fermionic representation. Our method is motivated
by the recent development of the Schwinger boson approach
[94–104] to heavy-fermion systems. Instead of using the Born
approximation, we introduce a fermionic auxiliary field to
decouple the kinetic term and use self-consistent one-loop
approximation to calculate the quasiparticle spectra. As an
example, we apply this method to the one-band Hubbard
model at half filling and derive successfully a T -U phase
diagram with a continuous metal-insulator transition at zero
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temperature. Near the transition, the resistivity exhibits a crit-
ical scaling around the quantum Widom line [73]. We find that
the transition may be understood as a dynamic charge Kondo
effect of the local degenerate doublon and holon states, with
bosonic spinons playing the role of fluctuating hybridization
fields. Comparison with DMFT indicates that the DMFT first-
order transition may originate from vertex corrections beyond
one-loop approximation. Including intersite AFM correlations
drives the transition to U = 0, in good agreement with DQMC
prediction. Hence our approach captures the essential aspects
of the Mott transition and is a useful tool to explore the
roles of different ingredients during the transition. It can be
easily extended to other more complicated models and offer
an alternative perspective on their correlated electron physics.

II. METHOD

We start with the half-filled one-band Hubbard model on a
square lattice:

H = −
∑
i jσ

ti jc
†
iσ c jσ + U

∑
i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (1)

which contains a kinetic term and a Hubbard U term. In
the slave fermion representation, the physical electron op-
erator is rewritten as ciσ = e†

i siσ + σ s†
i,−σ di, where di and

ei are fermionic operators denoting the doubly occupied
(doublon) and empty (holon) states, respectively, and siσ de-
scribe bosonic spinons for the singly occupied states. The
physical Hilbert space is constrained by requiring Qi ≡
e†

i ei + d†
i di + ∑

σ s†
iσ siσ = 1. In this way, the Hubbard-U

term becomes quadratic, but the kinetic term turns into a
more complicated quartic form, which may be decoupled
via a Hubbard-Stratonovich transformation by introducing a
fermionic auxiliary field χiσ [105–110]. The final effective
action reads

L = L0 + U

2

∑
i

(d̄idi + ēiei ) +
∑

i

λi(Qi − 1)

−
∑
i jσ

G−1
i j χ̄iσχ jσ +

∑
iσ

[χ̄iσ (ēisiσ + σ s̄i,−σ di ) + H.c.], (2)

where L0 = ∑
i(d̄i∂τ di + ēi∂τ ei + ∑

σ s̄iσ ∂τ siσ ), λi is the La-
grange multiplier, and G−1

i j = −(t−1)i j with t being the
hopping matrix with site indices. As illustrated in Fig. 1(a),
only the auxiliary χ field carries spatial correlation informa-
tion in this model, while the local slave particles di, ei, and siσ

can only hop on the lattice by coupling to the χ field through
a three-particle vertex. Such a form actually covers a large
family of strongly correlated models, similar to that in the
dual-fermion approach [107–110]. The above procedure can
be readily extended to other models with more complex local
interactions. By requiring G−1(k, iωn) = (iωn − εk), we may
also obtain the periodic Anderson model with local degrees of
freedom represented by slave particles.

There are different ways to solve the above action. We may
use DMFT by approximating G with a self-consistent local
Weiss field [56]. However, DMFT is a black box incorporating
many effects that are hard to extract. Here, motivated by
the recent development of the Schwinger boson approach for

FIG. 1. (a) Illustration of the effective model with the fermionic
auxiliary field χ and the local slave particles. (b)–(d) DOS of the
doublon, spinon, and auxiliary χ field for different values of U at
T = 0.01. The inset of (c) shows the roughly linear relationship
between the spinon peak position ωs and the temperature.

studying heavy-fermion quantum phase transitions [97–104],
we adopt one-loop approximation and solve the following
self-energy equations:

	χ (iωn) = 1

β

∑
m

Gs(iνm)[Ge(iωm−n) − Gd (iωm+n)],

	s(iνm) = 1

β

∑
n

Gχ (iωn)[Gd (iωn+m) − Ge(iωm−n)],

	d/e(iωn) = − 2

β

∑
m

Gs(iνm)Gχ (iωn−m), (3)

where iω (iν) are the fermionic (bosonic) Matsubara frequen-
cies, 	 are the local self-energies of all slave particles and
auxiliary fields, and G are their full local Green’s functions to
be determined self-consistently. The holon and doublon self-
energies are the same due to the particle-hole symmetry. For
simplicity, we have adopted a local approximation and ignore
the moment dependency in the self-energies. The Lagrange
multipliers are also approximated by their mean-field value,
λi = λ. The one-loop approximation is numerically more effi-
cient than DMFT. In this form, we may have a more intuitive
picture of the physics, at the cost of numerical exactness.
Below we will focus on the square lattice model with only
nearest-neighbor hopping t , and set the half bandwidth D
of the free electrons to unity so that t = 1/4. Note that all
calculations were performed in real frequencies.

III. RESULTS AND DISCUSSION

Figures 1(b)–(d) plot the resulting density of states (DOS)
for the slave particles and the auxiliary field χ . As shown
in Fig. 1(b), the doublon (holon) spectra contain a broad
peak around ω = U/2 + λ, which is the bare energy of the
local doublon (holon) state. The spectra are, however, greatly
broadened due to the coupling with the spinon and χ fields.
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The slight spectral weight below the Fermi energy contributes
a small doublon occupation number. For large U above Uc ≈
2.1, we see a finite excitation gap, which gradually diminishes
with decreasing U as the whole spectra move leftwards and
touch the Fermi energy. For U < Uc, a sharp resonance peak
appears around ω ∼ ηT (η ≈ 1 − 2) for U < Uc. Hence Uc

marks the Mott metal-insulator transition point below which
the charge excitation gap closes. The sharp resonance on the
doublon (holon) spectra reflects the emergent electron quasi-
particles in the metallic state.

To clarify its origin, we note that a similar peak also
appears in the spinon spectra as shown in Fig. 1(c). Its loca-
tion scales linearly with the temperature, ωs ≈ 1.1T (inset).
This may be easily understood from the constraint 〈Qi〉 =
1. Because both doublon and holon occupations are small,
the spinon energy must satisfy nB(ωs) ≈ 0.5 if we ignore
its broadening. Here, nB(ω) is the Bose-Einstein distribution
function. We immediately find ωs ≈ 1.1T . Hence the reso-
nance peak in the doublon (holon) spectra comes from the
coupling with spinons and the auxiliary χ field through the
three-particle vertex. Since the spinon is a bosonic field, we
may also compare it to the Kondo effect [111,112], where
the Kondo resonance appears when two degenerate local
(spin) states couple to conduction electrons through a finite
hybridization field. This suggests a possible Kondo-like mech-
anism in the Hubbard model, albeit for the degenerate doublon
and holon states.

In fact, if we integrate out the bosonic spinons and
define fi ≡ (di, ei )T and ψi ≡ (χi↓, χ̄i↑)T, the vertex term
in the effective action equation (3) becomes gs

i,τ1−τ2

[( f̄iτ1ψiτ1 )(ψ̄iτ2 fiτ2 ) − ( f̄iτ1 iσ yψ̄iτ1 )(ψiτ2 iσ y fiτ2 )], where gs
iτ is

the bare spinon Green’s function in imaginary time. This looks
quite complicated. However, at τ1 = τ2, it reduces to a famil-
iar form, −4gs

iS
f
i · Sψ

i , where S f
i = f̄i

σ
2 fi and Sψ

i = ψ̄i
σ
2 ψi. In

deriving this, we have used the equality σαβ · σμν = δανδβμ −
(iσ y)αμ(iσ y)βν . It can be shown that gs

i = nB(−λ), which is
always negative for λ > 0, indicating an effective antiferro-
magnetic coupling. Hence the three-particle vertex contains
some Kondo-like physics, where the doublon and holon are
local degenerate states, the χ field plays the role of conduction
electrons, and the spinon contributes the hybridization. This
analogy underlies the Mott transition at Uc and the emergence
of electron quasiparticles for U < Uc.

However, there are two important differences from the
usual Kondo effect. First, it occurs in the charge degrees of
freedom, the effective “spin” can have a time dependence for
τ1 	= τ2, and the bosonic “hybridization” (spinon) field has a
peak at finite frequency. Hence we may better call it a dynamic
charge Kondo effect. Second, most of the holon and doublon
spectra are above the Fermi energy, so these states are only
slightly occupied. As a result, the Kondo-like resonance only
appears when their spectra are close to the Fermi energy, and
the interaction-driven Mott transition must be associated with
some singular variation in the doublon (holon) occupation. We
will see that this is indeed the case.

For completeness, we also show in Fig. 1(d) the spectra of
the auxiliary χ field. Similarly, it contains two broad peaks at
high energies representing the processes of creating a doublon
and annihilating a holon, respectively. Around the Fermi en-
ergy, the spectra are gapped for U > Uc but develop a finite

weight for U < Uc. The gap for U > Uc separates the peaks
at positive and negative energies and implies that the doublon
and holon processes are independent and do not cooperate to
form electron quasiparticles. For U < Uc, the finite spectra at
ω = 0 imply that the χ field becomes itinerant, through which
all low-energy slave particle excitations become movable on
the lattice. In addition, the gapped doublon, holon, and χ

spectra also prohibit spinon decay, so the spinon peak at ωs

is sharp for large U but damped for small U , as is seen in
Fig. 1(c).

As in the usual spin Kondo effect, the dynamic charge
Kondo effect for U < Uc leads to a superposition of the holon
and doublon states through coupling to the χ field. Such a
superposition is necessary for the emergence of electronlike
quasiparticles because ciσ = e†

i siσ + σ s†
i,−σ di involves both

holons and doublons. To see this, we calculate the spectra
of physical electrons using the self-energy of the χ field,
Gc(k, iωn) = 	χ (iωn)/[1 − εk	χ (iωn)], where εk is the bare
dispersion of electrons. This formula can be derived by taking
the derivative of the action with respect to the hopping param-
eter ti j [107–110]. The resulting local DOS ρc(ω) is plotted in
Fig. 2(a). We find the same features as in the slave particles
with two broad peaks near ±(U/2 + λ), which can be identi-
fied as the upper and lower Hubbard bands. For U > Uc, the
spectra are also gapped, while for U < Uc, we find a sharp
quasiparticle peak at ω = 0. Obviously, all these features are
related to those on the doublon and holon spectra. To see the
Mott transition clearly, we plot the electron DOS at zero en-
ergy ρc(0) in Fig. 2(b). For all temperatures, ρc(0) decreases
as U grows. At low temperatures, ρc(0) drops rapidly to nearly
zero at Uc, signaling the occurrence of a Mott transition. Our
results are supported by the comparison of the Mott gap above
Uc with those derived by DMFT using different impurity
solvers [113–119]. As plotted in the inset of Fig. 2(b), the
overall agreement is quite good, except that DMFT predicts
a first-order transition with a slightly larger lower boundary
Uc1 ≈ 2.3 at T = 0 from its insulating solution [118,120].

To have an overall picture of the transition, we construct in
Fig. 2(c) a tentative phase diagram based on the intensity plot
of dρc(0)/dT . We find three temperature scales separating the
phase diagram into four regions. For U > Uc, the gap in ρc(ω)
is filled in gradually by thermal excitations, so ρc(0) always
increases with increasing temperature (dρc(0)/dT > 0). At
low temperature, the thermal effects are suppressed, so we
may roughly estimate a crossover temperature Tg by requiring
ρc(0) < 0.001 as the upper boundary of the Mott insulator.
For U < Uc, as shown in the inset of Fig. 2(c), the electron
DOS exhibits a quasiparticle peak at very low temperature.
Increasing temperature first destroys the quasiparticle peak,
causing a local minimum (dip) at the Fermi energy above a
certain temperature Tq, but ρc(0) keeps decreasing till a higher
temperature T0 > Tq. Above T0, the thermal smearing effect
takes over and gives a positive sign for dρc(0)/dT . The region
between Tq and T0 is then recognized as a pseudogap region,
with a dip in ρc(ω) around the Fermi energy (see the inset
for T = 0.1). All three of these temperature scales, Tq, Tg,
and T0, drop continuously to zero as U approaches Uc ≈ 2.1,
indicating a zero-temperature Mott transition instead of a
finite-temperature first-order transition predicted by DMFT.
To determine the order of the transition, we further calculate
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FIG. 2. (a) The calculated DOS of the physical c electrons at
T = 0.01 for different values of U . (b) DOS at the Fermi energy
(ω = 0) as a function of U for T = 1.0, 0.1, and 0.01. The inset
shows our calculated gap size � (circles) at different temperatures
compared with those of DMFT using different impurity solvers for
T varying between 0 and 0.10 (black solid symbols) [113–119]. Also
shown are the boundaries of the first-order Mott transition predicted
by DMFT at T = 0 (Uc1, orange open symbols; Uc2, purple open
symbols) for the square lattice Hubbard model [118,120]. (c) In-
tensity plot of dρc(0)/dT showing three temperature scales and
the metallic, pseudogap (PG), and insulating regions. Tq sets the
boundary for quasiparticle resonance, T0 is given by dρc(0)/dT = 0,
and Tg is determined by ρc(0) < 0.001 for U > Uc. The inset shows
the DOS features near the Fermi energy for U = 1.9 at T = 1.0, 0.1,
and 0.01 as in (b). (d) Second derivative ∂2nd/∂U 2 as a function of
U for different temperatures, showing an increasingly sharp peak at
Uc with lowering temperature. For comparison, the inset shows the
continuous variation of nd itself.

the double occupancy nd ≡ ∑
i〈ni↑ni↓〉/N = ∑

i〈d†
i di〉/N ,

where N is the number of lattice sites. nd is therefore also the
doublon occupation. The results are shown in Fig. 2(d). We
see that it also varies continuously with U for all temperatures
(inset), but its second derivative ∂2nd/∂U 2 exhibits a sharp
peak near Uc as T decreases, implying a jump in ∂nd/∂U or
a slope change in nd (U ) at Uc as T → 0. Since nd is propor-
tional to the first derivative of the free energy F with respect
to U , our method successfully captures the Mott transition
and identifies it as a continuous (second-order) quantum phase
transition at zero temperature.

Next we consider thermodynamic and transport properties
within our method. Figures 3(a) and 3(b) plot the spin and
charge susceptibility calculated using a bubble diagram of the
slave particles:

χs = 4
∫ ∞

−∞

dω

π
nB(ω)ReGs(ω)ImGs(ω),

χc = 4
∫ ∞

−∞

dω

π
nF (ω)ReGd (ω)ImGd (ω), (4)

FIG. 3. Temperature dependence of (a) the spin susceptibility
T χs and (b) the charge susceptibility χc for different values of U .
The black circles in (b) mark the temperature Td where the dou-
blon (holon) occupation is lowest for each U < Uc. (c) Intensity
plot of the temperature derivative of the resistivity, βR(U, T ) ≡
d log R(U, T )/d log T on the T -U plane, showing all four temper-
ature scales, Td , Tq, T0, and Tg. A quantum Widom line (QWL) can
be identified from βR(U, T ) = 0. (d) Quantum critical scaling of the
resistivity, R(U, T )/Rc(T ) = f [T/|U − Uc(T )|νz], where Rc(T ) ≡
R[Uc(T ), T ], with the exponent νz ≈ 1.0. The inset of (d) shows the
original data of the resistivity.

where nF (ω) is the Fermi-Dirac distribution. For large U ,
T χs(T ) approaches a constant at low temperatures, indicat-
ing that the spinons form well-defined local moments in the
insulating phase. Its decrease at small U suggests that the mo-
ments are partially screened in the metallic phase, consistent
with the expectation that the spinons are damped for small U .
The behavior of the charge susceptibility χc(T ) in the metallic
phase is similar to that of DMFT [121]. As T decreases, χc

first increases due to the development of quasiparticle coher-
ence, then decreases due to the formation of local moments,
and finally increases again due to the screening of local mo-
ments. As expected, the onset temperature of the final increase
in χc is close to Td [black circles in Fig. 3(b)], where nd (T )
has a local minimum but starts to grow at lower temperatures.

The resistivity R = 1/σ is calculated using the following
equation [56]:

σ = −4t2

N
∑
k,μ

sin2(kμ)
∫ ∞

−∞

dω

π

∂nF (ω)

∂ω
[ImGc(k, ω)]2. (5)

The data are presented in the inset of Fig. 3(d) for
the same U values as in Fig. 3(a). For U < Uc, R dis-
plays a small maximum and then drops as T goes down,
while for U > Uc, it diverges at low temperatures in ac-
cordance with experimental observations in both organic
compounds and TMDs [122]. Figure 3(c) gives the intensity
plot of βR(U, T ) ≡ d log R(U, T )/d log T on the T -U phase
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diagram. Besides the three temperature scales Tq, T0, and Tg

already shown in Fig. 2(c), we also include Td in the metallic
phase. Interestingly, we can identify a clear quantum Widom
line (QWL) [73] Uc(T ) from βR(U, T ) = 0, which has the
same shape as that reported in organic compounds [123] and
partly coincides with Tq identified from the lower boundary
of the pseudogap region. Around the QWL, as shown in
Fig. 3(d), our calculated resistivity data all collapse onto two
separate curves for the insulating and metallic phases, re-
spectively. We find a critical scaling R(U, T )/R[Uc(T ), T ] =
f [T/|U − Uc(T )|νz] around the QWL. A similar scaling has
been reported previously in both experiment [16] and DMFT
calculations [72]. However, the critical exponent is found to
be νz ≈ 1.0 here, in contrast to νz = 0.67 from DMFT and
∼0.5–0.7 from organic compounds and TMDs [122]. Com-
pared with DMFT, we suspect that vertex correction, which is
ignored in the one-loop approximation, might be responsible
for this difference.

So far we have adopted a local approximation and ignored
spatial correlation. To see its potential effects on the Mott
transition [83], we include in the Hamiltonian an additional
spinon-correlation term, Hspin = J

∑
k ξk(s†

k,↑s†
−k,↓ + H.c.),

which can be derived from the Heisenberg interaction,
JH

∑
〈i j〉 Si · S j → −(JH/2)

∑
〈i j〉(Ai js

†
i↑s†

j↓ + H.c.), with
Ai j ≡ ∑

σ 〈σ siσ s j,−σ 〉 under the Schwinger boson mean-field
approximation [124,125]. For simplicity, we will not
solve Ai j self-consistently, but give by hand a dispersion
ξk ≡ 2t[sin(kx ) + sin(ky)]. Again, we can solve the one-loop
self-consistent equations for the local self-energies. The
resulting spinon spectra are plotted in Fig. 4(a) for different
values of J at a fixed T and U = 1.0. We see two major
features. First, the spinon peak shifts to higher energy linearly
with increasing J , namely, ωs ∼ J . Second, for finite J , a sharp
change occurs near ω = 0 at sufficiently low temperatures,
which is a precursor of spinon condensation and implies an
AFM ground state at zero temperature [99,126]. Meanwhile,
as shown in Fig. 4(b), the doublon (holon) peak near ω = 0
gradually moves to higher energy, and a charge gap opens
at low temperature even for small U . Correspondingly, the
physical electron spectra in Fig. 4(c) also exhibit a gap near
the Fermi energy. Figure 4(d) shows the electron spectra ρc(ω)
for different U at J = 0.1. For all U , ρc(ω) always shows a
gap and additional narrow peak structures on the inner side
of the Hubbard bands at sufficiently low temperatures. These
inner peaks were also captured in former quantum Monte
Carlo (QMC) and slave fermion SCBA calculations [50,82].
To determine the transition point, we fix J = 0.1 and give the
intensity plots of ρc(0) in Fig. 4(e) and the resistivity R in
Fig. 4(f) on the T -U plane. We see quite similar behaviors in
both plots, where ρc(0) always decreases and R diverges as
the temperature approaches zero. These confirm an insulating
ground state for all U > 0, although we cannot perform
calculations at sufficiently low temperature to confirm the gap
opening for very small U . Thus intersite AFM correlations
drive the metal-insulator transition to U = 0, as predicted in
exact DQMC calculations. However, a better estimate of J
will be needed in order to obtain good prediction of the gap
size compared with the exact QMC results [84].

The above spectral features have also been discussed
previously in the literature and ascribed to doublon-holon

FIG. 4. DOS of (a) spinon, (b) doublon (holon), and (c) electrons
for different values of J at U = 1.00 and T = 0.05. (d) Electron
DOS for different values of U at J = 0.1 and T = 0.01. (e) and (f)
Intensity plots of the electron DOS ρc(0) at the Fermi energy and the
resistivity R on the T -U plane.

binding or doublon-spinon interaction [41–51,127–130]. In
our method, their origins are quite transparent since these
features only appear after we introduce the spinon-correlation
term, so they must be associated with the interaction of
doublons (holons) with a correlated spinon background. In
fact, if we again integrate out the spinon fields, the new
spinon-correlation term will induce an effective pairing of the
form die j , which causes the doublon-holon binding, produces
an additional contribution to the charge gap in the doublon
(holon) excitation spectra even for small U , and drives the
metal-insulator transition to U = 0. On the other hand, for
large U or J , we find that the inner peak appears only at
very low temperatures when the spinon gap approaches zero,
which confirms its “polaronic” origin [128–130] as the dou-
blons (holons) move on a magnetically correlated background
[49,50]. Interestingly, we also find that the Mott gap in the
electron spectra is always smaller than the charge gap in the
doublon and holon spectra at finite temperatures and they
only become equal at zero temperature. This feature has also
been observed in previous SCBA calculations [50] and may
be attributed to the convolution of the doublon, holon, and
spinon spectra in calculating the electron spectra. It reflects
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an intrinsic spin-charge separation nature of the Mott physics,
while the electron quasiparticle can only be excited as a com-
posite object of the holon, doublon, and spinon. For small
U and J , the hybridization effect still plays a role and is of
primary responsibility for the peak, which is different from
the situation at large U .

IV. CONCLUSION

To summarize, we develop a slave fermion approach to
study the mechanism of the Mott metal-insulator transition.
Our method combines the slave fermion representation of the
electrons and the fermionic auxiliary field to decouple the
kinetic term in the Hamiltonian. This results in a three-particle
vertex that may be solved by a self-consistent one-loop ap-
proximation. Our calculations reproduce the Mott transition
as a continuous quantum phase transition at zero temperature
and associate the quasiparticle emergence with a dynamic
charge Kondo effect. We also derive a phase diagram con-
taining a pseudogap region above the metallic phase and
obtain a resistivity scaling around the quantum Widom line.
Including AFM spin correlation drives the Mott transition to
U = 0 and induces some special spectral features, confirming
the importance of intersite magnetic correlations. Hence our
theory captures the essential features of the Mott physics and
provides an alternative angle for clarifying this long-standing
problem. Our method may be easily extended to cover a large
family of correlated models with more complex local interac-
tions.

It may be helpful to compare our method with other slave
particle approaches such as the Kotliar-Ruckenstein slave
boson [19] and the slave rotor [25] approaches. There are
three major differences. First, in the slave boson approaches,
doublons and holons are treated as bosons, and the metallic
phase is realized when they condense. Under the mean-field
approximation, it is equivalent to the Gutzwiller approach and
can only account for the quasiparticle bands near the Fermi
energy. To obtain the Hubbard bands, additional Gaussian
fluctuations [131] or a more complicated approximation [46]
are needed. Similarly, in the slave rotor approach, the charge
degree of freedom is described as a rotor, and the metallic

phase is obtained by the condensation of a constrained bosonic
field [25]. In our slave fermion approach, the Hubbard bands
come naturally from the fermionic doublon and holon states,
and the Mott transition is associated with a dynamic charge
Kondo effect tuned by the doublon and holon levels. While
it seems less intuitive, the Kondo effect does not involve any
symmetry breaking, and the transition takes place likely be-
tween two orthogonal ground states at zero temperature [111].
Second, in slave boson and slave rotor approaches, the spins
are described by fermions. Because the mean-field approxi-
mation replaces the local constraint with the lattice average,
the fermionic representation of spins is more appropriate for
describing a fermionic spin liquid with a spinon Fermi surface
rather than long-range magnetic orders of localized moments.
By contrast, the bosonic representation of the spin degree
of freedom can describe well the magnetic long-range order
of local moments by the condensation of bosonic spinons.
Third, in all of the above approaches, the kinetic term in
the Hamiltonian becomes quite complicated under the slave
particle representation, so a mean-field approximation has
often been applied to decouple the kinetic term. By contrast,
our work introduces an additional fermionic auxiliary field to
describe the kinetic term, and thereby successfully applies the
one-loop self-consistent calculations of the Green’s functions.
This naturally takes into account some dynamic fluctuations
of the slave particles beyond the mean-field approximation. It
will be interesting to see whether our idea can also be applied
to the bosonic representations and yield improved description
of the Mott transition there.

Note added. Recently, we were informed of a study using
DMFT [132] which reported some results similar to those in
Fig. 3 including the coincidence of the QWL and Tq at low
temperatures. The agreement again confirms the validity of
our slave fermion approach.
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Holon-doublon binding as the mechanism for the Mott tran-
sition, Phys. Rev. B 92, 235155 (2015).

[49] X.-J. Han, Y. Liu, Z.-Y. Liu, X. Li, J. Chen, H.-J. Liao,
Z.-Y. Xie, B. Normand, and T. Xiang, Charge dynamics of the
antiferromagnetically ordered Mott insulator, New J. Phys. 18,
103004 (2016).

[50] X.-J. Han, C. Chen, J. Chen, H.-D. Xie, R.-Z. Huang,
H.-J. Liao, B. Normand, Z. Y. Meng, and T. Xiang, Finite-
temperature charge dynamics and the melting of the Mott
insulator, Phys. Rev. B 99, 245150 (2019).

[51] S. Zhou, L. Liang, and Z. Wang, Dynamical slave-boson
mean-field study of the Mott transition in the Hubbard model
in the large-z limit, Phys. Rev. B 101, 035106 (2020).

[52] R. G. Leigh, P. W. Phillips, and T.-P. Choy, Hidden Charge 2e
Boson in Doped Mott Insulators, Phys. Rev. Lett. 99, 046404
(2007).

[53] R. G. Leigh and P. W. Phillips, Origin of the Mott gap,
Phys. Rev. B 79, 245120 (2009).

[54] Y. Hatsugai and M. Kohmoto, Exactly solvable model of cor-
related lattice electrons in any dimensions, J. Phys. Soc. Jpn.
61, 2056 (1992).

[55] P. W. Phillips, L. Yeo, and E. W. Huang, Exact theory for
superconductivity in a doped Mott insulator, Nat. Phys. 16,
1175 (2020).

[56] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[57] T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Quantum
cluster theories, Rev. Mod. Phys. 77, 1027 (2005).

[58] E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M.
Troyer, and P. Werner, Continuous-time Monte Carlo methods
for quantum impurity models, Rev. Mod. Phys. 83, 349 (2011).

[59] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E.
Antipov, M. I. Katsnelson, A. I. Lichtenstein, A. N. Rubtsov,
and K. Held, Diagrammatic routes to nonlocal correlations
beyond dynamical mean field theory, Rev. Mod. Phys. 90,
025003 (2018).

[60] J. P. F. LeBlanc, A. E. Antipov, F. Becca, I. W. Bulik, G. K.-L.
Chan, C.-M. Chung, Y. Deng, M. Ferrero, T. M. Henderson,
C. A. Jiménez-Hoyos, E. Kozik, X.-W. Liu, A. J. Millis, N. V.
Prokof’ev, M. Qin, G. E. Scuseria, H. Shi, B. V. Svistunov,
L. F. Tocchio, I. S. Tupitsyn et al., Solutions of the Two-
Dimensional Hubbard Model: Benchmarks and Results from a
Wide Range of Numerical Algorithms, Phys. Rev. X 5, 041041
(2015).

[61] T. Schäfer, N. Wentzell, F. Šimkovic, Y.-Y. He, C. Hille, M.
Klett, C. J. Eckhardt, B. Arzhang, V. Harkov, F.-M. Le Régent,
A. Kirsch, Y. Wang, A. J. Kim, E. Kozik, E. A. Stepanov,
A. Kauch, S. Andergassen, P. Hansmann, D. Rohe, Y. M.
Vilk et al., Tracking the Footprints of Spin Fluctuations: A
MultiMethod, MultiMessenger Study of the Two-Dimensional
Hubbard Model, Phys. Rev. X 11, 011058 (2021).

[62] M. B. J. Meinders, H. Eskes, and G. A. Sawatzky, Spectral-
weight transfer: Breakdown of low-energy-scale sum rules in
correlated systems, Phys. Rev. B 48, 3916 (1993).
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[118] R. Žitko, J. Bonča, and T. Pruschke, Van Hove singularities in
the paramagnetic phase of the Hubbard model: DMFT study,
Phys. Rev. B 80, 245112 (2009).

[119] T. Ribic, P. Gunacker, and K. Held, Impact of self-consistency
in dual fermion calculations, Phys. Rev. B 98, 125106 (2018).

[120] H. Park, K. Haule, and G. Kotliar, Cluster Dynamical Mean
Field Theory of the Mott Transition, Phys. Rev. Lett. 101,
186403 (2008).

195128-9

https://doi.org/10.1103/PhysRevLett.75.1344
https://doi.org/10.1103/PhysRevB.91.125109
https://doi.org/10.1103/PhysRevB.94.085140
https://doi.org/10.1103/PhysRevLett.124.017003
https://doi.org/10.1143/JPSJ.58.1516
https://doi.org/10.1103/PhysRevB.40.2610
https://doi.org/10.1103/PhysRevB.41.2653
https://doi.org/10.1103/PhysRevB.42.4819
https://doi.org/10.1103/PhysRevB.43.7800
https://doi.org/10.1103/PhysRevB.45.5428
https://doi.org/10.1103/PhysRevB.45.10419
https://doi.org/10.1103/PhysRevB.47.463
https://doi.org/10.1103/PhysRevLett.79.4665
https://doi.org/10.1103/PhysRevB.72.094430
https://doi.org/10.1103/PhysRevLett.96.016601
https://doi.org/10.1103/PhysRevLett.120.157206
https://doi.org/10.1103/PhysRevLett.122.217001
https://doi.org/10.1103/PhysRevB.102.115133
https://doi.org/10.1103/PhysRevB.104.165120
https://doi.org/10.1103/PhysRevB.104.245132
https://doi.org/10.1007/s11433-021-1805-6
https://doi.org/10.1007/s11433-022-1879-2
https://doi.org/10.1103/PhysRevB.106.115135
https://doi.org/10.1103/PhysRevLett.80.5389
https://doi.org/10.1007/s100510070253
https://doi.org/10.1103/PhysRevB.77.033101
https://doi.org/10.1103/PhysRevB.77.195105
https://doi.org/10.1103/PhysRevB.79.045133
https://doi.org/10.1103/PhysRevB.91.165134
https://doi.org/10.1103/PhysRevB.71.235113
https://doi.org/10.1143/JPSJ.75.054713
https://doi.org/10.1103/PhysRevB.75.205118
https://doi.org/10.1103/PhysRevB.76.045108
https://doi.org/10.1103/PhysRevB.80.045101
https://doi.org/10.1103/PhysRevB.80.245112
https://doi.org/10.1103/PhysRevB.98.125106
https://doi.org/10.1103/PhysRevLett.101.186403


LONG, WANG, AND YANG PHYSICAL REVIEW B 106, 195128 (2022)

[121] T. B. Mazitov and A. A. Katanin, Local magnetic moment
formation and Kondo screening in the half-filled single-band
Hubbard model, Phys. Rev. B 105, L081111 (2022).
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