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Quantum complexity and topological phases of matter
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In this work, we find that the complexity of quantum many-body states, defined as a spread in the Krylov
basis, may serve as a probe that distinguishes topological phases of matter. We illustrate this analytically in
one of the representative examples, the Su-Schrieffer-Heeger model, finding that spread complexity becomes
constant in the topological phase. Moreover, in the same setup, we analyze exactly solvable quench protocols
where the evolution of the spread complexity shows distinct dynamical features depending on the topological vs
nontopological phase of the initial state as well as the quench Hamiltonian.
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I. INTRODUCTION

Recently, the problem of quantifying quantum complex-
ity has attracted a lot of attention in different branches of
physics. To a large extent, these developments are stimulated
by the holographic correspondence [1] and puzzles related to
the nature of black holes in quantum gravity. Among others,
complexity plays essential roles in discussions on the firewall
paradox [2], fast scrambling near black-hole horizons [3–6],
quantum chaos [7], and finally the nature of the holographic
dictionary itself [8].

What makes holography powerful is the dual description
of quantum gravity in terms of a strongly interacting quan-
tum system. In that framework, rather than just stating that a
certain state is simple or complex (e.g., assigning it to one of
the complexity classes) one is interested in a precise measure
of state’s complexity that can be computed on both sides of
the holographic correspondence. This demand sparked a lot
of new developments focused on complexity in more general
many-body systems and quantum field theories (QFTs) (see
e.g., Ref. [9] and reviews [10,11] for a complete list of refer-
ences). Now, as the dust is starting to settle, we are provided
with new, potentially very powerful, tools for exploring the
complexity frontier of field theories.

One of the important directions where these complexity
measures can be tested and may provide a new looking glass
is the physics of topological phases of matter [12–14]. Indeed,
the importance of complexity in topological order was real-
ized early on (see, e.g., Refs. [15,16]). On the other hand,
applying geometric ideas from holography to topological
phases proved fruitful in Refs. [17–20], so clearly these two
subjects may have a lot to learn from each other. Nevertheless,
the actual studies of state complexity measures in models with
topological phases are in their infancy.

So far, only the Nielsen-type approach to complexity [21]
was applied to a couple of examples [22–24]. Since this
framework, tailor-made for computer science, gives rise to
numerous ambiguities in many-body physics, such as the
choice of gates with their penalties, cost functions, etc., it

is not surprising that conclusions on whether complexity is
sensitive enough differed between Ref. [22] and Refs. [23,24].
Still, Refs. [23,24] argued that, with an appropriate choice for
the ambiguities, one may detect different phases by disconti-
nuities in Nielsen’s complexity. Based on the above, whether
complexity is a universal probe correlated with topological
phases remains an open question.

In this work we shed new light on this issue by analyzing
a recent measure of state complexity called spread complexity
[25] in one of the simplest models with topological phases, the
Su-Schrieffer-Heeger (SSH) model [26]. Spread complexity
admits a clear definition valid in arbitrary quantum systems
(including free and interacting field theories), is relatively
straightforward to compute and already proved handy in diag-
nosing quantum chaos [25]. A closely related K-complexity
[27] has also been extensively studied as a good probe of the
operator growth in many-body systems.

We first analytically compute the spread complexity of
formation of the ground state and find that it is sensitive to the
two phases of the model. More precisely, it becomes constant
in the topological phase. Next, we test its evolution following
quantum quench protocols and find that it also distinguishes
the phases even in this nonequilibrium scenario. Our ana-
lytical results not only reinforce the spread complexity as a
powerful tool but also give hope for universality in studying
topological phases from the perspective of complexity.

II. SPREAD COMPLEXITY OF QUANTUM STATES

We begin with a brief review of the spread complexity
[25] and the Krylov basis that plays the main role in the
computations. Further details can be found in Refs. [25,28].

We will be interested in complexity of a general quantum
state |�(s)〉 related to some initial |�0〉 by a unitary transfor-
mation

|�(s)〉 = e−iHs|�0〉. (1)

In the quantum computation parlance, |�(s)〉 can be referred
to as a “target state” related to a “reference state” |�0〉 by a
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“unitary circuit” with a “circuit Hamiltonian” H . The param-
eter s, usually s ∈ [0, 1], denotes a “circuit time,” can be also
taken arbitrary and regarded as the physical time t (see below).

A useful measure of quantum state complexity can be
defined by a way that some initial state |�0〉 is spread in the
Hilbert space by a unitary U (s) [25]. Intuitively, a complex
“evolution” will lead to a fast spread over all orthogonal
states. More precisely, the spread complexity of |�(s)〉 =
U (s)|�0〉 is estimated by the minimum over all choices of ba-
sis B = {|Bn〉, n = 0, 1, 2, . . . ||B0〉 = |�0〉} of the following
cost function:

C(s) = min
B

(∑
n

n|〈�(s)|Bn〉|2
)

. (2)

The fact that makes this definition powerful and computable
is that the minimum is attained (see Ref. [25] for proofs) when
basis B is the so-called Krylov basis.

The idea behind the Krylov basis for state (1) is to
consider states with all the different powers of the cir-
cuit Hamiltonian acting on the initial state |�0〉, i.e.,
{|�0〉, H |�0〉, H2|�0〉, . . .}, and apply the Gram-Schmidt or-
thogonalization procedure, known as the Lanczos algorithm
[29], to this set. In this new basis |Kn〉, the circuit Hamiltonian
H is generally tridiagonal and acts as

H |Kn〉 = an|Kn〉 + bn|Kn−1〉 + bn+1|Kn+1〉, (3)

where coefficients an and bn are the so-called Lanczos co-
efficients. The information about them is also contained in
the moments of the return-amplitude (autocorrelator) S(s) ≡
〈�(s)|�0〉.

Having constructed the basis that minimizes (2), we expand
our state as

|�(s)〉 =
∑

n

ψn(s)|Kn〉, (4)

where, by construction, the complex coefficients in this ex-
pression satisfy a discrete Schrödinger equation

i∂sψn(s) = anψn(s) + bnψn−1(s) + bn+1ψn+1(s). (5)

With the knowledge of the Lanczos coefficients, we can solve
it with initial condition ψn(0) = δn,0 (so that we start from
|K0〉 = |�0〉) and determine (4). Note that unitarity implies
that

∑
n(pn(s) ≡ |ψn(s)|2) = 1. Moreover, the return ampli-

tude is related to the first coefficient by S(s) = ψ∗
0 (s). Last but

not the least, the number of the independent Krylov vectors
depends on the Hamiltonian as well as the initial state |�0〉.

Most importantly, in the Krylov basis, the complexity (2)
becomes

C(s) =
∑

n

n|ψn(s)|2, (6)

and for all practical purposes, this will be our working defi-
nition of the spread complexity in the remaining part of this
paper. This measure naturally generalizes the Krylov com-
plexity (K-complexity) of operators [27] to quantum states.
Recent studies indicate that this new notion of complexity can
distinguish integrable and chaotic models [27,30]. Moreover,
the evolution of the so-called thermofield-double state [31]
leads to return amplitude given by the spectral form factor
(see, e.g., Refs. [32,33]) making spread complexity a new

probe of quantum chaos. Even though we are only starting to
explore this universal new tool it is clear that its sensitivity to
interesting physics is tantalising [34–37]. In the following, we
employ (6) and test whether it does equally well in integrable
systems and in particular, whether it can detect topological
phases.

III. SPREAD COMPLEXITY IN THE
SU-SCHRIEFFER-HEEGER MODEL

Our basic example will be the SSH model of polyacetylene
[26] (see, e.g., Ref. [38] for a pedagogical introduction, here
we closely follow the conventions of Refs. [39,40]) given by
the Hamiltonian

H = t1
∑

i

(c†
AicBi + H.c.) − t2

∑
i

(c†
BicA,i+1 + H.c.)

+μs

∑
i

(c†
AicAi − c†

BicBi ), (7)

where (cAi, cBi ) represent two-flavors of fermion annihilation
operators defined at site i on a one-dimensional (1D) lattice,
t1, t2, μs are real parameters, and we also assume antiperiodic
boundary conditions (see more in Appendix A). We take both
t1, t2 � 0 and μs = 0. Depending on these couplings, the
model is in one of the two phases: a nontopological phase
for t1 > t2 or a topological phase (topological insulator) for
t2 > t1, separated by a critical point at t1 = t2.

We first compute the complexity of the ground state that,
depending on parameters t1 and t2, belongs to one of the
above-mentioned phases of the model. For that, as well as for
later purposes, it will be convenient to rewrite the Hamiltonian
in momentum space as (see Ref. [40] and Appendix A)

H =
∑

k

[
2R3J (k)

0 + iR1
(
J (k)
+ − J (k)

−
)]

, (8)

where the coefficients are R1 = t1 − t2 cos(k), R3 = t2 sin(k)
and, for each momentum mode, we denote the SU(2) algebra
generators[

J (k)
0 , J (k)

±
] = ±J (k)

± ,
[
J (k)
+ , J (k)

−
] = 2J (k)

0 . (9)

Then, the ground state can be written in terms of the SU(2)
coherent states as (see Appendix A)

|�〉 =
∏
k>0

Nke−i tan ( φk
2 )(J (k)

+ +J (−k)
+ )

∣∣∣∣12 ,−1

2

〉
k

, (10)

where Nk stands for the normalization, J (±k) correspond
to two decoupled SU(2) algebras for positive and nega-
tive momenta, and |1/2,−1/2〉 denotes a tensor product
over the lowest-weight states of the j = 1/2 representation
(J (±k)

− |1/2,−1/2〉±k = 0). Moreover, the relation between φk

and the physical parameters is given by

sin φk = |R1|
R

, cos φk = R3

R
, (11)

where we also denoted

R =
√

t2
1 + t2

2 − 2t1t2 cos (k). (12)
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Without loss of generality, we can just compute the spread
complexity for positive momenta and the full result will have
an additional factor of two from the −k sector.

First, for a single momentum k > 0, using the SU(2)
Baker-Campbell-Hausdorff formula and with a slight abuse
of notation, we write the relevant part of the state in a circuit
form (1):

|�k (s)〉 = e−i
sφk

2 (J (k)
+ +J (k)

− )
∣∣∣∣12 ,−1

2

〉
k

, (13)

where s ∈ [0, 1] and our ground state is the “target state” at
s = 1. The operator in the exponent is the circuit Hamiltonian
in (1). Note that, in these circuits, we took a natural reference
state |�0〉 as the ground state of the left and right Hamiltonians
(see Appendix A and also Ref. [41] for other choices). This
way of writing makes transparent the connection with coher-
ent states and we can directly apply the tools from Ref. [28]
(see Appendix B) to expand our state in the Krylov basis as
(4). Because j = 1/2, we will only have two basis vectors and
two amplitudes

ψ0(s) = cos

(
sφk

2

)
, ψ1(s) = −i sin

(
sφk

2

)
, (14)

that satisfy (5) with appropriate Lanczos coefficients. As a
result, we get the contribution to our complexity from a single
momentum mode

Ck (s = 1) = sin2 φk

2
= 1

2
− t2 sin (k)

2
√

t2
1 + t2

2 − 2t1t2 cos (k)
. (15)

The complexity of the ground state is obtained by integrating
over all the momenta and multiplying by two from k < 0. This
yields

C(t1, t2) = 2
∫ π

0

dk

2π
Ck = 1

2
− t1 + t2 − |t1 − t2|

2πt1
. (16)

Observe that we took the continuum limit so this result is pro-
portional to the volume L but, to keep our equations compact,
we rescaled this factor (our C are complexity “densities”).

This surprisingly simple formula, shown on Fig. 1, indeed
shows two very different behaviors of the spread complexity
for the two distinct phases of the model. Namely, for the non-
topological phase with t1 > t2, complexity linearly depends
on the ratio t2/t1, but, in the topological phase, with t2 > t1,
it is constant. This is our main result. We also performed
analogous computation for the 1D Kitaev-chain [42] and
found that complexity becomes constant when crossing from
a nontopological to a topological phase in specific cases [41]
(see Appendix D). Note that, unlike entanglement entropy or
Nielsen-type complexities that require numerics (16) is fully
analytical.

IV. COMPLEXITY DURING QUANTUM QUENCH

Another framework where we can probe the spread com-
plexity is given by the so-called quantum quenches. A typical
quench protocol considers a unitary time evolution of an ini-
tial state |�i〉 of some initial Hamiltonian Hi, performed with
a different Hamiltonian Hf for which |�i〉 is an excited state.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 1. Behavior of the spread complexity of formation C(t1, t2)
[Eq. (16)] for the ground state of the SSH model |�〉.

Universal features of the evolution of entanglement and com-
plexity have been extensively studied in the literature (see,
e.g., Refs. [43–46] and review of closely related dynamical
quantum phase transitions [47]).

Here, we focus on the so-called instantaneous quench in
the SSH model and consider the state

|�(t )〉 = e−iHf t |�i〉, (17)

where |�i〉 is taken as the ground state of the initial Hamilto-
nian Hi with parameters (t i

1, t i
2), and the evolution is performed

with the SSH Hamiltonian Hf with different parameters
(t f

1 , t f
2 ). For this state, we will be interested in the Krylov basis

and universal features of the real-time evolution of the spread
complexity defined above.

Curiously, the Nielsen-type geometric complexity mea-
sures were analyzed during such quenches (17) in the SSH
model before [22]. In this work, the authors argued that the
above-mentioned complexities were neither sensitive to dis-
tinguish topological phases nor to whether the evolution is
driven by Hf or Hi. This gives us another strong motivation
to compare with the spread complexity and its sensitivity in
the out-of-equilibrium applications.

Similarly to the ground state, since the SSH Hamilto-
nian consists of the SU(2) generators (for each momentum
mode), we can employ coherent-state techniques to expand
the quench state (17) in the Krylov basis and find contribution
to spread complexity from each mode. This analysis is based
on the return amplitude (also known as Loschmidt amplitude)
that for each mode k > 0 reads

Sk (t ) = 〈�(t )|�(0)〉k

= cos (R f t ) − i cos (φ f − φi ) sin (R f t ). (18)

In this formula, we used the notation Ri/ f that simply stands
for (12) with parameters (t i/ f

1 , t i/ f
2 ) and similarly φi/ f are
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FIG. 2. Evolution of spread complexity starting from Hi with
(t i

1 = 1, t i
2 = 0.2) and (t f

1 = 0.7, t f
2 = 1.5) (in black) and the same

parameters in Hi and Hf switched (in red). At late times complexity
approaches constant (23) (in blue).

related to the momentum and parameters as in (11) with
(t i/ f

1 , t i/ f
2 ). From (18) we can repeat the whole procedure to

extract Lanczos coefficients, derive ψn(t ) and compute spread
complexity as before. The contribution from a single momen-
tum mode becomes

Ck (t ) = sin2 (φ f − φi ) sin2 (R f t ). (19)

Clearly, for each mode, complexity is periodic in time with
periods governed by the parameters of the evolving Hamilto-
nian Hf . The spread complexity is then not symmetric under
the change of parameters of initial and final Hamiltonians. The
amplitude depends on both the initial and final parameters.

The total complexity is obtained by integrating over the
momenta and multiplying by the factor of two from negative
k. In the continuum, this can be written in a compact form as
an integral (again a density)

C(t ) = 2
∫ π

0

dk

2π

(
t f
1 t i

2 − t i
1t f

2

)2
sin2 (k) sin2 (R f t )

R2
f R2

i

, (20)

and for general parameters we need to integrate it numerically.
Let us first study some of the analytical examples. Clearly,

the spread complexity vanishes if t i
1 = t f

1 = 0 or t i
2 = t f

2 = 0.
Hence, this measure assigns zero costs to evolution of states
with Hamiltonians on the axes of the t1-t2 plane, as long as
they are evolved with Hamiltonian on the same axis (that may
have a different parameter t i

2, t f
2 in the first or t i

1, t f
1 in the

second family).
A more interesting analytical example is derived if one of

the parameters of Hf vanishes i.e., t f
1(2) = 0. The total spread

complexity is then oscillating with frequency t f
2(1):

C(t ) =
(
t i
1 + t i

2 − |t i
1 − t i

2|
)2

8
(
t i
2(1)

)2 sin2
(
t t f

2(1)

)
, (21)

and the amplitude of these oscillations distinguishes the two
phases of the initial quench state |�i〉.

Generally, note that the integral would be symmetric under
the change of i and f labels if not the sin2(R f t ) part. We can
then pick two Hamiltonians, each with a pair of generic pa-
rameters in each of the two phases, and compare the evolution
of the ground state |�i〉 of Hi in the topological phase with
Hf in the nontopological phase, and other way around [by
just switching parameters t i

a with t f
a in (20)]. This is plotted in

Fig. 2 and, unlike Nielsen complexities studied in Ref. [22],
we can verify that our complexity measure can distinguish the
two different quench protocols [48]. This is our second key
finding.

In addition, we can derive universal results analytically
for the early as well as late time evolution of the spread
complexity. For that, it is useful to parametrize t i

2 ≡ α t i
1 and

t f
2 ≡ β t f

1 , such that the topological and nontopological phases
are separated by α, β = 1. Then, in the early times we have a
universal quadratic growth

C(t ) ∼ (α − β )2 (1 + α − |1 − α|)2

8α2

(
t f
1

)2
t2, (22)

so this early time regime distinguishes whether |�i〉 is in the
topological or nontopological phase.

Also for late times, as it can be observed from Fig. 2,
complexity approaches a constant that is given by

C(t → ∞) = (α − β )

8αβ

(
β − α + α(β + 1)|β − 1| − β(α + 1)|α − 1|

1 − αβ

)
. (23)

Clearly, this constant only depends on the two combinations,
α and β, of the four parameters of the model and is symmetric
under their exchange. Therefore, it is the same for both proto-
cols (see Fig. 2) discussed above but it depends on the phases
of the model. Note that this constant is the effect of summing
of all the, otherwise periodic, contributions from different
momenta. We have analyzed it in more detail in Appendix C
and it is clear that this spread complexity constant can be
also used as a probe of the late-time physics of the quench
state.

V. CONCLUSIONS AND DISCUSSION

In this Letter, we showed that the spread complexity based
on the Krylov basis [25] is a sensitive probe correlated with
topological phases. We found that, for the ground state of the
SSH model, the complexity depends on the ratio of parameters
t1/t2 in the trivial phase, whereas it becomes constant in the
topological insulator regime. Based on related analysis in the
Kitaev model, we expect that this behavior is universal and
further tests (including numerics) in more general, interacting
models will be very important to verify this observation.
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For the quantum quench, our main goal was to demonstrate
the advantage of the spread complexity over more geometric
measures studied in Ref. [22]. In addition, we found various
universal features of the evolution, e.g., at early and late times,
that are sensitive to the topological phases. Certainly, further
analysis of the dynamics of spread complexity (e.g., during
slow or fast-type quenches, with time-dependent Hamiltoni-
ans or Floquet driving) is a promising future direction. Along
the same lines, it will be very interesting to study the spread
complexity (and generally Krylov complexity tools) in the
context of dynamical quantum phase transitions [47].

Finally, it will be very important to understand the relation
between the spread complexity and other topological order pa-
rameters already studied in the literature, such as Berry phases
or Chern number, that can even be extracted experimentally
using certain quench protocols [49]. These links may play an
important role in sharpening the spread complexity as a tool
in condensed-matter and many-body physics.
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APPENDIX A: DETAILS OF THE
SU-SCHRIEFFER-HEEGER MODEL

In this Appendix we provide more technical details of the
SSH model [26] and few steps to express it in the language of
the SU(2) coherent states. This material should be sufficient
to understand our formulas in the main text.

First, via the Fourier transform [We assumed antiperi-
odic boundary conditions such that the momenta in the first
Brillouin zone (BZ) take values kn = 2π

L (−
 L−1
2 � + n + 1

2 ),
n = 0, 1, 2, . . . , L − 1. Below we neglect the index n.],(

cAl

cBl

)
= N−1/2

∑
k∈BZ

eikl

(
c̃k

d̃k

)
, (A1)

and a rotation of Pauli matrices (σx, σy, σz ) → (σx, σz,−σy),
the Hamiltonian in position space [Eq. (7) in the main text]
turns into a free-fermion Hamiltonian in momentum space:

H =
∑
k∈BZ

�
†
k
�R(k) · �σ�k, �k =

(
ck

dk

)
= e− iπ

4 σx

(
c̃k

d̃k

)
,

(A2)
where the vector of parameters reads

�R(k) =
⎛
⎝R1

R2

R3

⎞
⎠ =

⎛
⎝t1 − t2 cos k

−μs

t2 sin k

⎞
⎠.

The Hamiltonian (A2) can be further diagonalized as follows:

H =
∑
k∈BZ

χ
†
k diag (R(k),−R(k))χk, (A3)

where we wrote the norm of the three-vector R(k) = | �R(k)|,
and

χk =
(

χ+,k

χ−.k

)
= (�v+(k) �v−(k))†

�k . (A4)

In this formula, we also introduced orthonormal eigenvectors
�v±(k) as

�v±(k) = 1√
2R(R ∓ R3)

(
R1 − iR2

±R − R3

)
. (A5)

In this notation, the ground state of the SSH Hamiltonian can
be written as

|�〉 =
∏

k

χ
†
−,k|0〉, (A6)

where state |0〉 is the Fock vacuum of the free-fermion Hamil-
tonian (A2).

On the other hand, (A2) can be decomposed into three
parts—analogs of left- and right-moving continuum Dirac
Hamiltonians:

HL =
∑

k

R3c†
kck, HR = −

∑
k

R3d†
k dk, (A7)

as well as the mass part

HLR =
∑

k

�
†
k (R1σ1 + R2σ2)�k . (A8)

The ground states of HL and HR, denoted |GL〉 and |GR〉,
respectively, are given by

|GL〉 =
∏
k<0

c†
k |0〉L, |GR〉 =

∏
k>0

d†
k |0〉R, (A9)

where |0〉L,R is the Fock vacuum of HL and HR, respectively.
It is not hard to see that (A4) is a Bogoliubov transfor-

mation between the creation and annihilation operators of
HL + HR in (A7) and H in (A2). Therefore, the (unnormal-
ized) ground state |�〉 defined in (A6) can be expressed in
terms of |GL〉 and |GR〉 as

|�〉 = exp

[
−
∑
k>0

(
vk

uk
c†

kdk + u−k

v−k
d†

−kc−k

)]
|GL〉 ⊗ |GR〉,

(A10)
where (

uk

vk

)
= 1√

2R(R + R3)

(
R + R3

R1 − iR2

)
. (A11)

This is also the form presented in Ref. [39].
Let us now rewrite this state using the coherent-state lan-

guage. First, we introduce the SU(2) algebra generators J (k)
0 ,

J (k)
± (and similarly J (−k)

0 , J (−k)
± ) in terms of the fermionic

creation and annihilation operators [from Eq. (2) above]

J (k)
+ = −ic†

kdk, J (k)
− = id†

k ck, J (k)
0 = 1

2
(c†

kck − d†
k dk ),

(A12)

J (−k)
+ = −id†

−kc−k, J (−k)
− = ic†

−kd−k,

J (−k)
0 = −1

2
(c†

−kc−k − d†
−kd−k ), (A13)
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where k > 0. Thus, the ground state (A6) can be rewritten
as a product of generalized SU(2) coherent states (for each
momentum k):

|�〉 =
∏
k>0

cos2 φk

2
e−i tan

φk
2 (e−iψk J (k)

+ +eiψk J (−k)
+ )

⊗
k∈BZ

|1/2; −1/2〉k . (A14)

This is the form that we quoted in the main text.
Finally, the Hamiltonian of the SSH model can be rewritten

in terms of SU(2) algebra generators as

H =
∑
k>0

R
[
2 cos φk

(
J (k)

0 + J (−k)
0

)
+ i sin φk

(
e−iψk J (k)

+ + eiψk J (−k)
+

)
− i sin φk

(
eiψk J (k)

− + eiψk J (−k)
−

)]
, (A15)

where we used spherical coordinates (φk, ψk ) (do not confuse
ψk with coefficients in the Krylov basis in the main text) to
parametrize the components of �R(k) as

sin φk cos ψk = R1

R
,

sin φk sin ψk = R2

R
,

cos φk = R3

R
. (A16)

In the main text we worked with μs = 0, which corresponds
to R2 = ψk = 0 in these expressions.

APPENDIX B: SU(2) COHERENT STATES

In this Appendix we also collect some of the tools from
the SU(2) coherent states that were used in the main text
(see more in, e.g., Refs. [50,51]). We start with su(2) algebra
[Ji, Jj] = iεi jkJk , expressed in terms of the ladder operators
J± = J1 ± iJ2 and J0 = J3 as

[J+, J−] = 2J0, [J0, J±] = ±J±. (B1)

The generalized coherent states are defined by action of a
displacement operator on the lowest-weight state | j,− j〉 (i.e.,
J−| j,− j〉 = 0) labeled by (half or) integer j:

|z, j〉 = eξJ+−ξ̄J−| j,− j〉 = ezJ+eln (1+zz̄)J0 e−z̄J−| j,− j〉. (B2)

In the above, we defined a complex parameter

ξ = θ

2
e−iϕ, 0 � θ < π, 0 � ϕ � 2π, (B3)

with its complex conjugate ξ̄ as well as

z = tan

(
θ

2

)
e−iϕ, z̄ = (z)∗. (B4)

These coherent states are employed in the Krylov or spread
complexity context where we, e.g., chose ξ = −is φ

2 so that
θ = sφ and ϕ = π/2. This way, the coherent state describing

the unitary evolution in the Krylov basis is

|z, j〉 = e−is φ

2 (J++J− )| j,− j〉 =
2 j∑

n=0

ψn(s)|Kn〉, (B5)

where the coefficients (amplitudes) are given by

ψn(s) = (−i)n tann
( sφ

2

)
(
cos sφ

2

)−2 j

√
�(2 j + 1)

n!�(2 j − n + 1)
, (B6)

and Krylov basis vectors are

|Kn〉 = | j,− j + n〉 =
√

�(2 j − n + 1)

n!�(2 j + 1)
Jn
+| j,− j〉. (B7)

The amplitude (B6) satisfies a discrete Schrödinger equa-
tion [(5) in the main text] with an = 0 and 2 j + 1 coefficients,

bn = φ

2

√
n(2 j − n + 1), n = 0, . . . , 2 j. (B8)

The Krylov or spread complexity in this case becomes

C(s) =
∑

n

n|ψn(s)|2 = 2 j sin2

(
sφ

2

)
. (B9)

In the main text, we only needed a subset of these results for
the j = 1/2 representation, where

C(s) = |ψ1(s)|2 = sin2

(
sφ

2

)
. (B10)

More generally, we may consider time evolution

|�(t )〉 = e−iHt | j,− j〉, (B11)

with the su(2) coherence-preserving Hamiltonian

H = γ J0 + α(J+ + J−). (B12)

Then the coherent state can be written as

|�(t )〉 =
2 j∑

n=0

ψn(t )|Kn〉, (B13)

with Krylov basis vectors (B7) and coefficients

ψn(t ) = e− jBAn

√
�(2 j + 1)

n!�(2 j − n + 1)
, (B14)

where

A = 1

i
√

1 + γ 2

4α2 cot
(
αt
√

1 + γ 2

4α2

)
− γ

2α

, (B15)

e− jB =
⎡
⎣ cos

(
αt

√
1 + γ 2

4α2

)

+ iγ

2α

√
1 + γ 2

4α2

sin

(
αt

√
1 + γ 2

4α2

)⎤⎦
2 j

. (B16)

Coefficients ψn(t ) in (B14) solve the Schrödinger equation (5)
with Lanczos coefficients

an = γ (− j + n), bn = α
√

n(2 j − n + 1). (B17)
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Finally, the spread complexity in this more general scenario
becomes

C(t ) =
∑

n

n|ψn(t )|2 = 2 j

1 + γ 2

4α2

sin2

(
αt

√
1 + γ 2

4α2

)
. (B18)

For the quench computation, we also needed the following
return amplitude:

S(t ) = 〈 j,− j|D†(zi )e
iHf t D(zi )| j,− j〉, (B19)

where the SU(2) displacement operator is given by

D(zi ) = e−i φi
2 (J++J− ), (B20)

and a Hamiltonian Hf has a form (B12) with γ = 2R3 and
α = iR1.

Generally, using the BCH relation we can evaluate this
return amplitude explicitly:

S(t ) = [cos (R f t ) − i cos (φ f − φi) sin (R f t )]2 j . (B21)

For j = 1/2, its moments are

μn = Rn
f

(
cos

πn

2
− i cos (φ f − φi ) sin

πn

2

)
, (B22)

and they correspond to the Lanczos coefficients

a0 = −R f cos (φ f − φi), a1 = R f cos (φ f − φi ),

b1 = R f | sin (φ f − φi )|, (B23)

while all the higher ones vanishing. For our quench compu-
tations, these techniques again allowed us to map our state
expanded in the Krylov basis to a SU(2) coherent state as

|�(t )〉 = e−iHt t |�i〉 =
1∑

n=0

ψn(t )|Kn〉, (B24)

with amplitudes

ψ0(t ) = S(t )∗, ψ1(t ) = −i| sin (φ f − φi )| sin (R f t ), (B25)

and the two basis vectors |K0〉 = |1/2,−1/2〉, |K1〉 =
|1/2, 1/2〉. These formulas give rise to the spread complexity
per mode given by equation (15) in the main text.

Finally, observe that, for j = 1/2 representations of SU(2),
since we only have two complex amplitudes ψ0(t ) and ψ1(t ),
we can relate the spread complexity C(t ) = |ψ1(t )|2 to the
return amplitude S(t ) = ψ̄0(t ). Indeed, by unitarity, probabil-
ities sum up to identity and we have

|ψ0|2 + |ψ1|2 = 1 ↔ C(t ) = 1 − |S(t )|2. (B26)

This simple relation will not hold for a more general time
evolution, which requires a higher number of Krylov ba-
sis vectors. Nevertheless, understanding the relation between
spread complexity and Loschmidt echo is an interesting future
problem.

APPENDIX C: EARLY AND LATE TIMES

This Appendix contains a few more details on the universal
features of the evolution of complexity in the early and late
times. First, at the early times, after of the quench, i.e., t ∼ 0+,

the time evolution of complexity (20) becomes

C(t ∼ 0) � t2
∫ π

0

dk

π

(
t f
1 t i

2 − t i
1t f

2

)2
sin2 (k)

R2
i

. (C1)

In terms of the ratios of t i, f
2 /t i, f

1 , denoted as α and β for initial
and final parameters, respectively, the spread complexity is

C(t ∼ 0) = (
t t f

1

)2
(α − β )2 (|1 + α| − |1 − α|)2

8α2

= t2
(
t f
1 t i

2 − t i
1t f

2

)2
(
t i
1 + t i

2 − ∣∣t i
1 − t i

2

∣∣)2

8
(
t i
1t i

2

)2 . (C2)

On the other hand, for late times, i.e., t → ∞, we notice that
the time evolution of (20) can be estimated as follows: First,
our formula is equivalent to

C(t ) = 2
∫ π

0

dk

2π

(
t f
1 t i

2 − t i
1t f

2

)2
sin2 (k)

R2
f R2

i

1 − cos 2R f t

2
. (C3)

We can then change the integration variable in the second term
such that∫ π

0

dk

2π

(
t f
1 t i

2 − t i
1t f

2

)2
sin2 (k)

R2
f R2

i

cos (2R f t )

=
(
t f
1 t i

2 − t i
1t f

2

)2

t f
1 t f

2

∫
k(R f )∈(0,π )

dR f

2π

sin k(R f )

R f R2
i (R f )

cos (2R f t ).

(C4)

Now, because for t → ∞ the cosine is highly oscillating in the
interval (0, |t1, f ± t2, f |], where the integral range belongs to,
this integral is always negligible, no matter what the concrete
form is of sin k(R f )/[R f R2

i (R f )] in terms of R f . This way we
find the late-time constant as

C(t → ∞) �
∫ π

0

dk

2π

(
t f
1 t i

2 − t i
1t f

2

)2
sin2 (k)

R2
f R2

i

. (C5)

The above estimate is also equivalent to replacing the time-
dependent factor sin2(R f t ) by 1/2. This expression integrates
to (23) in the main text and is plotted in Fig. 3. Note that,
naively, (23) is singular for αβ = 1 (the white diagonal on
Fig. 3), α = 0 and β = 0. These cases should be analyzed
more carefully starting from (20) with these values of α and β

and only then preforming the integral over momenta.

APPENDIX D: ONE-DIMENSIONAL KITAEV MODEL

In this Appendix we provide one more example where we
can compute spread complexity using our general formalism.
More details will appear in a longer publication [42].

Our example is the 1D Kitaev model described by
Hamiltonian

H = −J

2

L∑
j=1

(a†
j a j+1 + a†

j+1a j ) − μ

L∑
j=1

(
a†

j a j − 1

2

)

+1

2

L∑
j=1

(�a†
j a

†
j+1 + �∗a j+1a j ). (D1)
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FIG. 3. Spread complexity constant at late times C(t →
∞; α, β ), shown in (23) in the main text.

Without loss of generality, we set J = 1. As before, via a
Fourier transform(

a j

a†
j

)
= L−1/2

∑
k∈BZ

eik j

(
ak

a†
−k

)
, (D2)

where momentum modes are kn = 2π
L (n + 1/2),

n = −L/2, . . . , L/2 − 1, the Hamiltonian in position space
turns into a free fermionic one in momentum space

H = 1

2

∑
k∈BZ

�
†
k
�R(k) · �σ�k, �k =

(
ak

a†
−k

)
, (D3)

where the vector of parameters now reads

�R(k) =
⎛
⎝ 0

|�| sin k
μ + J cos k

⎞
⎠, R(k) = | �R(k)|. (D4)

Similarly to the SSH model, the Hamiltonian can be separated
into two parts,

H = HM + HCP, (D5)

where

HM = −
∑
k>0

(μ + J cos k)(a†
kak − a−ka†

−k ), (D6)

HCP =
∑
k>0

i|�| sin k(a†
ka†

−k − a−kak ). (D7)

Note that HCP is the interaction part that creates “Cooper
pairs.”

The Hamiltonian can be further diagonalized,

H =
∑
k>0

R(k)[−η−kη
†
−k + η

†
kηk], (D8)

where (
η

†
−k
ηk

)
= (�v+ �v−)†(k)�k, (D9)

and we followed the definition of �v± in (A5).
This way, the ground state of the model can be specified by

the condition

ηk|ψgs〉 = 0 ∀ k ∈ BZ. (D10)

If denote the Fock vacuum of the operators {ak} to be |0〉, the
ground state can be written as

|ψgs〉 =
∏
k>0

[∣∣∣∣sin
φk

2

∣∣∣∣e−iei arg � cot
φk
2 a†

k a†
−k

]
|0〉, (D11)

where we used the spherical coordinate to rewrite �R(k):

cot
φk

2
= |R2|

R − R3
, (D12)

analogously to the SSH model.
Next, we introduce the SU(2) algebra generators J (k)

0 , J (k)
±

for positive k in terms of the fermion creation and annihilation
operators,

J (k)
0 = 1

2
(a†

kak − a−ka†
−k ), (D13)

J (k)
+ = a†

ka†
−k, (D14)

J (k)
− = a†

−kak, (D15)

such that the ground state (D11) can be rewritten in terms of
SU(2) coherent states:

|ψgs〉 =
∏
k>0

cos
π − φk

2
exp

[
e−i π

2 tan
π − φk

2
J (k)
+

]
⊗
k∈BZ

|1/2; −1/2〉k,

=
∏
k>0

exp

[
π − φk

2
e−i π

2 J (k)
+ − π − φk

2
ei π

2 J (k)
−

]
⊗
k∈BZ

|1/2; −1/2〉k, (D16)

where in the last line we have applied the BCH relation in
(B2). Finally, the Hamiltonian of the Kitaev model can be
rewritten in terms of SU(2) algebra generators as

H =
∑
k>0

[−2(μ + J cos k)J (k)
0

+ i� sin kJ (k)
+ − i�∗ sin kJ (k)

− ]. (D17)

To compute the spread complexity in this model we again
naturally select the reference state to be the ground state of
HCP (“Cooper pair vacuum”) given in (D7), with arbitrary
positive �. In terms of SU(2) coherent states, it is not difficult

195125-8



QUANTUM COMPLEXITY AND TOPOLOGICAL PHASES OF … PHYSICAL REVIEW B 106, 195125 (2022)

FIG. 4. Complexity C(s = 1; μ, �) as a function of μ for var-
ious � (� = −2, −1, −1/2, 1/2, 1, 2). Between the two vertical
grid lines μ = ±1, spread complexity is μ independent. The two
dashed horizontal grid lines are the analytical results of C(|μ| < 1,

� = ±1), respectively. For |μ| → ∞, the spread complexities of
various �s approach the dotted horizontal grid line C = 1/2.

to find that

|GCP〉 =
∏
k>0

e
π
4 e−i π

2 J (k)
+ − π

4 e+i π
2 J (k)

−
⊗
k∈BZ

|1/2; −1/2〉k . (D18)

Then for |ψgs〉 as our target state we have the circuit

|ψgs〉 =
∏
k>0

e−i(sgn �
π−φk

2 − π
4 )(J (k)

+ +J (k)
− )|GCP〉. (D19)

Following the same steps as for the SSH, we derive the total
spread complexity in the continuum limit as

C(s = 1; μ,�) = 1

π

∫ π

0
dk sin2

(
sgn �

π − φk

2
− π

4

)

= 1

π

∫ π

0
dk

1 − sgn � sin φk

2
, (D20)

where the relation to the physical parameters is

sin φk = |R2|
R

= |�| sin k√
(μ + cos k)2 + (|�| sin k)2

. (D21)

The behavior of spread complexity C(s = 1; μ,�) as a func-
tion of μ is shown in Fig. 4. Clearly, similarly to the SSH, we
find a constant plateau in the topological phase.

Namely, in the topological phase where |μ| < 1, we can
derive the value of the spread complexity via integrating by
parts

C(s = 1; |μ| < 1,�)

= 1 − sgn �

2
+ 1

π

∫ π/2

0
cos φk tan−1 tan φk

�
dφk, (D22)

since φk (k) is monotonic and inversely we also have

k = ϕk + sin−1 μ sin ϕk, tan ϕk = tan φk

|�| . (D23)

This implies that the spread complexity is independent of μ

in the topological region. With some more effort we find this

FIG. 5. Complexity C(s = 1; |μ| < 1, �) as a function of �.
The two red dots are the analytical results of C(|μ| < 1, � = ±1),
respectively.

constant in terms of �:

C(s = 1; |μ| < 1,�) = 1

2
− 1

π

� tan−1
√

�2 − 1√
�2 − 1

. (D24)

This result is plotted in Fig. 5. Red dots are obtained by
taking the � → ±1 limit in the formula above. In particular,
the � → 1 limit reproduces the constant of the SSH model
(see Ref. [42] for more discussion).

Note also that there is a discontinuity of the second deriva-
tive of spread complexity with respect to �. In particular,

π
d2

d�2
C(s = 1; |μ| < 1,�)

= 2�2 + 1

�(�2 − 1)2 − 3� tan−1
(√

�2 − 1
)

(�2 − 1)5/2 , (D25)

behaves as �−1 around � = 0.

APPENDIX E: RELATION TO TOPOLOGICAL
ORDER PARAMETERS

In the main text, as well as in the additional example of
the Kitaev chain, we showed that the spread complexity is
clearly correlated with nontrivial topological phases of matter.
A natural and very interesting question is then whether one
can relate this quantity to any of the known topological order
parameters or other commonly used “witnesses” of topologi-
cal phases? At the moment we do not have any definite answer
to this interesting question and we only make a couple of
comments below.

First, it was noted in Ref. [28] that K-complexity based
on Lie-algebra symmetry [including the su(2) used here] can
be seen as a Berry connection. In that work, it was also found
that complexity corresponds to the volume in the Fubini-Study
metric defined from the appropriately used coherent states.
These notions seem similar in spirit to the probes employed,
e.g., in Ref. [38] such as, e.g., Zak’s phase. Nevertheless,
sharpening and better understanding of this link remains a
future problem.

Second, also following Ref. [38], we tried to determine
whether the spread complexity that we found in our paper can
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be written in terms of some expectation value of a position-
space operator (maybe also in the spirit of position space
entanglement). Below, using some guessing and/or reverse
engineering, we show that the spread complexity of (forma-
tion of) the ground-state can be approximately related to the
expectation value of

O = exp

[
i
2π

L

∑
j

(
ic†

A jcB j + H.c.
)]

, (E1)

computed in the ground state.
To see this, it is not difficult to show that, for ι = A, B and

ε → 0+,

(O†)εcι, jO
ε = cι,i + i

2π

L
ε
∑

j

[cι,i, ic†
A jcB j + H.c.] + O(ε2)

=
∑

ι′=A,B

[
διι′ − i

2π

L
εσy,ιι′

]
cι′,i. (E2)

Thus,

O†cι,iO =
∑

ι′=A,B

(
e−i 2π

L σy
)
ιι′cι′,i. (E3)

In the basis where the Hamiltonian is diagonalized, one can
find

O†χι,kO =
[(

�v†
+

�v†
−

)
e−i π

4 σx e−i 2π
L σy ei π

4 σx (�v+ �v−)

]
ιι′

χι′,k

=
[(

�v†
+

�v†
−

)
ei 2π

L σz (�v+ �v−)

]
ιι′
χι′,k . (E4)

The expectation value of O in the ground state |�〉 is then

〈�|O|�〉 =
〈

0

∣∣∣∣∣O
∏

k∈BZ

(O†χ−,kO)
∏

q∈BZ

χ
†
−,q

∣∣∣∣∣0
〉

=
∏

k∈BZ

[(
�v†
+(k)

�v†
−(k)

)
ei 2π

L σz (�v+(k) �v−(k))

]
−,−

≈
∏

k∈BZ

[
1 + i

2π

L
�v∗
−(k) · σz�v−(k) + O(L−2)

]

(E5)

for large L. Hence it could be rewritten into

〈�|O|�〉 = exp

[
i
2π

L

∑
k

�v∗
−(k) · σz�v−(k) + O(L−2)

]
.

(E6)

On the other hand, given that in spherical coordinates
system

�v− =
(

sin φk

2 e−iψk

− cos φk

2

)
, (E7)

one can find

�v∗
−(k) · σz�v−(k) = − cos φk = 2Ck − 1. (E8)

This way we have an approximate relation in the SSH
model:

〈�|O|�〉 = exp

[
i
2π

L

∑
k

(2Ck − 1) + O
(
L−2

)]

= exp[i4πC(t1, t2) + O(L−2)]. (E9)

To get some more physical intuition behind the expectation
value of O, we consider its exponent that is a sum of operators:

P j = ic†
A jcB j + H.c. (E10)

In the large-L limit, the sum over 〈�|P j |�〉 over all j is 2L
times the spread complexity (density). Below we consider two
examples to show that 〈�|P j |�〉 is related to the entangle-
ment between site j and its complement in position space.
For convenience, we use the notation of first quantization. The
Hamiltonian can be rewritten in this language as

Ĥ = t1

L∑
j

(| j, B〉〈 j, A| + H.c.)

−t2

L∑
j

(| j + 1, A〉〈 j, B| + H.c.). (E11)

In this notation, operator P j has Pauli matrix σ y representa-
tion. In particular,

P j = i| j, A〉〈 j, B| + H.c. (E12)

Let us now consider the expectation value of P j for the
two different values of parameters (t1, t2) that correspond to
trivial as well as topological phases:

(1) t1 = 1, t2 = 0 (nontopological phase)
In this case,

Ĥ (| j, A〉 ± | j, B〉) = ±(| j, A〉 ± | j, B〉) (E13)

are the two eigenstates on site j. Thus the ground-state of the
model can be written as

|�NP〉 =
L⊗

j=1

1√
2

(| j, A〉 − | j, B〉). (E14)

The expectation value of P j can then be rewritten as a trace
over all sites but j:

〈�NP|P j |�NP〉 = Tr j P jρ
NP
j , (E15)

where

ρNP
j = Tr¬ j |�NP〉〈�NP|. (E16)

It is not difficult to find

ρNP
j = 1

2
(| j, A〉 − | j, B〉)(〈 j, A| − 〈 j, B|). (E17)

This is a density matrix of pure state. As a result its entan-
glement entropy is trivial and the expectation value of P j is
correlated with trivial entanglement structure in this phase.

(2) t1 = 0, t2 = −1 (topological phase)
In this case

Ĥ (| j + 1, A〉 ± | j, B〉) = ±(| j + 1, A〉 ± | j, B〉) (E18)
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are the two eigenstates on site j. Thus the ground-state can
now be presented as

|�T P〉 =
L−1⊗
j=1

1√
2

(| j + 1, A〉 − | j, B〉). (E19)

The expectation value of P j can be rewritten by trace of all
sites but j:

〈�T P|P j |�T P〉 = Tr j P jρ
T P
j , (E20)

where

ρT P
j = Tr¬ j |�T P〉〈�T P|. (E21)

It is not difficult to find that now

ρT P
j = 1

4
(1 + | j, A〉〈 j, A| + | j, B〉〈 j, B|

+| j, A〉〈 j, A| ⊗ | j, B〉〈 j, B|),
= 1

4

(
ρT P

j,0 ⊕ 2ρT P
j,1 ⊕ ρT P

j,2

)
. (E22)

This reduced density matrix consists of three sectors. Among
them, only the sector ρT P

j,1 can be expanded by σ x
j , σ

y
j (= P j ),

and σ z
j . This implies that we can only retrieve part of the “in-

formation” of the ground state via P j and therefore O, which
leads to the difference from the nontopological phase. On the
other hand, from the view of entanglement, the entanglement
between site j and its neighbors is nontrivial.

Concluding this part, it is too early to make a definite state-
ment whether the spread complexity applied to the somewhat
simpler and integrable models can be expressed in terms of
the known probes of the topological phases. By the previous
works as well as the above intuitive arguments it is likely that
it may be correlated with entanglement-like probes, but the
precise details should be spelled out. What we can say for sure
is that, in more general and chaotic settings, spread complex-
ity is a new measure sensitive to the spectrum of the model.
We hope that further studies of this quantity will deepen our
understanding of this tool and help to find appropriate spot for
it also in the condensed-matter toolkit.
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