PHYSICAL REVIEW B 106, 195121 (2022)

Determinant quantum Monte Carlo for the half-filled Hubbard model with nonlocal
density-density interactions

Meng Yao,' Da Wang ®,'>" and Qiang-Hua Wang'->
! National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

® (Received 22 July 2022; revised 31 October 2022; accepted 4 November 2022; published 10 November 2022)

We design a novel formalism of determinant quantum Monte Carlo method for the half-filled Hubbard model
with on-site Hubbard interaction U and nearest-neighbor density-density interaction V on the square lattice.
The formalism is free of sign problem for |[U| > 4|V|, and is achieved by introducing discrete auxiliary fields
on the nearest-neighbor bonds alone. Based on this formalism, we study the ground-state phase diagram of
the model systematically using the projector algorithm. Within the sign-problem free parameter space |U| >
4|V |, we obtain antiferromagnetism for U > 4|V| > 0, charge density wave for U < —4V and V > 0, s-wave
superconductivity for U < 0 and small negative V, and phase separation for U < 0 and a larger negative V. We
also obtain the single particle gap and spin excitation spectra, and by comparison to mean field results, as well as
available literatures, we discuss the possible phase boundary beyond the sign-problem free region. The unbiased
numerically exact results can be taken as benchmarks in future studies. Finally, we discuss possible extension

for longer-range interactions in the model.
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I. INTRODUCTION

The Hubbard model [1,2] is a standard model for strongly
correlated electron systems and has been studied extensively
in the past few decades, not only because of its fundamen-
tal theoretical significance [3] but also because of its close
relation to real materials, such as high-temperature supercon-
ductors [4,5] and cold atoms [6]. In the simplest form, the
interaction in the model contains the local Hubbard interaction
U alone, but the extension to near-neighbor interactions is
straightforward. Such interactions are repulsive if they are
derived from pure Coulomb interaction, but could also be
effectively attractive if they are caused by electron-phonon
coupling, or could be tuned to be attractive in the context
of cold atoms. Interestingly, an attractive nearest-neighbor
interaction V seems to be present and plays an important role
in one-dimensional cuprate chains [7]. Nonlocal Coulomb
interactions are also argued to be important in graphene [8]
because of poor screening, and in magic-angle twisted bilayer
graphene [9] because of the peculiar three-lobe Wannier func-
tions for the low-energy electron degrees of freedom [10-12].
These progresses renew the interest in the extended Hubbard
model with the on-site Hubbard U and density-density inter-
actions V' on neighboring bonds [10,13-26].

Although the extended Hubbard model has been widely
studied, some of its properties are still unclear. For repulsive
U and V, the phase transition between antiferromagnetism
(AFM) and charge density wave (CDW) is predicted at U =
4V in mean field theory (MFT) [27] and in the strong coupling
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limit [28,29], but some quantum cluster methods [30-33] and
dual boson approach [34] locate the phase boundary at U <
4V . For attractive V, the existence of phase separation (PS)
[35] and its relation to the superconductivity (SC) are still un-
der debate [27,36-38]. Actually, to the best of our knowledge,
no large-scale exact numerical simulation has been performed
systematically for the ground-state phase diagram of the ex-
tended Hubbard model with both U and V.

The quantum Monte Carlo (QMC) is a powerful tool for
the study of correlated systems, because it is in principle
unbiased and statistically exact. Even the ground state can
be accessed by the projector determinant QMC (DQMC)
[39]. Unfortunately, depending on the specific model, the
QMC method often suffers from the notorious negative sign
problem, the resolution of which is one of the most diffi-
cult challenges in both physics and mathematics communities
[40]. Nonetheless, it is known that some symmetries can
protect the system from the sign problem, opening up a win-
dow to study particular models with appropriate symmetries
exactly by QMC. In DQMC, the sign problem is closely
related to the Hubbard-Stratonovich (HS) transformation of
the interactions. For a given HS configuration, if there is a
particle-hole (PH) [41] or time-reversal (TR) [42] symmetry,
or Majorana reflection/Kramers symmetry [43,44], the sign
problem can be avoided exactly. For example, the attractive
Hubbard U-term can be decoupled with discrete HS trans-
formation [45] in the charge channel that spin up and down
electrons see the same HS fields and contribute the same
real determinant, so that the product of the determinants are
positive definite. For repulsive U, the auxiliary field becomes
pure imaginary. For the half-filled model on a bipartite lattice,
however, the sign problem can be proved to vanish by the
partial PH transformation for only spin down electrons, after
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which the spin-up and spin-down determinants are complex
conjugation to each other. The product of the determinants
are again positive definite. Moreover, this HS transformation
maintains the spin SU(2) symmetry and thus is efficient for
the study of spin dynamics [46].

We are interested in the DQMC for the half-filled Hubbard
model with both U and V. A direct decoupling of the nearest-
neighbor density-density interaction V breaks both TR and
PH symmetries, causing the sign problem immediately [47].
This problem is partially solved in Ref. [48], where a HS
decoupling in the hopping-channel is employed to treat both
U and V terms together. This approach is free of sign problem
for U < —8|V| on the square lattice, hence works for negative
U only. Further progress is achieved in Refs. [49,50], where a
continuous HS decoupling in the charge channel is applied
for a bipartite lattice and works without sign problem for
|U| > z|V|, where z is the coordination number. Later, an
improved scheme is proposed in Ref. [51], where discrete HS
decouplings are applied on both sites and nearest-neighbor
bonds. The accessible parameter space is also limited by
|U| > z|V|, but the sampling over discrete HS fields becomes
easier and more efficient.

In this paper we propose a further improved decoupling
scheme for the half-filled bipartite Hubbard model with both
U and V. Itinvolves discrete HS fields on the nearest-neighbor
bonds alone. We then apply the novel scheme to study system-
atically the ground-state phase diagram of the square lattice.
Within the sign-problem free parameter region |U| > 4|V|,
we obtain AFM for U > 4|V| > 0, CDW for U < —4V and
V > 0, s-wave SC for U < 0 and small negative V, and PS
for U < 0 and larger negative V. We also obtain the single
particle gap and spin excitation spectra, and by comparing
with MFT as well as available literatures, we discuss the
possible phase boundaries beyond the sign-problem free re-
gion. The unbiased numerically exact results can be taken as
benchmarks in future studies.

The paper is organized as follows. In Sec. II, we introduce
our HS decoupling scheme and technical details for the mea-
surements in our DQMC. In Sec. III, we perform systematic
simulations for the ground-state phase diagram using DQMC
with the novel decoupling scheme, and discuss the results in
comparison to MFT and previous results in the literature. Sec-
tion IV contains the summary and perspective of this paper.

II. MODEL AND METHODS

We consider the half-filled extended Hubbard model on the
square lattice described by the Hamiltonian

1 1
H = —Z‘Z(CLC]‘” +HC)+UZ (n,-T — 5) (nw — 5)

(ij)o i

+V Y (= Dn; — 1), (1)
(i)

where c;, is the electron annihilation operator at site i and
with spin o, n; = n;; + n;y is the total local density, and (i)
denotes the nearest-neighbor bond. We use ¢+ = 1 as the unit

of energy henceforth.
We limit ourselves to the ground state at zero temperature,
which allows ordered states breaking even continuous sym-

metries. We use the zero-temperature (projector) DQMC to
calculate the expectation value of an operator O in the ground
state |Wy),

<\I/7‘| e—(—)H/Zoe—(-)H/Z |\I’IT>
(Wr|e ©H |Wr)

where |\Wr) is the trial wave function, which is required to

be non-orthogonal to the ground state, (Wy|Wr) # 0, and

®/2 is the projection time. The projector is Trotter-Suzuki
decomposed as

(Wl O W) = lim . Q)
O—o0

e~ OH _ [e—%AtH,e—ArHle—%ArH,]M + O(ATY) 3)
where ® = AtM, and H; and H; denote the Kinetic and
interaction terms, respectively. In our simulations, we em-
pirically set ® = 2L./4/|U| (L the linear lattice size) and
At = /4/1U][/10. The convergences with respect to ©, At,
and trial wave functions |W7) are carefully checked before our
practical simulations. See Appendix C for details.

In DQMC, it is necessary to transform the interaction terms
into the coupling between the fermion density and auxiliary
bosons through a suitable HS decomposition. For our purpose,
we rewrite the U and V terms as

Hy = 53l = 1)+ aln; — DP, 0)
(i)

where g and a are related to U and V through the relations
U= %(1 +d%) and V = ga with z the coordinate number.
The solution of a exists as long as % = §|$ + a| > z. For the
square lattice under concern, z = 4, corresponding to |U| >
4|V|. Equation (4) can be used to perform HS decoupling
directly. For a particular bond (i j), let us denote A = n; — 1 +
a(nj — 1). Then the HS transformation is performed as [39]

e TN = Nyt 1 oarh, )
s=£1,42
where Vel = % + é, V2 = le — }/—26, Ayl =

+./—A1g(3 —v6), and A, =4/ —Atg(B3+6). If

g < 0, Ay is real, the up and down determinants are real and
the same, leading to the absence of sign problem. If g > 0, A,
becomes purely imaginary, but on a PH symmetric bipartite
lattice, the partial PH transformation can be used to prove
the absence of the sign problem. Therefore, there is no sign
problem in all our HS decoupling region |U| > 4|V|. See
Appendix B for details about the sign problem. The accessible
parameter space is the same as in Ref. [51], but our HS fields
live on bonds alone, while both on-site and on-bond fields are
introduced in Ref. [51].

The above HS decoupling enables us to perform the
DQMC most efficiently. In order to search for possible order-
ing tendencies, we calculate the structure factor

1 ; A A A a
So@) = 73 D"V (0:07) — (00, (©)
ij

where L is the linear lattice size, Oi is a fermion bilinear
operator in a given channel, and ¢ is the ordering momentum.
Note that according to the above normalization, a finite value
of Sy in the thermodynamic limit implies the corresponding
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long range order (at the associated momentum), whereas it
vanishes if such an order is not present. For AFM, O; is
the local spin operator S; = %cj'ac,- and ¢ = Q = (7, ). For
CDW, O; = n; — 1 and q = Q; For s-wave SC (s-SC), 0; =
ciycis and g = 0. For d-wave SC (d-SC), 0; = \/LE(CQCH_,(T -

¢iyCityy) and g = 0. For PS, 0;=n; — 1. Strictly speaking,
PS is signaled by the charge structure factor at zero momen-
tum, which is just the fluctuation of the total particle number
N since Zij(<”i”j> —{n;)(n;)) = (N?) — (N)?2, hence, is ex-
actly zero in the canonical ensemble. However, PS can be
probed by the charge structure factor at a small momentum
8¢ in the finite-size system. We tested two choices, §¢ = ¢, =
(ZT”, 0)ordqg = Squ = (ZT”, ZT” ), and we find that consistently,
the structure factor Sps(dq,) is always larger than Sps(dq,,)
near or inside the PS phase. Therefore, in the following, only
the PS structure factor Sps(dq,) will be presented. In prac-
tice, we choose lattice size L = 4, 6, 8, 10, 12, 16 to calculate
various structure factors and then perform finite-size extrap-
olation to obtain the results in the thermodynamic limit. If
any one structure factor keeps finite after extrapolation, the
corresponding long range order is formed by breaking relevant
symmetries: AFM breaks spin rotation and translation, CDW
and PS break translation, s-SC and d-SC break U(1) gauge
symmetry.

We also study the dynamical properties. The single par-
ticle gap Ay, can be extracted from the Matsubara Green’s
function G, (k, 1) = —(T;c, (k, t)cf7 (k,0)) (T, the time or-
dering operator) through the long time behavior G, (k, t)
exp ( — 1 Ayp(k)). Similarly, the spin gap can be extracted
from the Matsubara spin-spin correlation function (¢, t) =
—(T:S(q, 7) - S(—q, 0)). To get more information about spin
excitations, we further adopt the maximum entropy method
[52] to perform analytic continuation to extract the dynamic
spin susceptibility x(q, ). For the dynamical calculations,
we choose lattice L < 12.

III. RESULTS AND DISCUSSION

Our main results are summarized in the phase diagram
shown in Fig. 1. The shaded area indicates the accessible
region free of sign problem in our DQMC. The colored
circles show the DQMC results after extrapolation to the
thermodynamic limit L — oo. Different orders are colored
differently, and the color intensity corresponds to the value
of the structure factor S(g) normalized by the maximal
value. The solid lines are the phase boundaries, which are
obtained by DQMC in the accessible region, and by argu-
ments to be clearer when they are out of the accessible
region. The dashed lines are phase boundaries from MFT for
comparison.

A. AFM phase for U > 0

Let us first look at the AFM phase in the case of positive U.
In Fig. 1, the green circles indicate the AFM structure factor
Sarm, Which increases with U and decreases as V approaches
U/4. The values of Sapm in the thermodynamic limit are
shown in Fig. 2(a), where the symbols are DQMC results for
U =2,4,6, and the dashed line represents the MFT result
for U = 2. Clearly, the MFT cannot capture the effect of V
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FIG. 1. The ground-state phase diagram of 2D half filled ex-
tended Hubbard model on the square lattice, as a function of on-site
U and nearest-neighbor interaction V. The color-coded circles rep-
resent different structure factors S(q) by extrapolating the DQMC
results to the thermodynamic limit L — oo. The regions free of sign
problem are indicated by shaded areas. The dashed lines are phase
boundaries in the MFT and the solid lines are inferred from the
DQMC. For U < 0, the DQMC (solid line) and MFT (dashed line)
phase boundaries between s-SC and CDW are both the line of V = 0
but slightly separated for clarity.

on AFM ordering as it does not even vary with V. Instead,
in the DQMC results, we find that when V > 0, Sagpm de-
creases with V for a given U. When V reaches the MFT phase
boundary U /4, Sapm remains finite, as also shown in Fig. 2(b).
This means AFM survives at U = 4V > (. To see whether
the CDW enters here, we show Scpw in Fig. 2(c). It clearly
extrapolates to zero in the thermodynamic limit. Therefore,
our DQMC results imply that the AFM-CDW transition must
occur at V > U /4 (although it is beyond our sign-free space),
in agreement with the cluster-based simulations [30-34]. This
boundary is shown schematically as a solid line in the first
quadrant in Fig. 1. On the other hand, from Fig. 2(a), we
see that Sapyv changes only mildly versus negative V, and is
overall larger than the value at positive V. This tendency is
more obvious for larger values of U. To see why this is the
case, we examine the double occupancy D = + " (niyn;,),
as shown in Fig. 2(d). As V decreases, the double occupation
D is reduced, and this is equivalent to the tendency toward de-
velopment of local moment, which orders in the AFM phase.
This tendency is eventually overwhelmed by a sufficiently
large and negative V, upon which the PS or d-SC phase sets in,
according to the MFT. Unfortunately this region is beyond our
sign-free zone. We have checked the absence of d-SC in our
QMC region, as shown in Appendix D 2. We also note that for
U = 2, Sapm decreases slightly for V- < —0.15. This behavior
cannot be explained by the formation of local moment, and
indeed, at this level the double occupancy is close to the
free value 1/4, and is better described in terms of itinerant
antiferromagnetism [53,54].
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FIG. 2. DQMC results for U > 0. (a) Sapm in the thermodynamic
limit vs V/U by fixing U = 2, 4, and 6, respectively. The dashed line
denotes the same quantity from MFT. (b) Finite-size extrapolation of
Sarm versus 1/L for fixed U and V. (c) Finite-size extrapolation of
Scow at U = 4V . (d) Double occupancy D at L = 16 as a function of
V/U by fixing U = 2, 4, and 6, respectively.

B. CDW, s-SC, and PS phases for U < 0

On the negative U side, the transition between s-SC and
CDW occurs exactly at V = 0, as shown in Fig. 3(a) for U =
—4. More results for U = —2 can be found in Appendix D 3.
At V =0, the s-SC and CDW coexist and satisfy the rela-
tion Scpw = 2Ss_sc exactly (not shown) as a result of the
SO(4) symmetry of the negative-U Hubbard model [55,56].
In particular, the pseudo-SU(2) symmetry rotates the triplet
of two branches of s-SC (complex) and one CDW (real), so
the degeneracy between s-SC and CDW here is protected by
symmetry. But this symmetry is immediately broken by V,
which favors CDW (s-SC) if V > 0 (V < 0). The transition
is between two ordered states, and is clearly first order. As
shown in Fig. 3(a), the structure factor Scpw quickly grows up
and Ss_gc suddenly vanishes as V increases across zero. Their
coexistence only occurs at V = 0, which is a critical line for
this first-order transition. On the other hand, as V decreases
further, the s-SC finally vanishes and is replaced by the PS
phase, as shown in Fig. 3(a). For V = —0.37, —0.40, —0.43,
s-SC and PS are found to coexist, indicating this phase transi-
tion is also first-order but occurs in a finite region. Note their
coexistence is not protected by symmetries like the V =0
case.

Let us have a closer look into the PS state. In Fig. 3(b),
we plot the density-density structure factor S.(g, ) along a line
cutg, = (izf”,O) withi=0,1,---, % — 1. When the system
does not exhibit PS at V. = —0.3, S.(q,) for all g, are very
small. While for V = —0.4 and V = —0.5, S.(q,) exhibits a
peak at ¢, = dq,, indicating the tendency toward macro-scale
density wave order, namely phase separation. (We did not per-
form finite-size scaling but use the largest size L = 16, as near
or inside the PS phase it is difficult to achieve nice ergodicity.
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FIG. 3. DQMC results for U < 0. (a) Ss_sc, Scpw/6 in the ther-
modynamic limit and Sps/2 at L = 16 as functions of V with U =
—4. (b) Dependence of S.(q,) on g, for V = —0.3, —0.4 and —0.5,
respectively. (c) Double occupancy D as a function of V with fixed
U =-2and —4 at L = 16. (d) SMT(g,) from MFT at U = —4.0
and V = —0.4, —0.5. The inset shows a typical PS configuration by
plotting the particle number (n;) along a line cut (i, 1).

See Appendix D 1 for more details.) For comparison, the MFT
result for PS are also shown in Fig. 3(d). It appears to be
similar to the DQMC result. The inset shows the mean particle
number (n;), which is constant in the y direction. In the x
direction, half of the system is almost doubly occupied and the
other half is empty. In Fig. 3(c), we present our DQMC result
of double occupancy D, which is found to increase rapidly
when V = —-04 for U = —4, and V = —0.5 for U = —2.
Combining Sps and D, we conclude the system undergoes the
PS transition between V = —0.3 and V = —0.4 in the case of
U=-4

C. Dynamical excitations

The Matsubara Green’s function G, (k, 7) is presented
in Figs. 4(a) and 4(b). The single particle gap Ay, can
be extracted from the long time behavior G,(k, 1)~
exp[—tAgp(k)]. We mainly focus on A,, at the antinodal
point (7, 0), and A, at the nodal point (7, 7). For com-
parison, we take \/% obtained from DQMC as the order
parameter, and substitute it into the MFT Hamiltonian to
compute the single particle gap AMFT, which is the same for
nodal and antinodal points for the phases accessible by our
DQMC.

For the AFM state at U = 4, the single particle gap A as a
function of V is shown in Fig. 4(c). Although in MFT, AMFT
is proportional to the order parameter, which decreases mono-
tonically with V, the DQMC gap A,, shows a nonmonotonic
dependence. We also observe a mild gap anisotropy A, — A,
(red dots). These features indicate that the exact AFM ground
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FIG. 4. Matsubara single particle Green’s function G, (k, t) for
U =4 (a) and U = —2 (b), which are obtained at L = 12. The
single particle gap A, ., can be extracted from the long time tail of
G, (K, T) o< exp(—Ay.n7) fitted as dashed lines. The thermodynamic
limit values of A, ,, are plotted in (¢) for U = 4 and (d) for U = -2,
respectively. The mean field single particle gap AMT is also pre-
sented for comparison.

state has an internal structure beyond the determinant state in
MFT.

The results of negative U with U = —2 are shown in
Fig. 4(d). A positive V induces CDW, and the single particle
gap A increases with V for both DQMC and MFT, but the
DQMC gap grows faster than mean field gap, indicating the
correlation effect dominates for larger V. For negative V,
the system enters the s-SC and PS states successively as V
decreases. We observe that A, ,, increases more slowly than
AMFT for small |V |, but much faster for large |V| as the PS
phase is approached. It is also interesting to compare the nodal
and antinodal gaps: A,, is found to be always larger than A,
in the AFM and s-SC states, but not in the CDW state.

Finally, we perform analytic continuation of the Matsubara
spin-spin correlation function y;(q, ) with the maximum
entropy method [52] to obtain the spin excitation spectra as
shown in Fig. 5. The excitation energy goes to zero linearly
near the ordering momentum (7, ), a clear indication of
the Goldstone mode. The spectral function is significantly
smeared up near the zone boundary, indicating nontrivial
magnon scattering effect (in the local moment limit) or mul-
tiple particle-hole excitation (in the itinerant limit). We also
show the dispersion of the spin wave in Fig. 5(d), which is
obtained from the local peaks (symbols) in Figs. 5(a)-5(c).
Clearly the slope, or the spin-wave velocity, is largest for V =
1. This feature seems to be associated with the spin-exchange
interaction 2 /(U — V) anticipated in the Mott limit.

(a)16 (b)16
12 1.2 H
A\ v
308 i
v ,‘
LK
0.4 4‘ ”,’ L
U=4, V=-1 '
0.0
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.
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308 \ e
N
° 4
0.4 n
U=4,V=1 "
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(0,0) (7,0) (m,7) (2/3,27/3)
q

FIG. 5. Spin excitation spectra along a high-symmetry path in
the Brillouin zone for U =4 and L =12, and V = —1 (a), V =0
(b), or V =1 (c). The filled symbols represent the local maxima in ¢
near (7, ), defining the spin-wave dispersion, collected and shown
in (d) for comparison.

IV. CONCLUSIONS

We presented a form of HS decomposition to deal with
the extended Hubbard model with DQMC. On this basis, we
systematically investigated the ground-state properties of the
half-filled extended Hubbard model on the square lattice by
zero-temperature DQMC simulations. We obtained the com-
plete phase diagram in the sign-free parameter space |U| >
4|V|, and discussed the dynamical excitations in some par-
ticular phases. Phase boundary beyond the sign-free space is
also argued. These results should be important to benchmark
further studies using other approaches.

We remark that our HS transformation can be generalized
to longer range Coulomb interactions easily. For example,
if the next-nearest-neighbor Coulomb interaction V' term is
added, we can rewrite the interactions including U, V, and V'
as

H=-3

> [Qi +aQiyx +aQiqy + azQi+x+y]2’ (7

1

where Q; = n; — 1, and x, y are primitive translation vectors.
We can solve (g, @) in terms of (U, V, V). The subsequent HS
decoupling is then straightforward, yielding HS fields living
on centers of plaquettes. Work in this direction is in progress.
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APPENDIX A: MFT CALCULATIONS

For the calculations of MFT, we mainly follow Ref. [27] to
determine the ground states of the extended Hubbard model
and to obtain the magnitude of each order parameter. We
choose the MFT ansatz for different orders as

SDW :3(ny —n;)) = (—=1)'m (A1)
CDW Z(I’lm + ny, — 1) = (_l)in (A2)
PS i(mip +miy — 1) =y e TPy, (A3)
q
s-SC Z(Cilciﬁ = As, (A4)
d-SC :<Ci¢ci:th> = Ad, <Ci¢ci:|:yT> = —Ady (AS)

where m, Q, Py, Ay, A4 are order parameters of AFM, CDW,
PS, s-SC, d-SC, respectively. Note that for PS, we consider
a series of q = (2imr/L,0) with i =1, 2, ---. After choos-
ing one of the MFT ansatz, we can decouple the interaction
terms in the relevant channel to obtain a mean field bilinear
Hamiltonian, from which the order parameter can be solved
self-consistently. For a given group of (U, V'), the ground state
is determined by comparing the energies of different ansatz.
Finally, by scanning the (U, V') plane with a step length 0.1¢,
we obtain the MFT phase diagram shown in Fig. 1 in the main
text. In our MFT calculations, we set the lattice size L = 100.

APPENDIX B: SIGN PROBLEM

Our HS decoupling scheme can be applied to both finite
and zero temperatures. In this paper, since we are interested in
the ground-state properties, we employ the projector version
at zero temperature. We first introduce the algorithm and
conditions for absence of the sign problem in the extended
Hubbard model. Then, we show the sign average by com-
paring our HS decoupling method with two other schemes in
Refs. [47,51] inside or outside of our sign problem free region.

1. Projector DQMC algorithm
The expectation value of an operator O in the ground state
|\Wy), as shown in Eq. (2), can be expressed as [39]
<\I/ | e ®H/ZOG ©H/2 |\I}T
(Wr|e=®H |Wr)

= —ZA DID}(0), (BI)

where Z =Y, p; = 3, ADID}. The symbol s denotes a
set of HS fields {s(;)»} on each nearest-neighbor bond (i)
and time slice m, as introduced by the HS transformation of
Eq. (5). The prefactor Ay is

As = 1_[ Yiijy.m €Xpl—A

(ij),m

ijm(1+a)l. (B2)

In Eq. (B1), D? are determinants for spin o =1, |, respec-
tively, given by

D = det (P°"BS,, \ByBY,_, - - B{B§P°), (B3)

with

1
B} = exp (—EA‘L’K{7> By, = exp (EAIK(T), (B4)

B? = exp(—ATK?)exp (an) m=1,2---,M, (BS)
where K is the kinetic matrix definedas } _, ;.. mK Cjo and
V.7 is the potential matrix under a given HS ﬁeld conﬁguratlon
deﬁned as

Z Aijym (P +anj) = Z el (V)icio- (B6)

(ij) i,o
The matrices P° in Eq. (B3) is given by a trial Hamiltonian
Hr =3 o ¢ (h3)ijcjq. Thatis, P9, is the lowest nth eigen-
state of h%., with n < N, (N, the particle number). Note that
P? is the same for up and down electrons since we work
in total spin S, = 0 space. In practice, we simply choose
h7 = K° but add additional small random hoppings on each
nearest-neighbor bond to eliminate possible energy level de-
generacies. Since h§ is purely real and spin-independent, we
can construct real P¥ = PT.

2. Sign problem free atg < 0

Next, let us investigate the sign problem. When the inter-
action g < 0, the HS field A » defined in Eq. (5) is purely
real. In this case, we have

K'=k', Vi=Vl, P =P, (B7)
from which we obtain
D} =D!, (B8)

which is also real. In addition, we also have
Ag > 0, (B9)

from its definition Eq. (B2). Therefore, for any HS configura-
tion s, we have now proved

ps = ADID} = A(D])* > 0, (B10)

since D] is purely real.

3. Sign problem free at g > 0 with particle-hole symmetry

When the interaction g > 0, Ay, defined in Eq. (5) be-
comes purely imaginary. If there is a PH symmetry, we can
perform a partial-PH transformation for spin down electrons

ciy = (—D'ef), (B11)

after which we obtain
R' =K', Pt =P,

VARSSARS (B12)

where we add tilde to label matrices after the transformation.
From the above, we obtain

D! =D!, D!=D!* (B13)
In addition, the prefactor A should be transformed to
A= T] vipm >0 (B14)

(ij),m
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2Np t2
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©) T Hst (d ——Hs1 ¥ Hs3
0025} —&—HS2 § H2

0.020

<sign>

0.015

0.010

0.005

FIG. 6. The average sign as functions of the particle number
2N, (a), next-nearest-neighbor hopping #, (b), lattice size L (c), and
density-density interaction V (d), by comparing three HS decoupling
schemes: HS1 (ours), HS2 (Ref. [51]), and HS3 (Ref. [47]). We
have fixed U =4, = 3L, At =0.1. The other parameters are:
L=4,V=04,,=0in(a);L=4,V =04,2N, = 16in(b);V =
0.4,2N,/N =7/8,t, =0in(c); and L = 4, 2N, = 16,1, = 0 in (d).

Therefore, we have now proved

ps = ADID} = A,D!D!* > 0. (B15)

4. Sign problem at g > 0 in general

We have learned that when g > 0, the sign problem can be
free if there is a PH symmetry. In this subsection, we examine
the severity of the sign problem once the PH symmetry is bro-
ken. We consider two ways to break the PH symmetry: away
from half-filling or adding a next-nearest-neighbor hopping
t,. We compare three schemes of HS decouplings. We use
HS1 to represent our proposal (with only on-bond fields), HS2
for the method of Ref. [51] (with both on-site and on-bond
fields), and HS3 for the early scheme of Ref. [47] (with real
but spin-dependent fields).

We plot the sign average versus filling in Fig. 6(a) and
versus #, in Fig. 6(b). It can be seen that as long as the PH
symmetry is broken, all three schemes give very small sign
average, unless for special fillings using HS3, making the
DQMC simulation almost inaccessible. In Fig. 6(c), we check
the size dependence, when sign problem occurs, which are
all severe for the three methods. Finally, we also examine the
sign average with respect to V, as shown in Fig. 6(d). When
V] < |U|/4, HS1 and HS2 are both free of sign problem,
but for HS3 the sign problem occurs immediately as V' # 0.
Comparing with HS2, our proposal (HS1) has fewer HS fields
and thus easier to implement in practice. When |V | > |U|/4,
our scheme (HS1) does not apply (since no solution exists for
the HS parameters), and HS2 has severe sign problem. For
HS3, the sign problem is still very severe for negative V but

@ .. (b)
E —%— U=4,V=0.4 0.165
-0.06 \\ 0.160
\
\ s
w \ T 0155
0.07 \ o
\\ 0.150
-0.08 ‘
\
: 0.145
St
-0.09
0.140
0 02 04 06 08 1.0 12 1.4 0 02 04 06 08 1.0 12 1.4
ATO/AT ATO/AT
(c) d

(d)
% —8—U=-2,V=-0.2 0.095
\

-2.482

—¥— U=-2,V=-0.2

R} 0.087
4= =
0

0 02 04 06 08 1.0 12 14
ATO/AT

-2.486

0 02 04 06 08 1.0 12 14
ATO/AT

FIG. 7. The ground-state energy £ and AFM structure factor
Sarm are plotted with respect to Atg/At, with Aty = /4/U/10 as
our practical choice in simulations. [(a),(b)] For (U,V) = (4,0.4).
[(c),(d@)] For (U, V) = (=2, —0.2). The lattice size is L = 4.

seems to be weakened for relatively large V, making it a better
candidate in that region.

APPENDIX C: BENCHMARKS OF OUR SIMULATIONS

In this section, we provide benchmarks of the choices
of discretization time Az, projection time 8, and trial wave
function |Wr).

1. Discretization time At

In this paper, we set At to be independent of the lattice
size [57], but depend on U as At = /4/[U][/10. The conver-
gences with respect to At have been checked by comparing
results with different At in our simulations. For L = 4 with
U,V)=(4,0.4) or (—2,—0.2), the ground-state energy E
and the AFM structure factor Sagy or s-SC structure factor
Ss—sc are plotted with respect to At in Fig. 7. It can be seen
that the results do converge with our practical choice labeled
by Aty in these figures.

2. Projection time ®

For projection time ®, we choose it proportional to the
linear lattice size L [58], namely ® = 2L./4/|U|. The con-
vergences with respect to ® have been checked by comparing
results with different ® in our simulations. For L = 4 with
U,V)=(4,04) or (—2,—0.2), we show the ground-state
energy E and the AFM structure factor Sapy or s-SC structure
factor S;_gc versus ©, as shown in Fig. 8. It can be seen that
the results do converge with our practical choice labeled by
®y in these figures.
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(a) - (b) 0.17
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FIG. 8. The ground-state energy £ and AFM structure factor
Sarv are plotted with respect to ®/®g, with ¢ =2L./4/U as
our practical choice in simulations. [(a),(b)] For (U,V) = (4,0.4).
[(c),(d)] For (U, V) = (=2, —0.2). The lattice size is L = 4.

3. Trial wave function | W)

As for the trial wave function, we have selected several trial
wave functions by adding different random hoppings on each
nearest-neighbor bond. In Fig. 9, we plot the ground-state
energy E and AFM structure factor Sapy versus ®, respec-
tively. The results are found to be independent of the trial wave
functions for our practical choice ®y.

APPENDIX D: MORE QMC RESULTS

In this section, we provide more QMC data, including the
finite-size effect of the PS structure factor, absence of d-wave

SC, and some results of U = —2.
@), (b)
' —¥—R1 0.16 4
—4—R2
1.0 —%-R3
s 0.12
w <
0.5 «
0.08 —v¥—Ri1
—4—R2
0.0 > L —4—R3
0.04
0 0.2 0.4 0 0.2 0.4 0.6
(-)/(-)o (-)/(-)o

FIG. 9. The ground-state energy E (a) and AFM structure factor
Sarm (b) as functions of ®/®, with three randomly chosen trial wave
functions R1, R2, and R3. The parameters are L =4,U =4,V =
0.4, At =0.1, ®, = 8.

(@) (b) 25 10>
0.25 —¥— U=-4,V=-0.3 ¥ U=4,V=05 "
—A—U=4,v=-04 2t & U=2,V=-05
0.20 —¢— U=-4,V=-05 ¢ U=2,V=-05 |
o 15 k
L o015 1 2
s W 4
0.10 \\E/// 4
0.05 /; 0.5
0

0.00
000 005 010 015 020 025 000 005 010 015 020 025
1/L 1/L

FIG. 10. The structure factors Sps (a) and Sq_sc (b) are plotted
with respect to 1/L.

1. Finite-size effect of PS

In the simulations, we find it is difficult to achieve nice
ergodicity near or inside the PS phase. The data quality is
relatively poor and the error bars are relatively large, as shown
in Fig. 10(a) for U = —4. When V = —0.3, the structure
factor Spg is quite smooth and extrapolates to zero, indicating
the absence of the PS order. But forV = —0.4and V = —0.5,
the curves are qualitatively different from V = —0.3. Sps even
grows up as L increases, indicating the formation of such a
long-range order. However, such a behavior causes difficulty
to perform reliable finite-size extrapolation. Therefore, we
adopt a compromise way to use the data of L = 16 to char-
acterize the strength of the PS order, as discussed in the main
text.

2. Absence of d-wave SC

Although there is a region with d-SC order in the MFT
phase diagram, it is beyond our QMC accessible region

(a) (b)0.15
006 —Ssc ¥ U=2,V=-04
—1—Spg2 ——U=2,V=-0.5
0.10
—_— SCDW/5
3 0.04 g
[¢) 1
% ® 4
0.05
0.02 r
‘\X U=-2 /
0.00 : = ag 0.00
-0.4 -0.2 0.0 0.2 0.00 0.05 0.10 0.15 0.20 0.25
4 1/L
(c) (d)
02t ¥ V=0.01 ¥ o-10 ¥ V=0.01 +
1 v=0 L
¢ Vv=-0.01 i
U=-2 — U=-2
0.0 0.00
0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25

1/L 1/L

FIG. 11. DQMC results for U = —2. (a) The structure factors of
s-SC and CDW (after extrapolation), and PS (L = 16) are plotted
vs V. (b) shows Sps vs 1/L for V = 0.4 and 0.5. [(c),(d)] Scpw and
Ss—sc, respectively, vs 1/L for V = —0.01, 0, 0.01.
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without the sign problem. Nevertheless, we have examined
the possibility of d-SC in our simulated region. In Fig. 10(b),
we show the finite-size extrapolation of Sgq_gc versus 1/L for
several groups of (U, V') close to the MFT d-SC phase. All the
curves extrapolate to zero, indicating the absence of d-SC in
the thermodynamic limit inside our QMC accessible region.

3. Results of U = -2

In the main text, we have presented the data of negative U
with U = —4. By decreasing V, we obtain CDW, s-SC, and
PS, respectively. The first transition between CDW and s-SC
occurs at V = 0 exactly, while the second transition between
s-SC and PS occurs at about V = —0.4 with a coexistent
region. Here we present the data for U = —2 directly, which

confirm the results of U = —4 and have already been partially
displayed in the phase diagram Fig. 1.

In Fig. 11(a), we show the structure factors Ss_sc, Scpw
(after finite-size extrapolation), and Sps (at L=16) with re-
spect to V. Similar to the results of U = —4, we also find the
two transitions. The transition between PS and s-SC occurs
at V < —0.4, with a coexistent region. The finite-size depen-
dence of Sps for V.= —0.5 is quite different from V = —0.4,
as shown in Fig. 11(b), indicating the PS order is already
established at V = —0.5. For the transition between s-SC and
CDW, we present their structure factors in Fig. 11(c) and
Fig. 11(d), respectively. At V = —0.01 only Ss_sc # 0, and
at V =0.01 only Scpw # 0. They coexist only at V =0,
strongly supporting the critical line at V = 0 exactly as pre-
dicted by symmetry analysis.
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