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Doping a Mott insulator with excitons in a moiré bilayer: Fractional superfluid, neutral Fermi
surface, and Mott transition
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In this paper we explore possible phases arising from doping neutral excitons into a Mott insulator in the
context of moiré bilayers. We consider two moiré layers coupled together only through interlayer repulsion
and there is a U(2) × U(2) symmetry. The densities of the two layers can be tuned to be nt = x, nb = 1 − x
with nt + nb = 1. x = 0 limit is a layer polarized Mott insulator and small x regime can be reached by doping
interlayer excitons at density x. Charge gap can remain finite at small x, as is demonstrated experimentally in
the WSe2-hBN-WSe2/WS2 system. To capture the intertwinement of the spin and exciton degree of freedom,
we propose a four-flavor spin model. In addition to the obvious possibility of single exciton condensation phase,
we also identified more exotic physics with fractionalization: (i) We define spin gap �t , �b for the two layers
respectively. As long as the spin gap at either layer is finite, single exciton condensation is impossible and we
can only have paired exciton condensation. If both spin gaps are finite, it can be a fractional exciton superfluid
with paired exciton condensation coexisting with Z2 spin liquid. Numerical evidences for such a phase will be
provided. (ii) If the layer polarized Mott insulator at x = 0 is in a U(1) spin liquid with spinon Fermi surface, the
natural phase at x > 0 hosts neutral Fermi surface formed by fermionic excitons. There are metallic counter-flow
transport and also Friedel oscillations in layer polarization in this exotic phase. Our numerical simulation in
one dimension observes an analog of this neutral Fermi surface phase. (iii) There could be a metal-insulator
transition (MIT) by tuning x in the universality class of a bandwidth tuned MIT. We provide one theory for such
a continuous Mott transition and predicted a universal drag resistivity.
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I. INTRODUCTION

Recently the idea of moiré bilayer [1,2] was introduced by
us to simulate “spin” physics and realize quantum spin liquid
(QSL) [3–5] phases using the layer pseudospin. Similar to
the quantum Hall bilayer [6–8], we consider a bilayer system
where two layers are coupled through interlayer repulsion
without interlayer tunneling (see Fig. 1). Thus the total charge
of each layer is separately conserved. If we label the charge
of the two layers as Qt and Qb respectively, we can define two
conserved quantum numbers: Q = Qt + Qb and Pz = 1

2 (Qt −
Qb). We can view Q as the total charge, then Pz is a pseudospin
and its transport can be conveniently probed by electrically
counter-flow measurement [1]. We also need the interlayer
distance d to be much smaller than the intralayer lattice con-
stant aM so that the interlayer repulsion is comparable to the
intralayer repulsion. To achieve that, it is natural to build up
a bilayer using moire superlattices based on graphene [9–21]
or transition metal dichalcogenides (TMD) [22–28]. Here we
will focus on TMD moiré superlattice in which Mott physics
and antiferromagnetic spin coupling have been well studied
experimentally in single moiré layer [22–24,27,28]. Previous
theoretical studies have also shown that an extended spin-1/2
Hubbard model is a good description of the single moiré layer
[29–35]. Especially for TMD hetero-bilayer there is a good
SU(2) spin-rotation symmetry because valley contrasting flux
is negligible [29].

Unlike the quantum Hall bilayer, the spin within each
moiré layer is still active and we have both the layer pseu-
dospin and the real spin. In our previous paper [1,2], we
consider the ideal limit where the real spin and the layer
pseudospin together form a SU(4) spin. Although various
interesting phases including a chiral spin liquid was predicted
theoretically in the SU(4) symmetric point, we note that this
ideal limit requires the interlayer distance to be almost zero,
which is in tension with the requirement of zero interlayer
tunneling. Hence the realization of the ideal SU(4) model in
realistic systems is a challenge. Twisted AB stacked TMD
homobilayer has been experimentally realized [36], where
interlayer tunneling is suppressed by spin conservation instead
of hexagon boron nitride (hBN) barrier. However, it is not
clear now whether the interlayer tunneling in that system is
completely zero, which is required for counterflow transport.
Experimentally it is much easier to completely suppress the
interlayer tunneling by putting a thick hBN between the two
layers [25,26,37]. In Refs. [25,26], a TMD moiré layer based
on WSe2/WS2 on the bottom is separated from a moiré-less
TMD monolayer WSe2 on the top by a hBN barrier. Let us
label the density of the two layers as nt , nb per moiré unit cell.
A correlated insulator with charge gap is found for the filling
nt = x, nb = 1 − x in the range x ∈ (0, xc) with the critical
exciton density xc as large as 0.5 [26]. The SU(4) symmetry
is strongly broken in this case and we have only U(2) ×
U(2) symmetry corresponding to the separate conservation
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FIG. 1. Illustration of a moiré bilayer. Two layers are separated
by an insulating barrier and each layer has the same superlattice with
lattice constant aM .

of charge and spin in the two layers. This moiré+monolayer
setup is easier to fabricate than the moiré+moiré system,
which we previously proposed [1,2]. However, it is not clear
whether interesting spin liquid phase can still be realized in
this anisotropic case with lower symmetry. The main purpose
of this paper is to propose a theoretical framework to analyze
the spin and exciton dynamics and demonstrate the existence
of exotic phases with fractionalization even in this simpler
system.

We first want to highlight the essential difference between
the system considered here and the traditional excitonic in-
sulator [38–41]. In the conventional case, a bosonic exciton
operator is well defined on top of a band insulator. In contrast,
the vacuum of the interlayer excitons in our moiré bilayer is a
layer polarized Mott insulator at the nt = 0, nb = 1 limit. Un-
like a band insulator, the spin configuration of a Mott insulator
is not uniquely frozen and the spin remains as an active degree
of freedom at low energy. In the usual excitonic insulator, one
can make a particle-hole transformation relative to the band
insulator, so a hole operator is well defined. Under such a
particle-hole transformation, the band insulator becomes the
vacuum of the exciton. Then the active degree of freedoms
are just small densities of electron and holes on top of the
band insulator, which then form excitons. In contrast, the spin
configuration of a Mott insulator is not frozen and Mott insu-
lator cannot be viewed as a vacuum. Excitons are not the only
active degree of freedom at finite x and they need to interact
with the spin-1/2 moments. It is clear that we need a more
sophisticated model to capture the exciton-spin dynamics than
a simple boson model usually assumed for excitonic insulator.
If one applies a strong magnetic field to polarize the spin,
then the Mott insulator becomes a band insulator and we are
in the conventional excitonic insulator. In this paper we will
be mainly focused on the zero-magnetic-field case where spin
is not dead and more interesting physics than single exciton
condensation may arise.

We propose a four-flavor spin model to capture the low-
energy spin-exciton dynamics. This four-dimensional Hilbert
space can be constructed by the tensor product of two spin
1/2 corresponding to �P and �S. Here �S represents the real
spin and �P represents the layer pseudospin. Pz = 1

2 (nt − nb)
is the layer charge. The physical operators can be constructed
as PμSν with μ, ν = 0, 1, 2, 3. P0S0 is the identity operator
and there are 15 nontrivial operators representing the neu-
tral spin-exciton degree of freedom. They correspond to the
15 generators of SU(4) group. Actually at leading order the
low-energy model is just a four-flavor Heisenberg spin model
similar to the SU(4) spin model studied in Ref. [2]. Now
we need to include anisotropy terms coming from finite in-

terlayer distance d > 0 and imbalanced filling nt � nb, but
the structure of the spin model remains similar to the SU(4)
model, although the symmetry is now reduced to (SU (2)t ×
SU (2)b × U (1)l )/Z4 [42]. Here SU (2)t is generated by �St =
(Pz + 1

2 )�S, SU (2)b is generated by �Sb = ( 1
2 − Pz )�S and U (1)l

is generated by Pz. Physically �St , �Sb are the spin operators of
the two layers respectively and U (1)l corresponds to the layer
polarization or a dipole charge.

This spin model can be naturally derived from a four-flavor
Hubbard model suitable for moiré+moiré case. In the strong
interaction limit, the system is in a Mott insulator at total
filling νT = nt + nb = 1. But even for the moiré+monolayer
case, we argue that the same model works for the small x limit
because the top layer can inherit the same moiré superlattice
from the bottom layer through interlayer repulsion. Actually
at leading order, the effective exciton-spin model below the
charge gap is constrained to be in the form we propose by
the U (2) × U (2) symmetry of the system. We note a simple
Hubbard model is not sufficient [34] to capture the long range
Coulomb interaction. However, at the filling νT = 1 below
the charge gap, the effect of longer range interaction is to
renormalize the values of the parameters in our four-flavor
spin model. In this paper we will treat these couplings as
phenomenological parameters and explore the phase diagram.
Derivation of these parameters for a specific realistic mate-
rial will be left to future work. We also emphasize that our
model only works at energy scale well below the charge gap.
When the charge gap is small, additional ring exchange terms
beyond bilinear terms are needed. When the charge gap ap-
proaches zero, a bosonic model is not sufficient anymore and
one needs a fermionic model to also capture the possibility
of electron-hole gas. We also do not include disorder in our
study, which may lead to Anderson localization at small x
[43]. Future experiments are needed to address the question
whether the insulator seen in Ref. [25,26] is actually an An-
derson insulator of electrons or excitons.

We study the four-flavor spin model on triangular lat-
tice using either Schwinger boson mean field or Abrikosov
fermion mean field theory. Deep inside the Mott insulator,
Schwinger boson theory is convenient to capture the 120◦
magnetic order of �Sb in the layer polarized limit with x = 0.
If the 120◦ order at the bottom layer is strong, the physics
is reduced to a spin-1/2 boson model and we obtain either an
exciton condensation phase with �St ordered or a paired exciton
condensation phase with �St gapped. In paired exciton con-
densation phase, only a Cooper pair of excitons (bi-exciton)
is condensed and the single exciton is gapped. In a more
interesting case, we find the 120◦ order in the bottom layer
can also be depleted by reducing the density nb, after which
we get a paired exciton condensation phase coexisting with
Z2 spin liquid. We will provide numerical evidences for spin
gaps through density matrix renormalization group (DMRG)
simulation [44–46]. We actually find that there are two differ-
ent Z2 spin liquids with 0 or π flux for the Schwinger bosons.
Both 0 and π flux Z2 spin liquids have been proposed before
for a single layer spin-1/2 model on triangular lattice [47].
But they are usually unstable to Schwinger boson conden-
sation because the boson density is too large. Here, because
we can reduce the density of the boson in the bottom layer
to nb = 1 − x, it is possible to stabilize the Z2 topological
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order. The Z2 fractionalization coexists with the paired exciton
condensation, and thus the phases can be called as fractional
superfluids. The possibility of Z2 spin liquids in this system
opens the exciting future direction to search for supercon-
ductivity upon doping the bilayer Mott insulator, following
Anderson’s resonating-valence-bond (RVB) theory [48].

For the weak Mott regime, magnetic order may not exist
even in the layer polarized limit [27]. In the single moiré
layer based on MoTe2/WSe2, the weak Mott insulator was
shown to be more consistent with a U(1) spin liquid phase
with spinon Fermi surface [27] given the large spin suscepti-
bility at lowest temperature. Smoking gun evidence for such
a neutral Fermi surface has remained elusive because of the
lack of the probe of neutral excitations. We propose to add
a monolayer TMD separated from MoTe2/WSe2 by a hBN
similar to the setup of Ref. [25,26]. If the layer polarized limit
is indeed a spinon Fermi surface state, then we should use the
four-flavor Abrikosov fermion fi;aσ to attack the four-flavor
spin model. In the x = 0 limit, the band for fi;tσ is empty
while fi;bσ forms the spinon Fermi surface. Upon increas-
ing x, there is a one component to two components Lifshitz
transition and we reach a U(1) spin liquid phase where both
layers host a spinon Fermi surface. Physically ft ;σ can be
interpreted as a fermionic exciton formed by binding elec-
tron c†

i;tσ with a holon in the bottom layer. This phase will
support metallic counter-flow transport ρcounterflow(T ) ∼ T α

with some non-Fermi-liquid (NFL) exponent α due to gauge
fluctuation. The exact value of α is still not well established
theoretically [49–53] and we hope the future experiment in
moiré bilayer could provide experimental constraint on the
theory of spinon Fermi surface phase in 2+1d. The neutral
Fermi surface could also be revealed by Friedel oscillation
in terms of the layer polarization, which may be measured
electrically.

In the experiments of Ref. [25,26], the charge gap closes
beyond a critical doping xc for the exciton density [see
Fig. 1(b)]. It is thus interesting to study the metal-insulator
transition (MIT) tuned by x. We will argue that such a tran-
sition is in the class of bandwidth tuned MIT. The easiest
way to understand the transition is from tuning the interlayer
distance d . When d is large, the two layers decouple and must
be in metallic phases with Fermi surfaces. At fixed x, when
we decrease d to be smaller than a critical distance dc, the
system becomes insulating because of the interlayer repulsion
U ′nt nb, which is analogous to the Hubbard U term. Therefore
the distance tuned MIT is similar to the MIT tuned by U/t in
the simple spinful Hubbard model. It is easy to imagine that
dc decreases with x and then one can drives the same MIT by
tuning x at fixed d . We also provide a theory of this MIT by
generalizing the theory of Ref. [54]. We assume the Mott insu-
lator side hosts spinon Fermi surfaces and the MIT is driven by
the condensation of the slave boson. The theory is essentially
the same as in the single layer case, but in the moiré bilayer
case one can drive currents in the two layers separately. Hence
we can get a 2 × 2 tensor for the resistivity ρxx. In the slave
boson theory of MIT, there is a universal drag resistivity ρxx;12

at order h/e2, which may be easier to measure than the jump of
the residual resistivity proposed in the single layer case [54].
Drag resistivity essentially measures the pseudospin-charge
separation and thus may also be very useful to characterize

the metallic state upon doping the bilayer Mott insulator by
tuning nt + nb away from 1.

The rest of the paper is structured in the following way.
In Sec. II we introduce the four-flavor spin model and its
derivation. We clarify the relationship between exciton and
layer pseudospin language in Sec. III. In Sec. IV we introduce
the framework to deal with the model using either Schwinger
boson or Abrikosov fermion parton construction. In Sec. V we
discuss various possible exciton superfluid phases coexisting
with magnetic order or Z2 spin liquids. This includes a spin
polarized BEC of excitons, a paired superfluid of excitons
with a spin gap in one of the two layers. Most interestingly
we show that it is possible to deplete the magnetic order of
the Mott insulator by doping excitons, leading to a Z2 spin
liquid coexisting with exciton superfluid. A phase diagram
in x − J ′

b space will be provided, with x as the exciton den-
sity and J ′

b as the next-nearest-neighbor coupling in the Mott
layer. The phase diagram hosts two different Z2 spin liquids
corresponding to zero and π flux ansatz of Schwinger boson,
which connect to the 120◦ ordered phase and stripe ordered
antiferromagnetic phase respectively. In Sec.VI we discuss
the possibility of fermionic exciton and neutral Fermi surface
and in Sec. VII we show a critical theory of continuous Mott
insulator transition tuned by the exciton density x.

II. ANISOTROPIC SU(4) SPIN MODEL

We consider a moiré bilayer with two moiré superlattice
layers separated by an insulating barrier, as shown in Fig. 1.
The two moiré superlattices are assumed to be aligned with
each other and share the same triangular lattice. The interlayer
tunneling is forbidden by insulating barrier. In the following
we are going to derive a four-flavor exciton-spin model for
filling νT = 1 at the energy scale well below the charge gap.
We will justify this model using a simple four-flavor Hubbard
model. But we note at leading order the form of this four-
flavor spin model is constrained by the U(2) × U(2) symmetry
of the system and we expect the same model even for more
complicated models, for example, with longer range Coulomb
interaction.

We consider the following four-flavor Hubbard model [2]

H = −
∑
a=t,b

ta
∑

i j

∑
σ=↑,↓

c†
i;aσ c j;aσ − D

2

∑
i

(ni;t − ni;b)

+ 1

2

∑
i

∑
a

Uani;a(ni;a − 1) + U ′ ∑
i

ni;t ni;b

+
∑

a

Va

∑
〈i j〉

ni;an j;a + V ′ ∑
〈i j〉

(ni;t n j;b + ni;bn j;t ) (1)

where a = t, b labels the layer index and σ =↑,↓ labels the
spin. In TMD, spin is locked to valley due to a strong Ising
spin-orbit coupling. Here we focus on two narrow moiré bands
from the two valleys on top of the original valence band.
Within this two flavor space, there is a good SU(2) spin-
rotation symmetry [29]. ni;a = ∑

σ c†
i;aσ ci;aσ is the density at

layer a on site i. Ua and U ′ are intralayer and interlayer on-site
Hubbard repulsion. Va and V ′ are intralayer and interlayer
nearest-neighbor repulsion. D is a displacement field. Note
here we assume that the two layers can have different hopping
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FIG. 2. Illustration of the bilayer Mott insulator at total filling
nt + nb = 1. The red color labels the region with a Mott charge
gap. The blue color labels the region without charge gap. (a) If
Ut ,Ub,U ′ � tt , tb, the whole line of nt + nb = 1 is in a Mott insu-
lator. This applies to moiré bilayer formed in WSe2-WS2-WSe2 or
twisted AB stacked WSe2 bilayer where each layer feels a strong
moiré superlattice potential. (b) If the top layer is less correlated
with a large tt , then the charge gap is finite only in the region with
nt smaller than a critical value xc. This is true in moiré+monolayer
setup such as in the WSe2-hBN-WSe2/WS2 system [25,26].

and interaction, so one layer can be made less correlated, for
example, with Ub � Ut . The model has exact U(4) symmetry
if tt = tb, Ut = Ub = U ′, Vt = Vb = V ′, and D = 0. We will
work in the case with significant anisotropic terms break-
ing the U(4) symmetry. Even in the anisotropic case, we
still have a large symmetry U (2) × U (2), where each U(2)
corresponds to the charge and spin conservation at one of
the two layers. Note the spin �Si;a = 1

2 c†
i;aσ �σσσ ′ci;aσ ′ at each

layer a = t, b is separately conserved, the same as the charge
ni;a = ∑

σ c†
i;aσ ci;aσ . In the above we only included on-site and

nearest-neighbor repulsion. For filling νT = 1, long ranger
Coulomb interaction should only renormalizes the values of
the parameters in the low-energy spin model we are going to
study.

If we assume Ut ,Ub,U ′ are all much larger than the
hopping tt , tb, we can have a Mott insulator at total fill-
ing nt + nb = 1, as illustrated in Fig. 2(a). This is true in
WSe2-WS2-WSe2 system or twisted AB stacked WSe2 bi-
layer [2]. However, we will also consider the case that the top
layer is less correlated and has a larger tt . This is true in the
moiré+monolayer system such as in the recent experiments
[25,26]. In this case we expect that the Mott gap survives only
when the density of the top layer is smaller than a critical
value, as illustrated in Fig. 2. In this paper we mainly focus
on the case with nt = x, nb = 1 − x with small x, so there is a
charge gap and the difference between the moiré+moiré and
moiré+monolayer system does not matter too much.

Within the region with a finite charge gap, the low-energy
physics is governed by an anisotropic SU(4) model obtained
from the standard t/U expansion,

HS = Jt

∑
〈i j〉

�St (i) · �St ( j) + Jb

∑
〈i j〉

�Sb(i) · �Sb( j)

+ J ′
b

∑
〈〈i j〉〉

�Sb(i) · �Sb( j) + 1

2
Jpz

∑
〈i j〉

Pz(i)Pz( j)

+ 1

2
Jp

∑
〈i j〉

(Px(i)Px( j) + Py(i)Py( j))

× (4�S(i) · �S( j) + S0(i)S0( j)) (2)

where Jt = 4t2
t

Ut
, Jb = 4t2

b
Ub

, Jp = 4tt tb
U ′ , and Jpz = 2δV − 1

2 (Jt +
Jb) + ( 4t2

t
U ′ + 4t2

b
U ′ ), where δV = Vt + Vb − 2V ′. In the above we

ignored the constant term and the term linear to Pz(i), which
is just a chemical potential. We also include a term J ′

b coming
from the next-nearest-neighbor hopping in the bottom layer.
Such a term will be included in the discussion of Sec. V C,
but can be ignored for now.

In the SU (4) symmetric limit with Jt = Jb = Jp = Jpz = J ,
we recover the SU(4) spin model

HS = J

8
(4 �P(i) · �P( j) + P0(i)P0( j))(4�S(i) · �S( j)+S0(i)S0( j)).

(3)

In the above we keep up to the order of t2/U , but higher-
order terms can be generated in the standard way. In the case
where the top layer is not correlated, we have large value of tt

Ut

and tt
U ′ , so Jt can be significantly larger than Jb and Jp. We may

also worry that the t/U expansion fails because tt
Ut

or tt
U ′ are

too large. However, the term t2
t

Ut
exists only when there are two

nearby particles in the top layer and is associated with a factor

nt (i)nt ( j) ∼ x2. Similarly the terms tt tb
U ′ and t2

t
U ′ are associated

with a factor nt (i)nb( j) ∼ x in the x � 1 limit. Therefore the
terms including tt are suppressed at the dilute exciton limit
and the t/U expansion is valid in the x � 1 limit. When we
increase the exciton density, the expansion will fail eventually,
which indicates a Mott transition with the charge gap closes.
This Mott transition will be discussed in Sec. VII.

A. Moiré+monolayer case

In the x � 1 limit, we can have a Mott insulator even if
the top layer is not strongly correlated. Actually the top layer
even does not need to have a moiré superlattice. The point
is that the doped electrons in the top layer inherit the moiré
potential of the bottom layer and are trapped in the triangular
moiré superlattice sites due to the attraction from the hole
in the bottom layer. The only assumption we need to make
is that the exciton is tightly bound with the 2D position of
the electron-hole pair vertically aligned. At low energy the
electron in the top layer cannot hop away from the hole in the
bottom layer, which will break the exciton and costs energy.
With this assumption, we only need to keep bosonic degree of
freedom in the low energy. As we will argue below, the low-
energy physics is captured by a similar spin-layer four-flavor
model as in Eq. (2).

When the top layer is moiré-less, in principle we need
to keep O(( aM

a )2) states for the top layer within each moiré
unit cell of the bottom layer. But because of the interlayer
Coulomb interaction, it is reasonable to imagine that there are
only finite number of states needed to be kept. For example, if
there is a hole at the moiré site i in the bottom layer, then the
relevant state for the top layer is state c†

i;tσ |0〉 = ∫
d2x	(x −

Ri) f †
σ (x) |0〉. Here f †

σ (x) is the microscopic electron creation
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FIG. 3. Illustration of a toy model for the moiré-monolayer case.
The bottom layer has a moiré superlattice labeled by the solid line.
The top layer is just a monolayer TMD without moiré superlattice.
However, it feels interaction from the bottom moiré superlattice. We
assume that only three orbitals in the top layer need to be kept
per moiré unit cell. They live on the A, B, C sublattice, which
together form a triangular lattice with lattice constant aM√

3
denoted

by the dashed line. Only the A sublattice is on top of the moiré
site in the bottom layer. If we fix nb = 1 and increase nt , the doped
electron in the top layer will be repelled to B, C sublattice and
form a honeycomb lattice. However, if we increase nt while keeping
nb + nt = 1, the doped electron in the top layer will be bound to the
hole in the bottom layer at the moiré site A. In this case, states at
B and C sublattice are penalized, but they can assist super-exchange
through virtual hopping.

operator on the top layer, which lives in the original lattice
with small lattice constant a. Note we still have two flavors
σ =↑,↓ coming from the spin-valley locking. 	(x − Ri) is
the wavefunction for the lowest exciton state when the hole
is localized at moiré site i. c†

i;tσ can be viewed as a coarse
graining operator for the top layer living on the moiré site i.
At low energy, it is reasonable to assume that we only need
to keep the exciton created by c†

i;tσ ci;bσ ′ . Note here ci;bσ ′ is
the annihilation operator of electron at the moiré site i of
the bottom layer. In low energy we can safely ignored other
states in the top layer and keep only four states at each site:
|1〉i = c†

i;t↑ |0〉, |2〉 = c†
i;t↓ |0〉, |3〉i = c†

i;b↑ |0〉, |4〉 = c†
i;b↓ |0〉.

This is exactly the same Hilbert space defined in Eq. (2). The
symmetry of this system is still the same as the moiré bilayer
case, with spin of the two layers separately conserved. The
pseudospin Pz is still conserved. Within this restricted Hilbert
space, the low-energy effective Hamiltonian is constrained by
symmetry to be in the same form as in Eq. (2). Thus we
conclude that Eq. (2) is also the correct effective model for
the moiré+monolayer case.

The parameters can of course be different from the case
with both layers to be moiré layers. We will treat the couplings
Jt , Jb, Jp, Jpz as phenomenological parameters. Jb is the spin-
spin coupling of the bottom layer and is fixed by the physics
of the moiré layer itself and we know Jb > 0. Jt is the spin-
spin coupling of the to layer. Jp is basically the hopping of
the exciton. Jpz is the nearest-neighbor repulsion between two
excitons.

Next we offer a simple toy model to show that we still
expect Jt > 0 and Jp > 0. As argued before, we only need
to keep one coarse graining orbital on top of the moiré site
for the top layer. This is the A sublattice in Fig. 3. But there

are some other orbitals, which may be important in the virtual
process to generate the Jp and Jt terms. For example, it is also
important to keep the B, C sublattice in Fig. 3. With these
three orbitals, we can write down an effective model for the
moiré-monolayer system,

H = −tb
∑

i j

c†
i;bσ c j;bσ + Ub

2

∑
i

n2
i;b

− tt
∑

ĩ j̃

c†
ĩ;tσ

c j̃;tσ + Ut

2

∑
ĩ

n2
ĩ;t + Vt

∑
〈ĩ j̃〉

nĩ;t n j̃;t

+ U ′ ∑
i∈A

ni;t ni;b + V ′ ∑
〈i j̃〉

ni;bn j̃;t (4)

where i, j ∈ A live on the bottom layer in the big lattice
formed by A sites. ĩ, j̃ live on the small lattice formed by
A, B, C sites together for the top layer. Note Vt is between
the nearest neighbor of the smaller triangular lattice denoted
by the dashed line. V ′ is the interlayer repulsion between the
moiré site i in the bottom layer with the nearest neighbor B or
C site in the top layer. U ′ is the on-site interlayer repulsion.
Generically we expect U ′ > V ′, Vt > V ′. In the above we
ignored the intralayer and interlayer interaction between A
sites.

Let us fix our density to be nt = x, nb = 1 − x. In the low
energy, we only need to keep the states with one electron in
either layer at site A. We cannot occupy both layers of the
same A site, which is forbidden by U ′. The state at B and C
is also penalized. For example, if we move one electron in
the top layer from site A to site B, there will be energy cost
of 2V ′, assuming nearest neighbor A sites of B are occupied
in the bottom layer (otherwise the energy cost is 2Vt or Vt +
V ′, which is even larger). With this constraint, the low-energy
model must be a spin-layer four-flavor model only on A site.

Next we try to derive the parameters in Eq. (2). First,

the Jb term is not changed and should still be Jb = 4t2
b

Ub
. For

Jt , we now need to consider a four-step process through the

intermediate B or C sites. This gives a term 4t4
t

Ut (Vt +V ′ )2 (4�St (i) ·
�St ( j) − nt (i)nt ( j)) + 2t4

t
V ′(Vt +V ′ )2 (4�St (i) · �St ( j) + nt (i)nt ( j)). In

total we get Jt = 4t4
t

Ut (Vt +V ′ )2 + 2t4
t

V ′(Vt +V ′ )2 . The nt (i)nt ( j) term
will modify the Jpz term. The most important term is the
hopping term Jp. This is generated by a three-step process:
electron in the top layer hops from site i to site j through
an intermediate B or C site; the electron in the bottom layer

hops from site j to site i. We find that Jp = 4t2
t tb

U ′V ′ + t2
t tb
V ′2 . As

for the repulsion term Jpz, there will be contributions from
the super-exchange. But the dominant term is still from the
anisotropy part of the nearest-neighbor repulsion δV , which
is ignored in Eq. (4). Thus we can just use Jpz = 2δV . For
the moiré-monolayer system, the asymmetry of the two layers
are larger. Hence we expect a larger Jpz term compared to the
moiré bilayer case. However, when the exciton density is low,
the repulsion term should not be too important.

Based on the toy model, we can show that the low-energy
Hamiltonian is still in the form of Eq. (2) with Jp > 0, Jt >

0, Jpz > 0. In this simple model we only keep three states for
the top layer. Strictly speaking, there are O(( aM

a )2) ∼ O(1000)
orbitals within each moiré unit cell. Therefore we should keep
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more orbitals at the sublattice A, B, C, but they will have
higher on-site energy � compared to those we are keeping
now. We can also get super-exchange coupling by hopping to
these high-energy orbitals in the virtual process, but this does
not change the physics qualitatively.

One additional implication of the toy model in Eq. (4) is
the following: if we fix nb = 1 at each site and only dope
the top layer, then the electron in the top layer will hop in
the honeycomb lattice formed by B and C sublattice, while the
state at site A is pushed to higher energy by the U ′ term. This
may be one interesting way to realize a honeycomb lattice
Hubbard model, which we leave to future analysis.

III. DICTIONARY BETWEEN EXCITON AND
LAYER-PSEUDOSPIN LANGUAGE

Conventionally the physics in coulomb coupled double
layer is thought to be associated with the interlayer excitons.
One may wonder why we use the notation “layer pseudospin”
instead of exciton in this paper. In this section we want to show
that the layer pseudo-spin is mathematically equivalent to
interlayer exciton in the spinless case and is more convenient
in the spinful case.

A. Spinless case

We consider the simple case with spinless electron first.
With a strong Zeeman field, the lattice Hubbard model in
Eq. (1) reduces to

H = −
∑
a=t,b

ta
∑

i j

c†
i;ac j;a − D

∑
i

Pz(i) + U ′ ∑
i

ni;t ni;b

+ V
∑
〈i j〉

nin j + δV
∑
〈i j〉

Pz(i)Pz( j) + Vt − Vb

2

∑
i j

niPz( j)

(5)

where V = Vt +Vb
2 + V ′ and δV = Vt + Vb − 2V ′. Pz(i) =

1
2 (nt (i) − nb(i)). In the above we absorbed term linear to Pz

into the D term.
If we set ta = tb = t , Vt = Vb = V ′, we can see that the

above model just reduces to the standard spin-1/2 Hubbard
model if we interpret a = t, b as the spin index. The D term
is basically a Zeeman field in spin language. If we fix our
density to be nt = x, nb = 1 − x, then the system is in an
insulating state when U ′/t � 1. The insulator can be called
interlayer excitonic insulator because electron and hole in the
two layers are bound. Alternatively in the Hubbard model
language the insulator is clearly a Mott insulator, with a possi-
ble partial spin polarization Px = x − 1

2 . If we decrease U ′/t ,
there can be a metal-insulator transition. In exciton language,
the metal side can be viewed as an electron-hole liquid and
the Mott transition is associated with the exciton dissociation.
The situation is a little different if tt > tb. In this case the
Mott transition may happen if increasing x. Nevertheless, the
insulating side is still captured by a spin-1/2 model, though
with anisotropy term breaking the SU(2) spin rotation down
to U (1).

TABLE I. A dictionary between the layer pseudospin language
and the exciton language in the spinless case. b† creates exciton
starting from the bottom layer polarized limit. XY FM denotes the
XY ferromagnetism with 〈Sx〉 �= 0. FQHE denotes fractional quan-
tum Hall state. The 120◦ order (supersolid phase) is known to be
the ground state of Eq. (6) [Eq. (7)]. But we also list some other
phases, which may be stabilized by additional ring exchange terms.
Counter flow measures the pseudospin transport or equivalently
the exciton transport, which can distinguish these different phases
unambiguously.

Pseudospin language Exciton language

c†
t |0〉 |Pz = 1

2 〉 b† |0〉
c†

b |0〉 |Pz = − 1
2 〉 |0〉

1
2 (nt − nb) Pz nb − 1

2
c†

bct P− b
c†

t cb P† b†

Phase I XY FM exciton condensation
Phase II 120◦ Neel order exciton supersolid
Phase III valence bond solid crystallized insulator
Phase IV chiral spin liquid exciton FQHE
Phase V spinon Fermi surface exciton metal
Phase VI Fermi liquid electron hole liquid
Counter flow spin conductivity exciton conductivity

Deep inside the insulating phase, the spin model Eq. (2)
reduces to

HS = Jp

∑
〈i j〉

(Px(i)Px( j) + Py(i)Py( j)) + Jz

∑
〈i j〉

Pz(i)Pz( j)

(6)
where Jz = 1

2 Jpz + 1
4 (Jt + Jb). Note in the above we rewrite

every operator in the form PμSν and then replace Sz = 1
2 , S0 =

1, Sx,y = 0. We have also ignored the constant term and the
term linear to Pz.

Equation (6) is just a spin-1/2 model with only XY sym-
metry if we view �P as a spin-1/2 degree of freedom. It is
well known that such a model can be mapped to a hard-core
bosonic model,

Hb = tb
∑
〈i j〉

(b†
i b j + H.c.) + V

∑
〈i j〉

nb
i nb

j (7)

where tb = 1
2 Jp and V = Jz. Again we ignored the constant

term and the term linear to n = Pz + 1
2 . We have used the

mapping P†
i → b†

i , P−
i → bi,

1
2 + Pz → nb

i . In the hard-core
boson language, we label |Pz = − 1

2 〉 as |0〉 with nb = 0. We
label |Pz = 1

2 〉 as |1〉 with nb = 1. We list a dictionary between
the layer pseudospin and the exciton language in Table I.
We also list several possible spin phases as examples. In the
spinless case one can use the exciton language and write
down the low-energy Hamiltonian as a boson model, which
is mathematically equivalent to certain spin-1/2 model. On
triangular lattice, the ground state is known to be in a 120◦
order, or an exciton supersolid in the exciton language.

B. Spinful case

Next we discuss the case without any magnetic field and
the real spin �S must be included in the low-energy dynamics.
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In this case, one cannot capture the full dynamics with a
simple boson Hubbard model. We are forced to keep the spin
operator �S in the Hamiltonian. We can still use the mapping
P† → b† to write Eq. (2) as a boson-spin model,

HS = Jt

∑
〈i j〉

�St (i) · �St ( j) + Jb

∑
〈i j〉

�Sb(i) · �Sb( j)

+ 1

2
Jpz

∑
〈i j〉

nb
i nb

j + 1

4
Jp

∑
〈i j〉

(b†
i b j + b†

jbi )

× (4�S(i) · �S( j) + S0(i)S0( j)) (8)

The above Hamiltonian is equivalent to Eq. (2). However,
the connection to the SU(4) symmetric limit is not explicit.
Also the model looks complicated and is not a simple boson
Hubbard model anymore. Besides, now the interlayer exciton
creation operator c†

bσ ctσ ′ must carry spin index σ, σ ′ =↑,↓.
One can see that there are several different flavors of exci-
ton. Both b† and b† �S are physical exciton creation operators.
Therefore, exciton is not a very convenient representation in
the spinful case. In the following we will use the �P instead
and take the anisotropic SU(4) model in Eq. (2). The “exciton-
spin” physics is fully captured in this model.

IV. EXCITON FRACTIONALIZATION: BOSONIC AND
FERMIONIC PARTON THEORY

Usually we think the interlayer exciton is bosonic because
it is formed by electron hole pair. In our case, the exciton
creation operator 	

†
σσ ′ = c†

tσ cbσ ′ carries two spin indexes and
there are four of them forming a vector representation of
SO(4) ∼= (SU (2) × SU (2))/Z2. They can be identified as the
P† and P† �S operators in Eq. (2). A phase with single exciton
condensation corresponds to 〈	†

σσ ′ 〉 �= 0, which needs to also
break the spin-rotation symmetry of both layers. This means
that single exciton condensation needs to be accompanied
by magnetic orders in both layers. Description of the var-
ious phases directly using these exciton operators 	

†
σσ ′ is

too complicated. It is more convenient to use fractionalized
operators, which correspond to one half of the conventional
exciton operator and carry a spin-1/2 in one of the two layers.

The fractionalization of the exciton can be understood in
the following way. When we dope holes into the Mott insu-
lator of the bottom layer, it is known that a useful picture
is through spin-charge separation [55]: holon carries charge
and neutral spinon carries a spin-1/2. Then we can imagine
an “exciton” formed by the electron in the top layer with the
holon in the bottom layer. This is the object inside the pink
square in Fig. 4(b). The holon is a fractionalized degree of
freedom, and its statistics can be either bosonic or fermionic
depending on the exact spin state of the Mott insulator. As
a result, this “exciton” formed by electron-holon pair can be
either bosonic or fermionic. As shown in Fig. 4(b), we can
think that the conventional exciton in Fig. 4(a) is divided into
two parts: The pink square represents the exciton-holon pair
and the blue square represents the spinon in the bottom layer.
There are two possibilities: (i) If the spinon in the bottom
layer is fermionic and labeled as fi;bσ , then the hole operator is
ci;bσ = ϕi fi;bσ with ϕi as a bosonic holon. In this case, the pink
square is labeled as f †

i;tσ = c†
i;tσ ϕi. The conventional exciton

operator can be written as 	
†
i;σσ ′ = f †

i;tσ fi;bσ ′ . f †
i;σ = c†

i;tσ ϕi

FIG. 4. (a) A conventional exciton formed by a St = 1
2 electron

in the top layer and a Sb = 1
2 hole in the bottom layer. The exciton

carries the dipole charge Pz = 1 and St = Sb = 1
2 . It carries two spin

indexes, 	†
σσ ′ = c†

tσ cbσ ′ . In the model of Eq. (2), the exciton creation
operator 	†

σσ ′ can be identified as P† and P† �S. (b) Fractionalization
of exciton. The hole operator in the bottom layer is divided into a
holon and a spinon, which interact with each other through a gauge
field (blue wavy line). Then an electron in the top layer and a holon
bind into a fractionalized exciton (surrounded by the pink-dashed
square), which carries Pz = 1

2 , St = 1
2 and Sb = 0. Meanwhile the

spinon (surrounded by the dashed-blue square) carries Pz = − 1
2 ,

St = 0 and Sb = 1
2 . The dashed-pink square ( f †

tσ or b†
tσ ) and the

dashed-blue square ( fbσ or bbσ ) can be viewed as one half of the
conventional exciton and they can be either fermionic or bosonic.
Both the conventional exciton condensation phase and more exotic
phase with neutral Fermi surface can be conveniently described with
these fractionalized degree of freedom.

and fi;bσ ′ correspond to the pink and blue square in Fig. 4(b).
(ii) The bottom layer hole operator is written as ci;bσ = hibi;σ .
hi is a fermionic holon and bi;σ is a bosonic spinon. In this
case we have 	

†
i;σσ ′ = b†

i;tσ bi;bσ ′ . b†
i;σ = c†

i;tσ hi and bi;bσ ′ cor-
respond to the pink and blue square in Fig. 4(b).

The parton operators fi;aσ are just a four-flavor generaliza-
tion of the familiar Abrikosov fermion [56] parton theory of
spin-1/2 system. Similarly bi;aσ is the Schwinger boson par-
ton [57,58]. We can just view the system in a Mott insulator of
a four-flavor Hubbard model ad defined in Eq. (1). Inside the
Mott insulator, we can just restrict ourselves to the four-flavor
spin model defined in Eq. (2). We can then simply use either a
four-flavor Schwinger boson or four-flavor Abrikosov fermion
to represent the anisotropic SU(4) spin.

In the Schwinger boson theory, the neutral particle-hole
operators are represented as

�Si;a = 1

2

∑
σ,σ ′

b†
i;aσ �σσσ ′bi;aσ ′ ,

P†
i =

∑
σ

b†
i;tσ bi;bσ ,

P−
i =

∑
σ

b†
i;bσ bi;tσ ,

Pi;z = 1

2

∑
σ

(b†
i;tσ bi;tσ − b†

i;bσ bi;bσ ),

P†
i
�Si = 1

2

∑
σσ ′

b†
i;tσ �σσσ ′bi;bσ ′ ,

P−
i

�Si = 1

2

∑
σσ ′

b†
i;bσ �σσσ ′bi;tσ ′ , (9)
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TABLE II. Quantum numbers of various operators. c†
aσ is elec-

tron operator. There are two different parton constructions: (i) ci;aσ =
ϕi fi;aσ ; (ii) ci;aσ = hibi;aσ . In both parton constructions, there is an
emergent U(1) gauge field. Q is the physical charge. Pz is the z
component of the layer pseudospin. �St and �Sb are spin of the top
and bottom layers separately. Qg is the gauge charge. Qg = 0 is the
condition for gauge invariant operators. We note that the spinon b†

tσ

or f †
tσ can be identified as electron-holon pair c†

tσ h or c†
tσ ϕ. We note

that the assignment of the dipole charge Pz can be adjusted, as long
as the total Pz quantum number for f †

t ;σ and fb;σ is 1. Here we choose
an assignment of 1/2+1/2, but one can also use 1+0, which simply
corresponds to a redefinition of the internal gauge field aμ.

Operator Statistics Q Pz �St �Sb Qg

c†
tσ fermion 1 1

2
1
2 0 0

c†
bσ fermion 1 − 1

2 0 1
2 0

h fermion −1 0 0 0 1
b†

bσ boson 0 − 1
2 0 1

2 1
b†

tσ boson 0 1
2

1
2 0 1

c†
tσ h boson 0 1

2
1
2 0 1

ϕ boson −1 0 0 0 1
f †
bσ fermion 0 − 1

2 0 1
2 1

f †
tσ fermion 0 1

2
1
2 0 1

c†
tσ ϕ fermion 0 1

2
1
2 0 1

with the constraint
∑

a=t,b

∑
σ=↑,↓ b†

i;aσ bi;aσ = 1. bi;aσ is a
four-flavor boson labeled by layer index a = t, b and spin
index σ =↑,↓.

In the Abrikosov fermion theory, the particle-hole opera-
tors are written as

�Si;a = 1

2

∑
σ,σ ′

f †
i;aσ �σσσ ′ fi;aσ ′ ,

P†
i =

∑
σ

f †
i;tσ fi;bσ ,

P−
i =

∑
σ

f †
i;bσ fi;tσ ,

Pi;z = 1

2

∑
σ

( f †
i;tσ fi;tσ − f †

i;bσ fi;bσ ),

P†
i
�Si = 1

2

∑
σσ ′

f †
i;tσ �σσσ ′ fi;bσ ′ ,

P−
i

�Si = 1

2

∑
σσ ′

f †
i;bσ �σσσ ′ fi;tσ ′ , (10)

with the constraint
∑

a=t,b

∑
σ=↑,↓ f †

i;aσ fi;aσ = 1. fi;aσ is a
four-flavor boson labeled by layer index a = t, b and spin
index σ =↑,↓.

In the above we only focus on the neutral spin and layer
pseudospin sector. If we are also interested in the dynamics of
the charge, we can simply extend the construction to a parton
construction of the four-flavor electron: (i) ci;aσ = hibi;aσ or
(ii) ci;aσ = ϕi fi;aσ . The statistics and physical quantum num-
bers of the parton operators are listed in Table II. In either
construction, there is an emergent U (1) gauge field a cor-

responding to gauge transformation: (I)hi → hie−iαi , bi;aσ →
bi;aσ eiαI or (II)ϕi → ϕie−iαi , fi;aσ → fi;aσ eiαI .

Ioffe-Larkin rule for the counterflow resistivity. Before a
detailed application of either bosonic or fermionic parton the-
ory, we first provide a formula to calculate the counterflow
resistivity. Because the two layers have separate conserved
charges, there are two U(1) probing gauge fields At

μ and Ab
μ,

which couple to the currents Jt
μ and Jb

μ in the two layers
separately in the form −Ja

μAa
μ with a = t, b. We can do a linear

combination Ac
μ = 1

2 (At
μ + Ab

μ) and As
μ = At

μ − Ab
μ. Corre-

spondingly we can define the charge current Jc
μ = Jt

μ + Jb
μ and

Js
μ = 1

2 (Jt
μ − Jb

μ) so that the minimal coupling is in the form
−Jc

μAc
μ − Js

μAs
μ. Physically it is easier to see that the current

Jc
μ is the current associated with the total charge Q = nt + nb,

while Js
μ is the current associated with the layer polarization

Pz = 1
2 (nt − nb). In our model, we assume that there is a

charge gap. Hence we always have �Jc = 0. The only possible
nonzero current below the Mott gap is �Js, which corresponds
to the configuration �Jt = − �Jb. Because the currents in the two
layers are opposite, this current is called counter-flow current
[8].

Let us use the fermionic parton as an example and derive
a Ioffe-Larkin rule for the counterflow resistivity defined as
ρs;xx = σ−1

s;xx, with σs;xx = Js
x

Es
x
. �Es = −�∂As

0 + ∂ �As

∂t is the coun-

terflow electric field. Physically �Es = �Et − �Eb, where �Ea is
the electric field in the layer a. Suppose that we have fermionic
partons ft ;σ and fb;σ in both layers. There is a U(1) gauge field
�a. From Table II we know f †

t ;σ couples to aμ + 1
2 As

μ, while f †
b;σ

couples to aμ − 1
2 As

μ. Then it is easy to write down a linear
response formula for each layer,

Jt
x = σt ;xx

(
1
2 Es

x + ex
)
,

Jb
x = σb;xx

( − 1
2 Es

x + ex
)
, (11)

where �e is the electric field associated with the internal gauge
field aμ. σa;xx is the conductivity of the fermion fa in each
layer separately.

Because the charge current �Jc = �Jt + �Jb = 0 below the
charge gap, we have Jt

x = Js
x and Jb

x = −Js
x . Then we get

Js
x = σt ;xx

(
1
2 Es

x + ex
)
,

−Js
x = σb;xx

( − 1
2 Es

x + ex
)
. (12)

From the above two equations, it is easy to obtain the Ioffe-
Larkin rule

ρs;xx = ρt ;xx + ρb;xx (13)

where ρa;xx = σ−1
a;xx is the resistivity of the parton at the layer

a. The above formula basically tells us that in a counterflow
transport, the partons from the two layers form a series circuit.

The above formula applies to both fermionic and bosonic
partons. One immediate consequence of the formula is that
the counterflow transport is insulating as long as parton in one
of the layers is insulating. In the x = 0 limit, we have ρt = ∞
because nt = 0. In this limit there cannot be any counterflow
current. Once x > 0, both layers may have finite or even zero
ρa, then the counterflow resistivity can be finite or zero.

195120-8



DOPING A MOTT INSULATOR WITH EXCITONS … PHYSICAL REVIEW B 106, 195120 (2022)

Counterflow transport measures the response to �As. A sim-
ilar formula also exists for the compressibility κs = Js

0
As

0
, which

is essentially the interlayer polarizability ∂Pz

∂D . Following the
same argument as above, the formula for κs is

κ−1
s = κ−1

t + κ−1
b (14)

where κa is the compressibility of the parton at layer a. To
have a finite κs, the partons in both layers must be in a com-
pressible phase.

In the following we will apply the Schwinger boson theory
or the Abrikosov fermion theory to analyze the case where
the layer polarized Mott insulator is magnetically ordered or
in a spin liquid phase with spinon Fermi surface respectively.
We need to emphasize that the usage of these fractionalized
parton operators does not necessarily leads to an exotic phase.
Actually even for a conventional symmetry breaking phase
with magnetic order and simple exciton condensation, it is
convenient to start from the Schwinger boson parton theory,
as will be demonstrated in Sec. V.

V. INTERLAYER SUPERFLUIDS WITH BOSONIC
EXCITONS

Deep inside the Mott insulator with a large charge gap,
we can restrict ourselves to the spin-exciton model in Eq. (2)
without ring-exchange terms. We can also add next-nearest-
neighbor spin-spin coupling J ′

b to tune the spin phase in the
layer polarized limit. In the limit J ′

b/Jb � 1, we know the
spin phase of the bottom layer is in the 120◦ ordered phase
in the x = 0 limit. We will see that doping excitons can lead
to various different interlayer superfluid phases with either
magnetic order or spin gap.

To capture the magnetic order, it is convenient to use the
four-flavor Schwinger boson representation in Eq. (9). The
spin model [Eq. (2)] can be rewritten as

H = 1

4
Jt

∑
〈i j〉

(
b†

i;tσ1
�σσ1σ

′
1
bi;tσ ′

1

) · (
b†

j;tσ2
�σσ2σ

′
2
b j;tσ ′

2

)

+ 1

4
Jb

∑
〈i j〉

(
b†

i;bσ1
�σσ1σ

′
1
bi;bσ ′

1

) · (
b†

j;bσ2
�σσ2σ

′
2
b j;bσ ′

2

)

+ 1

2
Jp

∑
〈i j〉

(b†
i;tσ bi;bσ ′b†

j;bσ ′b j;tσ + b†
i;bσ bi;tσ ′b†

j;tσ ′b j;bσ )

− 1

4
Jpz

∑
〈i j〉

(ni;t n j;b + ni;bn j;t )

− D
∑

i

(ni;t − ni;b) (15)

where in the last term we added a constant term
− 1

8 Jpz
∑

〈i j〉(ni;t + ni;b)(n j;t + n j;b) by using the constraint
ni;t + ni;b = 1. The D term is added if we use grand canonical
ensemble. Alternatively we can also fix the density to be
nt = x, nb = 1 − x and then the D term is not needed.

A. Classification of possible superfluid phases

We will show that the model in Eq. (15) hosts a rich
phase diagram depending on the parameters. Before going

FIG. 5. Four possible exciton superfluid phases described by the
Schwinger boson mean field theories. Here the vertical-red-dashed
square surrounds an exciton. The horizontal-blue-solid square de-
notes a spin-singlet pairing term within one layer, which causes a
finite spin gap �a in this layer and also a gap for single exciton.
(a) Single exciton condensation phase coexisting with magnetic or-
ders in both layers. (b) There is magnetic order in the bottom layer,
but the spin in the top layer is gapped. Only a pair of exciton
condenses. (c) Magnetic order in the top layer and spin gap in the
bottom layer. Only a pair of exciton condenses. (d) Both layers have
a spin gap. Paired exciton condensation coexists with Z2 spin liquid.
These four phases in (a)–(d) correspond to phases I–IV in Table III
respectively.

into details, we first list possible phases and their physical
properties. We have three quantum numbers: Pz, St , Sb. From
Eq. (15), we can obtain a mean field Hamiltonian in the form
HM = Ht + Hb, where Ht , Hb are quadratic Hamiltonians for
bt ;σ and bb;σ separately. Because of the conservation of Pz,
�St , and �Sb, terms like b†

t ;σ bb;σ and bt ;σ bb;σ ′ are forbidden.
Therefore bt ;σ and bb;σ remain decoupled in the mean field
level.

The bosons at the two layers have densities nt = x and
nb = 1 − x. With finite density, the bosons are known to form
a condensation phase. But for each layer a, there are two
different possibilities: (1) Single boson ba;σ is condensed,
leading to magnetic ordering of the spin �Sa. (2) Only a pair of
boson is condensed, 〈εσσ ′bi;aσ b j;aσ ′ 〉 �= 0. In this case, the spin
�Sa is gapped due to nearest-neighbor pairing of the spinons.
Combining the two layers, we have four types of superfluid
phases as listed in Table III and illustrated in Fig. 5. Note
that each type may contain subcategories specified by detailed
symmetry realization such as the momentum associated with
the magnetic ordering. As long as spin in one of the layer
is gapped, the superfluid has a condensation of charge 2e
under Pz, which supports paired exciton condensation with
〈P†P†〉 �= 0 order instead of the simple exciton condensation
with 〈P†〉 �= 0.

One particular case is the phase IV with both �t > 0
and �b > 0. In the Schwinger boson theory, the spin gap is
caused by the paired condensation of the Schwinger boson.
In this class, the emergent U(1) gauge field is only higgsed
down to Z2. This means that there is still a deconfined Z2

gauge field coexisting with the interlayer superfluid order. The
paired condensation of the Schwinger boson is the standard
description of the Z2 spin liquid in the single layer model.
Our bilayer model provides an interesting realization of it. In
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TABLE III. Four different types of phases described by the Schwinger boson mean field theories. The Schwinger boson at each layer can
be either single condensed or pair condensed. If it is pair condensed, then there is a spin gap �a for the corresponding layer a = t, b. As long
as one of �t , �b is finite, the exciton condensation carries charge 2 under Pz with only 〈P†P†〉 �= 0. In this case the condensed object is formed
by two electrons and two holes. When both �t > 0 and �b > 0, the paired exciton condensation coexists with a Z2 topological order.

〈bb;σ 〉 �= 0 〈bb;σ 〉 = 0, 〈εσσ ′ bb;σ bb;σ ′ 〉 �= 0

〈bt ;σ 〉 �= 0 I: 〈P†〉 �= 0, �t = 0, �b = 0 III: 〈P†〉 = 0, 〈P†P†〉 �= 0, �t = 0, �b > 0
〈bt ;σ 〉 = 0, 〈εσσ ′ bt ;σ bt ;σ ′ 〉 �= 0 II: 〈P†〉 = 0, 〈P†P†〉 �= 0, �t > 0, �b = 0 IV: 〈P†〉 = 0, 〈P†P†〉 �= 0, �t > 0, �b > 0

contrast, if bi;t or bi;b is condensed, the Z2 gauge field would be
completely higgsed and we are left only with a conventional
symmetry breaking order without fractionalization.

In our case because nb = 1 − x is large, it is easy to have a
magnetic order (〈bb;σ 〉 �= 0) in the bottom layer. Then we can
have either the phase I or the phase II, which will be discussed
in Sec. V B. We will find that the phase I is favored if Jt

Jp
is

small, with the spin in the top layer in a ferromagnetic phase
due to kinetic energy. But with a reasonably large value of Jt

Jb
,

the spin gap in the top layer is finite and we get the phase
II. In Sec. V C we will show that increasing x or adding a
J ′

b term can further destroy the magnetic order in the bottom
layer and favors the phase IV, which is a fractional superfluid
with deconfined Z2 topological order.

B. With magnetic order in the bottom layer: Exciton
condensation and paired exciton condensation

We deal with the case with a robust 120◦ order in the
bottom layer first. The magnetic order can be suppressed by
J ′

b/Jb, which will be discussed in the next subsection.
We can simplify our analysis by condensing the boson bb

at momentum Q = K, K ′ to form the 120◦ order. We represent
the Schwinger boson at the bottom layer as χi = (bi;b↑

bi;b↓). After
the condensation of χi at momentum Q = K, K′, we get a
three-sublattice magnetic order. We can always rotate the spin
on B and C sublattice so that the ordered moment at each site
is pointing along the z direction. More specifically, we can
write the Schwinger boson as

χA;i = χ̃i,

χB;i = e−i 2π
3 σy χ̃i, (16)

χC;i = ei 2π
3 σy χ̃i,

with

χ̃i =
(√

nb − a†
i ai

ai

)
(17)

where ai is the Holstein-Primakoff boson representing the
spin wave on top of the magnetic order. nb is the density of
Schwinger boson at the bottom layer.

We can do a large nb expansion to capture the dynamics of
the goldstone mode ai. Substituting Eq. (17) into Eq. (15), we
get

HM = Hb + Ht + Hint (18)

with

Ht = −1

4
JpM

∑
i j

b†
i;tσ b j;tσ + Jt

∑
〈i j〉

�Si;t · �S j;t

+ 1

2
Jpz

∑
〈i j〉

ni;t n j;t , (19)

Hb = +1

8
JbM

∑
〈i j〉

(aia j + a†
i a†

j ) − 3

8
JbM

∑
〈i j〉

(a†
i a j + a†

j ai )

+ 3

2
JbM

∑
i

a†
i ai + · · · , (20)

and

Hint = −1

4
Jp

∑
i j

a†
j aib

†
i;tσ b j;tσ

+
√

3

4
Jp

√
M

∑
〈i j〉

((ai − a†
j )b

†
i;tσ b j;tσ + H.c.), (21)

where the summation of 〈i j〉 is on (i, j) =
(A, B), (B,C), (C, A). Note the order of i, j matters for
the second term of Hint. In Ht we have rewritten the Jpz term
using the identity ni;b = 1 − ni;t and ignore the constant term
and terms linear to ni;t , which can be absorbed into chemical
potential. We have defined M = nb − 〈a†

i ai〉, which is the
magnetization of the magnetic order in the bottom layer. For
Hb we have ignored higher order terms such as aia

†
j a j .

In the following we will ignore the dynamics of the spin
wave ai to simplify our analysis, which represents the gapless
spin waves on top of the 120◦ order in the bottom layer. The
the main dynamical degree of freedom is btσ . Because of the
condensation of bi;bσ ′ , now bi;tσ is a physical operator. Phys-
ically b†

i;tσ ∼ b†
i;tσ 〈bi;bσ ′ 〉 ∼ c†

i;tσ ci;bσ ′ now creates an exciton
with St = 1

2 and Pz = 1. Note that the exciton carries spin 1/2
under the SU(2) spin rotation in the top layer. The SU(2) spin
rotation in the bottom layer is already broken and Sb is no
longer well defined.

We can then just relabel bi;σ = bi;tσ , ni = ni;t , and �Si;t = �Si.
Then we basically have a gas of spin-1/2 bosons at density
n = x, described by the Hamiltonian

Hexciton = −t
∑

i j

Pb†
i;σ b j;σ P − μ

∑
i

b†
i;σ bi;σ

+ J
∑
〈i j〉

�Si · �S j + V
∑
〈i j〉

nin j (22)

where t = 1
4 (M0 − x)Jp, V = 1

2 Jpz, and J = Jt . The boson is
at density x per site. We have �Si = 1

2

∑
σσ ′ b†

i;σ �σσσ ′bi;σ ′ and
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ni = ∑
σ b†

i;σ bi;σ . M0 is the magnetization of the 120◦ order
at the layer polarized limit with x = 0. With a finite x, the
magnetization is further depleted and we have M = M0 − x.
For the model with J ′

b = 0, we know M0 ≈ 1/2. We also intro-
duce the projection operator P to implement the constraint that
ni = 0, 1, inherited from the Schwinger boson formulation.

The above effective Hamiltonian works at the small x
regime. We can see that the dynamics of doped excitons on
the background of 120◦ magnetic order is basically captured
by a spin-1/2 hard core boson gas problem, an observation
already made in our previous paper [2]. Note that Eq. (22)
can be viewed as a bosonic t-J model. Next we analyze this
effective model. We will find a spin polarized BEC at small
J/t and a spin gapped paired superfluid at large J/t . In the
intermediate regime there is a spiral phase where the boson b
condenses at nonzero momentum.

1. Spin polarized BEC at small J/t

If we set J = 0, then it is natural to expect that the ground
state of this model is a spin polarized BEC, similar to what
is usually found for BEC with integer spin [59]. For the
spin polarized BEC, we take an ansatz with 〈bi;↑〉 = √

n0

and 〈bi;↓〉 = 0. Next we analyze the goldstone modes above
this condensation using the Bogoliubov mean field theory and
show that it is unstable if J

t is large enough.
In momentum space we assume b↑(k = 0) = √

Ns
√

n0,
where Ns is the number of sites. At mean field level we have
energy

EM = −(6t + μ)n0Ns + 3
(
V + 1

4 J
)
n2

0Ns. (23)

Variation with respects to n0 leads to

μ = 6
(
V + 1

4 J
)
n0 − 6t . (24)

Next we consider excitations by also including bσ (q �= 0).
The mean field Hamiltonian is

HM = −t
∑

i j

b†
i;σ b j;σ − μ

∑
i

b†
i;σ bi;σ − (6t + μ)n0N

+ 3

(
V + 1

4
J

)
n2

0N + 6

(
V + 1

4
J

)
n0

∑
q �=0

b†
↑(q)b↑(q)

+
∑
q �=0

(
6V − 3

2
J + J

2
F (q)

)
n0b†

↓(q)b↓(q)

+
(

V + 1

4
J

)
n0

∑
q �=0

b†
↑(q)b↑(q)F (q) + V n0 + 1

4 Jn0

2

×
∑
q �=0

(F (q)b↑(q)b↑(−q) + F (q)b†
↑(q)b†

↑(−q)) (25)

where F (q) = ∑
j cos(q · rj) and j = 1, 2, ..., 6 lists the six

nearest neighbors of site i = (0, 0).
It is easy to see that the b↑ and b↓ part decouple. We

can diagonalize the Hamiltonian using the Bogoliubov trans-
formation and express the Hamiltonian with new bosonic
operator γ (q).

In the end we get

HM = E0 +
∑

q

ω↑(q)γ †(q)γ (q) +
∑

q

ω↓(q)b†
↓(q)b↓(q)

(26)
where

ω↑(q) =
√(

t (6 − F (q)) + (
V + 1

4 J
)
n0F (q)

)2 − ((
V + 1

4 J
)
n0F (q)

)2
(27)

and

ω↓(q) =
(

t − J

2
n0

)
(6 − F (q)). (28)

Using F (q) = ∑
j cos(q · rj) ≈ 6 − 3

2 q2 at small |q|,
we find ω↑(q) ≈ 3

√
2t (V + 1

4 J )|q| and ω↓(q) = 3
2 (t −

1
2 Jn0)|q|2 at small |q|. Physically the linear mode from b↑
corresponds to the Goldstone mode breaking the U(1) sym-
metry generated by Pz. The quadratic model from b↓ is the
spin wave from breaking the SU (2) spin-rotation symmetry
of the top layer.

The stabilization of this spin polarized BEC requires that
t − 1

2 Jn0 > 0. We expect the condensation n0 ≈ x, and we
have t = 1

4 (M0 − x)Jp with M0 ≈ 1
2 and J = Jt . Then the

stabilization condition becomes

Jt

Jp
<

M0

2x
− 1. (29)

When Jt
Jp

> M0
2x − 1, the spin polarized BEC is unstable

because of the antiferromagnetic spin-spin coupling. We will
discuss the possibility in the remaining of this section.

2. Paired superfluid at large J/t

When J � t , we believe the ground state of Eq. (22) is a
spin polarized BEC. But when J/t is large, it is obvious that
the spin polarization is disfavored. In this regime, a promis-
ing candidate of Eq. (22) is a paired superfluid phase with
〈εσσ ′bi;σ b j;σ ′ 〉 �= 0, but 〈bi;σ 〉 = 0. In the following we will
describe this paired condensation phase of the excitons and
discuss its instability when decreasing J/t .

We define operators T̂i j = ∑
σ b†

i;σ b j;σ and �̂i j =∑
σσ ′ εσσ ′bi;σ b j;σ ′ . A general symmetric mean field ansatz for

the exciton from decoupling Eq. (22) is in the form

HM =
∑

i j

Ti j T̂i j −
∑
〈i j〉

(�i j�̂i j + H.c.) − μ
∑

i

ni (30)

where Ti j = T ∗
ji and �i j = −� ji.

We have self-consistent equations

Ti j = 3
8 J〈T̂ji;a〉 − t,

�i j = 3
8 J〈�̂†

i j〉, (31)

〈ni〉 = x,
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where J = Jt and t = 1
4 Jp(M0 − x). M0 is the magnetization

of the 120◦ order in the bottom layer. x is the density of the
excitons.

We will only consider uniform ansatz with Ti j = T . The
pairing term needs to be in the odd angular momentum chan-
nel. We consider ansatz with �i,i±x̂ = ±�, while the other
bonds can be generated by C3 rotation. This ansatz is in
the f wave channel and it still preserves the time reversal
symmetry. It is symmetric under C6 rotation if we apply a
gauge transformation afterwards. The symmetry property of
the ansatz is the same as the zero-flux ansatz in the projection
symmetry group (PSG) of Z2 spin liquids on triangular lattice
[47]. This is expected as the Schwinger boson bi = bi;t shares
the same PSG property as the Schwinger boson bi;b in the
bottom layer, which is in the 120◦ ordered phase and is known
to be proximate to the zero-flux ansatz [47]. The mean field
Hamiltonian can be rewritten in momentum space as

HM =
∑

k

(ξ (k) − μ)b†
σ (k)bσ (k)

+ �(k)(b↑(k)b↓(−k) − b↓(k)b↑(−k) + H.c.) (32)

with

ξ (k) = 2T

(
cos kx + 2 cos

1

2
kx cos

√
3

2
ky

)
,

�(k) = 2i�

(
sin kx − 2 sin

1

2
kx cos

√
3

2
ky

)
. (33)

Using ψa(k) = (
b↑(k)

b†
↓(−k)), the Hamiltonian can be rewritten

as

Ha =
∑

k

ψ†
a (k)

(
ξa(k) − μa �∗(k)

�(k) ξa(−k) − μa

)
ψa(k)

+
∑

k

μ. (34)

Using the Bogoliubov transformation, we can get

Ha =
∑

k

ωa(k)
∑

σ

γ †
σ (k)γσ (k) +

∑
k

(ωa(k) + μ) (35)

where γσ (k) is bosonic operator, which diagonalizes the
Hamiltonian.

We have

ω(k) =
√

(TAa(k) − μ)2 − �2B(k)2 (36)

where A(k) = 2(cos kx + 2 cos 1
2 kx cos

√
3

2 ky) and B(k) =
2(sin kx − 2 sin 1

2 kx cos
√

3
2 ky).

〈T̂i j〉 can be calculated as
∑

i j〈T̂i j〉 = ∂〈HM 〉
∂T . Similarly∑

〈i j〉〈�̂i j + �̂
†
i j〉 = − ∂〈HM 〉

∂�
and

∑
i ni = − ∂〈HM 〉

∂μ
. Eventually

we get

〈T̂i j〉 = 1

6Ns

∑
k

A(k)(TA(k) − μ)

ω(k)
,

〈�̂i,i+x̂〉 = 1

6Ns

∑
k

�B(k)2

ω(k)
, (37)

〈n〉 = 1

Ns

∑
k

TA(k) − μ

ω(k)
− 1,

FIG. 6. The spin gap �t for the paired superfluid phase from
mean field calculation using Eqs. (37) and (31).

where Ns is the number of sites in the mesh grid of the
momentum space.

Combination of Eqs. (37) and (31) gives a set of self con-
sistent equations to obtain the mean field parameters T,�,μ

for given values of t, J, x in the Hamiltonian in Eq. (22). We
show the obtained spin gap �t in Fig. 6. For each x, we find
the spin gap closes when Jt

Jp
<

Jt ;c

Jp
, indicating the instability of

the paired superfluid phase for smaller value of Jt . Intuitively
the single exciton condensation without spin gap is favored
when Jt

Jp
is small because the kinetic energy dominates.

3. Intermediate spiral phase

In the previous two parts, we show that the exciton is
in a spin polarized BEC phase when Jt

Jp
< M0

2x − 1 and a

paired superfluid phase when Jt
Jp

>
Jt ;c

Jp
. Generically, we expect

M0
2x − 1 <

Jt ;c

Jp
. For example, when x = 0.1, the spin polarized

BEC is in the regime Jt
Jp

< 1.5 and the paired superfluid

phase is in the regime Jt
Jp

> 2. In this case, we are left with
an intermediate regime. Note that the spin gap �t must be
zero when Jt

Jp
<

Jt ;c

Jp
. So the single exciton must be condensed

with 〈bi;tσ 〉 �= 0. But it cannot be a uniform spin polarized
BEC because the full spin polarization is unstable due to the
analysis in Sec. V B 1. A natural possibility is then a BEC
phase at a nonzero momentum Q, so the spin correlation
has antiferromagnetic component. The momentum Q may be
generically incommensurate and we can dub this phase as a
spiral BEC phase. Note that both the spin polarized BEC and
the spiral BEC are labeled as phase I in Table III, as we do not
distinguish the momentum of the exciton condensation and
magnetic order there. We will show numerical evidence for
such spiral phase in the next subsection.

4. Numerical results

From the theoretical analysis, we know that the ground
state goes through spin polarized exciton condensation, spiral
exciton condensation, and paired exciton condensation when
we increasing Jt

Jp
while assuming the bottom layer is in the

120◦ ordered phase. Here we offer numerical evidences for
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FIG. 7. Correlation length from infinite DMRG. We fix Jb = Jp = Jpz = 1. We use system size Ly = 6 and a unit-cell size Lx = 6. The
exciton density is fixed at x = 1

18 . (a) Inverse correlation lengths with Jt using bond dimension m = 2000; (b) Results at Jt = 1. We used bond
dimension m = 2000, 3000, 4000. (c) Results at Jt = 4. We used bond dimension m = 2000, 3000, 4000.

this picture based on infinite density matrix renormalization
group (DMRG) simulation [44–46]. The infinite DMRG is
performed using the TeNPy Library (version 0.4.0) [60]. We
define the triangular lattice unit vectors as a1 = (1, 0) and
a2 = (− 1

2 ,
√

3
2 ). We will use a system with periodic boundary

along a2 direction: O(r + Lya2) = O(r), where O is an arbi-
trary operator and Ly is the system size along the a2 direction.
We will use Ly = 6. Along a1 the system size is infinite.
However we need to choose a unit cell with size Lx × Ly.
We will use Lx = 6 so that we can fix exciton density x to
be a small value such as 1

18 . We use bond dimension up to
m = 4000. Typical truncation error is at order 10−4.

We fix Jb = Jp = Jpz = 1 and then vary Jt in our DMRG
simulation of Eq. (2). The details of the implementation
are shown in the Appendix B. We label the four states as
|1〉 = |t ↑〉 , |2〉 = |t ↓〉 , |3〉 = |b ↑〉 , |4〉 = |b ↓〉. The oper-
ators can be labeled as Sab = |a〉 〈b| with a, b = 1, 2, 3, 4.
We used three U(1) quantum numbers Q1 = S22 − S11, Q2 =
S33 − S11, Q3 = S44 − S11. We can extract correlation lengths
within a sector fixed by quantum number using the trans-
fer matrix technique. We label ξSt for the largest correlation
length in the sector (Q1, Q2, Q3) = (2, 1, 1), where the typical
operator is S−

t . Similarly we label ξSb for the correlation length
in the sector (Q1, Q2, Q3) = (0,−1, 1), where the typical op-
erator is S−

b . We label ξP for the largest correlation length in
the sector (Q1, Q2, Q3) = (1, 2, 1), where the typical opera-
tor is S31 = P−(I + Sz ), which carries charge −1 under Pz.
We label ξPP for the largest correlation length in the sector

(Q1, Q2, Q3) = (0, 2, 2), where the typical operator is S31S42,
which carries charge −2 under Pz.

We plot the inverse of these various correlation lengths
in Fig. 7 with exciton density x = 1

18 for a Ly = 6 cylinder.
ξ−1 is never zero at a finite bond dimension m even if it
is zero when m = ∞. The extrapolation is hard given that
we only have results for m � 4000 due to computation cost.
Therefore it is tricky to determine whether there is a spin
gap �t , �b for the spin in the two layers. However, it is
useful to compare ξ−1

P and ξ−1
PP . If the phase is in an exciton

condensation phase, single exciton is more elementary and we
expect ξ−1

PP = 2ξ−1
P because ξ−1

PP is roughly the gap of a pair
of exciton when the effective system size is finite (controlled
by the bond dimension m). This is exactly what we found
for Jt = 1 as shown in Fig. 7(b). Thus we believe that the
phase is in the single exciton condensation phase for Jt = 1.
This would imply that �t = �b = 0 because single exciton
c†

t ;σ cb;σ ′ carries spin indexes of both layers and its conden-
sation must lead to gapless spin waves for both layers. In
contrast, when Jt = 4, we can clearly see that ξ−1

PP < ξ−1
P and

ξ−1
PP decreases significantly faster than ξ−1

P when we increase
the bond dimension m. This strongly suggests that the phase
is in a paired exciton condensation phase with a gap for single
exciton. This would imply that at lease one of �t ,�b is finite.
We note that ξ−1

Sb
� ξ−1

St
for the entire range of Jt , so we

conclude that �t > 0, while �b may still be zero, although it
really needs data at m → ∞ to prove ξ−1

Sb
= 0. A finite �t is

further supported by the fact that ξ−1
St

grows almost linearly
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FIG. 8. Spin-spin structure factors in the two layers. We fix Jb = Jp = Jpz = 1. We use system size Ly = 6 and a unit-cell size Lx = 6.
Bond dimension m = 4000 is used. The exciton density is fixed at x = 1

18 . [(a),(b)] 〈 �Sb(q) · �Sb(−q)〉 in the bottom layer for Jt = 1, 4. [(c),(d)]
〈 �St (q) · �St (−q)〉 in the top layer for Jt = 1, 4.

with Jt after Jt � 2.2 [see Fig. 7(a)], which resembles the
behavior of �t from mean field calculation shown in Fig. 6.
Thus we conclude that the ground state is in the phase II
(see Table III) when Jt � 2.2 with �t > 0. In the Schwinger
boson theory, this corresponds to the phase with 〈bb;σ 〉 �= 0
and 〈bt ;σ 〉 = 0.

To further support this picture, we show the spin-spin
structure factors �Sa(q) · �Sa(−q) for the two layers a = t, b
in Fig. 8. In the bottom layer, there are peaks at momentum
K, K ′ for both Jt = 1, 4, consistent with the 120◦ order. In
the top layer, the spin structure factor has a peak at q = 0 for
Jt = 1, consistent with the spin polarized state discussed in
Sec. V B 1. When Jt = 4, there is no peak in the spin structure
factor in the top layer, consistent with a spin gap �t > 0.
This agrees with the paired superfluid phase discussed in
Sec. V B 2.

We also show the single exciton correlation and paired
exciton correlation in the momentum space in Fig. 9.
〈P†(q)P−(−q)〉 is the structure factor for single exciton op-
erator P† ⊗ I , where I is the identity in the spin sector.
〈PP†(q)PP−(−q)〉 is the structure for the paired exciton op-
erator PP†

i = (εσσ ′c†
i;tσ c†

i+x̂;tσ ′ )(εαβci;bαci+x̂;bβ )(see Sec. IV).
For Jt = 1, we can see that 〈P†(q)P−(−q)〉 has a peak at
q = K, K ′. Because P† ∼ b†

t ;σ bb;σ ′ and we have bt condenses
at momentum q = 0 and bb condenses at momentum K, K ′ to
get the 120◦ order, P† needs to carry a momentum K, K ′. On
the other hand, 〈PP†(q)PP−(−q) is featureless. In contrast,
for Jt = 4, we find that 〈P†(q)P−(−q)〉 only has broad peaks
at momentum close to K, K ′ and 〈PP†(q)PP−(−q)〉 has a
peak at momentum q = 0. Combined with the correlation

length ξ−1
P , ξ−1

PP in Fig. 7, we conclude that the phase is in
the paired exciton condensation phase at momentum q = 0,
while the single exciton is gapped.

When Jt is in the intermediate regime (Jt = 1.2), we notice
that the spin structure factor in the top layer has peaks at
momentum away from q = 0 as shown in Fig. 10(a), con-
sistent with the spiral phase discussed in Sec. V B 3 with
bt condensed at a nonzero momentum. Because P† ∼ b†

t bb,
〈P†(q)P−(−q)〉 will also have peaks at momentum away from
K, K ′. But this spiral phase seems to be gone already when
Jt = 1.5 [see Fig. 10(b)] and then it is replaced by the paired
exciton condensation phase.

In the above we have assumed that the spin �Sb in the bottom
layer is always in the 120◦ ordered phase. This assumption
should be valid in the x → 0 limit if there is a 120◦ order with
ordering moment M0 at x = 0. However, a finite x will deplete
the ordering moment M ∼ M0 − x to be zero when x is large
enough. We will discuss this interesting case in the following
part of this section.

C. Paired superfluid coexisting with Z2 spin liquid

Previously we discussed the case with a magnetic order in
the bottom layer. In this limit the Schwinger boson bbσ in the
bottom layer is condensed at momentum K, K ′ with a conden-
sation density M, then the low-energy dynamics is captured by
a spin-1/2 boson gas represented by the Schwinger boson bt

in the top layer. We can get phase I and phase II in Table III
depending on the competition between the Jt and the Jp term.
Especially we find that there is a finite spin gap at the top
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FIG. 9. Exciton and paired exciton structure factors in the two layers. We fix Jb = Jp = Jpz = 1. We use system size Ly = 6 and a unit-cell
size Lx = 6. Bond dimension m = 4000 is used. The exciton density is fixed at x = 1

18 . [(a),(b)] 〈P†(q)P−(−q)〉 in the bottom layer for
Jt = 1, 4. [(c),(d)] 〈PP†(q) · PP−(−q)〉 in the top layer for Jt = 1, 4.

layer when Jt is large enough. The next natural question is
whether we can also get rid of the single Schwinger boson
condensation in the bottom layer and get a spin gap also for
�Sb.

We expect the condensation density for the Schwinger
boson bbσ at the bottom layer is M = M0 − x, where M0 is
the ordering moment at x = 0. Then we can imagine that M is

going to vanish when increasing x to be larger than a critical
value xc = M0, especially in the case when M0 is small already
in the layer polarized limit. This leads to the possibility of
the phase IV, which has spin gap for both layers and a Z2

topological order.
We can obtain a mean field ansatz for such a phase in

the Schwinger boson mean field theory. We define operators

FIG. 10. Spin-spin structure factors in the top layers. We fix Jb = Jp = Jpz = 1. We use system size Ly = 6 and a unit-cell size Lx = 6.
(a) Jt = 1.2 with bond dimension m = 2000. One can see peaks at momentum away from q = 0, consistent with the spiral phase discussed in
Sec. V B 3 for intermediate value of Jt

Jp
. (b) Jt = 1.5 with bond dimension m = 4000. No clear peak is seen, suggesting that the spin in the top

layer may already be gapped at Jt
Jp

= 1.5. Then it enters the paired exciton condensation phase.
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T̂i j;a = ∑
σ b†

i;aσ b j;aσ and �̂i j;a = ∑
σσ ′ εσσ ′bi;aσ b j;aσ ′ . A gen-

eral spin-rotation symmetric mean field ansatz is in the form

HM =
∑
a=t,b

∑
i j

Ti j;aT̂i j;a −
∑
〈i j〉

(�i j;a�̂i j;a + H.c.)

− (μ + D)
∑

i

ni;t − (μ − D)
∑

i

ni;b (38)

where Ti j = T ∗
ji and �i j = −� ji. D is the displacement field

between the two layers. μ ± D basically gives the chemical
potential for the two layers separately. There is no hybridiza-
tion between the two layers such as the term b†

aσ bbσ ′ or
bt ;σ bb;σ ′ , which are forbidden by the SU (2) × SU (2) spin-
rotation symmetry.

We have self-consistent equations

Ti j;a = 3
8 Ja〈T̂ji;a〉 + 1

2 Jp〈T̂ji;ā〉,
�i j;a = 3

8 Ja〈�̂†
i j;a〉,

〈ni;t 〉 = x,

〈ni;b〉 = (1 − x), (39)

where σ̄ labels the opposite spin of σ . ā is the opposite layer
index of a. The last equations are used to solve the chemical
potential μ and the displacement field D at fixed exciton
density x.

It is known that there are two different possible symmetric
ansatz for the Schwinger boson in the spin-1/2 model: the
zero flux ansatz and the π flux ansatz [47]. They are dis-
tinguished by the projective symmetry group (PSG). In our
case the Schwinger bosons in the two layers share the same
gauge transformation and it is easy to show that the PSG
classification is the same as the spin-1/2 case and we still
only have two possible ansatz. The zero-flux ansatz is just a
uniform ansatz for baσ . The π flux ansatz has a 2 × 1 unit cell
and a projective translation symmetry TxTy = −TyTx. If the
density of the Schwinger boson na is too large, it is known that
the ansatz is unstable to single boson condensation 〈baσ 〉 �= 0,
resulting magnetic order in the layer a. Because nt = x � 1,
we do not need to worry about the top layer, which should be
in a paired condensation phase provided Jt/Jp is reasonably
large according to the discussion in the previous subsection.
Then the main question is whether bbσ condenses or not.

In the x = 0 limit, it is known that the single Schwinger
boson condensation leads to the 120◦ ordered phase with Q =
K and the stripe ordered phase with Q = M respectively from
the zero flux and the π flux ansatz [47]. The zero flux ansatz
and the π flux ansatz are separated by a first-order transition
by tuning the next-nearest-neighbor coupling J ′

b
Jb

in the Jb − J ′
b

model [47]. Indeed previous numerical studies find the 120◦
and the stripe ordered phases in the small and large J ′

b regimes.
Our goal is to deplete the Schwinger boson condensation 〈bbσ 〉
from M0 to M = M0 − x by reducing the density nb from nb =
1 to nb = 1 − x. When x > xc with xc = M0, we believe the
symmetric ansatz such as in Eq. (38) is stable. In principle
we can get xc by solving self-consistent equations in Eq. (39).
However, the Schwinger boson self consistent equations do
not give quantitatively precise results due to the lack of the
quantum fluctuations. Therefore we mainly use the Schwinger

FIG. 11. Illustrated phase diagram with next-nearest-neighbor
coupling J ′

b and the exciton density x. We assume Jb = 1. In the
x = 0 line, AF I and AF II stand for the 120◦ ordered phase and
the stripe phase respectively [61,62]. SL stands for the spin liquid
in the spin-1/2 model studied previously [61–64]. We assume that
Jt is large enough so that there is always a spin gap in the top
layer and we can only obtain a paired superfluid (PSF) when doping
excitons. After the ordering moment in the bottom layer is depleted,
we naturally obtain two different Z2 spin liquid phases coexisting
with paired exciton superfluid (PSF). Z2 SL I and Z2 SL II are
described by the zero flux and π flux ansatz of Schwinger bosons
respectively and the condensation of bbσ leads to the AF I and AF II
phases nearby. The dashed line is a first-order transition separating
the two different Z2 spin liquids+PSF phases.

boson mean field ansatz as a guidance and relies on DMRG
simulation to decide the phase diagram.

We assume that there is also a next-nearest-neighbor
hopping t ′ in the bottom layer, which results in a next-nearest-
neighbor spin-spin coupling J ′

b entering as J ′
b

∑
〈〈i j〉〉 �Si;b · �S j;b

as included in Eq. (2). In the x = 0 limit, we can focus just
on the Jb − J ′

b model for the spin-1/2 moment in the bottom
layer. Such a model has been studied before [61–70]. It was
found that the ground state is in the 120◦ order (Q = K)
in J ′

b/Jb ∈ [0, 0.07], a stripy ordered phase with momentum
Q = M in J ′

b/Jb ∈ [0.15,∞) and in a spin liquid phase when
J ′

b/Jb ∈ [0.07, 0.15]. When approaching the intermediate spin
liquid phase from either magnetic ordered phase, we expect
that the ordered moment M0 decreases and vanishes. Then
around the intermediate J ′

b/Jb, the ordered moment M0 can be
easily depleted by a finite xc = M0, as illustrated in Fig. 11.
The two magnetic ordered phases are proximate to two differ-
ent Z2 spin liquids corresponding to zero and π flux phase
of the Schwinger boson bb respectively at x = 0 [47]. We
expect 〈bbσ 〉 = M0 − x and 〈btσ 〉 = 0. When x > xc = M0,
we should have a phase in the class IV of Table III. Given
that both 〈εσσ ′btσ btσ ′ 〉 �= 0 and 〈εσσ ′bbσ bbσ ′ 〉 �= 0, we have the
paired exciton condensation 〈PP†〉 �= 0, which coexists with
the Z2 spin liquids. There are two such Z2 spin liquids in
the small J ′

b and large J ′
b, which are connected by first-order

transition. With the above argument, we plot an illustrated
phase diagram in Fig. 11.

195120-16



DOPING A MOTT INSULATOR WITH EXCITONS … PHYSICAL REVIEW B 106, 195120 (2022)

FIG. 12. Energy E vs J ′
b at fixed Jt . We use Jb = Jp = Jpz = 1 and x = 1

18 . The results are from infinite DMRG with bond dimension
m = 2000 for system size Ly = 6. (a) Jt = 1. The dashed line is at J ′

b = 0.18. (b) Jt = 4. The dashed line is at J ′
b = 0.12.

To support the phase diagram, we show DMRG results
along the line of changing J ′

b at fixed x = 1
18 . First, in Fig. 12

we find that the energy E vs J ′
b has a kink consistent with first-

order transition for both Jt = 1 and Jt = 4. The difference
between the two sides across this first-order transition line
is most easily manifested in the spin structure factor of the
bottom layer as shown in Fig. 13. At Jt = 4, when changing J ′

b
from 0.1 to 0.12, momentum of the peak of the structure factor
〈�Sb(q) · �Sb(−q)〉 suddenly changes from Q = K to Q = M.
The same change also happens for Jt = 1 shown in Fig. 14.

Therefore it is quite obvious that there are two different phases
separated by a first-order transition. These two phases origin
from the 120◦ order and the stripe order phase at x = 0, which
are proximate to the zero flux and the π flux ansatz of the
Schwinger boson [47]. The main question now is whether the
single boson baσ is condensed or not, or equivalently whether
the spin gap �a is finite for both layers.

We show the inverse of the correlation lengths from differ-
ent operators in Fig. 15, using Jb = Jp = Jpz = 1 and Jt = 4.
In DMRG the correlation length ξ is always finite for a finite

FIG. 13. Spin structure factor at the bottom layer 〈�Sb(q) · �Sb(−q)〉 at different values of J ′
b at fixed Jt = 4. We use Jp = Jpz = 1 and x = 1

18 .
The results are from infinite DMRG with bond dimension m = 2000. Around J ′

b = 0.12, there is a clear change of the momentum of the peak
from Q = K to Q = M, consistent with a first-order phase transition indicated by energy in Fig. 12(b).
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FIG. 14. Spin structure factor at the bottom layer 〈�Sb(q) · �Sb(−q)〉 at different values of J ′
b at fixed Jt = 1. We use Jp = Jpz = 1 and x = 1

18 .
The results are from infinite DMRG with bond dimension m = 2000. Around J ′

b = 0.18, there is a clear change of the momentum of the peak
from Q = K to Q = M, consistent with a first-order phase transition indicated by energy in Fig. 12(a).

bond dimension m, but the scaling of the inverse of the corre-
lation length with 1

m can provide the information on whether 1
ξ

is finite for a given sector specified by the quantum numbers.
We find that the correlation lengths for both �St and the single
exciton P† are quite small with 1

ξ
> 1 as shown in Figs. 15(a)

and 15(b). Meanwhile, in Fig. 15(c) we show that 1
ξ

for the
paired exciton decreases rapidly with increasing the bond
dimension m and the extrapolated value 1

ξ
at m = ∞ is smaller

than 0.2 (almost 0 at some value of J ′
b). We believe the finite

value of 1
ξPP

is a numerical artifact and 1
ξPP

= 0 in the whole
range if we really take the bond dimension to infinite. This
means that the phase has a paired exciton condensation order,
consistent with the expectation of the paired superfluid (PSF)
order in Fig. 11. The only remaining problem is whether it is
in the AF+PSF phase or in the Z2 SL+PSF phase illustrated
in Fig. 11.

In Fig. 15(d) we show the inverse of the correlation length
of the spin in the bottom layer. We find that 1

ξSb
increases

with J ′
b and is maximized at the first-order critical point at

J ′
b ≈ 0.12. 1

ξSt
extrapolated to m = ∞ at J ′

b = 0.10 and J ′
b =

0.12 are as large as 0.6 and 0.9 respectively, suggesting short
correlation length (ξSb < 2). In Fig. 16 we show the spin-spin
structure factor in the bottom layer for J ′

b = 0, 0.1, 0.12,
0.4. Obviously J ′

b = 0.1 and J ′
b = 0.12 are separated by the

first-order transition denoted as the dashed line in Fig. 11.
〈�Sb(q) · �Sb(−q)〉 shows peaks at Q = K and Q = M for J ′

b =
0.10 and J ′

b = 0.12 respectively, but the peaks are blurred
compared to J ′

b = 0.0 and J ′
b = 0.4, consistent with the rapid

increase of 1
ξSb

towards the intermediate regime. These results

strongly suggest that there is a spin gap �b > 0 at least at
J ′

b = 0.10 and J ′
b = 0.12 and these two points have only short

ranged antiferromagnetic correlations and belong to the Z2

SL I + PSF phase and the Z2 II + PSF phase in Fig. 11.
This is also consistent with our theoretical expectation that the
magnetic order moment M = M0 − x must vanish when the
doping density x is finite given that M0 should approach zero
towards the intermediate regime. Note that for J ′

b = 0.12 the
peaks of the spin structure factor are at only two of the three M
points, which breaks the C3 rotation symmetry. However, this
may be because our system in DMRG has a small Ly = 6 and
breaks the C3 symmetry explicitly. A larger size calculation is
needed to determine whether this is a nematic phase or a C3

symmetric phase in the Ly → ∞.
In our DMRG calculation it is not easy to decide the phase

boundary between AF + PSF phase and Z2 SL + PSF phase
because it is always a crossover at finite bond dimension. For
the particular parameter in Fig. 15, 1

ξSb
(m → ∞) becomes as

small as 0.1 at J ′
b = 0.40, but remains larger than 0.3 at J ′

b = 0.
Thus we conjecture that �b = 0 at J ′

b = 0.4, but �b > 0 even
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FIG. 15. Inverse of correlation lengths with the next-nearest-neighbor spin-spin coupling J ′
b from infinite DMRG with bond dimension

m = 2000, 3000, 4000. We fix Jb = Jp = Jpz = 1 and Jt = 4. We use system size Ly = 6. The exciton density is fixed at x = 1
18 . The correlation

length is obtained using the transfer matrix method (see Fig. 7 and texts around there). The value at m = ∞ is extrapolated using the formula
ξ−1(m) = ξ−1(m = ∞) + a( 1

m )2 + b 1
m . (a) ξSt is the correlation length of the spin in the top layer; (b) ξP is the correlation length for the single

exciton; (c) ξPP is the correlation length of a pair of exciton; and (d) ξSb is the correlation length for the spin in the bottom layer.

FIG. 16. 〈�Sb(q) · �Sb(−q)〉 at various values of J ′
b. The parameters are the same as in Fig. 15 and we use bond dimension m = 4000.
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at J ′
b = 0. This means that the AF I + PSF phase is absent for

this parameter and we are in the Z2 SL I + PSF phase even
with J ′

b = 0. However, we note that it is tricky to distinguish
�b > 0 and �b = 0 when �b is small. Therefore we leave it
to future to determine the precise boundary between Z2 SL
and AF phase using larger bond dimension and system size.
In Appendix D we show more results to demonstrate that the
fractional superfluid phase (Z2 SL + PSF) also exist with
smaller value of Jt = 1 or Jt = 2 and with other parameters
such as Jp = 2, Jpz = 5. Especially it survives a large Jpz term,
which is the repulsion between the excitons and does not
matter much at the small x regime.

Lastly we want to comment on the evolution from the spin
liquid in the x = 0 line to the Z2 SL I + PSF phase in the
Fig. 11. Right now there are debates on whether this spin
liquid in the intermediate J ′

b
Jb

at the x = 0 limit is in a Z2

spin liquid [61–63,70] or in a U(1) Dirac spin liquid [64,71].
If it is a Z2 spin liquid, then it should be described by the
zero flux ansatz of the Schwinger boson theory because it has
short ranged 120◦ correlations. In this case, doping the exci-
ton induces a chemical potential tuned insulator to superfluid
phase transition for the paired excitons on top of the Z2 spin
liquid, which leads to the Z2 SL I + PSF phase found in our
numerical calculation. If the layer polarized spin liquid is a
U(1) Dirac spin liquid, then we should use fermionic spinons
such as in Eq. (10) to describe the spin liquid phase. Then
doping excitons will create spinon Fermi surfaces for both
layers. But there is no signature of spinon Fermi surface in
our numerical results at x = 1

18 . To reach the Z2 SL I + PSF
phase, we need the fermion spinons to further have pairing
terms εσσ ′ fa;σ fa;σ ′ for both layer a = t, b, which higgses the
U(1) gauge field down to Z2. Because this is a π flux ansatz of
fermionic spinon, it is equivalent to the zero flux phase of the
Schwinger boson [72] and is in the same Z2 SL I phase. Thus
we see that there need to be two phase transitions starting from
the U(1) Dirac spin liquid phase to reach the Z2 SL I +PSF
phase. Future calculations at infinitesimal x regime may be
able to resolve the debates between the Z2 spin liquid and
Dirac spin liquid in the x = 0 limit.

Experimentally, in moiré+monolayer system, we expect
Jt to be larger than Jb and Jp because the top layer is less
correlated. Then according to our analysis above it is easy to
reach the paired superfluid phase with a spin gap �t > 0 in
the top layer. As long as there is a small J ′

b ∼ 0.1Jb in the
bottom layer, we can realize either the Z2 SL I + PSF phase
or the Z2 SL II + PSF phases. These phases have spin gapes in
both layers and have preformed Cooper pairs, the same as the
resonating-valence-bond (RVB) state first proposed for high
Tc cuprates [48]. Therefore it is very interesting to search
for possible superconductivity by doping the bilayer Mott
insulator with the Z2 spin liquids orders.

VI. NEUTRAL FERMI SURFACE FORMED BY
FERMIONIC EXCITONS

In Sec. IV we argue that the doped exciton can be ei-
ther bosonic or fermionic due to possible fractionalization.
In Sec. V we did a survey of various possible superfluid

phases built with bosonic excitons, which are either local
excitations on top of a magnetic order or fractional excitations
coupled to a deconfined Z2 gauge field. In this section, we
turn to the more exotic possibility of fermionic excitons. In
this case, the fermionic exciton obviously cannot be local
excitations and necessarily couples to a deconfined gauge
field.

As shown in Sec. IV, the spin operator �S and exciton
operator �P can be expressed either with bosonic partons baσ

or fermionic parton faσ . When the layer polarized Mott insu-
lator is in the magnetically ordered phase, the natural parton
description should be the Schwinger boson theory shown in
Sec. V. When t/U is in the intermediate regime, the layer
polarized Mott insulator may be in a spinon Fermi surface
state [54,73]. The exact nature of the intermediate weak Mott
insulator of the spin-1/2 Hubbard model is still under debate
and may depend on details like whether further neighbor
hoppings are included or not. In the experimental study of
the metal-insulator transition in the AA stacked MoTe2/WSe2

moiré system [27], no magnetic order is found down to the
lowest temperature. The spin susceptibility in the weak Mott
regime seems to be just like the metallic phase, suggesting a
possible spinon Fermi surface ground state. However, such a
neutral spinon Fermi surface is hard to detect even if it already
exists in the MoTe2/Wse2 moiré system. In this section we
propose to study a MoTe2-hBN-MoTe2/WSe2 system similar
to the moiré+monolayer setting up in Ref. [25,26]. If the
layer polarized Mott insulator indeed hosts a spinon Fermi
surface, then at finite exciton density x > 0, the most natural
phase is a U (1) spin liquid with spinon Fermi surfaces in
both layers. Especially the neutral fermion in the top layer
can be viewed as a fermionic exciton formed by electron c†

tσ
in the top layer bound to the holon ϕ in the bottom layer, as
illustrated in Fig. 4. Possibility of fermionic excitons has also
been discussed previously in Kondo insulator SmB6 [74] or
in bilayer Landau levels [75,76]. In our realization the neutral
fermion carries a charge under a U (1) symmetry generated by
Pz (the same is true for the Fermionic exciton in the bilayer
quantum Hall system [75,76]). This makes it possible to de-
tect the movement of the neutral fermionic excitons through
counterflow transport.

To favor a U(1) spin liquid with spinon Fermi surface state,
it is necessary to include higher-order ring exchange terms
beyond our simple model in Eq. (2). The task to establish the
spinon Fermi surface state as a ground state of a microscopic
lattice model is very challenging and we leave it to future
work. Here our focus is to explore the fate under doping
excitons while assuming the x = 0 limit indeed hosts a spinon
Fermi surface. As said before, this assumption is encouraged
by the recent experiment [27]. But it is hard to detect a neutral
Fermi surface even if it already exists. The purpose of this
section is to demonstrate that doping excitons can lead to
smoking gun evidences of neutral Fermi surface from electric
measurements.

Under the assumption that the x = 0 limit has a spinon
Fermi surface in the bottom layer, we should use the
Abrikosov fermion partons ftσ and fbσ to represent the spin
operators, as introduced in Eq. (10). A typical mean field
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theory in terms of these fermionic partons is in the form

HM = −
∑

i j

tb;i j f †
i;bσ f j;bσ − (μ − D)

∑
i

f †
i;bσ fi;bσ

−
∑

i j

tt ;i j f †
i;tσ f j;tσ − (μ + D)

∑
i

f †
i;tσ fi;tσ , (40)

where μ is the chemical potential to fix nt + nb = 1 and D is
the displacement field.

When D → −∞, the system is in a layer polarized Mott
insulator with spinon Fermi surface only in the bottom layer,
as illustrated in Fig. 17(a). Then when increasing D, there is a
Lifshitz transition at Dc [see Fig. 17(b)], after which we have
spinon Fermi surfaces in both layers, illustrated in Fig. 17(c).

A low-energy theory can be written down to describe this
spinon Fermi surface phase, which needs to couple to an
internal gauge field

FIG. 17. Illustration for the displacement field D tuned transi-
tion. The red line is the dispersion of the spinon in the bottom
layer and the blue is the dispersion of the spinon in the top layer.
The dashed line is the chemical potential as defined in Eq. (40).
(a) A layer polarized Mott insulator with spinon Fermi surface in the
bottom layer. ∂Pz

∂D
= 0 and counterflow transport is insulating. (b) At

critical Dc, the gap of the exciton is now zero. (c) A U (1) spin liquid
phase with spinon Fermi surfaces in both layers. ∂Pz

∂D is finite and the
counterflow transport is now metallic.

L = ψ†
t ;σ (τ, x)

(
∂τ − (μ + D) − ia0(τ, x) − 1

2
iAs

0(τ, x)

)
ψt ;σ (τ, x) − h̄2

2mt
ψ†

t ;σ (τ, x)

(
− i�∂ − �a(τ, x) − 1

2
�As(τ, x)

)2

ψt ;σ (τ, x)

+ ψ
†
b;σ (τ, x)

(
∂τ − (μ − D) − ia0(τ, x) + 1

2
iAs

0(τx )

)
ψb;σ (τ, x) − h̄2

2mb
ψ

†
b;σ (τ, x)

(
− i�∂ − �a(τ, x) + 1

2
�As(τ, x)

)2

ψb;σ (τ, x)

(41)

In the following we provide two clear experimental signa-
tures to detect this exotic phase with neutral Fermi surfaces in
both layers.

Counterflow resistivity. We first show that the counter-flow
transport is insulating when D < Dc and metallic when D >

Dc. Thus the displacement field tunes an counter-flow insula-
tor to metal transition. The counterflow resistivity is defined
as ρs;xx = Es

x
Js

x
, where �E = �Et − �Eb and �Js = 1

2 ( �Jt − �Jb). As
shown in Eq. (13), the counterflow resistivity ρs = ρt + ρb,
where ρt , ρb are the resistivities of the fermionic partons ftσ

and fbσ . When D < Dc, ρt = ∞ and hence ρs = ∞. When
D > Dc, we expect that ρt = At T α and ρb = AbT α . Therefore
the counterflow resistivity is metallic ρs(T ) = T α . The expo-
nent α on the temperature dependence is likely deviating from
the Fermi liquid result α = 2 due to the coupling to the gauge
field aμ [49–53], although the exact value of α is still not well
established theoretically. We will not try to solve this problem
in this paper. Instead, we propose to measure the exponent α

through counter-flow transport in experiments.
In addition to a metallic counterflow transport, the spinon

Fermi surface state when D > Dc also has a metallic spin sus-
ceptibility and interlayer polarizability. As shown in Eq. (14),
the interlayer polarizability κs = ( 1

κt
+ 1

κb
)−1, where κt and

κb are the compressibilities of the fermionic partons in the
two layers. When D > Dc, κa is a constant for a = t, b.
Therefore the interlayer polarizability κs is also a constant
just like a Fermi liquid. Note that the fermionic parton fa;σ

acquires a non-Fermi-liquid self energy �(iω) ∝ |ω| 2
3 [49]

from coupling to the gauge field aμ, but it does not enter the

spin susceptibility because of the cancellation with the vertex
correction [77]. Thus the spin susceptibility (or interlayer po-
larizability) behaves as a Fermi liquid. We need to emphasize
that an exciton superfluid as discussed in Sec. V also has
constant interlayer polarizability. Then a constant interlayer
polarizability does not distinguish the superfluid and neutral
Fermi surface phase. To better characterize these two different
kind of phases, we really need counterflow transport, which is
either superfluid or metallic in the exciton condensation and
neutral Fermi surface phase.

Friedel oscillation in layer polarization. It is known that
the existence of a Fermi surface can lead to Friedel oscillation
because of the 2kF scattering. In a Mott insulator with only
spinon Fermi surface, the dominant Friedel oscillation is in
the magnetization and hence is not easy to detect using the
electric probe such as scanning tunneling microscope (STM).
An electric signal may be found in the weak Mott regime
where the holon density is not exactly frozen to be one per
site [78], but the amplitude is suppressed if the charge gap is
large.

In our case at D > Dc, there are active neutral fermions
fa;σ in both layers and the fermionic parton carries not only
spin �Sa but also the layer polarization Pz. Because Pz(r) =
1
2 (nt (r) − nb(r)), its correlation function manifests 2kF sin-
gularity of spinon Fermi surfaces in both layers. Therefore,
there will also be Friedel oscillations in terms of the layer
polarization,

〈Pz(r)Pz(0)〉 =
∑

Q=2kt
F

At

|r|αt (Q)
eiQ·r +

∑
Q=2kb

F

Ab

|r|αb(Q)
eiQ·r (42)

195120-21



YA-HUI ZHANG PHYSICAL REVIEW B 106, 195120 (2022)

FIG. 18. The Friedel oscillation in terms of the layer polariza-
tion. The color plot shows χzz(q) = 〈Pz(q0 = 0, q)Pz(q0 = 0,−q)〉
at the mean field level without gauge fluctuation. q is in units of
2π . The solid-black line is the boundary of the first Brillouin zone
(BZ). We have used tt = tb = 1 in Eq. (40). There are two circles

corresponding to 2kF ;b and 2kF ;t , which are fixed to be
πk2

F ;t

4π2 = x
2 and

πk2
F ;b

4π2 = 1−x
2 .

where 2ka
F is a vector connection two points in the Fermi

surface in layer a = t, b.
We can calculate the Fourier transformation of 〈Pz(r)Pz(0)〉

in the mean field level,

χzz(q) = 〈Pz(q0 = 0, q)Pz(−q0 = 0,−q)〉

= −1

4

∑
aσ

∑
ω

Gaσ (iω, k + q)Gaσ (iω, k)

= 1

2

∑
a=t,b

∑
k

f (ξa(k)) − f (ξa(k + q))
ξa(k + q) − ξa(k)

(43)

where f (ξ (k)) = θ ( − ξ (k)) is the Fermi-Dirac distribution
at T = 0.

We show the plot of χzz(q) in Fig. 18. As expected, there
are features along two circles centering at the � point. They
correspond to 2kF ;t and 2kF ;b. The one from 2kF ;b is outside
the Brillouin zone (BZ) and needs to be folded back to the first
BZ. We have ignored the gauge fluctuation in this calculation,
which can further enhance the Friedel oscillations [79].

The Friedel oscillation of the layer polarization Pz may be
detected in the following way: one can apply a local electric
field in z direction Ez(r0), then we expect that 〈Pz(r)〉 ∼∑

Q=2kt
F

At
|r−r0|αt (Q) eiQ·(r−r0 ) + ∑

Q=2kb
F

Ab

|r−r0|αb (Q) eiQ·(r−r0 ). The
local profile of layer polarization Pz(r) will further induce
electric field profile Ez(r) ∼ Pz(r), which may be detected
by electric probes. The Fourier transformation of Ez(r − r0)
should be similar to the plot in Fig. 18.

In addition to the counterflow transport and the Friedel
oscillation, the spinon Fermi surface state also has C/T ∼
T − 1

3 [49] where C is the specific heat. Meanwhile the neutral
Fermi surface may show quantum oscillations under external
magnetic field due to coupling between the internal gauge
flux b = ∇ × �a and the external magnetic field [74,80,81]. But
there is a large g factor in TMD material and whether spinon

Fermi surface state can survive under a finite field is not clear.
In this sense the electric probes such as counter-flow or Friedel
oscillation at zero magnetic field may be a better detection
scheme.

In the above we start from the assumption that the layer
polarized Mott insulator at the weak Mott regime is a spinon
Fermi surface state and then argue that the small x regime
naturally hosts neutral Fermi surfaces in both layers. Whether
the assumption is correct is a hard problem both theoretically
and experimentally. Although there are suggestive signa-
tures of constant spin susceptibility at the x = 0 limit in the
MoTe2/WSe2 system [27], it is hard to prove or rule out the
possibility of spinon Fermi surface in the x = 0 sample be-
cause of the lack of the probe of neutral spin excitations. Our
proposal at finite x in the MoTe2-hBN-MoTe2/WSe2 system
is thus also a good test of the nature of weak Mott insulator at
the x = 0 limit.

A. Numerical results in one dimension

In the above we discussed the experimental signatures of
the spinon Fermi surface state, but a microscopic calculation
of a 2D lattice model is avoided due to its technical chal-
lenge. Here we provide numerical simulation for analog of
the spinon Fermi surface state in the one-dimension chain. We
will show the 1D model has qualitatively the same physics
as discussed in the above. Note that the existence of exotic
spinon Fermi surface-like phase in one dimension is very
special and cannot be easily generalized to two dimension.
Indeed, we already showed in previous sections that the sim-
ple model in Eq. (2) in two dimension hosts either single
exciton or paired exciton superfluid and we never found a
neutral Fermi surface. To favor a spinon Fermi surface in
two dimension, more complicated higher-order ring exchange
terms must be included and it is still not clear when a spinon
Fermi surface is a ground state. In this paper we avoid this
challenging energetical problem. The purpose of the 1D calcu-
lation is to demonstrate the behavior we expect when doping
excitons into a spinon Fermi surface Mott insulator at the
x = 0 limit. We leave it to future work to understand when
and why a spinon Fermi surface state can be stabilized in
a two-dimension model. As said in the introduction of this
section, there is already encouraging experimental evidence
for such a state at the x = 0 limit in the MoTe2/WSe2 system
[27] and we hope our calculation of the 1D model below can
provide some insights on the fate of doping excitons into the
weak Mott insulator in the MoTe2/WSe2 system.

In one dimension, the x = 0 limit of Eq. (2) is a spin-1/2
chain and is in a gapless phase without magnetic order. Such
a phase described by SU(2)1 conformal field theory (CFT) is
known to be an analog of the spinon Fermi surface in higher
dimension. Actually a good model wavefunction for the state
is a Gutzwiller projection of Fermi sea [82], the same as the
spinon Fermi surface state in higher dimension. According to
our analysis above, we should expect the phase at finite x to
host spinon Fermi surfaces in both layers. Such a phase has
a metallic counterflow conductance and also show 2kF singu-
larities in spin-spin correlation and dipole-dipole correlation.
We will demonstrate this by DMRG simulation of the model
in Eq. (2) in one dimension.
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First we describe the 1D analog of the spinon Fermi surface
state using bosonization. We will also argue that it can be
understood as a one-dimensional descendant of spinon Fermi
surface introduced in the previous part for the two-dimension
limit. Considering spinon Fermi surface formed by ftσ and
fbσ , in one dimension there are four modes coming from the
combination of layer and spin. We have 2kt

F = x
2 × 2π and

2kb
F = 1−x

2 × 2π . The left and right moving modes around
±ka

F can be written using the standard bosonization language,

ψa
rσ = 1√

2πα
U a

rσ eirka
F xe− i√

2
(rφc;a−θc;a+σ (rφs;a−θs;a )) (44)

where a = t, b labels the layer. r = R, L labels the right and
left moving mode. σ =↑,↓ labels the spin index. U a

rσ is the
Klein factor to enforce the fermion statistics.

We also define new variables with a linear recombination

θc;± = 1√
2

(θc;t ± θc;b) (45)

and

φc;± = 1√
2

(φc;t ± φc;b). (46)

Similarly one can define φs;± and θs;± for the two spin modes.
As analog of the spinon Fermi surface state, the fermion

fields need to couple to a U(1) gauge field aμ as in Eq. (41).
In one-dimensional version of spinon Fermi surface state, the
U(1) gauge field and the charge mode θc;+ higgs each other

with a term like L′ = ((∂μ − iaμ)θc;+)
2
. This makes sense

because the total charge density 2
π
∂xφc;+ is frozen in a Mott

insulator. We will fix φc;+ = 0. In then end, we are left with
three modes corresponding to φc;−, φs;t and φs;b.

The effective Hamiltonian for these three modes are

H = υ−
2π

∫
dxK−(∂xθc;−)2 + 1

K−
(∂xφc;−)2

+ υt

2π

∫
dx(∂xθs;t )

2 + (∂xφs;t )
2

+ υb

2π

∫
dx(∂xθs;b)2 + (∂xφs;b)2 (47)

where the SU(2)× SU(2) symmetry constrain the Luttinger
parameter for the spin modes in the two layers to be 1 and
the spin modes in the two layers do not hybridize. We expect
K− < 1 because of the repulsive JpzPz(i)Pz( j) term, as Pz(r) ∼
1
π
∂xφc;−.
The spin-spin structure factor in the two layers will have

peaks at q = 2kt
F and q = 2kb

F respectively. For example, we
expect that the 2ka

F part of the spin operator in the layer a =
t, b is

S†
a (x) ∼ 1

2πα
i
(
e−i2ka

F xe±iφc;−e−i
√

2θs;a + e2ika
F xe∓iφc;−e−i

√
2θa

s
)

(48)
where we have used φc;+ = 0 and thus φc;a = ± 1√

2
φc;−. Here

± is for a = t, b respectively.
Then we obtain

〈�Sa(x) · �Sa(0)〉 ∼ 1

|x| K−
2 +1

(
cos 2ka

F x + ϕa
)

(49)

where we have ignored the zero momentum part.

In addition to gapless spin modes, there is also gapless
mode corresponding to the exciton operator P†,

P†(x) = 1

πα

(
e−i(kt

F −kb
F )xei(φc;−−θc;− ) cos(φs;− − θs;−)

+ ei(kt
F −kb

F )xe−i(φc;−+θc;− ) cos(φs;− + θs;−)

+ e−i(kt
F +kb

F )xe−iθc;− cos(φs;+ − θs;−)

+ ei(kt
F +kb

F )xe−iθc;− cos(φs;+ + θs;−)
)

(50)

where we again have used φc;+ = 0.
Then its correlation function is in the form

〈P†(x)P−(0)〉 = A
1

|x|1+
K−+ 1

K−
2

cos(q1x + ϕ1)

+ B
1

|x|1+ 1
2K−

cos(q2x + ϕ2) (51)

where q1 = kt
F − kb

F = 2π ( nt
4 − nb

4 ) = 2π ( 1
2 nt − 1

4 ) and q2 =
kt

F + kb
F = 2π ( nt

4 + nb
4 ) = π

2 . The peak at q2 should be more
pronounced due to smaller decaying exponent.

Finally we discuss the Friedel oscillation of the layer po-
larization Pz(x). We have

Pz(x) = 1

π
∂xφc;− + At

(
e−iφc;− cos

√
2φs;t e

2ikt
F x + H.c.

)
− Ab

(
e−iφc;− cos

√
2φs;be2ikb

F x + H.c.
)

+ B(e−2iφc;−e4ikF x + H.c.) (52)

where we have used the fact that 4kt
F = 2π − 4kb

F because
nt + nb = 1. So there is only one 4kF = 4kt

F momentum.
From the above expression, we can quickly get the corre-

lation function

〈Pz(x)Pz(0)〉c = K−
2π2

1

x2
+ |At |2 1

|x|1+ 1
2 K−

cos
(
2kt

F x + ϕt
)

+ |Ab|2 1

|x|1+ 1
2 K−

cos
(
2kb

F x + ϕb
)

+ |B|2 1

|x| 3
2 K−

cos(4kF x + ϕ). (53)

This is the Friedel oscillation of the layer polarization also
discussed in the spinon Fermi surface state in 2D (see Fig. 18).
Here in 1D one special feature is that the 4kF component
is enhanced because K− < 1. Especially, the 4kF part can
dominate over 2kF if K− < 2

3 .
To test the above results, we simulated the model in Eq. (2)

in one dimension using DMRG. We show our results in
Fig. 19 at different values of −2Pz = nb − nt while fixing
the parameters Jt = Jb = Jp = Jpz = 1. We have tried both
J ′

b = 0 and J ′
b = 0.35. When J ′

b = 0.35, the nb = 1, nt = 0 is
in a valence bond solid (VBS) phase and we have central
charge c = 0. If J ′

b = 0, the nb = 1, nt = 0 point is in the
gapless spin-1/2 chain phase with c = 1. The nt = 1, nb =
0 limit always has c = 1 because we do not include next-
nearest-neighbor coupling J ′

t for the top layer. Regardless
of the fate in the layer polarized limit, as long as we dope
excitons to reach nb = 1 − x, nt = x with x ∈ (0, 1), we have
a phase with c = 3 as expected. In Figs. 19(b) and 19(c),
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FIG. 19. DMRG results of the model in Eq. (2) in one dimension. Here we use Jt = Jb = Jp = Jpz = 1. (a) Central charge with the layer
polarization nb − nt for J ′

b = 0, 0.35. We can see c = 3 when 0 < x < 1. c is fit from the relation S = c
6 log ξ , where S is the entanglement

entropy and ξ is the largest correlation length. (b) Spin structure factor in the bottom layer. (c) Spin structure factor in the top layer. (d) Exciton
correlation function. The red arrow denotes the momentum q1 = kt

F − kb
F = 2π ( nt

4 − nb
4 ) = 2π ( 1

2 nt − 1
4 ). There is always a clear peak at

q2 = 0.25 × 2π . The momentum q is in units of 2π

a .

we show that the spin-spin structure factor indeed shows
peak at 2kt

F and 2kb
F as we vary the layer polarization

nb − nt . In Fig. 19(d) we show the Fourier transformation
of 〈P†(x)P−(y)〉. Consistent with Eq. (51), it shows peak at
momentum q2 = 1

4 × 2π and an additional weaker singularity
at momentum q1 = kt

F − kb
F . Therefore we conclude that the

ground state of the model Eq. (2) in 1D is an analog of the
spinon Fermi surface state with both gapless spin mode and
exciton mode.

To test whether the c = 3 spinon Fermi surface phase is
robust, we also tried a different set of parameter with Jp = 2,
Jpz = 10, Jt = 5, shown in Fig. 20. We still find the gapless
phase with c = 3 except at the commensurate filling nt =
2
3 , nb = 1

3 . At this special filling, the exciton is localized in a
density wave state with period 3 as shown in Fig. 20(d). There
is a bottom, top, top pattern within the 3 site unit cell. Then
the mode corresponding to P† is gapped. The spin mode in the
top layer is also gapped out because two nearby spins can just
form a spin singlet. The only gapless mode is from the spin
in the bottom layer, which gives c = 1. Note that a large Jt is
crucial to favor the spin singlet formation in the top layer and
the localization of the exciton. Away from the commensurate
filling, we always have the c = 3 spinon Fermi surface phase
at generic filling x.

As discussed in the 2D case, the Friedel oscillation in the
layer polarization may be experimentally easier to detect than
spin-spin structure factor. We show χzz(q) = 〈Pz(q)Pz(−q)〉

in Fig. 21 for the parameter Jb = Jt = Jp = Jpz = 1 and J ′
b =

0. In this case, the singularity in 〈Pz(q)Pz(−q)〉 is not very
pronounced and we need its second derivative to q to reveal
the peaks. In Fig. 21(b) we label the peaks corresponding to
2kt

F , 2kb
F , and 4kF . We also tried a different parameter Jb = 1,

Jt = 1, JP = 2, Jpz = 10, and J ′
b = 0. This time the peak from

4kF is enhanced, as shown in Fig. 22. A large Jpz reduced K−
and we indeed expect that the 4kF peak dominates according
to Eq. (53).

In summary, our numerical simulation clearly demon-
strates that the ground state of Eq. (2) in one dimension is
in an analog of spinon Fermi surface state. Similar to the
higher dimension spinon Fermi surface phase, there is Friedel
oscillation in the layer polarization Pz. There should also be
a metallic conductance in the counterflow transport. These
results confirm our argument that doping excitons into a layer
polarized Mott insulator with spinon Fermi surface naturally
results in a phase with neutral Fermi surfaces in both layers.
Due to the strong fluctuation in one dimension, magnetic
order is not present and a spinon Fermi surface state can be
found already in the simple spin model as in Eq. (2). In two
dimension, the ground state of Eq. (2) is more likely to be
in an exciton superfluid phase described by bosonic parton
theory as shown in Sec. V. However, in the weak Mott regime,
higher-order ring exchange couplings needed to be included
in Eq. (6). In this case a spinon Fermi surface described by
fermionic parton theory may be stabilized [73,83] and then
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FIG. 20. DMRG results of the model in Eq. (2) in one dimension. Here we use Jb = 1, Jt = 5, Jp = 2, Jpz = 10. (a) Central charge with the
layer polarization nb − nt for J ′

b = 0, 0.35. We can see c = 3 when 0 < x < 1 except at nt = 2
3 , nb = 1

3 . (b) Spin structure factor in the bottom
layer. (c) Spin structure factor in the top layer. (d) Exciton density nb(x) − nt (x) for the filling nt = 2

3 , nb = 1
3 . One can see a density wave of

the exciton (or layer polarization Pz) with period 3.

we expect a phase with neutral Fermi surfaces in both layers
at finite x. We leave the detailed numerical study of the more
complicated problem with additional ring exchange couplings
to future. Experimentally we note that there is already en-
couraging signature of spinon Fermi surface at x = 0 limit
in MoTe2/WSe2 system [27] and we propose to search for
smoking gun evidence of the neutral Fermi surface at fi-
nite x in MoTe2-hBN-MoTe2/Wse2 system from counterflow
transport and Friedel oscillation measurements. Although our
numerical simulation in one dimension is mainly used as a
guidance for two dimension, the recent experimental progress
on one-dimensional moiré superlattice [84] may make the

experimental realization of the 1D model also possible in near
future.

VII. METAL-INSULATOR TRANSITION: A UNIVERSAL
DRAG RESISTIVITY

In previous sections we focus on possible states when there
is a finite charge gap. In this section we discuss possible
experimental signature of a metal-insulator transition (MIT)
tuned by the exciton density x. Let us now consider the bilayer
Hubbard model defined in Eq. (1), a metal-insulator transition
can be driven by tuning U ′ from 0 to large when fixing ta

FIG. 21. (a) 〈Pz(q)Pz(−q)〉 for Jb = 1, Jt = 1, Jp = 1, Jpz = 1, and J ′
b = 0. The momentum q is in units of 2π . (b) The second derivative

of 〈Pz(q)Pz(−q)〉 with respect to q. The red and blue arrows denote 2kb
F and 2kt

F respectively. The green arrow denotes the 4kF . Due to the
symmetry q ↔ 2π − q, we only label the peaks for q ∈ [0, π ].
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FIG. 22. 〈Pz(q)Pz(−q)〉 for Jb = 1, Jt = 1, Jp = 2, Jpz = 10, and
J ′

b = 0. The momentum q is in units of 2π . The green arrow denotes
the 4kF peak.

and Ua. Experimentally U ′ is the interlayer interaction and is
controlled by the interlayer distance d (the thickness of the
hBN barrier). When d is large, the two layers are decoupled
and each of them is in a metallic (if not superconducting) state
because the density na at either layer is less than 1. When d
is reduced and U ′ is enhanced, the simultaneous occupancy of
both layers at each lattice site i is suppressed and the system
enters a Mott insulator. A phase diagram in the parameter
space (x, d ) is illustrated in Fig. 23. Because the top layer
is less correlated, we expect the critical value dc to decrease
when increasing the density x at the top layer. This makes it
possible to tune the same MIT transition through tuning the
exciton density x at a fixed interlayer distance d . The closing
of the charge gap when x is larger than a critical value xc has
already been observed in the WSe2-hBN-WSe2/WS2 system
[25,26]. However, the nature of this transition is not clear now.
We will provide one possible theory of this transition and
propose experimental signatures in transport measurements.

First, from Fig. 23 it is clear that the metal-insulator tran-
sition belongs the class of bandwidth controlled MIT because
the total density is always fixed to be nt + nb = 1. This tran-
sition could be continuous if the Mott insulator just across xc

hosts neutral spinon Fermi surfaces, as discussed in Sec. VI.
In this case, the MIT is driven by condensation of the bosonic
holon. The theory of the MIT in our case is the same as in
Ref. [54]. But we will show that the bilayer structure enables
a better probe of the criticality through measurement of the
drag resistivity.

The transition can be described using the slave boson
theory: ci;aσ = ϕi fi;aσ , where ϕi is a bosonic holon or slave

FIG. 23. Illustration of the phase diagram tuned by exciton den-
sity x and the interlayer distance d . MI and FL means Mott insulator
and Fermi liquid. We assume that Ub/tb is large, so the x = 0 limit
is a Mott insulator regardless of d . For finite x, a metal-insulator
transition (MIT) can be driven by tuning the interlayer repulsion U ′

through d , as denoted by the blue arrow. Because we assume the top
layer is less correlated with a higher tt and smaller Ut , we expect dc

to decrease with larger density x in the top layer. Experimentally the
same MIT transition can also be realized by tuning exciton density x
at a fixed d , denoted by the green arrow.

boson. fi;aσ is the neutral fermion. There is a constraint that

ϕ
†
i ϕi =

∑
aσ

f †
i;aσ fi;aσ . (54)

Thus on average we have 〈ϕ†
i ϕi〉 = 1. There is also a U(1)

gauge field arising from the gauge symmetry, ϕi → eiαi and
fi;aσ → fi;aσ e−iαi . There are two global U(1) symmetries gen-
erated by the total charge Q and layer polarization Pz. The
one generated by Q acts as ϕi → ϕieiθc , fi;aσ → fi;aσ . The
one corresponding to Pz acts as ϕi → ϕi, fi;tσ → fi;tσ ei 1

2 θs and
fi;bσ → fi;bσ e−i 1

2 θs .
We assume that the fermion fi;aσ is always in a mean field

ansatz with Fermi surfaces, as in Eq. (40). When x < xc, ϕi is
in a Mott insulator. When x > xc, ϕi is in a superfluid phase
with 〈ϕi〉 �= 0. Therefore the MIT is driven by the superfluid-
insulator transition for the bosonic holon ϕi. The action of the
critical theory is

S =
∫

dτd2xψ†
t ;σ (τ, x)

(
∂τ − μt − ia0(τ, x)−1

2
iAs

0(τ, x)

)
ψt ;σ (τ, x) − h̄2

2mt
ψ†

t ;σ (τ, x)

(
−i�∂ − �a(τ, x) − 1

2
�As(τ, x)

)2

ψt ;σ (τ, x)

+
∫

dτd2xψ†
b;σ (τ, x)

(
∂τ − μb − ia0(τ, x)+1

2
iAs

0(τx )

)
ψb;σ (τ, x) − h̄2

2mb
ψ

†
b;σ (τ, x)

(
−i�∂ − �a(τ, x)+1

2
�As(τ, x)

)2

ψb;σ (τ, x)

+
∫

dτd2x|(∂μ + iaμ − iAc
μ)ϕ|2 + s|ϕ|2 + g|ϕ|4 +

∫
dωd2q

(
k0|ω|
|q| + χd |q|2 + σb

√
|ω|2 + c2|q|2

)
|a(ω, q)|2. (55)

The first two lines describe the neutral Fermi surface cou-
pled to the U(1) gauge field aμ. The third line describes the

critical boson and the last line encodes the effective action
for the transverse gauge field. Note that a0 is screened by
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finite density of spinons and can be ignored at low energy.
χd is from the diamagnetic susceptibility of the spinon Fermi
surfaces. σb is the universal conductivity of the critical boson
at s = 0. This term is absent away from sc = 0. When s < 0,
the slave boson condenses 〈ϕ〉 �= 0, which higgses aμ = Ac

μ.
After that ψt couples to At

μ = Ac
μ + 1

2 As
μ and ψb couples to

Ab
μ = Ac

μ − 1
2 As

μ and they can be identified as the electron
operator caσ ∼ ψaσ . This is just the Fermi liquid phase. When
s > 0, we have 〈ϕ〉 = 0 and the slave boson is in a Mott
insulator. Then ϕ is gapped and drops out from the low energy.
Meanwhile σb = 0. The final action reduces to Eq. (41), which
describes a Mott insulator with neutral Fermi surfaces.

The critical property of Eq. (55) has been analyzed in
Ref. [54]. It can be shown that the coupling to the gauge field
aμ for ϕ is irrelevant because the |ω|

|q| term quenches the gauge
field. After that, the critical theory for the boson ϕ is the same
as the usual XY transition with exponent ν ≈ 0.67 and z = 1.
The coupling to gauge field for the fermions ψ leads to a
singular self-energy �(iω) ∼ iω log 1

|ω| .
Experimentally the easiest probe of the criticality may be

from electric transport. It has already been pointed out that
there is a universal jump of residual resistivity across the MIT
[54] coming from the universal conductivity σb of the critical
boson ϕ. Here we show that in our bilayer system the universal
conductivity of the critical boson can be directly measured
from the drag resistivity.

As shown before, we have two currents Jt
μ, Jb

μ coupled to
the probing gauge field At

μ, Ab
μ. Therefore, we can define a

2 × 2 resistivity tensor(
Et

x
Eb

x

)
=

(
ρ11 ρ12

ρ21 ρ22

)(
Jt

x
Jb

x

)
. (56)

We can easily derive an Ioffe-Larkin rule (see Appendix C)
for the resistivity tensor ρ = (

ρ11 ρ12
ρ21 ρ22

)
,

ρ = ρb + ρ f (57)

with

ρ f =
(

ρ f ;t 0
0 ρ f ;b

)
(58)

and

ρb = 1

σb

(
1 1
1 1

)
. (59)

Here ρ f ;a is the resistivity of fa in the layer a. σb is the conduc-
tivity for the slave boson ϕ at the critical point. Then we can
see that ρ11 = ρ f ;t + ρb has contributions from both fermion
and critical boson as in single layer case [54]. However,
ρ12 = ρb is dominated by the resistivity of the slave boson
now. Because the boson ϕ goes through a superfluid-insulator
transition, we expect that the drag resistivity ρ12 shows similar
behavior as the resistivity across a superconductor-insulator
transition, as illustrated in Fig. 24. Especially there is a large
drag resistivity R0 = 1

σ c
b

at order h
e2 in the critical regime.

Around the critical point, we also anticipate a scaling in
the form ρ(T, x − xc) = aF ( T

|x−xc|νz ) with νz ≈ 0.67. Such a
scaling has been seen in experiment for the MoTe2/Wse2

system [27]. It is interesting to test the scaling also in the
moire+monolayer system tuned by exciton density.

FIG. 24. Illustration of the drag resistivity ρ12 with temperature
T in Fermi liquid regime x > xc, Mott insulator regime x < xc and
critical regime x = xc. R0 is a universal number at order h

e2 .

VIII. CONCLUSIONS

In summary, we modeled and analyzed a new problem
in moiré bilayer or moiré+monolayer based on TMD moiré
superlattice: we dope interlayer excitons into a layer polar-
ized Mott insulator. When the densities of the two layers are
nt = x, nb = 1 − x, there is a finite charge gap when x < xc.
Below the charge gap, we argue that the exciton and spin inter-
twine with each other and are described by a four-flavor spin
model. Using either Schwinger boson or Abrikosov fermion
parton theory, we identify several possible interesting phases:
(i) Exciton superfluid phase with or without spin gap. Es-
pecially there could be a fractional superfluid with a paired
exciton condensation coexisting with Z2 spin liquid. (ii) A
spin liquid phase with neutral Fermi surfaces in both layers. In
this case the neutral fermion carries both spin and also layer
polarization Pz. The existence of neutral Fermi surface can be
tested by the counterflow transport and the Friedel oscillations
in terms of layer polarization. We also provide a theory of
continuous metal-insulator transition tuned by exciton density
x and predicted a universal drag resistivity in the critical
regime. Our paper suggests a direction to search for spin
liquids and fractionalization using electrical probes such as
counterflow measurements. In future it is interesting to dope
the bilayer Mott insulator and search for superconducting or
exotic metallic phases.
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APPENDIX A: t/U EXPANSION

In this section we perform the t/U expansion to derive
the four-flavor spin model from Eq. (1). First, the low-
energy Hilbert space has four states per site, they are labeled
as |1〉i = c†

i;t↑ |0〉, |2〉i = c†
i;t↓ |0〉, |3〉i = c†

i;b↑ |0〉 and |4〉i =
c†

i;b↓ |0〉. The t/U expansion is generated by virtual double
occupied states, which are not included in the low-energy
Hilbert space.
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The Hamiltonian can be expressed purely in terms of
generalized spin operators. We can view the four-dimension
Hilbert space as a tensor product of two spin 1/2 Hilbert
space. Each of the four states can be labeled as |aσ 〉 = |a〉 ⊗
|σ 〉, where a = t, b and σ =↑,↓. The first spin 1/2 (spanned
by |a = t〉 and |a = b〉) corresponds to a layer pseudospin �P
and the second spin 1/2 (spanned by |σ =↑〉 and |σ =↓〉)
corresponds to the real spin �S. �P is defined as 1/2�σ , where
�σ is the 2 × 2 Pauli matrix within the corresponding spin 1/2
Hilbert space spanned by |a = t〉 and |a = b〉. �S is similarly
defined. We can also define P0 and S0 as an identity matrix.
Together PμSν = Pμ ⊗ Sν with μ, ν = 0, x, y, z form 16 gen-
erators of a U (4) group. The effective spin Hamiltonian can
be written in the similar form as a SU(4) spin model, though
now we have large anisotropy terms.

1. Zeroth order

We note that the interaction term can enter the low-energy
Hamiltonian even at the zeroth order of the hopping t . The
on-site interactions Ut ,Ub,U ′ vanishes at the zeroth order
because we always have the constraint ni;t + ni;b = 1 at each
site. The nearest-neighbor interaction, on the other hand, gives
a term

H (0)
S = δV

∑
〈i j〉

Pz(i)Pz( j), (A1)

where δV = Vt + Vb − 2V ′. We have used the identity ni;t =
1
2 + Pz(i) and ni;b = 1

2 − Pz(i) for the restricted Hilbert space.
We also ignored the constant term and the term linear to
Pz, which just renormalizes the displacement field D. In
the canonical ensemble with constant Pz, such a term lin-
ear to Pz is meaningless as it is just a chemical potential
term.

2. Second order

There is no terms generated at the linear order to t , and we
focus on the second order here. For simplicity let us ignore the
nearest-neighbor interaction. It is easy to show

H (2)
S = − t2

t

Ut

∑
〈i j〉

(c†
i;tσ c j;tσ c†

j;tσ ′ci;tσ ′ + H.c.)nt (i)nt ( j)

− t2
b

Ub

∑
〈i j〉

(c†
i;bσ c j;bσ c†

j;bσ ′ci;bσ ′ + H.c.)nb(i)nb( j)

− t2
t

U ′
∑
〈i j〉

(c†
i;tσ c j;tσ c†

j;tσ ′ci;tσ ′ + H.c.)nt (i)nb( j)

− t2
b

U ′
∑
〈i j〉

(c†
i;bσ c j;bσ c†

j;bσ ′ci;bσ ′ + H.c.)nb(i)nt ( j)

− tt tb
U ′

∑
〈i j〉

(c†
i;tσ c j;tσ c†

j;bσ ′ci;bσ ′ + c†
j;bσ ′ci;bσ ′c†

i;tσ c j;tσ )

− tt tb
U ′

∑
〈i j〉

(c†
i;bσ c j;bσ c†

j;tσ ′ci;tσ ′ + c†
j;tσ ′ci;tσ ′c†

i;bσ c j;bσ ).

(A2)

Let us label A = −(c†
i;tσ c j;tσ c†

j;tσ ′ci;tσ ′ + H.c.)nt (i)nt ( j).
Within the restricted Hilbert space, it can be shown that
A |1〉i ⊗ |2〉 j = 2(|2〉i ⊗ |1〉 j − |1〉i ⊗ |2〉 j ), A |2〉i ⊗ |1〉 j =
2(|1〉i ⊗ |2〉 j − |2〉i ⊗ |1〉 j ) and A |α〉i ⊗ |β〉 j = 0, if
(α, β ) �= (1, 2) and (2, 1). It can be shown that A =
4�St (i) ⊗ �St ( j) − nt (i) ⊗ nt ( j). Here �St (i) = nt (i)�S(i) is the
spin operator projected to the top layer. Note nt (i) = 1

2 + Pz(i)
and nb(i) = 1

2 − Pz(i) can be viewed as projection
operator within the restricted Hilbert space. Similarly,
−(c†

i;bσ c j;bσ c†
j;bσ ′ci;bσ ′ + H.c.)nb(i)nb( j) = 4�Sb(i) ⊗ �Sb( j) −

nb(i) ⊗ nb( j), where �Sb(i) = nb(i)�S(i) is the spin operator

projected to the bottom layer. − t2
t

U ′
∑

〈i j〉(c
†
i;tσ c j;tσ c†

j;tσ ′ci;tσ ′ +
H.c.)nt (i)nb( j) = − 2t2

t
U ′ nt (i)nb( j) within the restricted Hilbert

space.
Let us label B = −(c†

i;tσ c j;tσ c†
j;bσ ′ci;bσ ′ + c†

j;bσ ′ci;bσ ′c†
i;tσ

c j;tσ ). Within the restricted Hilbert space, it is easy to see that
B |α〉i |β〉 j = 2 |β〉i |α〉 j if α = 3, 4 and β = 1, 2. Otherwise

B |α〉i |β〉 j = 0. We find that B = P†(i)P−( j)(4�S(i) · �S( j) +
�S0(i)�S0( j)). Where P±(i) = Px(i) ± Py(i),

H (2)
S = 4

t2
t

Ut

∑
〈i j〉

�St (i)�St ( j) + 4
t2
b

Ub

∑
〈i j〉

�Sb(i)�Sb( j). (A3)

Finally, we have

HS = Jt

∑
〈i j〉

�St (i) · �St ( j) + Jb

∑
〈i j〉

�Sb(i) · �Sb( j)

+ 1

2
Jpz

∑
〈i j〉

Pz(i)Pz( j) + Jp

∑
〈i j〉

1

2
(Px(i)Px( j)

+ Py(i)Py( j))(4�S(i) · �S( j) + S0(i)S0( j)) (A4)

where Jt = 4t2
t

Ut
, Jb = 4t2

b
Ub

, Jp = 4tt tb
U ′ , and Jpz = 2δV − 1

2 (Jt +
Jb) + ( 4t2

t
U ′ + 4t2

b
U ′ ). In the above we ignored the constant term

and the term linear to Pz(i).
In the SU (4) symmetric limit with Jt = Jb = Jp = Jpz = J ,

we recover the SU(4) spin model

HS = J

8
(4 �P(i) · �P( j) + P0(i)P0( j))(4�S(i) · �S( j) + S0(i)S0( j))

(A5)
up to constant terms.

APPENDIX B: DMRG IMPLEMENTATION

In DMRG, we use the spin operator Sab = |a〉 〈b| with a, b = 1, 2, 3, 4. We rewrite the Hamiltonian using the following
formulas:

�St (i) · �St ( j) = 1
2 S12(i)S21( j) + 1

2 S21(i)S12( j) + 1
4 S11(i)S11( j) + 1

4 S22(i)S22( j) − 1
4 S11(i)S22( j) − 1

4 S22(i)S11( j), (B1)
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�Sb(i) · �Sb( j) = 1
2 S34(i)S43( j) + 1

2 S43(i)S34( j) + 1
4 S33(i)S33( j) + 1

4 S44(i)S44( j) − 1
4 S33(i)S44( j) − 1

4 S44(i)S33( j), (B2)

Pz(i)Pz( j) = 1
4 (S11(i) + S22(i) − S33(i) − S44(i))(S11( j) + S22( j) − S33( j) − S44( j)), (B3)

and
1
2 (Px(i)Px( j) + Py(i)Py( j))(4�S(i) · �S( j) + S0(i)S0( j))

= 1
2 (S13(i)S31( j) + S14(i)S41( j) + S23(i)S32( j) + S24(i)S42( j) + (i ↔ j)). (B4)

In the limit Jt = Jb = Jp = Jpz = J , we find that

HS = 1

2
J

∑
〈i j〉

∑
a,b=1,2,3,4

Sab(i)Sba( j) − 1

8
Jpz

∑
〈i j〉

n(i)n( j). (B5)

Note that − 1
2 Jpz

∑
〈i j〉 n(i)n( j) = − 3

8 JpzNs, where Ns is the number of sites.
For simplicity, we will define a new spin model

H̃S = HS + 1

8
Jpz

∑
〈i j〉

n(i)n( j). (B6)

Note that the term proportional to Jpz now becomes

1

4
Jpz

( ∑
a=1,2,3,4

Saa(i)Saa( j) + S11(i)S22( j) + S22(i)S11( j) + S33(i)S44( j) + S44(i)S33( j)

)
. (B7)

We simulate H̃S in DMRG calculation, its full form is

H̃S =
∑
〈i j〉

{
1

4
(Jt + Jpz )(S11(i)S11( j) + S22(i)S22( j)) + 1

4
(Jb + Jpz )(S33(i)S33( j) + S44(i)S44( j))

+ 1

4
(Jpz − Jt )(S11(i)S22( j) + S22(i)S11( j)) + 1

4
(Jpz − Jb)(S33(i)S44( j) + S44(i)S33( j))

+ 1

2
Jt (S12(i)S21( j) + S21(i)S12( j)) + 1

2
Jb(S34(i)S43( j) + S43(i)S34( j))

+ 1

2
Jp(S13(i)S31( j) + S14(i)S41( j) + S23(i)S32( j) + S24(i)S42(J )

+ S31(i)S13( j) + S32(i)S23( j) + S41(i)S14( j) + S42(i)S24( j))

}
. (B8)

We define the paired exciton operator as exciton of cooper pairs in the two layers. So PP†(i) =
(εσσ ′c†

t ;σ (i)c†
t ;σ ′ ( j))(εαβcb;α (i)cb;β ( j)), where j is a nearest-neighbor site of i. It can be expressed using our spin operators

as

PP†(i) = S13(i)S24( j) + S24(i)S13( j) − S14(i)S23( j) − S23(i)S14( j). (B9)

APPENDIX C: IOFFE-LARKIN RULE IN SLAVE
BOSON THEORY

We use the slave boson theory ci;aσ = ϕi fi;aσ . We assign
the charge that ϕi couples to aμ, ft couples to At

μ − aμ and fb

couples to Ab
μ − aμ. Note here we assume that the slave boson

is neutral. One can also let ϕ couples to Ac
μ, but the conclusion

will not change. We need to emphasize that there is only
one common U(1) gauge field aμ for the two layers. This is
because we are at total filling nt + nb = 1 and the gauge field
is introduced to fix the total filling of the fermions to be one
in the Mott insulator, so they must share the same gauge field.
Alternatively, one may use slave boson theory ci;aσ = ϕi;a fi;aσ

with independent slave boson ϕt , ϕb in the two layers. In this
approach the two layers will have independent U(1) gauge

field at , ab. However, only the total filling of ϕt , ϕb is an
integer one. So slave bosons can be put into a Mott insulator
with ϕ

†
t ϕt + ϕ

†
bϕb = 1 at each site. But it is impossible to

freeze the density at each layer and generically we will have
〈ϕ†

t ϕb〉 �= 0, which locks at = ab = a. For simplicity we will
use the formalism with a common slave boson in the two
layers.

Let us label Ja
μ as the physical current for the layer a. Ja

f ;μ
labels the current for faσ . Jϕ;μ labels the current of the slave
boson ϕ. We have constraint

Ja
μ = Ja

f ;μ (C1)

and

Jϕ;μ = Jt
f ;μ + Jb

f ;μ. (C2)
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FIG. 25. 〈PP†(q)PP−(−q)〉 at Jb = Jp = Jpz = 1 and Jt = 4 for system size Ly = 6, x = 1
18 and bond dimension m = 4000. PP†(q) is the

Fourier transformation of the paired exciton operator [PP†(i) in Eq. (B9)] living on a bond (i, i + x̂). (a) J ′
b = 0.08. (b)J ′

b = 0.10. (c) J ′
b = 0.12.

Boson couples to a, so we get

Jϕ;x = σbex (C3)

where eμ is the electric field of the internal gauge field aμ.
Fermion fa couples to Aa

μ − aμ, so we get

Jt
f ;x = σ f ;t

(
Et

x − ex
)
,

Jb
f ;x = σ f ;b

(
Eb

x − ex
)
. (C4)

With these equations together, we can get (Jt

Jb
) = σ (Et

Eb
) with

the 2 × 2 conductivity tensor as

σ =
( (σb+σf;b )σf;t

σb+σf;b+σf;t
− σf;bσf;t

σb+σf;b+σf;t

− σf;bσf;t

σb+σf;b+σf;t

σf;b (σb+σf;t )
σb+σf;b+σf;t

)
(C5)

and its corresponding resistivity tensor

ρc =
(

ρb + ρ f ;t ρb

ρb ρb + ρ f ;b

)
(C6)

where ρb = 1
σb

and ρ f ;a = 1
σ f ;a

.

1. A path integral derivation

We can also derive the same Ioffe-Larkin rule us-
ing the path integral. Let us start from the critical

FIG. 26. Inverse correlation lengths at Jb = Jp = Jpz = 1 and Jt = 2 for system size Ly = 6, x = 1
18 and m = 2000, 3000, 4000.
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FIG. 27. 〈�Sb(q) · �Sb(−q)〉 at Jb = Jp = Jpz = 1 and Jt = 2 for system size Ly = 6, x = 1
18 and m = 2000, 3000, 4000.

theory,

S =
∫

dτd2xψ†
t ;σ (τ, x)

(
∂τ − μt − ia0(τ, x) − 1

2
iAs

0(τ, x)

)
ψt ;σ (τ, x) − h̄2

2mt
ψ†

t ;σ (τ, x)

(
−i�∂ − �a(τ, x) − 1

2
�As(τ, x)

)2

ψt ;σ (τ, x)

+
∫

dτd2xψ†
b;σ (τ, x)

(
∂τ − μb − ia0(τ, x) + 1

2
iAs

0(τx )

)
ψb;σ (τ, x) − h̄2

2mb
ψ

†
b;σ (τ, x)

(
−i�∂ − �a(τ, x) + 1

2
�As(τ, x)

)2

ψb;σ (τ, x)

+
∫

dτd2x
∣∣(∂μ + iaμ − iAc

μ

)
ϕ
∣∣2 + s|ϕ|2 + g|ϕ|4 +

∫
dωd2q

(
k0|ω|
|q| + χd |q|2 + σb

√
|ω|2 + c2|q|2

)
|a(ω, q)|2. (C7)

Here Ac
μ and As

μ are probing fields and their responses are captured by the partition function Z[Ac
μ, As

μ] after doing the path
integral,

Z
[
Ac

μ, As
μ

] =
∫

d[a]d[ψt ]d[ψb]e−S. (C8)

FIG. 28. Inverse correlation lengths at Jb = 1, Jp = 2, Jpz = 5, and Jt = 4 for system size Ly = 6, x = 1
18 and m = 2000, 3000, 4000.
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FIG. 29. Spin structure factor at Jb = 1, Jp = 2, Jpz = 5 and Jt = 4 for system size Ly = 6, x = 1
18 and m = 2000, 3000, 4000. [(a),(b)]

〈�Sb(q) · �Sb(−q)〉; [(c),(d)] 〈�St (q) · �St (−q)〉.

We can do a simple redefinition aμ → aμ + Ac
μ, then we have

S =
∫

dτd2xψ†
t ;σ (τ, x)

(
∂τ − μt − ia0(τ, x) − iAt

0(τ, x)
)
ψt ;σ (τ, x) − h̄2

2mt
ψ†

t ;σ (τ, x)(−i�∂ − �a(τ, x) − �At (τ, x))2ψt ;σ (τ, x)

+
∫

dτd2xψ†
b;σ (τ, x)

(
∂τ − μb − ia0(τ, x) − iAb

0(τx )
)
ψb;σ (τ, x) − h̄2

2mb
ψ

†
b;σ (τ, x)(−i�∂ − �a(τ, x) − �Ab(τ, x))2ψb;σ (τ, x)

+
∫

dτd2x|(∂μ + iaμ)ϕ|2 + s|ϕ|2 + g|ϕ|4 +
∫

dωd2q

(
k0|ω|
|q| + χd |q|2 + σb

√
|ω|2 + c2|q|2

)
|a(ω, q)|2. (C9)

Integration of ψa leads to an effective action

Seff =
∫

dωd2q�b(iω, q)|a(ω, q)|2 + � f ;t (iω, q)|a(ω, q) + At (ω, q)|2 + � f ;b(iω, q)|a(ω, q) + Ab(ω, q)|2 (C10)

where we use the gauge �q · �A = 0 and �q · �a = 0.
From Z[At , Ab] = ∫

d[a]e−Seff we can integrate aμ and get
Z[At , Ab] = e− ∫

d2qdωAa (ω,q)�abAb(−ω,−q), with

�(iω, q) =
⎛
⎝ � f ;t (�b+� f ;b)

�b+� f ;t +� f ;b
− � f ;t � f ;b

�b+� f ;t +� f ;b

− � f ;t � f ;b

�b+� f ;t +� f ;b

� f ;b(�b+� f ;t )
�b+� f ;t +� f ;b

⎞
⎠. (C11)

Its inverse is

�−1 = 1

�b

(
1 1
1 1

)
+

(
1

� f ;t
0

0 1
� f ;b

)
. (C12)

Conductivity tensor is related to �(ω, q) = �(iω → ω +
iδ, q) through σab(ω, q) = 1

iω�ab(ω, q). Then we immedi-
ately derive the Ioffe-Larkin rule as in Eq. (C6).

APPENDIX D: MORE DMRG RESULTS FOR THE
FRACTIONAL SUPERFLUID

Here we provide more DMRG results to support the
existence of the fractional superfluid phase with paired ex-
citon condensation coexists with Z2 spin liquid discussed in
Sec. V C.

First, we still use the parameter Jb = Jp = Jpz = 1 and
Jt = 4 as in the main text in Sec. V C. In the main text we
already show that there is a large gap for single exciton and the
spin �St in the top layer at J ′

b = 0.10, 0.12. The spin in the bot-
tom layer has short ranged antiferromagnetic correlations with
momentum Q = K and Q = M respectively. The correlation
length of the paired exciton is quite large with almost zero

1
ξpp

extrapolated to infinite bond dimension. Here in Fig. 25

we show that 〈PP†(q)PP−(−q)〉 has peak at Q = 0 for both
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phases separated by the first-order critical point around J ′
b ≈

0.11. This establishes a uniform paired exciton condensation
order as we expected theoretically for both the Z2 SL I + PSF
phase and the Z2 SL II + PSF phase.

In the above we use a large value of Jt so the spin in
the top layer is strongly gapped. Next we use smaller val-
ues of Jt and show that the Z2 spin liquid + PSF phases
can still exist. In Fig. 26 we show the inverse correlation
lengths 1

ξ
for various operators at Jt = 2. Again 1

ξSt
and 1

ξP

are large and increase with J ′
b. Actually we believe that the

spin gap �t is still finite even at J ′
b = 0 for Jt = 2, as dis-

cussed in Sec. V B. ξ−1
Sb

still gets maximized around J ′
b ≈

0.15. In Fig. 27 we show later that there is still a transition
separating Z2 SL I phase at J ′

b = 0.12 and Z2 SL II phase
at J ′

b = 0.15.

We also show the inverse correlation lengths 1
ξ

for Jb = 1,
Jp = 2, Jpz = 5, and Jt = 4 in Fig. 28. This time at J ′

b = 0
there seems to have a very small 1

ξSt
and 1

ξSb
and is more consis-

tent with a single exciton condensation phase with magnetic
orders in both layers. Actually 〈 �St (q) · �St (−q)〉 is consistent
with the spiral phase discussed in Sec. V B 3 [see Fig. 29(c)].
However, when J ′

b � 0.08, we again see a large 1
ξSt

, 1
ξP

and

a finite value of 1
ξSb

, which is maximized at J ′
b = 0.20. At

J ′
b = 0.12 and J ′

b = 0.20, the only small 1
ξ

is from the paired

exciton operator. From 〈�Sb(q) · �Sb(−q)〉 [see Figs. 29(a) and
29(b)], we can see they are consistent with Z2 SL I + PSF
and Z2 SL II + PSF phase respectively. Therefore we con-
clude that a large value of Jpz does not destroy the fractional
superfluid phases.
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Phys. Rev. Lett. 121, 026603 (2018).
[76] M. P. Zaletel, S. Geraedts, Z. Papić, and E. H. Rezayi, Phys.
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