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A theoretical model for two new

tellurite sulfates,

namely Na,Cus(TeO3)(SO4);(OH), and

K,Cus(TeO3)(S04)3(OH)y, is determined to be compatible with ab initio calculations. The results obtained in
this paper show that some previous speculations in the literature about the couplings are correct, obtaining a
model with a mixture of ferromagnetic and antiferromagnetic couplings. We use a combination of numerical
techniques to study the magnetic properties of the model. Our numerical calculations based on the density-matrix
renormalization group method reveal that the system presents Ising-like magnetization plateaus at rational values

of the saturation magnetization.
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I. INTRODUCTION

Recently, Tang et al. [1] synthesized, by hydrother-
mal reaction, two new tellurite sulfates (TS) with a dis-
torted kagome strip structure: Na,Cus(TeO3)(SO4)3(OH)4
and K,Cus(TeO3)(S04)3(0OH), (referred to as Na-TS and
K-TS in the following). In both compounds, the magnetic
behavior is associated with the single unpaired electron
associated with each Cu®? ion, localized over a one-
dimensional (1D) kagome strip sublattice. This particular
geometry corresponds to the one-dimensional version of the
paradigmatic two-dimensional kagome lattice for which some
experimental realizations for S = 1/2 as the herbertsmithite
ZnCu3(OH)¢Cl; [2], the a-vesignieite BaCu3V,05(0OH), [3],
and [NH4],[C7H14N][V706F 315 [4] were studied.

The crystal structure of the compounds is schematized in
Fig. 1 and the simplified magnetic geometry we consider is
shown in Fig. 2. We show that several magnetic properties
such as magnetic plateaus are determined by the geometry of
the plaquette.

The synthesis of these compounds has aroused great inter-
est in the study of the magnetic phase diagram of models with
this kagome strip geometry [5—14]. In this sense, the presence
of magnetization plateaus [9], a Haldane-like phase [9], and
localized magnon crystal phases have been detected [6,15].
The studies carried out so far describe general phase dia-
grams in a parameter space that, a priori, is not related to
the couplings that describe these materials. Improving the
theoretical description then requires estimating the coupling
constants of the effective magnetic model. As proposed by
Noodleman [16], a way to determine these coupling constants
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is by comparing the spectrum of the reduced model to those
obtained by setting the corresponding magnetic configurations
in density functional theory (DFT)-based calculations. The
original method was successfully applied in the literature
to compute the magnetic coupling constants of many com-
pounds. However, as the number of coupling constants and
atoms in the supercell grows, the direct application of the
method becomes challenging: Since the number of possible
magnetic configurations grows exponentially with the num-
ber of magnetic atoms, and the evaluation of the energy of
each configuration is computationally expensive, to exhaust
the full set of magnetic configurations becomes impractical
even for a small number of magnetic atoms. On the other
hand, choosing a small set of magnetic configurations could
introduce a large bias in the determination of the coupling
constants. To overcome these issues, a novel strategy based on
Noodleman’s symmetry breaking method was proposed [17].
In this paper, that methodology is used to determine the cou-
plings in the magnetic model describing the tellurite sulfates.
A discussion about this coupling determination is presented
and we show that the S = 1/2 Heisenberg model with these
couplings describes the magnetic properties of the system
and allows us to determine qualitatively the behavior of the
magnetic transitions.

Inspired by the experimental determination of the atomic
distance we propose a model with five different magnetic
couplings and determine the set of coupling values compatible
with the energies calculated by density functional meth-
ods. The resulting model is numerically studied, determining
the zero-temperature magnetization curve by density-matrix
renormalization group (DMRG) calculations. We also deter-
mine some thermodynamical quantities for small systems by
exact diagonalization.

We analyze the magnetic plateaus at zero temperature
in the context of the Oshikawa-Yamanaka-Affleck (OYA)

©2022 American Physical Society
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FIG. 1. Crystal structure corresponding to Na-TS. The com-
pound K-TS is isostructural with Na-TS.

theorem [18] which provides the necessary condition for the
existence of these magnetization plateaus as

NS(1 — m) = integer,

where N is the number of spins in the ground state (GS) cell
presenting spatial periodicity and m = M /Mgy is the normal-
ized magnetization per site. If the translational symmetry in
the GS is preserved, then N = 5 and the magnetization curve
may have plateaus at m = 1/5 and m = 3/5. In the following,
we show that the GS periodicity is enlarged to N = 10, but
still only the semiclassical plateaus at m = 1/5 and m = 3/5
are present.

The paper is organized as follows: In Sec. II the basic
properties of the lattice and magnetic degrees of freedom
are discussed. In Sec. III we discuss details of the coupling
estimations by following the methodology of Ref. [17]. Es-
timated values of the coupling constants are also presented.
Then, in Sec. IV, we study the magnetic properties aris-
ing from the fitted model, both for large systems in the
zero-temperature limit, by DMRG calculations, and at fi-
nite temperature, through full diagonalization of the quantum

RV
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FIG. 2. (a) Distance between the kagome strip lattice for Na-TS.
(b) Labels of the Cu atoms in the 2D kagome strip.

TABLE 1. Crystal structural parameters for Na-TS and K-TS
compounds.

Na-TS K-TS
a(A) 7.294(3) 7.467(6)
b(A) 12.005(4) 12.177(9)
¢ (A) 9.214(3) 9.397(4)
o 90.0 90.0

B 111.160(6) 111.352(8)
% 90.0 90.0

model for small systems. Finally, in Sec. V, we present the
conclusions and perspectives.

II. MAGNETIC MODEL

Na-TS and K-TS are isostructural compounds that crystal-
lize in a monoclinic structure with space group P2;/m (see
Fig. 1). The structural information for both compounds is
reported in Table I. The atomic positions of each atom in the
structure for both Na-TS and K-TS can be found in Ref. [1].
In its three inequivalent crystallographic sites, the Cu*? jons
form distorted CuOg octahedra with bond lengths ranging
from 1.85 to 2.31 A (Na-TS) and 1.88 to 2.50 A (K-TS),
exhibiting a kagome strip arrangement which can be regarded
as a dimensional reduction of the kagome lattice.

Our aim in this paper is to study the magnetic behavior of
Na-TS and K-TS. Since the Te, S, O, H, and Na/K ions do not
present spin polarization, the spin lattice is determined by the
Cu*? jons that form the kagome strip lattice, as can be seen in
Fig. 2. Since each magnetic ion has a single localized unpaired
electron, its magnetic degree of freedom can be described as
aspin§ = 1/2.

In order to build a simple effective model for the mag-
netic degrees of freedom, we propose a symmetric Heisenberg
model

_Zji,jgi'gj» ey
()

with §i = %(ox,,-, 0y,i, 0,,;) the spin vector, and J; ; the cou-
pling constants. To determine them, we impose the constraint
that the difference between the DFT energy and the energy
of the Heisenberg model for a given set of couplings must
be lower than the DFT energy error (1 mRy). This is our
compatibility criterion.

The kagome strip lattice formed by the Cu ions in the
Na-TS and K-TS compounds is quite distorted, showing five
different Cu-Cu bond lengths (see Table II). The nearest
Cu-Cu distances between kagome strips are in the order of
434 A (Na-TS) and 4.44 A (K-TS), respectively, while the
shortest distances between the layers are 6.4 A (Na-TS) and
6.7 A (K-TS), respectively [see Fig. 2(a)].

In the present paper, we considered interactions up to 3.1 A
[Fig. 2(b)], i.e., we discard the interactions between contigu-
ous layers and neighbor strips. This implies the calculation
of five exchange couplings (Jy, Ji, J2, Ju, J4), schematized in
Fig. 3, of an effective spin-% Heisenberg model.

Once the model was established, DFT-based first-
principles calculations were performed to determine the total
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TABLE II. Distances between Cu atoms corresponding to each
coupling constant.

Na-TS K-TS Coupling constant
dew-cus (A) 3.01 3.07 I
deus.cuo (A) 2.84 2.89 J
deu.cr (A) 3.08 3.11 Jo
deatcis () 3.07 3.11 7
dew.cus (A) 2.94 2.96 J

energy of different spin configurations of Na-TS and K-TS.
Then, these configurations were mapped to an appropriate
spin model to obtain the exchange couplings. To obtain accu-
rate J,, values and their error bars, the methodology proposed
in Ref. [17] was followed. The energies calculated via DFT
are presented in Table III and Fig. 4.

III. FITTING COUPLING CONSTANTS FROM AB INITIO
SIMULATIONS

Following the procedure previously described, we start by
choosing a set of 11 magnetic configurations over a supercell
of dimensions 2a x 2b x c¢ (see Table III). The selection of
which configurations (and how many of them must be taken
into account) was made in order to optimize the sensitiv-
ity of the energy associated with the configurations for the
Heisenberg model under small changes in the coupling con-
stants [17].

A. Determination of the magnetic configuration energies

To determine the energy of each configuration in the
effective Heisenberg model, we need an estimation of
these energies for the full electronic model. To evaluate
them, first-principles calculations were performed in the
framework of the DFT [19], where the self-consistent Kohn-
Sham equations have been solved using the pseudopotential
and plane-wave method as implemented in the QUANTUM
ESPRESSO code [20], where the core ions were described
by the ultrasoft pseudopotential (USPP) from the standard
solid state pseudopotentials (SSSP) repository [21]. The
exchange-correlation part was described by the Perdew-
Burke-Ernzerhof parametrization of the generalized gradient
approximation (PBE-GGA) [22]. The kinetic energy cutoff

FIG. 3. Coupling constants in the Heisenberg model. Notice that
the inversion symmetry around the dashed light blue line reported in
the crystallographic data implies an alternating J;-J, pattern in the
diagonal bonds.

TABLE III. Subset of magnetic configurations of the Cu atoms
obtained with the algorithm presented in Ref. [17], and the corre-
sponding energies obtained from DFT simulations. Arrows indicate
the relative magnetic moment orientation of each Cu ion of Fig. 2(b)
represented by [Cul Cu2---CulO ). The values of the energies in
mRy are relative to the corresponding ferromagnetic configuration
and obtained for calculations with U = 5 eV. A comparison with the
results obtained for other values of U is depicted in Fig. 4.

Magnetic moment alignment ENats Ex.ts
0) O N R 0 0
0y AT =3.71 —-3.21
12) N D) 0.51 —-0.37
13) MR NANRY —2.09 —-0.37
14) [T —0.16 —7.00
I5) NN —2.81 —2.32
16) [T —1L13 —-1.33
17) [T 0.21 -2.92
18) [T 0.51 —-0.37
19) NIl 1.88 1.28
110) MR ARARY Y —1.06 —0.43

for the wave function and charge density used were 80 and
800 Ry, respectively. The reciprocal space was described by
a dense mesh grid of 12 x 12 x 12 k points and the spin-
polarized effect was considered to explore different collinear
magnetic states. In order to enhance the electronic struc-
ture description of the systems under study, we have added
the Hubbard term (DFT+U) using the simplified rotation-
ally invariant formulation [23]. The value of U = 5.0 eV for
the 3d-Cu orbitals was obtained using the linear-response
approach based on the density functional perturbed theory
(DFPT) [23].

For each spin configuration, lattice parameters and an-
gles were fixed at the experimental ones but all the atomic
positions were relaxed to minimize the forces on the ions.
Structural optimizations were performed until these forces
were below the tolerance criteria |[VE| < 0.1 eV/A. The
obtained atomic positions and bond lengths are nearly

2_
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0 2 4 6 8 10

configuration

FIG. 4. DFT estimated energies for the different spin config-
urations described in Table III for both compounds and different
values of the Hubbard’s parameter U. Notice that for U = 5 eV and
U = 8 eV the estimated energies are not significantly different.
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TABLE IV. Coupling constants compatible with the DFT ener-
gies for Na-TS. W is the magnitude of the strongest coupling constant
(max; |J;|/W = 1).

U=2eV U=5eV U=8eV
Ey (Ry) —5582.490(1)  —5582.175(1)  —5581.871(1)
W (mRy) 0.855 0.691 0.543
Jo/W —0.3(2) —0.3(1) —0.3(3)
3 W 0.2(3) 0.2(1) 0.3(6)
bW —0.9(2) —0.9(2) —1.0(5)
JuJW 1.0(5) 1.0(3) 0.8(9)
JaJW 0.4(5) 0.2(3) 0.3(8)
Tew (K) -8.10 ~8.74 -7.72

independent of the spin configuration considered and are
in excellent agreement with the experimentally determined
ones [1].

From DFT+U calculations, for U = 5 eV, and irrespective
of the magnetic configuration considered, the absolute values
of the magnetic moment of the Cu atoms are 2.02up and
2.07up for Na-TS and K-TS, respectively. These results for
the magnitude of the magnetic moments at the Cu sites are
in excellent agreement with the experimental ones [1]. The
direction of the magnetic moments is perpendicular to the 2D
Cu plane, i.e., the strip plane (see Fig. 2).

B. Coupling constant estimation

With the energies estimated at each fixed value of U, a first
estimation of the set of coupling constants was obtained by
means of a least-square fitting of the energies predicted in the
Heisenberg model. A sample of 10 000 candidates for the set
of coupling constants, with a Gaussian distribution around the
fitted values, was generated afterward. From these samples,
those whose configurational energy differed from the DFT
estimation in a difference larger than the DFT estimated error
(around 1 mRy) were discarded. The width of the Gaussian
distribution was chosen in a way that around 50% of the
resulting samples were rejected. Then, the value for each
coupling constant was assumed to lie between the minimal
and maximal values reached over the remaining configura-
tions. For the compound Na-TS (K-TS), the estimation for
the coupling constants with their corresponding uncertainties,
assuming different values of the U constant, are reported in
Table IV (Table V). Note that although varying the value of U

TABLE V. Coupling constants compatible with the DFT energies
for K-TS. W is the magnitude of the strongest coupling constant
(max; |J;|/W = 1).

U=2eV U=5eV U=28eV
Ey (Ry) —5597.510(1) —5597.194(1) 5596.890(1)
W (mRy) 0.871 0.599 0.555
Jo/W —-0.3(2) —0.4(1) —0.4(3)
I W 0.3(2) 0.3(5) 0.4(5)
bW ~1.002) —1.0(6) —~1.0(6)
JuJW 0.9(3) 0.9(8) 0.8(9)
Ja/W 0.3(3) 0.3(8) 0.(1)
Tew/W ~11.01 ~10.90 ~10.52

changes the general scale of couplings, its relative value and
sign remains invariant, so the conclusions obtained about the
magnetic behavior do not depend on the value of U. Moreover,
the estimated signs in the couplings are consistent with the
experimental observations, and with the estimations provided
by the Goodenough rules [24].

IV. MAGNETIC BEHAVIOR OF THE MODEL

A. Curie-Weiss temperature

Once the couplings of the magnetic model have been de-
termined and found to be reliable with respect to different
values of U and consistent with experimental evidence, we
explore the behavior of the effective magnetic model. From
the estimated coupling constants, and through a mean-field
approximation for large 7', the value of the Curie-Weiss tem-
perature can be estimated as

186+ D\ Xapdan
N\ 32 K

where N is the number of spins in the unit cell, k ~
0.086 17 meV/K is the Boltzmann constant, and the summa-
tion covers all the connected pair of spins. For S = 1/2 we
have

@

Ocw =

_Z(ij)‘](ij)
- 2Nk

From this expression and the fitted values of the cou-
pling constants, the model predicts Ocw (Na-TS) = —8.73 K,
0(K-TS) = —9.46 K, which are in good agreement with the
experimental ones [#(Na-TS) = —6.1(8) K and 9(K-TS) =
—13.9(4) K] [1]. These negative Weiss temperatures indicate
a global antiferromagnetic behavior of both systems, also con-
sistent with the experimental observations. We notice again
that the absolute value of these temperatures does not appre-
ciably vary with the choice of the Hubbard’s U parameter, so
the estimation for the Curie-Weiss temperature is robust.

Ocw

B. Magnetization at zero temperature

In order to study the magnetization as a function of the
applied magnetic field we use DMRG calculations for large
stripes (120 spins). For the calculations, we kept up to 500
states throughout the work, which showed to be enough to
achieve good precision. We calculate the GS energy cor-
responding to each magnetization sector and determine the
magnetization as a function of the applied magnetic field for
both materials. In the following, we present results for Na-TS
since the results corresponding to K-TS are similar.

The results for the magnetization versus magnetic field
corresponding to Na-TS are shown in Fig. 5. We observe
the presence of magnetic plateaus at m = 1/5 and m = 3/5.
These magnetic plateaus are allowed by the OYA crite-
rion [18]. In Fig. 6 we show the S; value corresponding to the
GS at m = 1/5 as a function of the site label. The observed
magnetic profile is consistent with a semiclassical plateau
similar to what we could expect for an Ising model. For this
magnetization sector, the GS periodicity is N = 10 and the
same periodicity is observed for m = 3/5. The OYA criterion
represents a necessary (but not sufficient) condition for the
appearance of magnetic plateaus. As in both materials, the
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FIG. 5. Magnetization vs magnetic field corresponding to the
Heisenberg model with the couplings estimated for Na-TS by ab ini-
tio calculations with U = 5 eV (see Table IV). Semiclassical plateaus
atm = M/M, = 1/5 and m = M /Mg, = 3/5 are clearly observed.

observed GS periodicity is N = 10 sites, and the OYA crite-
rion allows plateaus at m =0, m = 1/5, m =2/5, m = 3/5,
m = 4/5. It is interesting that only the semiclassical plateaus
atm = 1/5 and m = 3/5 are present.

In order to describe from a classical perspective the mag-
netic profile observed at m = 1/5 and m = 3/5, let us first
consider the simplest Ising limit of an isolated five-site
plaquette (S ;7 =1(0,0, S;)]. The exchange terms in the Hamil-
tonian for the plaquette read

H;j = Jo(S7S5 + S55%) + J1S5(S5 4 S%) + 1S5(S5 + S5).
3
It is easy to identify collinear ground states corresponding to
Hamiltonian (3). In Fig. 7 we show the Ising states corre-
sponding tom = 1/5 and m = 3/5 on the plaquette, where red
(black) lines correspond to antiferromagnetic (ferromagnetic)
couplings. Notice that, as the J; and J, are alternating in the
material, two different minimal energy patterns corresponding
tom = 1/5 can be found.
As the five-site cells are connected via ferromagnetic cou-
plings it is straightforward to extend these local magnetic

T T T T
e e m=1/,5 1 |
| I
AP eerE tres eert e
hon noy bon | \
oo AV hon o v
Ly Iy | Iy Iy
02'—:’:‘: b ""l":.:‘:.""?':"|:
—~ A vy DI U
- P TR oy TR !
) RN BTN . !
~— | Ll gy b | iy byt
Py Vg | !
NOO*‘ NLNEREE | [RANN} ! ,
n b THTRIRY P bt l|||,|l|| 1
I !
e R T R
! Wiy o P TRRTEEN !
waflEOWYY ey vy
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1 6 11 16 21 26 31 36

FIG. 6. Magnetization profile at m = 1/5 as a function of the
spin position corresponding to the Heisenberg model with the cou-
plings estimated for Na-TS by DFT calculations.

FIG. 7. Schematic representation of the expected Ising-like con-
figurations at m = 1/5 and m = 3/5. Top: Two minimal energy

configurations for m = 1/5. Bottom: Ising-like configuration for
m=3/5.

structures to the complete kagome strip lattice. For m = 3/5,
the result of this interaction is a product state of individual pla-
quettes in the same state, and the (normalized) magnetization
is still m = 3/5, as showed in Fig. 7 (bottom). For m = 1/5
alternating cell configurations can be built as showed in Fig. 7
(top).

The signs in the (S;) profile obtained by DMRG calcu-
lations are consistent with the classical picture. However,
quantum fluctuations contribute to lowering the strength of S<.

It is expected that the magnetic plateaus observed at 7 = 0
disappear with increasing temperature. In order to estimate the
temperature range where they could be observed, we studied
small clusters. From the previous analysis, we can expect
that at low temperatures, the correlation length is shorter than
the size of the unit cell. This allows estimating equilibrium
magnetic properties, such as magnetization, by looking at
the equilibrium states of small subsystems. To carry it out,
a reduced model of a single full unit cell with periodic con-
ditions was considered. The magnetization as a function of
the magnetic field and temperature was evaluated assuming a
thermal equilibrium state

M (S})  TrSe H/AT

"T My TS T STre BAT

with S5 =>". §f the z component of the total spin of the unit
cell and Hg the Hamiltonian of the reduced cell with periodic
boundary conditions.
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FIG. 8. Magnetization (top) and susceptibility (bottom) for the
Heisenberg model as a functionof Bfor T =2 K (left)and 7 = 5K
(right) for Na-TS and K-TS compounds for couplings obtained for
U=5eV.

The results suggest that the GS plateaus at m = 1/5 and
m = 3/5 disappear for temperatures around 5 K, but are still
manifested in the susceptibility. Magnetization curves for Na-
TS and K-TS are depicted for fixed, lower temperatures in
Fig. 8.

V. CONCLUSIONS

We have studied by a combination of DFT+U, full
diagonalization, and DMRG calculations two recently re-
ported tellurite sulfates, Na, Cus(TeO3)(SO4)3;(OH)4 and
K,Cus(TeO3)(SO4)3(OH)4 (Na-TS and K-TS, respectively),
that exhibit a 1D kagome strip lattice. Our DFT+U calcu-
lations, performed as a function of the Hubbard term U,
correctly predict the equilibrium structures of Na-TS and

K-TS, which are irrespective of the spin configurations of
both compounds. Based on an effective spin model, the five
main magnetic exchange couplings of the distorted kagome
strip lattice of Na-TS and K-TS were determined. Our calcu-
lations show that the relative couplings are nearly independent
of the U parameter. From these couplings, the Weiss tem-
peratures of Na-TS and K-TS were obtained. Regarding
the magnetic properties of Na-TS and K-TS, both materi-
als exhibit a mixture of ferromagnetic and antiferromagnetic
couplings. The ferromagnetic (J,,) coupling is associated with
the shortest Cu-Cu distance and a 90°-like superexchange
configuration for both compounds. The mixture was already
speculated when synthesizing these materials in the frame-
work of the Goodenough-Kanamori-Anderson rules. Our
calculations confirm these speculations and provide concise
numerical values for the couplings and the corresponding
uncertainties. These uncertainties turn out to be small enough
to be considered small corrections on the effective model.
Finally, numerical calculations at 7 = 0 based on the obtained
coupling constants reveals the existence of two plateaus in the
magnetization curve.
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