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Violation of Luttinger’s theorem in the simplest doped Mott insulator:
Falicov-Kimball model in the strong-correlation limit
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Luttinger’s theorem has long been taken as the key feature of Landau’s Fermi liquid, which signals the
presence of quasiparticles. Here, by the unbiased Monte Carlo method, violation of Luttinger’s theorem is
clearly revealed in the Falicov-Kimball (FK) model, indicating a robust correlation-driven non-Fermi-liquid
characteristic under any electron density. Introducing hole carriers to the half-filled FK model leads to Mott
insulator-metal transition, where the Mott quantum criticality manifests unconventional scaling behavior in
transport properties. Further insight on the violation of Luttinger’s theorem is examined by combining Hubbard-I
approximation with a composite fermion picture, which emphasizes the importance of a mixed excitation of the
itinerant electron and the composite fermion. Interestingly, comparing the FK model with a binary disorder
system suggests that the two-peak band structure discovered by Monte Carlo and Hubbard-I approaches is
underlying the violation of Luttinger’s theorem.
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I. INTRODUCTION

Electron correlation has long been the key ingredient of
modern condensed matter physics. In strongly correlated sys-
tems, such as the heavy fermion compound, cuprates, and
iron-based superconductors, correlation introduces various
unconventional metallic states [1–3]. The metallic state with
linear-T resistivity is often called strange metal after its
discovery in the normal state of high-Tc cuprates supercon-
ductors. Similar phenomena have also been found in heavy
fermion compounds where the magnetic quantum critical
point is approaching. These unconventional metallic states
cannot be understood in the framework of Landau’s Fermi-
liquid (FL) theory and have been empirically classified as
non-Fermi liquids (NFLs) due to anomalous thermodynamic
and transport properties [4]. Unfortunately, despite intensive
decades of studies, our knowledge of generic NFLs (beyond
artificial large-N limits or solvable models) is still very lim-
ited because the intrinsic strong-correlation effect is beyond
the scope of Hartree-Fock mean-field and perturbation theory
frameworks, thus intuitive understanding of these NFLs is
largely unknown.

Fortunately, Luttinger’s theorem provides a heuristic way
to understand the essence of the NFLs, which writes as

N

V
= 2

∫
ReG(k,ω=0)>0

dd k

(2π )d
, (1)
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for spinful systems [5]. The integral in momentum space
is taken over the propagator at the Fermi energy where
ReG(k, ω = 0) is positive (a more precise statement will
appear later). Luttinger’s theorem suggests the existence of
quasiparticles and has long been taken as a key feature of
FL. Recently, several numerical studies have confirmed that
Luttinger’s theorem is violated in the doped correlation-driven
Mott insulators, e.g., in the Fermi-Hubbard model, t − V ,
model and t − J model [6–15]. However, the accuracy of
these studies is affected by the dimension, size of the sys-
tem, limited temperature region, and crude approximation.
Especially for a doped Mott insulator lacking particle-hole
symmetry, due to the notorious minus-sign problem, the most
trustworthy determinant quantum Monte Carlo simulation of
the Fermi-Hubbard model is limited to a small size and high
temperature, whereas the analytical study can rarely predict
the nature of a specific system. In our previous work, we have
studied the violation of Luttinger’s theorem in the anisotropic
limit of the Kondo lattice, i.e., the Ising-Kondo lattice model
[16]. Considering the specific feature of the Ising-Kondo
lattice, the unbiased study of the violation of Luttinger’s
theorem is still insufficient and a more generic and trans-
parent system that permits unbiased Monte Carlo simulation
on a large size close to the thermodynamic limit is heavily
desired.

We note that the Falicov-Kimball (FK) model is an ideal
platform to study Luttinger’s violation of the doped Mott
insulator. The FK model is an alternative Hubbard model,
which can be exactly solved within the framework of dynam-
ical mean-field theory in infinite dimension [17]. Hitherto,
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most studies about the FK model are restricted to the weak
coupling regime, where the long-range correlation and the
natural tendency to phase separation conspire to rich pat-
terns in the zero-temperature phase diagram [17,18]. These
stripelike or inhomogeneous charge orderings can correspond
to kinds of strongly correlated electron systems [19–21], such
as the doped cuprates [22–32], layered cobalt oxides [33,34],
and nickelates [35–39]. It used to be thought that the FK
model in small interaction (use U as its strength) is more
unconventional, while the large U situation can be simply
mapped onto an effective Ising model, and thus its underlying
physics has been rarely reported in literature [40]. In this
paper, we instead focus on the strong coupling regime and
reveal that the strong correlation leads to nontrivial quantum
states beyond Landau’s FL paradigm. At high temperatures,
the FK system has no long-ranged charge order and thus could
be clearly studied in terms of the violation of Luttinger’s
theorem. It was reported that the Anderson insulator can be
induced by any finite correlation at the thermodynamic limit
[41]. Here, we find that in the doped Anderson insulator
with sufficient correlation (U > Uc), the single band evolves
into a robust two-band structure, with which Luttinger’s theo-
rem is violated. The disappearance of quasiparticles suggests
the crossover from FL to NFL occurs in the Anderson in-
sulator with increasing interaction. The evolution of band
structure and the Luttinger integral (LI) can be exactly covered
by a binary disordered system, with which we confirm the
two-band structure is underlying the violation of Luttinger’s
theorem. Actually, not all the NFLs can violate Luttinger’s
theorem. When the Mott gap is absent, where the single-
band structure in the NFL sustains under interaction, such
as the Sachdev-Ye-Kitaev model, Luttinger’s theorem is sat-
isfied [42]. Combined with previous studies, for the specific
NFLs arising from the doped Mott insulator, the NFL nature
is attributed to the change of band structure, and this kind
of NFLs can be confirmed by the violation of Luttinger’s
theorem.

The remainder of this paper is organized as follows: In
Sec. II, the FK model is introduced and its phase diagram
is briefly discussed. The strange metal state is demonstrated
by the calculation of resistivity and specific heat. In Sec. III,
we show that Luttinger’s theorem is violated in the FK model
in terms of direct numerical calculation. In Sec. IV, we pro-
vide some analytical results with the Hubbard-I approach
and analyze it by the composite fermion. In Sec. V, with
the assistance of Luttinger’s theorem, the phase diagram in
the U -T plane at half filling is elaborated. A binary dis-
ordered system is discussed. We compare the violation of
Luttinger’s theorem and the spectrum function between the
disordered system and the FK model and end the paper with a
summary.

II. MODEL AND METHOD

We consider the FK model [17] on a square lattice; the
Hamiltonian is defined as

Ĥ = −t
∑
i, j

ĉ†
i ĉ j + U

∑
i

n̂iŵi − μ
∑

i

n̂i, (2)

where ĉ†
j (ĉ j ) is the itinerant electron’s creation (annihilation)

operator at site j. n̂ j = ĉ†
j ĉ j denotes the particle number of

the itinerant electron, while ŵ j denotes the particle number
operator for the electron in the localized state. The t term de-
notes the hopping integral and only nearest-neighbor hopping
is involved. U is the onsite Coulomb interaction between the
itinerant electron and the localized electron. The hole doping
into the half-filled system (μ = U

2 ) is realized by tuning the
chemical potential μ.

In Eq. (2) we neglect the chemical potential term
(−μ f

∑
i wi) of the localized electrons. Note that [ŵ j, Ĥ ]= 0,

which means the number of localized electrons at each site
is conservative (wi = 0 or 1) for a specific chemical poten-
tial μ f . Therefore, the localized electrons do not have any
dynamic properties or the time-dependent Green’s function,
even if μ f is included. The chemical potential of localized
electrons will affect the properties of c electrons merely
through changing the localized electron number. In this con-
text we focus on the situation where the f electron is half
filling to access a more nontrivial system (see Supplemental
Material [43]).

Taking the eigenstates of the number operator of local-
ized electron ŵ j as bases, the Hamiltonian is automatically
reduced to an effective free fermion model:

Ĥ (w) = −t
∑
i, j

ĉ†
i ĉ j + U

∑
i

niŵi − μ
∑

i

ni. (3)

Here, w emphasizes its w dependence and ŵi|wi〉 = wi|wi〉,
wi = 0, 1. Now the many-body eigenstate of the original
model can be constructed by the single-particle state of the
effective Hamiltonian under a given configuration {wi}, and
thus the Monte Carlo simulation can be simply carried out.
In this context, we consider the square lattice with periodic
boundary conditions. The sampling using the truncation algo-
rithm is used, with which we are able to carry on a simulation
of the system as large as Ns = 3600 [44]. Since the ther-
modynamic and transport properties of the FK model have
been studied in the literature, here we focus on the nature
of the Fermi surface. Therefore, a 60×60 square lattice is
mainly used in the calculation of LI, while the others are
calculated with a 20×20 square lattice. Accordingly, the two-
dimensional Brillouin zone is sampled by a 60×60 k-point
grid. The nearest-neighbor hopping integral is used as the unit
(t = 1) to measure all energy scales. To attack the NFLs in
the doped Mott insulator, we focus on the strong coupling
regime (U = 10). In this paper, we dope the half-filled FK
model and consider the hole-doping case by tuning the chem-
ical potential μ. The translation from hole doping to electron
doping is straightforward due to the particle-hole symmetry.
Compared with the Hubbard model, due to the lack of spin
degree of freedom, in the FK model the itinerant electron on
each site contains only one possible state. The particle-hole
symmetry also dictates that the particle density is nc = 0.5
when μ = U

2 .
As indicated in the previous studies in Refs. [18,40,45],

the low-temperature ordered states could be identified with
structure factor Sω

q (Q), correlation function gn, and the
renormalized correlation function Gn, which are respectively
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FIG. 1. The phase diagram of the Falicov-Kimball (FK) model
in the μ-T plane at U = 10. The nearest-neighbor hopping integral
is used as the unit (t = 1) to measure all energy scales. The low-
temperature regime is divided into a charge density wave (CDW)
state and phase separation (PS) state by a first-order transition.
At high temperatures, there exists a Mott insulator state around
the half-filling situation and three distinguishable non-Fermi-liquid
(NFL) states. A quantum critical region is induced by doping-driven
Mott insulator-metal transition. With increasing doped holes, the
Mott insulator crosses over successively to the first non-Fermi-liquid
(NFL-I) state, the strange metal (SM) state, and finally to the second
non-Fermi-liquid (NFL-II) state.

defined as

gn = 1

4N

N∑
i=1

∑
τ1,τ2=±1

w(ri )w(ri + τ1x̂ + τ2ŷ),

Gn = (−1)n4
(
gn − ρ2

i

)
,

Sw
q (Q) = 4

N

∑
i, j

eiQ(Ri−R j )wiw j, (4)

where ρi = Nf

Ns
is the concentration of localized electrons. Nf

and Ns are the numbers of lattice sites and localized electrons,
respectively. The above-mentioned quantities reveal a charge
density wave (CDW) state at a low temperature around the
half-filling situation. Away from half filling, inhomogeneity
is indicated by the charge distribution in real space, which
has a finite density of state around the Fermi energy. As for
high temperature, the phase is detected by the properties of
transports, thermodynamics, and spectral function. Accord-
ingly, we elaborate a phase diagram under strong coupling
(U = 10) on the μ-T plane with rich quantum states. The
result is summarized in Fig. 1, where three different kinds
of NFLs are uncovered with distinguishable thermodynamics
and transports. At high temperatures, around half filling cor-
relation opens the gap and leads to the Mott insulator. Doping
holes into the half-filled FK model drives the Mott insulator-
metal transition accompanied by Mott quantum criticality.
With decreasing particle density, the Mott insulator crosses
over to the first non-Fermi-liquid (NFL-I) state, the strange
metal state, and the second non-Fermi-liquid (NFL-II) state,
subsequently. Actually, the resistivity displays unambiguous

FIG. 2. The SM behavior in the FK model. (a) Logarithm tem-
perature dependence of the capacity heat coefficient C(T )/T . (b) The
linear-T resistivity. (c) The quantum critical scaling behavior. In the
quantum critical region, the resistivity satisfies the quantum critical
scaling. The SM is the metal-like part and the NFL-I is referred to as
the insulatorlike part.

bifurcating quantum scaling behavior:

ρ(T, δμ) = ρ∗(T ) f [T/T0(δμ)], (5)

where T0(δμ) = c|δμ|zν , δμ = μ − μ∗(T ), and μ∗(T ) is the
critical “zero field” trajectory corresponding to the “separa-
trix” line. ρ∗(T ) is calculated for μ = μ∗(T ) and f (x) denotes
the unknown scaling function. The resistivity on the separatrix
is almost independent of temperature. The NFL-I and the
strange metal together comprise the quantum critical region
[see Fig. 2(c)]. The insulatorlike branch and metallic branch
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satisfy different scaling functions f but have the same critical
exponent zν = 1.25. The NFL-I is near the Mott insulator and
has insulatorlike features, where an upturn exists in the resis-
tivity curves at low temperatures. The strange metal state with
a lower electron density instead shows the metallic transport
properties. In such a quantum critical region, the FK model
transits from insulator to metal. As shown in Figs. 2(a) and
2(b), the strange metal state is confirmed with linear-T resis-
tivity and logarithm heat capacity coefficient dependence. In
metallic states, resistivity follows ρ(T ) = ρ0 + AT n. Around
the separatrix line of the quantum critical region, resistivity
shows a quadratic dependence of temperature (n = 2) and
turns to linear dependence (n = 1) when crossing over to
strange metal. Further decreasing electron density, the scal-
ing behavior is lost but linear-T resistivity sustains, which is
referred to as the NFL-II state.

III. VIOLATION OF THE LUTTINGER THEOREM

Given the unconventional transports and thermodynamics,
it is natural to explore the quasiparticle properties in the high-
temperature regime of the FK model. To achieve this aim,
we examine the validity of Luttinger’s theorem [5,46–48],
which states that if the Landau quasiparticle exists, the volume
enclosed by the Fermi surface is consistent with its density
of particles. Such theorem has been proved originally by
Luttinger and Ward in terms of the Luttinger-Ward functional
in the framework of perturbation theory [46,47], and later by
Oshikawa’s nonperturbative topological argument [48]. It now
has been accepted as a key feature of FL. Mathematically,
Luttinger’s theorem defines the LI below,

LI =
∫

ReG(k,ω=0)>0

dd k

(2π )d
, (6)

and for general FL it must be equal to the density of particles
(nc):

LI = nc. (7)

Here, G(k, ω) is the retarded single-electron Green’s function
and θ (x) is the standard unit-step function with θ (x > 0) = 1
and θ (x < 0) = 0.

Intuitively, if we use the momentum space single-particle
state |k〉, the particle density nc can be obtained by integrating
the Fermi-Dirac distribution function with the weight w(k) for
each |k〉:

nc =
∫

w(k) × f (k)
dd k

(2π )d
. (8)

At zero temperature in a free system, every |k〉 state has
the same spectral weight w(k) = 1, and the Fermi distribu-
tion function f (k) is the unit-step function of energy f (k) =
θ (−εk ). Thus, the particle density is equal to the proportion
enclosed by the Fermi surface, which is the same as the LI,
and naturally Luttinger’s theorem is satisfied.

Note that the LI is the positive proportion of the real part
of the retarded Green’s function in the first Brillouin zone,
mathematically equal to the proportion enclosed by the Fermi
surface. Actually, for any system, the LI can be interpreted
as the integral of the Fermi-Dirac distribution function with a

FIG. 3. Schematic picture of the violation of Luttinger’s theo-
rem. For a free system with specific filling, the volume of the Fermi
surface can be constructed by Luttinger’s theorem. The red circle
denotes the Fermi surface of a free system. The white region is en-
closed by the Fermi surface of the interacting system. Adiabatically
turning on the interaction in the free system (left) with fixed particle
density, the volume enclosed by the Fermi surface sustains as the
free one until some critical coupling strength (middle). Under strong
enough coupling (right), the interaction changes the volume enclosed
by the Fermi surface from the free system. In fact, the violation
of Luttinger’s theorem suggests the NFL state has no quasiparticle
which can be originated from the free system; we use the magnified
grid in the Fermi surface to indicate changes in statistics.

constant weight w(k) = 1:

LI =
∫

1 × f (k)
dd k

(2π )d
, (9)

which is the counting of the occupied |k〉 state. According to
Eqs. (8) and (9), the working of Luttinger’s theorem suggests
w(k) = 1, i.e., in momentum space every volume element

dd k
(2π )d can contain one electron. Thus the counting of the
electron number is equal to the counting of the occupied |k〉
state. The many-body state and the excitation can be described
clearly by the wave vector k, which is a characteristic of the
quasiparticle picture.

As shown in Fig. 3, by adiabatically turning on the cor-
relation, the free fermion system evolves into FL, with the
|k〉 state modified on the perturbative level. In the FL state,
the correspondence between the original state and the final
state is valid, although the dispersion relation is modified
by interaction. The correspondence between the free system
and the FL suggests the presence of quasiparticles, where the
weight of each |k〉 state is still invariant as w(k) = 1. Actually,
although the volume of the new Fermi surface in FL is invari-
ant, its shape should depend on the form of self-energy. With
an isotropic interaction, the real part of self-energy in mo-
mentum space is also isotropic, leading to an invariant Fermi
surface. Since the interaction in the FK model is isotropic,
in its FL regime we expect a Fermi surface, the same as
in a free system. However, with anisotropic interaction, the
resultant self-energy is inhomogeneous in momentum space,
and thus the Fermi surface can be deformed even within the
FL (see the white region in the middle panel of Fig. 3). Even
though the interaction may change the occupied |k〉 state, if
only w(k) = 1, the volume enclosed by the Fermi surface is
invariant with fixed particle density. It suggests the key feature
of FL is the invariant spectral weight.
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FIG. 4. Spectral function at Fermi energy Ak(ω = 0) (upper
panel) and the real part of the Green’s function at Fermi energy
ReG(k, ω = 0) (lower panel) in the FL (left panel, U = 1, T = 0.2,
nc = 0.3) and the SM state (U = 10, T = 0.2, nc = 0.3, right panel).
According to Luttinger’s theorem, the Fermi surface of a free system
with particle density nc = 0.3 is denoted by the white circle. The
location of the Fermi surface is in accordance with the zero values of
the real part of the Green’s function.

We emphasize that Luttinger’s theorem is valuable for the
study of exotic metallic states. Given a specific filling, Lut-
tinger’s theorem provides a method to reconstruct the Fermi
surface of a free system with the same particle density. For
a specific correlated system, we can confirm the presence of
quasiparticles if its Fermi surface encloses the same volume as
the free system. Figure 4 displays the imaginary and real part
of the retarded Green’s function of the FK model at nc = 0.3
under different coupling strengths. The upper panel plots the
c electron’s spectral function Ak(ω = 0) in the first Brillouin
zone and the lower panel plots the real part of the Green’s
function ReG(k, ω = 0), both of which are plotted around the
Fermi energy. Based on Luttinger’s theorem, we utilize the
particle density to plot the Fermi surface of a free system with
the white line. Note that whether in the FL (left panel) or in
the strange metal state (right panel) the location of the Fermi
surface is always coincident with the zero values of the real
part of the Green’s function. This ensures that in the strange
metal state the LI is equal to the proportion enclosed by the
Fermi surface.

For a weak coupling situation (left panel, U = 1), the
interacting Fermi surface coincides with the free system, sug-
gesting an FL nature. As for the strong coupling situation
(right panel, U = 10), the interacting Fermi surface becomes
heavily deformed. The volume of the Fermi surface is greater
than the free one, which involves more possible occupied |k〉
states. As shown in the right panel of Fig. 3, when increasing
the interaction, the correspondence between the original state
in the free system and the final many-body state in NFL disap-
pears at some critical coupling strength. This suggests that the
average spectral weight decreases, w(k) < 1, and on average
a |k〉 state can contain an electron number less than 1. For

FIG. 5. An overall illustration of the violation of Luttinger’s
theorem. The Luttinger integral (LI) vs density of electron nc at
T = 0.2. In FL (U = 1 and 2), the electron density and Fermi surface
are in accordance with Luttinger’s theorem. At stronger coupling
(U = 4), the proportion of the first Brillouin zone enclosed by the
Fermi surface deviates from the density of electrons for most doping
regimes, thus confirming their NFL nature. Further increasing cou-
pling strength leads to a stronger deviation (U = 10).

conventional fermions, the Pauli exclusion principle permits
only one electron in a state, whereas in the NFL the strong
interaction effectively increases the exclusion in statistics.

In Fig. 5, we demonstrate the overall LI with varying cou-
pling strength and varying filling. As reference, two dotted
black lines are plotted as nc = LI and 2×LI. Here, nc = LI
is the LI of a free system, around which Luttinger’s theo-
rem works well. At exactly half filling, Luttinger’s theorem
works well at any coupling strength, due to the existence of
particle-hole symmetry. With increasing coupling strength,
Luttinger’s theorem sustains to U = 2. When U > 2 the vi-
olation emerges and the magnitude increases gradually with
increasing interaction. The degree of deviation corresponds
to the degree of deformation of the Fermi surface, compared
with the free system. Note that for a specific coupling strength
U , the particle density changes the degree of deviation, but
the deviation/similarity of two Fermi surfaces is robust with
doping. This robust violation corresponds to the rigid band
structure of the FK model. It suggests a robust NFL-like
nature for all paramagnetic phases in the phase diagram (see
Fig. 1).

Actually for the lattice model with finite sites, the above
momentum integral should be replaced by a discrete summa-
tion of the k-point grid. Frankly speaking, Eq. (8) is strictly
valid only for zero temperature. Since interesting physics like
NFLs and the strange metal behavior often exist at finite T ,
here we follow the recent quantum determinant Monte Carlo
study on the doped Hubbard model in Ref. [7] and still use
Eq. (8) to estimate the validity of Luttinger’s theorem at fi-
nite temperature. As indicated in our previous work, at the
high-temperature regime the thermal effect on the LI is small
[16]. As shown in Fig. 5, at low-filling level LI displays a
linear dependence of the particle density LI = a × nc whereas
a �= 1 indicates the changes of statistics in NFLs. Here, the
spectral weight is w(k) = 1

a . The linear-nc behavior sustains
until some critical particle density, which is closely associated
with the band structure. The critical nc is correspondent to
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the coincidence of Fermi energy and the pseudogap. Not only
the critical particle density (nc ≈ 0.25) but also the critical
coupling strength (Uc = 2) all turn out to be closely related to
the band structure. These properties will be further discussed
in the binary disordered system in the final section.

IV. HUBBARD-I APPROXIMATION AND COMPOSITE
FERMIONS ANALYSIS

In the last section, with unbiased Monte Carlo simulation,
we study the violation of Luttinger’s theorem in the FK lattice.
In this section, we want to further study the microscopic
mechanism of the violation of Luttinger’s theorem analyti-
cally. In the high-temperature situation, one can follow the
Hubbard-I approximation to give a rough solution for the
FK model. At first, we use the equation of motion (EOM)
formalism and define the retarded Green’s function as [49]

Gi, j,σ (ω) = 〈〈ĉiσ |ĉ†
jσ 〉〉. (10)

By using the standard EOM relation,

ω〈〈Â|B̂〉〉ω = 〈[Â, B̂]+〉 + 〈〈[Â, Ĥ ]−|B̂〉〉ω. (11)

For the FK model, the Hamiltonian can be rewritten as

Ĥ = −t
∑
i, j

ĉ†
i ĉ j + U

2

∑
i

(2ŵi − 1)n̂i +
(

U

2
− μ

) ∑
i

n̂i.

(12)
In the half-filled situation, it follows that

ω〈〈ĉi|ĉ†
j 〉〉ω = δi j − t�im〈〈ĉm|ĉ†

j 〉〉ω + U

2
〈〈(2ŵi − 1)ĉi|ĉ†

j 〉〉ω.

(13)
Here, �im denotes that m is the nearest-neighbor site of i. For
〈〈(2ŵi − 1)ĉi|ĉ†

j 〉〉ω, we have

ω〈〈(2ŵi − 1)ĉi|ĉ†
j 〉〉ω = 〈(2ŵi − 1)〉δi j − t�il〈〈(2ŵi

− 1)ĉl |ĉ†
j 〉〉ω + U

2
〈〈ĉi|ĉ†

j 〉〉ω. (14)

If no further EOM is involved, to close the EOM we have to
decouple 〈〈(2ŵi − 1)ĉl |ĉ†

j 〉〉ω as

〈〈(2ŵi − 1)ĉl |ĉ†
j 〉〉ω � 〈2ŵi − 1〉〈〈ĉl |ĉ†

j 〉〉ω. (15)

In the paramagnetic strong coupling regime, there is no finite
CDW order, thus 〈(2ŵi − 1)〉 = 0. Meanwhile, the contribu-
tion from 〈〈(2ŵi − 1)ĉi|ĉ†

j 〉〉ω vanishes due to the decoupling
and the above equation has a complete solution:(

ω − U 2

4ω

)
〈〈ĉi|ĉ†

j 〉〉ω = δi j − t�im〈〈ĉm|ĉ†
j 〉〉ω, (16)

which can be written as(
ω − U 2

4ω

)
Gi, j (ω) = δi j − t�imGm, j (ω). (17)

Now, performing the Fourier transformation

Gi, j (ω) = 1

Ns

∑
k

eik(Ri−Rj )G(k, ω), (18)

FIG. 6. LI vs density of electron nc at T = 0.2. It displays the
violation of Luttinger’s theorem by Monte Carlo simulation (blue,
U = 10) and the Hubbard-I approximation method (orange, U = 10),
respectively. The LI of the free fermion system (yellow) is plotted as
a reference.

we have
∑

k

(
ω − J2

16ω

)
G(k, ω)eik(Ri−Rj )

=
∑

k

eik(Ri−Rj ) − t�imG(k, ω)eik(Rm−Rj+Ri−Ri ). (19)

Here, −t�imeik(Rm−Ri ) = −t
∑

δ e−ikδ = εk and we have∑
k[(ω − U 2

4ω
)G(k, ω) − 1]eik(Ri−Rj ) = 0, which gives the

single-particle Green’s function as

G(k, ω) = 1

ω − U 2

4ω
− εk

= α2
k

ω − Ê+
k

+ 1 − α2
k

ω − Ê−
k

. (20)

Here, the coherent factor α2
k = 1

2 (1 + εk√
ε2

k +U 2
) and

Ê±
k = 1

2

[
εk ±

√
ε2

k + U 2
]
. (21)

With the above single-particle Green’s function, we plot the LI
at U = 10 by the Hubbard-I approximation (orange line with
circle marker) as a function of particle density and compare
it with the Monte Carlo result (blue line with circle marker)
in Fig. 6. As a reference, the LI of the free fermion system is
plotted in a yellow line with a circle marker.

It turns out that the Hubbard-I approximation provides an
accurate evaluation for the Fermi surface at a strong coupling
regime. This agreement between results of the Hubbard-I ap-
proximation and the Monte Carlo simulation is reasonable,
since the system is under a strong-correlation limit, where the
energy scale of the interaction (U/t = 10) is much larger than
the temperature (T/t = 0.2). Compared with the situation in
the Hubbard model, in the FK model the Hubbard-I approx-
imation works better, which can almost recover the violation
of Luttinger’s theorem. This advantage in the FK model is
attributed to the commutation between the interaction and
hopping terms

[2ŵi − 1, ĉiĉ
†
j ] = 0, (22)

where the EOM truncates naturally at the second order only if
we assume Eq. (15) works.
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As mentioned above, the violation of Luttinger’s theorem
suggests the correspondence between FL and NFL is lost. We
cannot access an approximated formalism of the quasiparticle
by renormalizing parameters, such as the effective mass. This
reminds us that an unconventional type of quasiparticle (not
Landau quasiparticle) excitation should be expected, only if it
exists. To access an intuitive understanding of the violation
of Luttinger’s theorem in terms of an approximated quasi-
particle, we provide a composite fermion approach with a
similar result compared with the Hubbard-I approximation.
We note that the interaction term in Eq. (2) can be inter-
preted as the hybridization between the itinerant electrons and
some composite fermions f †

j = (2ŵ j − 1)c†
j , which satisfies

the commutation relation of fermions

{ f †
i , f j} = (2ŵi − 1)(2ŵ j − 1){c†

i , c j} = δi j . (23)

However, the commutation relation between the composite
fermion and the itinerant electron is nontrivial:

{c†
i , f j} = (2ŵ j − 1){c†

i , c j} = (2ŵ j − 1)δi j . (24)

Now the FK Hamiltonian can be written as

Ĥ = −t
∑
i, j

ĉ†
i ĉ j + U

4

∑
i

( f̂ †
i ĉi + ĉ†

i f̂i ) +
(

U

2
− μ

) ∑
i

n̂i.

(25)
We assume {c†

i , f j} can be replaced by its average value. At
the high-temperature paramagnetic regime < (2n̂ j − 1) >= 0
and thus the composite fermion and itinerant electron restore
a standard commutation relation {c†

i , f j} = 0. It suggests at
high temperatures we can treat the composite fermion as a
conventional fermion. By Fourier transformation, the Hamil-
tonian can be written as

Ĥ =
∑

k

(ĉ†
k f̂ †

k )

(
εk + U

2 − μ U
4

U
4 0

)(
ĉk

f̂k

)
. (26)

The dispersion is given by diagonalizing the Hamiltonian:

Ê±
k = 1

2

[
εk ±

√
ε2

k + U 2

4

]
. (27)

This dispersion is similar to the Hubbard-I results, with a
gap 	E = U

2 smaller than 	EHubbard-I = U . This composite
fermion phenomenologically suggests that the elementary ex-
citation of the FK model consists of the contribution of both
the itinerant electron and the composite fermion. Therefore, it
is hard to describe the many-body state in terms of a single
(Landau) quasiparticle picture. As particle number increases
by 1, the correspondent many-body state of the momentum
space occupied a volume larger than dd k

(2π )d . However, the draw-
back of the composite fermions picture is also obvious. The
composite fermions picture can merely provides an intuitive
qualitative analysis. One can apply it also in one dimension,
but we know that there the FL state is broken through charge-
spin separation, not formation of composite fermions.

V. DISCUSSION AND CONCLUSION

We note the robust violation/working of Luttinger’s theo-
rem for a specific coupling strength in the doped FK model,

FIG. 7. The phase diagram of the FK model in the U -T plane
at a half-filling situation. The low-temperature regime is a CDW
state under any finite coupling. At high temperatures, three different
states are uncovered. Under weak coupling the system sustains as an
FL until U = 2. At moderate coupling, the Anderson insulator (AI)
emerges with a crossover. Further increasing correlation leads to the
MI with a fully opened energy gap.

which is invariant under different doping. Therefore, Lut-
tinger’s theorem can not only help tell NFLs from FLs in
the doped system, but also help distinguish different states
under different coupling strengths at half filling, although
the working of Luttinger’s theorem is protected there by the
particle-hole symmetry. According to the order parameter in
Eq. (4), the density of state, the inverse participation ratio,
and the critical coupling strength where Luttinger’s theorem
fails with doping, the half-filling phase diagram of the FK
model in the U -T plane can be elaborated as in Fig. 7. At low
temperatures, the CDW state exists under any finite interaction
U . At high temperatures, under strong coupling (U > 6), the
FK model is a Mott insulator with a fully opened energy gap.
Under weak coupling (U < 2), the FL nature sustains. Under
a moderate coupling (2 < U < 6), there exists a finite density
of state around Fermi energy while the two-band structure
emerges. The localization revealed by the inverse participation
ratio suggests an Anderson insulator.

Note that the phase diagram is different from the previous
one in Ref. [41]. In Ref. [41], the whole metallic regime is in-
dicated as the localization state, where the Anderson insulator
state can be extrapolated to any finite small coupling at the
thermodynamic limit. In this paper, according to the critical
coupling strength where Luttinger’s theorem is violated in the
doped FK lattice, we find that the Anderson insulator state
can be further divided into an FL state at weak coupling and
an NFL state at strong coupling. Moreover, the FL state is not
simply the effect of finite size, which can sustain to U ≈ 2 at
the thermodynamic limit.

Since the Anderson localization in the FK model has long
been attributed to the disorder effect [50], it is valuable to
check the pure effect of disorder on the working of Luttinger’s
theorem. We wonder whether increasing the strength of disor-
der will lead to the disappearance of quasiparticles. Since the
doped FK model possesses a robust rigid two-band structure
at strong coupling, some connection may exist between the
robust violation of Luttinger’s theorem and the robust two-
band structure, which also corresponds to the singularity of
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FIG. 8. (a)–(c) Density of state under different coupling/disorder
strength at nc = 0.3 at high temperature T = 0.2. The density of state
of the FK model is denoted by the blue line, and the binary disordered
system is denoted by the red line. (d) In the FK model, the energy
gap is opened under small interaction U = 1 at low temperature
T = 0.01. This opened gap can easily be erased by either thermal
fluctuation or doping holes.

the Green’s function at the high-energy regime [51]. However,
we wonder whether the origin of band splitting is also impor-
tant. To this end, it is necessary to study a disordered system,
which could induce a two-band structure in the absence of
interaction. Thus, in this section, we construct a Hamiltonian
with interaction replaced by the discrete binary disorder to
study Luttinger’s theorem in a two-band system, which is
written as

Ĥ = −t
∑
i, j

ĉ†
i ĉ j −

∑
i

(μi − μ0)n̂i. (28)

Different from the FK model, where μ is fixed during a Monte
Carlo simulation, in this disordered system chemical potential
is composed of two parts and the binary disorder is introduced
by μi. For each site i, μi is randomly taken as μi = ±Udisorder.
μ0 instead is a fixed number in Monte Carlo simulation and it
is used to tune the particle density.

We show the density of state at nc = 0.3 for this dis-
ordered system (red line) with different disorder strengths
in Figs. 8(a)–8(c) and compare it with the FK model (blue
line). It turns out that when |μi| = UFK, μ0 = μFK − UFK

2 , the
spectral function of the FK model agrees with the disordered
system perfectly with varying coupling/disorder strength U .
Even the locations of the pseudogaps are in accordance with
each other. At small coupling/disorder strength (U = 1), only
one quasiparticle peak exists and it is the same with the
free electron situation. Under a moderate coupling strength
(2 < U < 6), the two-peak structure emerges while the gap is

FIG. 9. LI vs density of electron nc at T = 0.2. It displays the
violation of Luttinger’s theorem in the binary-disordered system.
Within a weak disorder (Udisorder = 1 and 2), the system behaves as
a general FL, where the electron density is in accordance with Lut-
tinger’s theorem. Within stronger disorder (Udisorder = 4), the doped
Anderson insulator shows the NFL nature, where the proportion
enclosed by the Fermi surface deviates from the density of electrons
for the majority doping regime. Further increasing disorder strength
leads to a stronger deviation (Udisorder = 10).

still not fully opened. The finite density of state around the
Fermi energy and the two-peak structure leads to the localiza-
tion of the FK/disordered system. This region is referred to as
the Anderson insulator. Increasing coupling/disorder strength
makes the gap fully opened, and the scale can be tuned by the
magnitude of U .

As shown in Fig. 9, we further demonstrate the LI in
the disordered system, as a function of disorder strength and
particle density. We study the working/violation of Luttinger’s
theorem and the evolution of the spectral function at different
parameters, to confirm the role that the band structure plays
in the violation of Luttinger’s theorem. As shown in Fig. 8(a),
when the one-band structure sustains (U = 1), Luttinger’s the-
orem works well where the Fermi surface enclosing a volume
consistent with the particle density nc (see Fig. 9). Increasing
the disorder (U = 4) opens an energy gap 	E ∼ U in the
middle of the spectrum and introduces the deviation of LI,
suggesting a deformed Fermi surface with a larger enclosed
volume. Note that at U = 4 the FK model is in the Anderson
insulator state, where the gap is not fully opened. It indicates
that the violation of Luttinger’s theorem is directly caused
by the two-peak structure, i.e., by the singularities of the
self-energy at both high and low frequencies, rather than by
the fully opened Mott gap. Further increasing the disorder
(U = 10) leads to greater deviation and finally accesses the
Mott insulator at half filling.

The LI in Fig. 9 is similar to the FK one shown in Fig. 5. In
both the FK model and the disordered system, the working of
Luttinger’s theorem depends on the band structure. We want
to emphasize that if the Anderson localization is introduced
by the Gaussian-type disorder instead of this discrete disorder,
Luttinger’s theorem will not be violated due to the absence of
a two-band structure. Therefore, we conclude that the NFL
nature is not caused by localization.

As a function of particle density, the behavior of LI
is associated closely with the characters of the spectrum
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function, e.g., another singularity around the pseudogap. In
both U = 10 and 4 situations, the LI displays a linear depen-
dence of particle density when nc < 0.25, where nc = 0.25 is
correspondent to the filling around the pseudogap.

The previous study based on cluster dynamical mean field
theory suggests that the FK model is never a strict Landau FL
even at a weak coupling situation (U/t ≈ 0.5) [52]. However,
our paper indicates that Luttinger’s theorem is working per-
fectly at U/t = 1 as shown in Fig. 4, which instead is a clear
signal for the presence of the quasiparticle. The disagreement
originates from the fact that the NFLs we discussed here are
embedded in high-temperature paramagnetic regimes, where
the effect of thermal fluctuation plays an important role. Ac-
tually, as shown in Fig. 8(d), the CDW ground state of the FK
model is robust for any finite U , in which the interaction splits
the energy band and leads to a fully opened gap. However,
different from the real NFLs, this two-band structure is not ro-
bust and can be simply destroyed by either thermal fluctuation
or doping holes. Therefore, only conventional FL is revealed
under weak coupling. Only if the coupling strength is larger
than the critical value Uc (Uc = 2) can the energy gap sustain
under thermal fluctuation and doping.

In this paper, with unbiased Monte Carlo simulation,
we reveal an unambiguous violation of Luttinger’s theo-
rem in the doped FK model. Under strong coupling, doping
holes in the half-filling FK lattice leads to a Mott insulator-
metal transition. Intriguingly, the NFL nature is robust under
strong coupling at any finite doping. As shown in Fig. 1,
at high-temperature regimes three different NFLs are re-
vealed. Empirically, we used to distinguish the NFL features
by unconventional transport and thermodynamic properties,
such as the linear-T resistivity and logarithm dependence of
the heat capacity coefficient in the strange metal state. Al-

though demonstrating various thermodynamical and transport
behaviors, their NFL-like nature does originate from a com-
mon ground in the spectrum. Here, with Luttinger’s theorem,
we demonstrate the deformation of the Fermi surface in the
NFLs is associated with the transfer of spectral weight. After
reliable numerical simulation, we try to analytically access
the violation of Luttinger’s theorem. With the Hubbard-I ap-
proximation approach where we have solved the EOM to the
second order, the violation of Luttinger’s theorem is repro-
duced quantitatively. To provide a more intuitive picture, we
construct the composite fermion. It turns out that the excita-
tion in the FK model is mixed of the itinerant electron and
the composite fermion, which cannot be simply described by
elementary excitation formalism of a specific particle. Con-
sidering the lack of quasiparticles, the breakdown of the FL
paradigm is predictable. Finally, a binary disordered model is
constructed to discuss the connection between the violation of
Luttinger’s theorem and the feature of the spectrum. This dis-
ordered system can cover the density of states in the FK model
perfectly. In such a different model which emphasizes the
disorder effect rather than interaction, the two-band structure
can also deform the Fermi surface directly. In conclusion, the
violation of Luttinger’s theorem in the doped Mott insulator
is directly connected to the two-band structure, where the
change of statistics can be taken as the key feature of NFLs
underlying unconventional phenomena.

ACKNOWLEDGMENT

This research was supported in part by Supercomputing
Center of Lanzhou University. We thank the Supercomputing
Center of Lanzhou University for allocation of CPU time.

[1] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17
(2006).

[2] G. R. Stewart, Rev. Mod. Phys. 83, 1589 (2011).
[3] B. J. Powell and R. H. McKenzie, Rep. Prog. Phys. 74, 056501

(2011).
[4] N. R. Poniatowski, T. Sarkar, R. P. S. M. Lobo, S. Das Sarma,

and R. L. Greene, Phys. Rev. B 104, 235138 (2021).
[5] I. Dzyaloshinskii, Phys. Rev. B 68, 085113 (2003).
[6] L. D. Landau, Sov. Phys. JETP 3, 920 (1957).
[7] I. Osborne, T. Paiva, and N. Trivedi, Phys. Rev. B 104, 235122

(2021).
[8] E. W. Huang, R. Sheppard, B. Moritz, and T. P. Devereaux,

Science 366, 987 (2019).
[9] J. Schmalian, M. Langer, S. Grabowski, and K. H. Bennemann,

Phys. Rev. B 54, 4336 (1996).
[10] J. Kokalj and P. Prelovšek, Phys. Rev. B 78, 153103 (2008).
[11] W. O. Putikka, M. U. Luchini, and R. R. P. Singh, Phys. Rev.

Lett. 81, 2966 (1998).
[12] J. Kokalj and P. Prelovšek, Phys. Rev. B 75, 045111 (2007).
[13] C. Gröber, R. Eder, and W. Hanke, Phys. Rev. B 62, 4336

(2000).
[14] J. Kokalj and P. Prelovšek, Eur. Phys. J. B 63, 431 (2008).

[15] J. Ortloff, M. Balzer, and M. Potthoff, Eur. Phys. J. B 58, 37
(2007).

[16] W.-W. Yang, Y.-X. Li, Y. Zhong, and H.-G. Luo, Phys. Rev. B
104, 165146 (2021).

[17] J. K. Freericks and V. Zlatić, Rev. Mod. Phys. 75, 1333
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