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Weyl semimetals and nodal line semimetals are characterized by linear electronic bands touching at zero-
dimensional points and one-dimensional lines, respectively. Recently, it has been predicted that nodal line
semimetals can be driven into tunable Floquet-Weyl semimetals by circularly polarized light. Here we study the
occurrence of interface states between two regions of a nodal line semimetal illuminated by two beams of light
with opposite circular polarizations. Within a minimal model we find remarkable modifications of the energy
structure by tuning the polarized light, such as the possible generation of Van Hove singularities. Moreover, by
adding a δ doping of magnetic impurities along the interfacial plane, we show the occurrence of a switchable
and topologically nontrivial, vortexlike pseudospin pattern of the interface states.
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I. INTRODUCTION

The field of research in topological materials has seen
an outburst since the discovery of the first quantum state to
break the Landau paradigm on the classification of phases of
matter [1]. A new characterization of these materials through
topology has been established [2–10]. One of the most dra-
matic effects of a nontrivial topology in many materials is
the existence of metallic, dissipationless and protected states
that occur at the boundaries of the sample. This property is
known as bulk-boundary correspondence, it was first discov-
ered in the context of the integer quantum Hall effect [11],
and it was then predicted and observed in topological insu-
lators [6,7,10,12–15] and in other gapless materials, such as
the Dirac semimetals [8,10,16–20], the nodal line semimetals
(NLSMs) [9,10,21–29], and the Weyl semimetals (WSMs)
[8,10,30–39]. Specifically, the NLSM is characterized by lin-
ear valence and conduction bands that cross each other along
a one-dimensional curve in the three-dimensional Brillouin
zone at the Fermi energy [9,10], whereas in the WSM the
linear valence and conduction bands touch each other in single
points, known as Weyl points (WPs). Each WP is either a
source or a sink of a quantum of Berry flux, and a couple
of WPs produce characteristic zero-energy lines in the surface
energy spectrum, known as Fermi arcs [8,10,36,37,40].

Recently, the interest in topological materials has moved
towards their possible applications for quantum technologies
[41–49]. The robustness of the topological properties against
weak perturbations make these materials good candidates
as efficient platforms for quantum computing [47]. In this

*Corresponding author: federico.bonasera@dfa.unict.it

framework, the problem of controlling and engineering these
topological phases of matter rises. In particular, the Floquet
engineering of a system through a periodic drive has been
the subject of a wide theoretical investigation [[24,50,51,51–
56,56,57,57,58,58–83]], and experimental studies have also
been performed [61,84–89]. The concept of Floquet engineer-
ing has also been recently applied to topological systems with
the aim of, for example, creating anomalous topological states
with no static counterpart [51,56,66–75,90] and, in particular,
of inducing topological phase transitions [24,57,58,64,76–
79,91,92]. Specifically, it was predicted that irradiating a
NLSM with circularly polarized light induces, to first order
in the inverse frequency of light 1/ω, a transition to a WSM
phase with tunable WPs [80–83]. Recently, interface electron
systems with topological materials have attracted attention
[93,94], also those generated by a dynamic drive [95,96].

In this work we study the emergence of electronic surface
states at the interface between two half-spaces of a NLSM
irradiated by two monochromatic light beams with opposite
circular polarizations, respectively. Here we show how two
different light intensities can modify the electronic band struc-
ture up to introducing a Van Hove singularity (VHS) in the
density of states of the interface system. A VHS is a logarith-
mic divergence in the density of states generally caused by a
saddle point in the energy spectrum of two-dimensional (2D)
systems [97,98]. When VHSs lie at the Fermi energy, they
enhance electron interactions and can cause electronic insta-
bilities: they can induce phenomena such as superconductivity
[99–113], charge density waves [110,114,115], and spin den-
sity waves [109,110,116–118]. For these reasons, VHSs in
topological systems have attracted great interest in the aim
for exotic correlated quantum states [119–125], such as topo-
logical superconductivity [126–128]. Moreover, we find that,
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FIG. 1. Schematic of the system. The lower z < 0 and upper z >

0 half-spaces of the infinite NLSM are irradiated by high frequency
monochromatic lights of intensities and polarizations (AL, φL ) and
(AU, φU), respectively.

by adding a narrow magnetic barrier at the interface between
the two induced WSMs, it is possible to switch on/off a
topological phase of the interface system by using suitable
different light intensities.

This paper is organized as follows. In Sec. II we introduce
a simple two-band model used to describe a z-symmetric
NLSM. In Sec. III, following Ref. [80], we show how, using
the Floquet formalism in the high frequency limit [129], the
circularly polarized light induces a transition from NLSM to
WSM. In Sec. IV we study the interface states which lay
along the boundary between two induced WSMs. Within the
two-band model, the interface eigenstates have a spinorial
form where the components represent the orbital degree of
freedom. Here we focus on energy dispersion and pseudospin
texture 〈σ〉 evaluated on the interface states, where the Pauli
matrix vector σ acts on the orbital subspace. Finally, we show
in Sec. V the topological effects on the interface system of in-
troducing a magnetic barrier between the two induced WSMs.

II. MODEL

In this work we study the interface states which emerge at
the boundary plane of two half-spaces of an infinite NLSM
irradiated respectively by two light beams of opposite circular
polarizations. Figure 1 shows the setup analyzed, where the
upper (lower) half-space z < 0 (z > 0) is represented by the
blue (green) region of the NLSM, and it is irradiated by a
light beam characterized by an intensity AL (AU) and a phase
φL (φU). Here we focus on monochromatic light in the high
frequency regime, such that we can use the high frequency
expansion within the Floquet formalism [129]. Without loss
of generality, we consider a light drive polarized along the y-z
plane and described by the following vector potential:

A(t ) = A[0, cos (ωt ), sin (ωt + φ)], (1)

where φ = 0 (φ = π ) corresponds to the right (left) handed
circular polarization.

To describe many topological materials at low energies,
the following model [7,21,23,24,130,131] based on the Dirac
Hamiltonian supplemented by quadratic corrections is usually
adopted:

H (k) =
(

m −
∑

i=x,y,z

Bik
2
i

)
β +

∑
i=x,y,z

αiviki + ε(k)1, (2)

where the Dirac matrices {β, αi} square to one and anti-
commute with each other, 1 is the identity matrix, k is the

crystal momentum, ε(k) is an electron-hole symmetry break-
ing term, and we have set h̄ = c = kB = 1. The values of
the microscopic terms m, B, v, and ε(k) depend on the spe-
cific topological material [27,29,132]. The number of nonzero
components of B and v determines the dimension of the
degeneracy subspace in the energy spectrum. Moreover, the
nontrivial topology of systems described by the Hamiltonian
(2) is given by the band inversion that occurs from |k| = 0,
H (k) → mβ to |k| → +∞, H (k) → −∑

i=x,y,z Bik2
i β, with

mBi > 0 [133]. To analyze the interface states which lay along
the plane z = 0, without loss of generality, in the Hamiltonian
expressed in Eq. (2) we disregard the quadratic momentum
contribution along z direction (Bz = 0). This simplification
allows using a fully analytical approach without missing any
topological features of the electron system, this is illustrated in
Appendix B. Therefore, the low-energy electronic properties
of the NLSM are described by the following Hamiltonian:

H (k) = [
m − B

(
k2

x + k2
y

)]
σx + vkzσz, (3)

where {σi} are the Pauli matrices which act on an orbital
subspace, and, for the sake of simplicity, we have dropped
the electron-hole symmetry breaking term ε(k). It is useful to
rewrite the Hamiltonian (3) as

H(p) = [
1 − (

p2
x + p2

y

)]
σx + upzσz, (4)

where the energies are expressed in units of m, and the di-
mensionless momentum and velocity are defined as p = k/b
and u = (b/m)v, with b = √

m/B. The eigenenergies of the
Hamiltonian (4) are expressed as

E±(p) = ±
√[

1 − (
p2

x + p2
y

)]2 + (upz )2, (5)

where conduction and valence bands touch each other at the
circular nodal ring defined by p2

x + p2
y = 1, on the pz = 0

plane. Finally, we notice that the nodal ring is protected
by the z-mirror symmetry, i.e., (iσx )H(p⊥, pz )(−iσx ) =
H (p⊥,−pz ), where p⊥ = (px, py).

III. DRIVE NLSM INTO FWSM

Following Ref. [80], within the Floquet formalism and
accordingly to the high frequency expansion, we show here
how a NLSM can be driven into a Floquet-Weyl semimetal
(FWSM) by shining circularly polarized monochromatic light
on it. In the presence of the vector potential of the form
expressed in Eq. (1), by applying the Peierls substitution
p → p + eA(t )/b, we obtain a time periodic Hamiltonian

H(p, t ) = {
1 − p2

x − [py + e
 cos(ωt )]2
}
σx

+ u[pz + e
 sin (ωt + φ)]σz, (6)

where the dimensionless quantity 
 = A/b is proportional
to the light intensity A. The periodic Hamiltonian above can
be expanded in Fourier series as H(p, t ) = ∑

n Hn(p)e−inωt ,
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where

H0 = [
1 − e2
2/2 − (

p2
x + p2

y

)]
σx + upzσz, (7a)

H±1 = −e

(
2pyσx ± ie±iφuσz

)
/2, (7b)

H±2 = −e2
2σx/4, (7c)

and H±n = 0 for |n| > 2. Within the Floquet formalism, in the
high frequency regime (ω � |m|), we resort to a perturbative
approach which describes the dynamics of the system by the
time independent effective Hamiltonian [129]

Heff (p) = H0(p) +
∑
n�1

[H+n,H−n]

n�
+ O

(
1

�2

)
, (8)

where � = ω/m is the frequency of the incident light in units
of m. Using the Fourier coefficients expressed in Eqs. (7), we
obtain the following commutators:

[H+1,H−1] = e2
2

4

[
2pyσx + ieiφuσz, 2pyσx − ie−iφσz

]
= e2
2upy

2

(
eiφ + e−iφ

)
i[σz, σx]

= −2e2
2u cos (φ)pyσy, (9a)

[H+2,H−2] = 0, (9b)

which lead to the effective Hamiltonian

Heff (p) = [
p̄2 − (

p2
x + p2

y

)]
σx + λpyσy + upzσz, (10)

where

p̄ =
√

1 − e2
2/2, (11a)

λ = −2e2
2u cos (φ)/�. (11b)

The corresponding eigenenergies are

E±(p) = ±
√[

p̄2 − (
p2

x + p2
y

)]2 + (λpy)2 + (upz )2, (12)

which are degenerate only at two WPs placed at P± =
(±p̄, 0, 0). By linearizing the Hamiltonian expressed in
Eq. (10) around the WPs as Heff (q±) = ∑

i j vi jqi,±σ j , with
qi,± = pi − Pi,±, and by calculating the determinant of vi j , we
find the chiralities of the two WPs as χ± = sgn[Det(vi j )] =
±sgn(cos φ). These are only determined by the polarization
of the incident light [80].

IV. INTERFACE SYSTEM

In this section we focus on the states which emerge at the
interface between two regions of an infinite NLSM irradiated
by two beams of light with opposite circular polarizations.
In the high frequency regime we describe each region by an
effective Floquet Hamiltonian, which is denoted as HU (HL)
for the upper (lower) half-space z > 0 (z < 0). The effective
Floquet Hamiltonians are expressed as

H j (p) = [
p̄2

j − (
p2

x + p2
y

)]
σx + λ j pyσy + upzσz, (13)

where

p̄ j =
√

1 − e2
2
j/2, (14a)

λ j = −2e2
2
ju cos (φ j )/�, (14b)


 j = Aj

b
, (14c)

j ∈ {L, U} denotes the half-space, and sgn(λUλL) < 0 be-
cause of the opposite circular polarizations of the two beams
of light. We note here that the assumption we make of an
infinitely sharp interface between the two regions does not
undermine the results of the study. Indeed, in this work we
study topological interface modes which are a consequence of
the topology mismatch between the two regions and are thus
robust against the details of the system, such as those of the
interface. For example, this was shown in Ref. [134] where
the authors find that the degree of smoothness of an inter-
face between topological materials does not interfere with the
metallic interface modes and does, instead, introduce spurious
massive interface modes in addition to the topological ones.

In order to find the interface states, first, we solve sep-
arately the two Schrödinger equations associated with each
half-space, then we impose the normalizability of the wave
function, and its continuity at the interface at z = 0. Since
we focus on the interface at z = 0, we replace pz with −i∂z

while, because of the translational invariance along the x and y
directions, px and py remain good quantum numbers. The sta-
tionary Schrödinger equation associated with each half-space
is expressed as

H j (p⊥, pz → −i∂z )ψ j (r) = E (p⊥)ψ j (r), (15)

where p⊥ = (px, py), E (p⊥) is the eigenenergy, and all
lengths are measured in units of 1/b. To solve the problem
above, we use the following ansatz [131]:

ψ j (r) = eipxxeipyy

(
ψ

j
1

ψ
j

2

)
eμ j z, (16)

which is spatially localized close to the plane z = 0 only
if Re(μ jz) < 0, where |Re(μ j )| represents the localization
length of the interface states around the z = 0 plane. By
replacing Eq. (16) into Eq. (15), we obtain the secular equa-
tion for the eigenenergies

det [H j (p⊥, ∂z → μ j ) − E1] = 0, (17)

which is solved by μ j = ±μ̄ j , where

μ̄ j ≡ 1

u

√[
p̄2

j − (
p2

x + p2
y

)]2 + (λ j py)2 − E2, (18)

which can be either a real or a pure imaginary number. For
each half-space j, by setting μ j = ±μ̄ j , the nontrivial so-
lutions of the homogeneous linear system [H(p⊥,±μ̄ j ) −
E](ψ j

1,±, ψ
j

2,±)T = 0 are expressed as

(
ψ

j
1,±

ψ
j

2,±

)
=

(
p̄2

j − (
p2

x + p2
y

) − iλ j py

±iuμ̄ j + E

)
. (19)
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For a given p⊥, the general wave function is expressed in the
spinorial form as

�p⊥ (r) = N eipxxeipyy[�(−z)�L(z) + �(z)�U(z)], (20)

� j (z) =
∑
�=±

C j
�

(
ψ

j
1,�

ψ
j

2,�

)
e�μ̄ j z, (21)

where j ∈ {L, U}, N is the normalization prefactor, and �(z)
is the Heaviside step function. The coefficients {C j

� } are
determined by imposing the boundary conditions. The first
condition is the the normalizability of the wave function,
which is equivalent to impose �(r) → 0 for |z| → ∞. The
second condition is the continuity of the wave function at
z = 0. The first condition is satisfied by setting CU

+ = 0 and
CL

− = 0. Then, the continuity condition can be compactly

expressed as

MC = 0, (22)

where

M =
(

ψU
1,− −ψL

1,+
ψU

2,− −ψL
2,+

)
, (23)

and C = (CU
−,CL

+)T. For a given p⊥, Eq. (22) is solved by a
nontrivial set of coefficients {CU

−,CU
+}, for the values of energy

E which nullify the determinant of M.

A. Interface electronic band

The secular equation det M = 0 is explicitly expressed as

(−iuμ̄U + E )(αL − iλL py)

− (iuμ̄L + E )(αU − iλU py) = 0,
(24)

where α j = p̄2
j − (p2

x + p2
y ), and it is solved by

E (p⊥) = py
{[

1 − (
p2

x + p2
y

)](

2

L cos φL − 
2
U cos φU

) − e2

2 
2
U
2

L(cos φL − cos φU)
}

√(
�
4u

)2(

2

U − 
2
L

)2 + (

2

U cos φU − 
2
L cos φL

)2
p2

y

, (25)

where the inequality cos φU cos φL < 0 guarantees a mis-
match in topology between the two regions and, consequently,
the existence of the interface states. For each p⊥, E (p⊥) rep-
resents the eigenenergy of an interface state if one has both
Reμ̄L �= 0 and Reμ̄U �= 0. Otherwise, if Reμ̄L = 0 (Reμ̄U =
0) the solution obtained is delocalized along the lower (up-
per) half-space, and it describes a bulk state. Therefore, the
condition μ̄Lμ̄U = 0 allows defining the boundaries of the
domain of existence in the 2D momentum space of the in-
terface states. We infer that the topological properties of the
interface states depend on the relative arrangement in the 2D
momentum space kx − ky of the Weyl points surface projec-
tions (WPPs) of the upper and lower FWSMs. In our system,
this relative arrangement is determined by the different light
intensities on the two half-spaces of the NLSM. Indeed, for
each FWSM, through Eq. (11a), the WPPs can be moved
closer or farther away from the origin of momenta by chang-
ing the light intensity 
 j . This degree of freedom can produce
two relevant arrangements. The symmetric case, using two
identical light intensities 
U = 
L, where the WPPs of the
two FWSMs are coincident, p̄U = p̄L, and the asymmetric
case, using different light intensities 
U �= 
L, where the
WPPs of the two FWSMs are separated, p̄U �= p̄L. Figure 2
shows the density plots of the energy dispersion of the inter-
face states as a function of the momentum components px and
py, in the symmetric case [Fig. 2(a)], and the asymmetric case
[Fig. 2(b)]. In Fig. 2(a), where 
U = 
L = 3, the interface
states are well defined in the whole 2D momentum space with
the exception of the py = 0 axis (solid white line). Along
the py = 0 axis, for each px the electronic band composed
of the interface states merges into the bulk conduction (va-
lence) band at the energy E = +| p̄2 − p2

x| (E = −| p̄2 − p2
x|).

In Fig. 2(b), where 
U = 2 and 
L = 3, the interface states
are delimited by solid (dashed) boundary lines, which are the

solutions of μ̄U = 0 (μ̄L = 0). In particular, at the red (blue)
boundary lines the interface band merges into a conduction
(valence) bulk band. The Fermi line, black line in Fig. 2(b),
is composed of a circumference that surrounds the origin of
momenta and two segments that lay along the py = 0 axis.
The intersections of the segments and the circumference of the
Fermi line correspond to two saddle points. The appearance
of the saddle points at the Fermi energy leads to a Van Hove
singularity in the density of interface states (DOS) [98]. Thus,
starting from the dispersion relation of the interface states, we
write the corresponding DOS as

ρ(E ) =
∫

d p⊥
(2π )2 δ[E − E (p⊥)], (26)

where δ(x) is the Dirac delta function. In the symmetric
case, setting the opposite polarizations φU = π and φL = 0,
the energy dispersion has the following quadratic form:

E (p⊥) = sgn(py)
[
p̄2 − |p⊥|2], (27)

and it is straightforward to obtain an analytical expression for
the DOS

ρ(E ) = 1

8π

[
�

(−E + p̄2
) + �

(
E + p̄2

)]
, (28)

that is shown in Fig. 3(a). Figure 3(b) displays the DOS in the
asymmetric case, where a Van Hove singularity appears at the
Fermi energy E = 0. A Van Hove singularity always appears
in the DOS when 
U �= 
L, independently of the specific val-
ues of 
U and 
L. Therefore, we have seen that by tuning the
intensities of the two beams of light, one can change the WPPs
arrangements, generating modifications both in the domain of
existence of the interface states and in the shape of the Fermi
line. This is the first most important result of this work: one
can engineer a Van Hove singularity in a 2D interface electron
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FIG. 2. Density plots of the energy dispersion of the interface states as a function of the momentum p⊥ = (px, py ). In both panels, the black
lines represent the Fermi line E = 0, and we set u = 1, � = 10, φU = π , and φL = 0. (a) The light intensities are identical, 
U = 
L = 3.
Here each green dot represents two coincident WPPs with opposite chiralities, and the solid white line represents the locus where the interface
electronic band merges into the bulk bands. (b) The light intensities are different, 
U = 2 and 
L = 3. Here the boundary solid (dashed) lines
are solutions of μ̄U = 0 (μ̄L = 0). In particular, the red (blue) lines describe the merging of the interface band into a conduction (valence) bulk
band. Moreover, red and blue dots represent WPPs with positive and negative chirality, respectively.

FIG. 3. Density of interface states as a function of the energy
E , shown in the blue line in both panels. (a) The symmetric case
(AU = AL = 3), where the supplemental dashed red (green) line cor-
responds to the contribution �(E + p̄2)/(8π ) [�(−E + p̄2)/(8π )].
(b) The asymmetric case (AU = 2, and AL = 3), where at zero energy
a Van Hove singularity occurs. In all panels we set u = 1, � = 10,
φU = π , and φL = 0.

system by illuminating a NLSM with two beams of light of
different intensities and opposite polarizations.

B. Pseudospin texture

Next, we analyze the pseudospin texture of the interface
eigenstates, which gives further information on the topo-
logical nature of the interface system. For each interface
eigenstate, labeled by p⊥, we define the corresponding pseu-
dospin vector as

〈σ〉p⊥ =
∫

dr�†
p⊥ (r)σ�p⊥ (r), (29)

where �p⊥ (r) is the wave function expressed in spinorial
form, accordingly to Eq. (20). In the symmetric case (AU =
AL) the pseudospin texture has a trivial pattern. Here the
pseudospins are all aligned along the x direction, i.e., 〈σ〉p⊥ =
[sgn(λpy), 0, 0]. In the asymmetric case (AU �= AL) the do-
main of existence of the interface states is homeomorphic to
an annulus [see Fig. 2(b)], and we characterize the topological
properties of the interface system by focusing on the generic
closed paths that cannot be shrunk into points. In particular,
we calculate the winding number [135], which is defined for
any closed path � parametrized by τ ∈ [0, 1] as

ν(�) = 1

2π

∫ 1

0

(
〈σ〉p⊥ (τ )

d

dτ
〈σ〉p⊥ (τ )

)
z

dτ, (30)

where 〈σ〉p⊥ (τ ) is the interface states’ pseudospin of
Eq. (29) calculated at the p⊥ corresponding to the para-
metric variable τ along the curve �. A nonzero integer
ν corresponds to |ν|-complete rotations of the pseudospin,
namely a topologically nontrivial pseudospin texture. Fig-
ure 4 shows the pseudospin pattern within the domain
of existence of the interface states in the asymmetric
case, and the orange solid line represents the Fermi line
E (p⊥) = 0. Along the circumference at zero energy shown
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FIG. 4. Pseudospin texture of the interface states in the asym-
metric case (
U �= 
L), which shows a trivial structure with zero
winding number. The orange solid line represents the Fermi line
E = 0, and the red and blue dots denote the WPPs of positive and
negative chirality, respectively. The parameters used are: u = 1, � =
10, 
U = 2, 
L = 3, φU = π , and φL = 0.

in Fig. 4 and parametrized by (px, py) = R[cos(θ ), sin(θ )],

where R =
√

(λUp̄2
L − λL p̄2

U)/(λU − λL), we obtain

〈σ〉p⊥ ∝ (
λUR sin θ, R2 − p̄2

U, 0
)
. (31)

Despite a nonzero y component occurring, along this circular
path the pseudospin texture does not make a full rotation, and
the winding number is zero. Hence, independently of values
of the light intensities, the pseudospin texture is topologically
trivial.

V. MAGNETIC BARRIER

In this section we introduce a deltalike magnetic barrier
along the interface between the two FWSM regions, and
we analyze how this additional term can induce a nontrivial
pseudospin texture. First, we study the modifications in the
interface states of the setup in Fig. 1 by adding the following
magnetic barrier [136]:

B(r) = B0δ(z)ŷ, (32)

where we remind that all lengths are measured in units of 1/b.
Within our formalism we introduce the effect of the magnetic
field by resorting to the Peierls substitution p → p + eA0/b,
where the vector potential A0 generates the magnetic field
through the definition B = b(∂/∂r) × A0, and it is expressed
as

A0(r) = +B0

2b
sgn(z)x̂. (33)

For each half-space, the FWSM Hamiltonian of Eq. (13) is
rewritten as

H j (p) = {
p̄2

j − [
(px − ζ j p0)2 + p2

y

]}
σx

+ λ j pyσy + upzσz, (34)

where j ∈ {L, U}, p0 = −eB0/(2b2), p̄ j and λ j are defined
in Eqs. (14), and ζU = +1 and ζL = −1. In each FWSM the
WPs are placed at P j,± = (±p̄ j + ζ j p0, 0, 0). The magnetic
term p0 induces a rigid shift of each pair of WPs along the x
direction of the 2D momentum space. Hence, the intensity of
the deltalike magnetic field, parametrized by p0, represents a
further knob for modifying the WPPs of the FWSMs, in addi-
tion to the intensities and polarizations of the beams of light.
Here we see how this further degree of freedom can enrich
the energy dispersion and alter the structure of the pseudospin
pattern. For sake of simplicity we consider the symmetric case
(
U = 
L = 
, φU = π , and φL = 0), where the dispersion
relation assumes the following compact expression:

E (p⊥) = py

2

1 − e2
2

2 − (
p2

x + p2
y + p2

0

)
√(

�
u

)2
(px p0)2 + (
2 py)2

. (35)

Figure 5(a) shows the density plot of the dispersion relation
for this symmetric case. Like in the asymmetric case without a
magnetic barrier, there are two saddle points in the Fermi line
[black line in Fig. 5(a)] which cause the appearance of a Van
Hove singularity in the DOS. Moreover, in Fig. 5(a), the solid
(dashed) boundary lines are solutions of the delocalization
condition μ̄U = 0 (μ̄L = 0), where

μ̄ j = 1

u

√{
p̄2

j − [
(px − ζ j p0)2 + p2

y

]}2 + (λ j py)2 − E2,

(36)
and red (blue) lines describe the merging of the band com-
posed by the interface states into a conduction (valence) bulk
band. Besides a modification of the energy dispersion relation,
the presence of the deltalike magnetic field has a strong impact
on the pseudospin texture. Figure 5(b) displays the pseudospin
pattern within the domain of existence of the interface states
in the symmetric case, and the orange solid line represents
the Fermi line E (p⊥) = 0. Along the circumference at zero
energy shown in Fig. 5(b) and parametrized by (px, py) =
R̄[cos(θ ), sin(θ )], where R̄ =

√
p̄2 − p2

0, we obtain

〈σ〉p⊥ ∝ (λ sin θ,−2p0 cos θ, 0), (37)

where p̄ and λ are defined in Eqs. (11). In this case, the pseu-
dospin pattern has a nontrivial structure. In fact, along this
closed path, the pseudospin makes a complete rotation, and we
find a nonvanishing winding number ν = +1, where the sign
+ is given by the counterclockwise rotation of the pseudospin.
This is the second most important result of this work: the
presence of a magnetic barrier along the interface between
the two FWSM regions can induce a nontrivial topology in
the pseudospin pattern. Specifically, the pseudospin structure
is nontrivial under the condition

| p̄U − p̄L| < 2|p0| < p̄U + p̄L, (38)

where p̄ j is defined by Eq. (14a). For any given magnetic
parameter |p0| < 1, by choosing suitable values of the light
intensities, it is possible to set the values of p̄U and p̄L such
that they fulfill the conditions of Eq. (38). By conveniently
tuning the light intensities, one can also set the values of p̄U

and p̄L such that the inequalities in Eq. (38) are not satisfied.
Hence, in the presence of the magnetic barrier, it is possible to
switch the topological properties of the interface states by only
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FIG. 5. (a) Density plot of the energy dispersion, and (b) pseu-
dospin texture plot of the interface states as a function of the
momentum components px and py, with 
U = 
L and in the pres-
ence of a deltalike magnetic field at z = 0. (a) The boundary solid
(dashed) lines represent the merging of the interface states’ band
with the upper (lower) FWSM bulk eigenbands. The red (blue) lines
describe the merging into the conduction (valence) band, and red
and blue dots represent WPPs of positive and negative chirality,
respectively. Positive (negative) out of range values are depicted as
light (dark) gray areas, and the Fermi line E = 0 is shown in black
in (a) and in orange in (b). The parameters used are: u = 1, � = 10,

U = 
L = 3, φU = π , φL = 0, and the magnetic parameter is set
at p0 = 1/5.

modulating the light intensities. We note that the condition in
Eq. (38) can be interpreted in terms of the WPPs arrangement.
In particular, both inequalities of Eq. (38) are satisfied if the
inner (outer) WPPs have identical chiralities, an example is
shown in Fig. 5. In the previous section we have verified
that this type of arrangement of the WPPs is not reachable
by exploiting only the light beams, and for this reason, the
assistance of the local magnetic field appears crucial.

Finally, we analyze the effects of a magnetic barrier which
has a field component also along the x direction. The magnetic
barrier can be written as

B(r) = δ(z)(B0,xx̂ + B0,yŷ), (39)

which, after the Peierls substitution, leads for each half-space
j ∈ {L, U} to the FWSM Hamiltonian

H j (p) = {
p̄2

j − [
(px − ζ j p0,x )2 + (py − ζ j p0,y)2

]}
σx

+ λ j (py − ζ j p0,y)σy + upzσz, (40)

where (p0,x, p0,y ) = [−eB0,y/(2b2), eB0,x/(2b2)], ζU = +1
and ζL = −1, and p̄ j and λ j are still given by Eqs. (14). Fig-
ures 6(a) and 6(b) show the energy dispersion and pseudospin
texture, respectively, of the interface system, derived from the
Hamiltonian Eq. (40) when the x and y components of the
magnetic barrier are equal in strength, p0,x = p0,y. The mean-
ings of lines and dots is the same as in Fig. 5. It can be seen
from Fig. 6(b) that the pseudospin texture is still nontrivial
and all paths which enclose the origin of momenta will have
a nonvanishing winding number. For higher x components of
the magnetic barrier, roughly for p0,y � 2p0,x, the domain of
existence of the interface states is no longer connected and
we cannot properly define its topology through the winding
number of Eq. (30). The DOS of the interface system is also
slightly affected. In particular, the Van Hove singularity at
the Fermi energy is split into two energy symmetric ones.
The energies of these new Van Hove singularities is numeri-
cally found to be linearly proportional to the strength of the
x component of the magnetic field EVHS ∼ ±p0,y (up to a
maximum value, with the given parameters, of p0,y � 3.5p0,x ,
after which they no longer exist).

VI. CONCLUSIONS

In this paper we analyzed the boundary states that emerge
at the interface between two sides of an infinite NLSM that
are illuminated by monochromatic light beams of opposite
circular polarizations. In particular, we focused on the energy
dispersion, DOS, and pseudospin texture.

Illuminating the system with lights of opposite polarization
generates two FWSMs with opposite Chern numbers, and this
topology mismatch leads to the appearance of topological
interface states. We have shown that the topological prop-
erties of the interface states strictly depend on the relative
arrangements of the WPPs of the two induced WSMs. The
independent tunability of the light intensities represents a
knob for modifying this relative arrangement. As such, by
changing the intensities of the light beams, one can modify
the domain of existence of the interface states along the 2D
reciprocal space, and the shape of the Fermi line. In particular,
illuminating the system with two different light intensities
induces a transition in the Fermi line with the creation of a
Van Hove singularity in the DOS.

Moreover, we have added a further knob for modifying
the interface states, namely we have introduced a magnetic
barrier along the interface given, for instance, by localized
doping with magnetic impurities. The presence of this local
magnetic field together with the tunability of the light intensity
allows us to change the relative arrangement of the WPPs
at will. We have thus found that the y component of this
magnetic barrier can lead to the creation of a novel nontrivial
pseudospin pattern of the interface states. The x component,
on the other hand, works against the nontrivial topology of
the interface system; nonetheless, the system has a fair degree
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FIG. 6. (a) Density plot of the energy dispersion, and (b) pseudospin texture plot of the interface states as a function of the momentum
components px and py, with 
U = 
L and in the presence of a deltalike magnetic field at z = 0 with components both along the x and
y directions. (a) The boundary solid (dashed) lines represent the merging of the interface states’ band with the upper (lower) FWSM bulk
eigenbands. The red (blue) lines describe the merging into the conduction (valence) band, and red and blue dots represent WPPs of positive
and negative chirality, respectively. Positive (negative) out of range values are depicted as light (dark) gray areas, and the Fermi lines E = 0
are shown in black in (a) and in orange in (b). The parameters used are: u = 1, � = 10, 
U = 
L = 3, φU = π , φL = 0, and the magnetic
parameters are set at p0,x = 1/5 and p0,y = 1/5.

of robustness, roughly up to Bx � 2By in the setup studied.
In this paper we have classified the topology of the interface
system in terms of the winding of the pseudospin around the
origin of momenta, and we have shown that by modulating the
light intensities it is possible to switch on/off the nontrivial
topology.

Together with the presence of VHSs close to the Fermi
level, the discovered tunable topological interface state could
provide promising applications in the search for exotic corre-
lated quantum phases of matter and for optoelectronics.
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APPENDIX A: NUMERICAL RESULTS

In this Appendix we present the numerical results for the
energy dispersion and the pseudospin texture of the interface
system obtained from a two-band continuous model of the
NLSM by including the quadratic momentum contribution
along all directions. We obtain qualitative agreement with the
findings of the main text, where we found analytical results by
instead neglecting the quadratic term in pz. In particular, we
show that the neglected term has no impact on the topologi-
cal characterization of the interface system. We describe the
electronic system with the following Hamiltonian:

H(p) = [
1 − (

p2
x + p2

y + p2
z

)]
σx + upzσz. (A1)

Similarly to Sec. III of the main text, we illuminate two
regions of a NLSM with two beams of light, where each one
is characterized by a vector potential of the form expressed in
Eq. (1). Each side of the NLSM can be effectively described
in the high frequency regime by the Floquet Hamiltonian [80]

H j (p) = [
p̄2

j − (
p2

x + p2
y + p2

z

)]
σx + λ j pyσy + upzσz,

(A2)
where

p̄ j =
√

1 − e2
2
j , (A3a)

λ j = −2e2
2
ju cos (φ j )/�, (A3b)


 j = Aj

b
, (A3c)

with j ∈ {L, U} and b = √
m/B. A quantitative difference

with the model used in the main text is visible in the defi-
nition of the term p̄ j , in fact in Eq. (14a) of the main text

one has p̄ j =
√

1 − e2
2
j/2. We follow the algebraic proce-

dure used in Sec. IV. First, we solve the eigenvalue problem
for each half-space by using the ansatz shown in Eq. (16).
Afterwards, we impose the continuity of the wave function
and of its derivative at the interface z = 0. Finally, we force
the normalizability of the wave function in the entire space.
These conditions lead to a problem similar to that shown in
Sec. IV, but here the matrix M becomes four dimensional.
The doubling of the dimension of the matrix M makes the
problem hard for an analytical approach, then we face it with
a numerical approach [137].

In the symmetric case (
U = 
L), the energy dispersion
of the interface electron system has the same features of the
analytical expression shown in Fig. 2(a). Here the interface
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FIG. 7. (a) Density plot of the energy dispersion, and (b) pseu-
dospin texture plot of the interface states as a function of the
momentum components px and py in the asymmetric case (
U <


L), by holding the quadratic term in pz in the Hamiltonian (A1)
which describes the NLSM. (a) The boundary solid (dashed) lines
represent the merging of the interface states’ band with the upper
(lower) FWSM bulk eigenbands. The red (blue) lines describe the
merging into the conduction (valence) band, and red and blue dots
represent WPPs of positive and negative chirality, respectively. The
Fermi line E = 0 is shown in black in (a) and in orange in (b).
The parameters used are: u = 1, � = 10, 
U = 2, 
L = 3, φU = π ,
φL = 0.

states are defined in the whole 2D momentum space with
the exception of the py = 0 axis, where the interface band
merges with the bulk bands, and the Fermi line at E = 0 is
composed by two semicircumferences that meet at the WPPs.
Moreover, by using the definition of the pseudospin 〈σ〉p⊥ in
Eq. (29), one finds that the pseudospin has a trivial pattern, in
particular, it is parallel (antiparallel) to the x̂ axis for py > 0
(py < 0).

We now consider the interface system obtained in the
asymmetric case, namely the intensities of the light beams are
different (
U < 
L). Figure 7 shows the energy dispersion
[Fig. 7(a)] and the pseudospin texture [Fig. 7(b)] of the inter-
face states. We have chosen the same values of the parameters
u,�,
 j, φ j used in Sec IV A of the main text. In Fig. 7(a) the
interface states are defined in a region of the 2D momentum
space delimited by the solid (dashed) lines which represent
a merging of the interface band with the FWSM bulk bands

FIG. 8. (a) Density plot of the energy dispersion, and (b) pseu-
dospin texture plot of the interface states as a function of the
momentum components px and py, with 
U = 
L and in the pres-
ence of a deltalike magnetic field along the interface z = 0, by
holding the quadratic term in pz in the Hamiltonian (A1) which
describes the NLSM. (a) The boundary solid (dashed) lines represent
the merging of the interface states’ band with the lower (upper)
FWSM bulk eigenbands. The red (blue) lines describe the merging
into the conduction (valence) band, and red and blue dots represent
WPPs of positive and negative chirality, respectively. Positive (nega-
tive) out of range values are depicted as light (dark) gray areas, and
the Fermi line E = 0 is shown in black in (a) and in orange in (b).
The parameters used are: u = 1, � = 10, 
U = 
L = 3, φU = π ,
φL = 0, and the magnetic parameter is set at p0 = 1/5.

delocalized along the upper region z > 0 (lower region z < 0).
Moreover, red (blue) lines represent a merging of the interface
band with a conduction (valence) band, while red (blue) dots
are WPPs of positive (negative) chirality. The pseudospin
texture of Fig. 7(b) shows a trivial pattern in terms of the
winding number defined in Eq. (30). Apart from quantitative
differences, mainly given by the modifications of the WPPs,
both the energy dispersion and the pseudospin texture are
qualitatively unaffected by the presence of the quadratic pz

term in the Hamiltonian (A1).
To conclude, we introduce the deltalike magnetic barrier at

the interface z = 0 described by Eq. (32). Figure 8(a) is the
density plot of the energy dispersion of the interface states,
while Fig. 8(b) represents the pseudospin texture, the param-
eters are set at the same values used in Sec V. Here we obtain
that both the energy dispersion relation and the pseudospin
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texture are qualitatively in agreement with the analytical
analysis of the main text. In particular, the nonvanishing wind-
ing number of the pseudospin texture defined in Eq. (30)
occurs exactly like in the main text.

APPENDIX B: WINDING NUMBER AND
PSEUDOSPIN TEXTURE

In the main text we characterize the topology of the inter-
face system through the winding number of Eq. (30) as

ν(�) = 1

2π

∫ 1

0

(
〈σ〉p⊥ (τ )

d

dτ
〈σ〉p⊥ (τ )

)
z

dτ, (B1)

where τ ∈ {0, 1} parametrizes a closed path � in momentum
space that surrounds the origin of momenta. Equation (B1)
is intuitive in that it simply keeps track of whether the
pseudospin is rotating clockwise or counterclockwise dur-
ing its evolution in τ . Mathematically, since the pseudospin
is a normalized quantity we can write it as 〈σ〉p⊥ (τ ) =
[cos θ (τ ), sin θ (τ )] (neglecting the irrelevant z component),
where θ (τ ) defines the direction of the pseudospin in the
x-y plane. Substituting this expression in Eq. (B1) we
obtain

ν(�) = 1

2π

∫ 1

0

dθ

dτ
[cos θ (τ ), sin θ (τ )]

× [− sin θ (τ ), cos θ (τ )]dτ

= 1

2π
[θ (1) − θ (0)] = ν,

where in the last line we have used the fact that � is a closed
curve and as such θ (1) − θ (0) = 2πν.

The pseudospin vector is defined through Eq. (29):

〈σ〉p⊥ =
∫

dr�†
p⊥

(r)σ�p⊥ (r)

= N0
(
ψU

1,− ψU
2,−

)∗
σ

(
ψU

1,−
ψU

2,−

)

= 2N0
[
Re

(
ψU∗

1,−ψU
2,−

)
, Im

(
ψU∗

1,−ψU
2,−

)]
, (B2)

where N0 = (ψU
1,− ψU

2,−)
∗
(ψU

1,− ψU
2,−)

T
, σ = (σ1, σ2) (as

said before, we neglect the z component), and where we

could use only the upper space spinor because of the conti-
nuity condition at the interface. For the asymmetric case of
Sec. IV B, substituting Eq. (19) into Eq. (B2) and calculat-
ing the result along the circumference at zero energy shown
in Fig. 4 and parametrized by (px, py) = R[cos(θ ), sin(θ )],

where R =
√

(λU p̄2
L − λL p̄2

U)/(λU − λL), we get

〈σ〉p⊥ = 1√
(λUR sin θ )2 + (R2 − p̄2

U)2

(
λUR sin θ, R2 − p̄2

U

)
,

(B3)
which is the normalized version of Eq. (31); λ j and p̄ j are
defined in Eqs. (14). Finally, inserting Eq. (B3) into Eq. (B1),
the resulting winding number is vanishing:

ν = −R2 − p̄2
U

2π

∫ 2π

0

λUR cos θ

(λUR sin θ )2 + (R2 − p̄2
U)2 dθ = 0.

(B4)
On the contrary, performing the same calculations for the

magnetic case of Sec. V along the circumference at zero
energy shown in Fig 5(b), which is parametrized by (px, py) =
R̄[cos(θ ), sin(θ )], where R̄ =

√
p̄2 − p2

0, we obtain

〈σ〉p⊥ = 1

(λU sin θ )2 + (2po cos θ )2 (λU sin θ,−2p0 cos θ )

(B5)
for the pseudospin vector, and

ν = λU p0

π

∫ 2π

0

1

(λU sin θ )2 + (2p0 cos θ )2 dθ = +1 (B6)

for the winding number.

APPENDIX C: NONTRIVIALITY CONDITION

In Sec. V of the main text we mainly focused on the setup
with a magnetic barrier between two FWSMs which are illu-
minated by light beams with opposite polarizations and same
intensities. If we also allow for the intensities to be different
on the two FWSMs, then the energy dispersion of the interface
system will be expressed as

E (p⊥) = py

λU p̄2
L − λL p̄2

U − [(
p2

x + p2
y + p2

0

)
(λU − λL) + 2p0 px(λU + λL)

]
√

( p̄2
U − p̄2

L + 4p0 px )2 + [py(λU − λL)]2
, (C1)

which has to be compared with Eqs. (25) and (35). Similarly
to the main text, see Fig. 5, the circumference at zero energy,
E (p⊥) = 0, is now given by

px = pc + R̃ cos θ,

py = R̃ sin θ,
(C2)

with

pc = −p0
λU + λL

λU − λL
, (C3a)

R̃2 = λU p̄2
L − λL p̄2

U

λU − λL
+ 4λUλL

(λU − λL)2 p2
0. (C3b)

Performing the same calculations as in Appendix B, the pseu-
dospin vector along this circumference can be expressed as

〈σ〉p⊥ = 1√
(λUR̃ sin θ )

2 + (R̃2 + p2
c − p̄2

U − 2Rpc cos θ )
2

× (
λUR̃ sin θ, R̃2 + p2

c − p̄2
U − 2R̃pc cos θ

)
. (C4)
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Hence, the nontriviality condition of the pseudospin pattern
is given by the “rotation” of the second component of the
pseudospin vector in Eq. (C4), namely∣∣R̃2 + p2

c − p̄2
U

∣∣ < |2R̃pc|. (C5)

It can then be numerically checked that Eq. (C5) is satisfied
when

| p̄U − p̄L| < 2|p0| < p̄U + p̄L, (C6)

which is Eq. (38).
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