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Antiferromagnetic manganese-based nitride antiperovskites, such as Mn3NiN, hold a triangular frustrated
magnetic ordering, thanks to their kagome lattice formed by the Mn atoms along the (111) plane. As such, the
magnetic frustration imposes a nontrivial interplay between the symmetric and asymmetric magnetic interac-
tions, which can only reach equilibrium in a noncollinear magnetic configuration. Consequently, the associated
electronic interactions and their possible tuning by external constraints, such as applied epitaxial strain, play
a crucial role in defining the microscopic and macroscopic properties of such topological condensed matter
systems. In this paper, we explored and explained the effect of the epitaxial strain imposed within the (111)
plane, in which the magnetic and crystallographic symmetry operations are kept fixed, and only the magnitude
of the ionic and electronic interactions are tuned. We found a tangible enhancement in the anomalous Hall
conductivity along the (111) plane (σ AHE

111 ) for compression values, whereas, for tension, the AHC is dramatically
reduced. As such, the σ AHE

111 component fetches a maximum increase of 26%, with respect to the unstrained
structure, for a compression value close to −1.5%. Our findings indicate a distinct correlation between the
anomalous Hall conductivity and the Berry curvature along the (111) plane as a function of the strain. Here,
the nondivergent Berry curvature acts as the source and the strain as the control mechanism of this anomalous
transport phenomenon.

DOI: 10.1103/PhysRevB.106.195113

I. INTRODUCTION

Antiperovskites, A3BX [1] (also known as inverse-
perovskites) such as Mn3NiN, are cubic structures similar
to perovskites in which the cation and anion position are
interchanged within the unit cell for the standard perovskite
crystal structure. Thus, the anions occupy the octahedral cen-
ter instead of the corners, which becomes the site for the
transition metal cations, forming a XA6 octahedra. This type
of coordination, coupled with their magnetic response, gives
unique properties such as the anomalous Hall conductivity,
AHC [2,3], negative thermal expansion [4], giant piezomag-
netism [5], magnetic frustration [6,7], among others [8–19].
In particular, the magnetic frustration in triangular magnetic
coordination relies on the Mn–Mn exchange and the Mn–
N–Mn superexchange interaction. Thus, the metallic RKKY
interaction, which favors an antiferromagnetic collinear ar-
rangement [20], is more prominent but is in competition with
the superexchange [21,22] interaction mediated by the ni-
trogen at the cell center. Apart from the exchange and the
superexchange, there is also an antisymmetric coupling, the
Dzyaloshinskii-Moriya interaction, DMI, which is present in

*daniel.torres@saber.uis.edu.co
†acgarcia@uis.edu.co

the (111) plane inducing canting, which further increases the
frustration [7,23]. Combining all the discussed interactions
converges into nontrivial, noncollinear, and possibly chiral
magnetic ordering. In this case, the chirality is of vectorial
nature and comes from the removal of the mirror symme-
try due to the magnetic orderings, developing a well-defined
handedness given by k = 2

3
√

3

∑
i j[ �Si × �S j] (where i, j runs

over all the magnetic moments) [24,25]. For example, the
triangular frustrated magnetism in Mn3NiN is compatible
with the �5g and �4g [6] magnetic orderings. The �4g (MSG.
166.101) ordering is symmetric under the simultaneous appli-
cation of both the time-reversal symmetry T , and the mirror
symmetry M, along the M100, M110, and M010 planes in the
Seitz notation; conversely, in the �5g (MSG. 166.97) order-
ing, the T ∗ M is broken [3]. Moreover, although the overall
electronic band structures of both magnetic phases are fairly
similar, the mirror symmetry breaking in the �4g allows a
sizable AHC, unlike in the case of �5g in which the AHC is
null [3]. The AHE in antiferromagnets has risen in research
interest due to the possibility of dissipation-less current [26]
thanks to the large AHC found in Mn3Sn and Mn3Ge [27–29].
Despite presenting a low density of states at the Fermi level,
noncollinear antiferromagnetic antiperovskites are good con-
ductors with a tunable AHC, with the strain as the key to
accessing this controllability. The strong magnetostructural
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coupling present in the Mn-based antiperovskites [30,31], on
top of the subtle balance between the magnetic, ionic, and
electronic structure, opens the door to engineering a route for
AHC controlling using external constraints. Although several
studies had already been commented on the potential control-
lability of the AHC in Mn3NiN by other authors [2,3,32,33],
the source of its behavior is not yet completely understood.
For example, the reported AHC calculations for Mn3NiN
range from σ111= –301 S cm−1 [34] to σ111 = 525 S cm−1 [35]
(see Table SI in Supplemental Material [36]), a very wide
range likely related to a strong dependence on the calculations
approach and parameters chosen by the authors. Remarkably,
the AHC in (001) Mn3NiN strained thin films has been re-
ported as σxy ≈ 170 S cm−1 based-on theoretical calculations
whereas the experimentally measured value in the same work
is around σxy = 22 S cm−1 [2]. Despite the disagreement,
when the measured and computed AHC are compared, their
conclusion was related to a direct compression (tension) to
increase (decrease) relation between the strain and the AHC.
However, applying the strain in such a direction would distort
the crystal into a tetragonal symmetry, changing the magnetic
and structural relationship and adding a weak-ferromagnetic
canting into the magnetic response [5]. Because the sym-
metry is the trigger of the AHC in the antiferromagnetic
antiperovskites, distortions, and changes in symmetry oper-
ations could put a veil over the actual control mechanism
and physical origins of this property in Mn3NiN. Moreover,
the experimental epitaxial growth of thin films of antiper-
ovskites onto perovskites, SrTiO3, has been achieved [37,38]
demonstrating the feasibility of obtaining strained thin-films.
Another experimental study was performed, achieving an epi-
taxial growth of Mn3NiN on the piezoelectric BaTiO3 [39]
showing a correlation between the strain and the AHC values.
So far, it is possible to experimentally explore the effect of
the strain on antiferromagnetic nitride antiperovskites such
as Mn3GaN and Mn3NiN. Notwithstanding these efforts, the
explanation of the strain effect, its link with the electronic
and ionic structure in this material, and the origin of a
possible experimental control of the AHC by means of the
strain, still allows room for a more profound comprehension.
Therefore, in this paper, we show from first-principles calcula-
tions the analysis of the epitaxial strain as a control parameter
of the electronic properties. Furthermore, we explored the
AHC, and the Berry curvature BC features in the antiferro-
magnetic antiperovskite Mn3NiN as a prototype among its
family. Thus, our results explain the physical origin of the
AHC controllability and possible experimental tuning.

This paper is organized as follows: We present the com-
putational details and theoretical approaches required for the
analysis of structural and electronic phenomena within the
Mn3NiN antiperovskite (in Sec. II). Then, we condensed our
results and research associated with the structure behavior,
electronic properties, anomalous Hall conductivity, and the
Berry curvature (in Sec. III). Finally, we provide our conclu-
sions, in Sec. IV, and general remarks.

II. COMPUTATIONAL DETAILS

We performed first-principles calculations within the
density-functional theory (DFT) [40,41] approach by us-

ing the VASP code (version 5.4.4) [42,43]. The projected-
augmented waves scheme, PAW [44], was employed to
represent the valence and core electrons. The electronic
configurations considered in the pseudopotentials, as va-
lence electrons, are Mn (3p63d54s2, version 02Aug2007),
Ni (3p63d84s2, version 06Sep2000), and N (2s22p3, ver-
sion 08Apr2002). The exchange-correlation was represented
within the generalized gradient approximation GGA-PBEsol
parametrization [45]. The Mn:3d orbitals were corrected
through the DFT+U approximation within the Liechtenstein
formalism [46]. Due to the strong magnetostructural response
observed in the Mn3AN antiperovskites [47], we used the
U = 2.0 eV parameter in the Mn:3d orbitals. This U value
allows the structural optimization to reproduce the experimen-
tally observed lattice parameter, which is key in obtaining
an appropriate charge distribution and, ultimately, the elec-
tronic properties under strain. Moreover, we also compared
the PBEsol+U obtained electronic structure of Mn3NiN with
the computed by the strongly constrained and appropriately
normed semilocal density functional, SCAN, [48,49], observ-
ing a fair agreement of the electronic structure in both cases.
Importantly, recent reports of SCAN-based calculations have
shown results in good agreement with the experimental re-
ports, including lattice constant [50,51], the magnetic and the
electronic structure [30] in strongly-correlated 3d perovskites
and Heusler Mn-based alloys [52]. All the procedures de-
scribed above are essential due to the needed accuracy related
to the lattice degrees of freedom as a function of the applied
strain and its effect on the magnetostructural behavior. The
periodic solution of the crystal was represented by using
Bloch states with a Monkhorst-Pack [53] k-point mesh of
12×12×12 and 600 eV energy cut-off to give forces conver-
gence of less than 0.001 eV Å−1 and an error in the energy
less than 10−6 eV. The spin-orbit coupling (SOC) was in-
cluded to consider noncollinear magnetic configurations [54].
The anomalous Hall conductivity, and associated observables,
were obtained with the Python library WANNIERBERRI [55]
using the maximally localized Wannier functions and the
tight-binding Hamiltonian generated with the WANNIER90
package [56]. The interpolation was performed with 80 Wan-
nier functions with projections on the s, p, d orbitals for the
Mn and Ni atoms and s, p for N atoms. For the disentangle-
ment process, we used an energy window +3.0 eV higher than
Fermi level as the maximum, and none for the minimum, and
a convergence tolerance of 5.0×10−8 Å2. We obtained, with
the support of the WannierTools code [57], the number of
band crossings around the Fermi energy, for the range between
−1.3 to 1.3 eV, as well as their position in energy and momen-
tum. The latter considering a energy-gap crossing (Ew) below
the threshold of Ew = 0.050 eV computed in a 17×17×17
k mesh. The atomic structure figures were elaborated with the
VESTA code [58]. Finally, the band structure was analyzed with
the Python library PYPROCAR [59].

III. RESULTS AND DISCUSSION

As commented before, we aim to avoid additional contribu-
tions induced by the strain application in the (001) plane of the
5-atom reference, depicted in Fig. 1(a). Therefore, we studied
the effect of the epitaxial strain applied only in the directions
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FIG. 1. (a) Mn3NiN cubic structure showing the Mn, Ni, and N atoms in violet, yellow, and green colors, respectively. Here, the (111)
plane is shown in yellow color. (b) The kagome lattice, on the (111) plane formed by the Mn atoms, is highlighted on top of the cubic Mn3NiN
structure. (c) 15-atom hexagonal reference obtained after rotating the 5-atom structure, aligning the (111) plane kagome lattice with the xy
plane. (d) Noncollinear antiferromagnetic �4g ordering, in which the magnetic moments per atom are depicted in red color. Additionally, the
kagome lattice is also shown, as well as the schematics of the strain application. (e) Ground state energy difference, �E = E�4g − E�5g , vs the
applied epitaxial strain suggesting a lower energy for the �4g in each case. (f) Variation of the interplane and in-plane Mn–Mn distances as a
function of the epitaxial strain.

parallel to the (111) plane so that the kagome lattice, mag-
netic ordering, and their associated symmetry conditions are
conserved. To observe the atomic arrangement present in the
(111) plane and its spatial orientation, a broader view of that
zone is shown in Fig. 1(b). Here, the kagome lattice formed by
the Mn atoms is highlighted in a yellow plane. To gain access
to the (111) plane of the 5-atom reference, the structure was
rotated to make that plane parallel to the cartesian xy plane
as shown in Fig. 1(c). In such orientation, it is obtained an
equivalent 15-atom hexagonal cell shown in the same figure.
This achieves a better representation of the structural symme-
try and allows the homogenous application of the epitaxial
strain. In this new representation, the a direction of the lattice
belongs in the xy plane and serves as a linearly indepen-
dent crystallographic direction to apply the epitaxial strain.
As it can be seen in Fig. 1(d), stretching along the plane
would only change the Mn–Mn distance and not the atomic
arrangement. In this setup, the strain controls the intensity
of the exchange and the superexchange interactions only by
modifying the interatomic distances but conserving the mag-
netic symmetry.

Concretely, the strain was applied as follows. The a lat-
tice parameter is variated along with the values from −3%
to +3%. This still allows the full relaxation of the crystal
structure and atomic positions along the c direction in all
cases. The applied strain percentage η is defined in terms of

the unstrained lattice parameter a0 and the imposed value a as

η = a − a0

a0
×100%, (1)

As such, the above relationship, Eq. (1), gives compression
and tension over the structure for negative and positive values
of η, respectively.

Since the electronic, magnetic, and crystalline structures
of Mn3NiN are strongly entangled due to its sizable mag-
netostructural coupling, the cell optimization and electronic
relaxation were carefully performed within the PBEsol + U
approximation. The latter in order to reproduce the experi-
mental unstrained cell lattice constant (a0 = 3.886 Å below
TN = 262 K) [60] with a stable �4g magnetic ordering and
to obtain a correct relaxed structure under strain. The best
agreement between the experiment measured and the com-
puted lattice parameter was found for U = 2.0 eV (see Table
SII in the Supplemental Material [36]). This correction leads
to a hexagonal cell with the parameters of a = 5.496 Å
and c = 6.726 Å within the stable �4g magnetic ordering.
This value of lattice parameters are equivalent to a lattice
parameter a0 = 3.885 Å in the 5-atom reference. Therefore,
the Hubbard correction and the volume cell optimization
helped to avoid a prestrained setup, which is the case of
pure LDA/PBE based calculations, in which a volume ad-
justment is needed because of the under/overestimation of the
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experimentally observed value [51]. Moreover, recent studies
indicate a strong dependence on the electronic and lattice
degrees of freedom in Mn-based compounds [30,49]. The
structural stability of the �4g phase of Mn3NiN was tested
under epitaxial strain by obtaining the full phonon-dispersion
curves at η = −3.0%, 0.0%„ and +3%, see Fig. S1(a) in the
Supplemental Material [36]. The latter aims to ensure that the
ranges of strain chosen were within the limits of the struc-
tural stability and that no phase transitions might be induced.
As shown in Fig. S1(a) in the Supplemental Material [36],
the full phonon-dispersion shows no imaginary or unstable
phonons, confirming the structural and vibrational stability
of Mn3NiN under the considered strain values. Furthermore,
the magnetic phase stability of the �4g over the �5g was also
tested [see Fig. 1(e)]. As it can be observed from this figure,
the compression epitaxial strain reinforces and stabilizes the
�4g order, whereas, for expansion strain values, the difference
in energy between the antiferromagnetic orderings is reduced.
Thus, the negative strain values serve as a mechanism to freeze
in the �4g ordering in the Mn3NiN. In the Mn3NiN case,
both magnetic orderings would present similar magnetocrys-
talline anisotropy energy (MAE) in the absence of strain,
corroborated experimentally [61–63] and indicating a possible
combination of the �4g and �5g orderings in the experimen-
tally synthesized samples. Nonetheless, a more recent report
points to a bias of the magnetism in Mn3NiN towards the �4g

ordering [34] and, in agreement with our results in Fig. 1(e),
the �4g ordering is more stable with respect to the �5g state,
at compressive strain values. Moreover, we have also ex-
plored the possible presence of a ferromagnetic canting along
the (111) axis. Nevertheless, such canting vanishes after full
atomic and electronic relaxation under strain. The latter can
be explained in terms of the lattice dynamics of the Mn3NiN
antiperovskites, which shows that the FM state along the (111)
axis is dynamically unstable, inducing an unstable phonon at
the R point related to out-of-phase octahedral rotations [49]

The variations of the plane-to-plane distance between the
kagome planes, in comparison with the distance between two
Mn nearest atoms of the same plane, are presented in Fig. 1(f).
The compression (tension) strain application, directly on the
plane of the magnetic kagome lattice, produces the expected
response of increasing (decreasing) the separation of the (111)
family of planes, as shown in the graph of Fig. 1(f). Fur-
thermore, linear variations of the distance between Mn atoms
of the same plane induced inverse linear variation in sepa-
rating the kagome planes. Consequently, the exchange and
superexchange interactions can be finely tuned, ultimately
gaining control over the frustration mechanism. Thus, the
(111) applied strain is advantageous from the symmetry point
of view because the initial R3̄m symmetry is preserved along
the deformation path on the 15-atom reference. Therefore,
the symmetry relationships do not change; instead, only the
electronic effects can be tuned through the control over the
interacting moments by the epitaxial strain. Additionally,
symmetry preservation allows straining and optimizing on the
15-atom reference and then returning to the 5-atom represen-
tation to perform the rest of the calculations and analysis,
avoiding electronic bands unfolding issues. To recover the
5-atom representation, we made use of the transformation
matrices, as implemented in the FINDSYM tool [64,65]. In what

(a)

(d)

(e)

(f)

(g)

(b) (c)

FIG. 2. [(a)–(c)] Electronic band structure (first row) and Berry
curvature (second row) of the Mn3NiN in the �4g noncollinear mag-
netic phase. Here, marked in a black circles are presented two Weyl
nodes in the T–� path as well as various nontopological band cross-
ings in red circles close to the Fermi level. [(d)–(f)] Density of states,
DOS, for the −3.0%, 0.0%, and +3.0% strain values including the d
orbitally projected Mn and Ni states. (g) DOS states integration for
an energy range of 0.1 eV under, over, and around the Fermi energy.

follows, all the calculations and analyses are carried out on the
5-atom reference for each relaxed strained cell.

The electronic band structure and the Berry curvature cal-
culated along the �–L–T–�–F, and P2–� paths in the BZ for
the η = −3.0%, 0.0%, and +3.0% in the 5-atom reference are
presented in Figs. 2(a)–2(c) with a relevant Weyl node near
Fermi in the T–� path marked inside a red circle. Here, the
L–T path lies along the (111) plane (where the kagome lattice
lies) while the P2–� path runs perpendicularly to the same
plane. When the structure is compressed, the energy bands
close to the Fermi energy in the L–T path are pushed away
from the Fermi level [see Fig. 2(a)]. Meanwhile, as shown in
the same figure, electron bands shift up in energy together in
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the P2–� path. On the other hand, the behavior is the opposite
when tension is applied, as observed in the η = +3% case
presented in Fig. 2(c). The Berry curvature, in the second
row of the Figs. 2(a)–2(c), shows a distinctive behavior in
the L–T path; all the remaining path show very localized and
discontinuous Berry curvature while in the mentioned path
the curvature is a smooth and spread function. The extracted
projections, per atomic specie, of the electronic band structure
for η = −3.0%, 0.0%, and 3.0% (see Fig. S2 in the Supple-
mental Material [36]) show that Mn : 3d states represent the
major contribution above the Fermi level. Meanwhile, Ni : 3d
states dominate the band structure under the Fermi energy,
with its most substantial contribution around –1.25 eV. Both
Mn and Ni atomic species share the intermediate (−0.5, +0.5)
eV range of energy. Thus, the conduction phenomena result
from the hybridization of the Mn and Ni d orbitals around
the Fermi energy. Aiming to analyze the available charge
and states around the Fermi level, we computed the DOS
for η = −3%, 0%, and +3% and the results are contained
in Figs. 2(d)–2(f). Here, we observed a displacement of the
total DOS with respect to the energy as a response to the
applied strain. Tracking the minimum of the DOS, located at
−0.5 eV in the η = 0.0% DOS plot in Fig. 2(e), which moves
up (down) in energy for compression (tension), this behav-
ior becomes clear. More precisely, the available states near
the Fermi level decrease with compression and increase with
tension, see Fig. 2(g). To further dive into the DOS subtleties
around the Fermi level, the Mn and Ni : 3d orbitals projections
of the DOS are included in Figs. 2(d)–2(f). As it can be ob-
served, the contribution at the Fermi level from the 3dxy/yz/xz

orbitals increase (decrease) for tension (compression) strain
values. The same is the case for 3dz2/x2−y2 . In general, the 3d
orbitals are pushed upwards in energy when the structure is
compressed. In the case of Ni:3d orbitals, a marginal contri-
bution is observed close to the Fermi level. Finally, the direct
integration of the total DOS for each η in the [−0.1,+0.1] eV
interval, as presented in Fig. 2(g), confirms the relationship
between the electronic states and the strain inferred from the
complete and partial DOS analysis. Moreover, the integration
of the DOS over the ranges [−0.1,0.0] and [0.0,+0.1] eV
for the occupied and unoccupied bands, respectively, follow
the same behavior already observed in the [−0.1,+0.1] eV
interval.

Before discussing our AHC findings, it is worth men-
tioning the different sources behind the AHC. The AHC in
crystals can be the result of different sources: the intrinsic,
side jump, and the skew scattering contribution, as shown
in Ref. [66]. The last two of them are a consequence of
impurities in the crystal that deflect and scatter the elec-
trons sideways. In this paper, we concentrate our attention
on the intrinsic component of the AHC, which results from
the electronic, magnetic, and structural properties of a perfect
crystal. Additionally, the intricate combination of the many
interactions present in the frustrated triangular shape created
between the Mn atoms in the kagome plane reduces the sym-
metry to R3̄m in the �5g case. Finally, in the case of the �4g

magnetic ordering, shown in Fig. 1(e), the M symmetry is
also removed, ending up with the R3̄m’ symmetry. This lack
of M-symmetry is essential for the existence of AHC in the
�4g phase. The M symmetry is also the reason for the absence

of that property in the �5g phase. Thus, the AHC reported in
this work is calculated based on the relationship defined as
follows [66]:

σ AHC
αβ = −e2

h̄
εαβγ

∫
BZ

∑
n

d3�k
(2π )3

fn(�k)�γ
n (�k). (2)

The latter, Eq. (2), as implemented in the WANNIERBERRI

code [55]. Here, in Eq. (2), εαβγ is the antisymmetric tensor,∑
n fn(�k)�γ

n (�k) is the summation over all the included bands
contribution to the Berri curvature �γ (�k), and fn(�k) is the
Fermi distribution. In Eq. (2), the γ subscript runs over a
discrete grid of energy points, allowing the AHC calcula-
tion in other energy levels apart from the Fermi level. By
looking at the Eq. (2), two main factors are candidates to
explain the AHC behavior as a function of the epitaxial strain:
The available electronic states around the Fermi level and
the Berry curvature integration in the BZ. The �4g phase of
the Mn3NiN system is a noncollinear antiferromagnet with a
nonzero magnetic moment of each Mn atom but with zero net
magnetization. Consequently, without a net internal or exter-
nal magnetic field, the Hall conductivity must result from the
anomalous Hall effect (AHE) through a nonvanishing Berry
curvature, as in Eq. (2). The latter is resulting in the following
tensor for the R3̄m’ magnetic symmetry group [3,67]:

σ�4g =
⎛
⎝ 0 σxy −σxy

−σxy 0 σxy

σxy −σxy 0

⎞
⎠ (3)

with all the nonzero components identical σxy = σzx = σyz and
therefore represented all by the σxy component. The strain
application proposed in this paper is now advantageous be-
cause the symmetry preservation guarantees a fixed AHC
tensor form and symmetry conditions, as seen in Eq. (3). As
such, the setup for the strain, as seen in Fig. 1(e), is the key
to studying the AHC in Mn3NiN as a pure function of the
strain without altering the allowed symmetry features, and
then, the variations on the AHC in the (111) plane σ

η

111 =
1√
3
(ση

xy + ση
yz + ση

zx ) can be extracted as a function of η in the
kagome lattices.

Figure 3(a) shows the σ111 component of the AHC as a
function of the energy, in the energy range [−0.5,+0.5] eV,
for strain values between η = −3.0% to 3.0%. In Fig. 3(b), is
presented a bar plot condensing the σ111 value at the Fermi
level for each strain value, as well as their error bars. The
latter error bars, marked in red in Fig. 3(a), were estimated
as the standard deviation of the last 20 adaptive refinement
iterations [55] while computing the σxy component based on
the Eq. (2). Interestingly, the AHC results show a particular
behavior; its value does not just increase or decrease with
the epitaxial strain; as seen in Fig. 3(a), the whole function
suffers a flattening with the compressive and tensile stress
incremental. Additionally, the maxima and minima of the
conductivity function diverge away from the Fermi level with
both types of deformation. Furthermore, as seen in the barplot
of Fig. 3(b), the tensile strain produces almost an AHC van-
ishing value, stretching the (111) plane as low as η = +1%
and upwards reduces the conductivity dramatically. The com-
pression, on the other hand, induces an increase of the AHC
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FIG. 3. (a) Anomalous Hall conductivity as a function of energy
for various strain values. The AHC around − 0.2 eV is showing a
downward shifting behavior marked with a red dashed line for com-
pression and tension strain values alike. (b) AHC value extracted at
Fermi energy, including the error estimated as the standard deviation
of the last 20 computational iterations.

from σ 0%
111 = 114 S cm−1 to σ−1%

111 = 144 S cm−1 representing
an increase of 26%. However, the AHC remains constant in
a plateau zone that holds until η = −2%. Further values of
strain compression, after η = −2%, does not enhances the
AHC, instead, the conductivity drops after this strain value,
reaching σ−3%

111 = 111 S cm−1 for η = −3%, a value similar to
the case η = 0%. Looking at Fig. 3(a), a small spike of AHC is
spotted just under the Fermi level for η = 0.0%. Later, it dis-
appears for tension but enhances under compression, growing
nonstop along the interval 0%� η � −2.0%. Moreover, the
mentioned spike moves up to energies higher than the Fermi
level, being its maximum synchronized with the Fermi level
for a compressive η between −1.0% and −2.0% Thus, our
findings suggest that the area under the AHC curve is redis-
tributed with the strain rather than shifted. Considering the
Eq. (2) and aiming for gathering more information on the ori-
gin of the AHC control mechanism, the σ−1.5%

111 and the Berry
curvature were calculated. The conductivity for the additional
strain value turned out as σ−1.5%

111 = 141 S cm−1, confirming
the plateau zone previously mentioned. Here, some saturation
is occurring that is stable within −1%� η � −2%.

Surprisingly, a comparison between the AHC (in Fig. 3)
and the states available near the Fermi level [see Fig. 2(g)]
within the range [−0.1,+0.1] eV, directly associated with
fn(�k), in Eq. (2), shows no correlation. Here, we expected to
find a connection because of the �γ (�k) dependence on the
Fermi distribution. However, the number of states increases
with the tension while the AHC gets almost destroyed under

(a)

(c)

(b)

FIG. 4. (a) Brillouin zone for the rhombohedral structure of
Mn3NiN. Here, the plane parallel to the (111) plane is highlighted
and the high symmetry points included in the band structure calcula-
tion. (b) Bar plot including the σ111 component of the AHC as well as
the number of nontopological band crossings in the range [−0.1,0.1]
eV around the Fermi level. (c) Berry curvature calculated for the path
connecting the high symmetry points P2–� on the left and L–T on the
right, perpendicular and parallel to the kagome lattices, respectively.

such circumstances. A DOS projection onto the Mn:3d and
Ni : 3d orbitals, which dominate most of the band structure
around the Fermi level, showed a nonsimilar behavior to the
AHC. The contribution of those orbitals follows the same
rules as the total DOS, as already discussed in the electronic
structure analysis. For instance, the only source of control
that remains for the AHC is the Berry curvature, which will
be analyzed in what follows. The Mn3NiN BZ is shown in
Fig. 4(a) in which P2–� and L–T are shown with respect to
the (111) plane kagome lattice. In Fig. 4(b) is presented the
AHC as well as the number of band crossings in the [–0.1,0.1]
eV range. The BC integration results for η = −3.0%,−1.5%,
0.0%, and 3.0% along the P2–� and the L–T paths are shown
in the left and right parts of Fig. 4(c), respectively. Analyzing
the BC along the P2–� path shown in Fig. 4(c), various
discontinuities belonging to band crossings near and at the
Fermi level can be identified. As provided by the symme-
try analysis later in this paper, most of those crossings are
not protected by the symmetries of the system and therefore
belong to the nontopological band crossings classification.
However, the rhombohedral symmetry preservation through-
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out the strain application process is advantageous because
it allows the shape of the band structure to remain mostly
unaltered. As a result, the band crossings can only move up
and down in energy or, in the case of nontopological band
crossings, be dissolved by the external perturbation. Notably,
the trivial band crossings near the Fermi level [shown in
Figs. 2(a)–2(c)] produce a divergent component of the BC
that is maximum for the unstrained structure, very weak for
compression, but considerable for tension strain. Despite that,
the results showed the highest AHC values for compression
and unstrained cases, while in the case of tension strain, the
AHC sees a minimum. Moreover, the counting of the band
crossings near the Fermi energy shown in Fig. 4(b), in agree-
ment with the DOS integral, shown in Fig. 2(g), displays a
proportional compression (tension) to decrease (increase) of
the number of crossings. Thus, giving more crossings near
the Fermi level for tension than for compression and an inter-
mediate number of crossings for the unstrained case. Again,
the Berry curvature of the nontopological crossings does not
follow the behavior already seen in the AHC. Therefore, in
agreement with Huyen et al. [32], our results suggest that the
highly localized and divergent Berry curvature, induced by the
band crossings near the Fermi level, is not the AHC primary
origin.

Despite several bands crossings found in the band struc-
ture, not all are actual Weyl nodes; instead, the majority
are nontopological crossings, which resist small symmetry-
preserving perturbations but do not result from the crystallo-
graphic and magnetic symmetries. In what follows, the Weyl
nodes identification process will be presented.

Bands can be either spanned in Bloch or Wannier func-
tions; the first unlocalized in the momentum space and the
second localized in the real space. In this case, a relationship
between the localized orbitals of atomic sites with the wave
functions can be established [68,69]. Therefore, the crystal
symmetry is inherited by the Hamiltonian. Thus, the recipro-
cal paths along where symmetry-protected Weyl nodes can be
detected are determined from the character tables of the high
symmetry points and the compatibility relations of the band
representations for the symmetry group. The character tables
and the compatibility relations were obtained from the Bil-
bao Crystallographic Server, providing information for all the
known symmetry groups. Such tables are calculated through a
generalized implementation of the induction algorithm based
on the Frobenius reciprocity [70,71].

In systems like the Mn3NiN �4g magnetic phase, the de-
generacy of the energy bands is lifted by the TRS breaking.
However, some degeneracies remain due to their topological
origin and are protected by nonsymmorphic symmetries (e.g.,
the roto-translations). According to the compatibility relations
for the R3̄m’ (166.101) magnetic symmetry group, the sym-
metries in this noncollinear antiferromagnet induce and the
C3(111) protect a total of 6 possible Weyl nodes located along
the path �:(0,0,0)→ T:(1/2, 1/2, –1/2), each belonging to
crossings of pairs of bands from the � point at an intermediate
� point, which separates again towards the point T (see Table
SIII in Supplemental Material [36]).

Because of the Weyl nodes protected status, they are re-
sistant to all the symmetry-preserving perturbations in the
system and are also nondependent on the SOC. Therefore, the

C3(111) protected Weyl nodes must hold against tiny or extreme
strain values, such as –3%� η � +3%, either in the presence
or the absence of the SOC. After analyzing the band structure
in the T-� path for band degeneracies with band inversion, we
identified some crossings that disappear under compression or
tension, but four crossings hold from –3% to 3% strain (see
Table SIV in Supplemental Material [36]). Among the found
nodes, the Weyl node shown in Figs. 2(a)–2(c) occupying
the energy levels –0.461, –0.413, and –0.4177 eV for –3%,
0%, and 3%, respectively, is the closest to the Fermi level.
Despite remaining intact in all the strain cases, the mentioned
crossing showed no inference in the BC at the Fermi level.
Furthermore, as reported in Kübler et al. [72], the chirality
of both, inward and outward magnetic moments triangles is
the same, in which case the contribution of the Weyl nodes
to the Berry curvature cancels out in pairs inside the AHC
integral, Eq. (2). On the other hand, the BC in the L–T section,
shown in Fig. 4(c), provides both types of BC, localized and
not localized, over the path. The localized BC is once more
uncorrelated to the AHC data. This confirms what has already
been discussed in the BC analysis along the P2–� segment.
Interestingly, the spread BC correlates to the AHC for each
strain value. The highest values of the BC are �0%

111 = −20.5
Å2, �−1.5%

111 = −22.5 Å2, and �−3%
111 = −18.4 Å2, while for

+3% a relatively small value of BC is spotted �+3%
111 = −8.6

Å2. The AHC values in each of the mentioned cases are σ 0%
111 =

114 S cm−1, σ−1.5%
111 = 140 S cm−1, σ−3%

111 = 111 S cm−1, and
σ+3%

111 = −27 S cm−1. It is important to remark that the L–T
path lies in a plane parallel to the (111) plane, and the P2–�

is parallel to the magnetic symmetry axis [i.e., along the (111)
axis and perpendicular to the kagome lattice, see Fig. 4(a)].
Thus, as expected, the AHE occurs only over the (111) plane
(i.e., into the kagome lattice) and not in the perpendicular
direction. Therefore, the AHC, induced by a nonvanishing
BC in the (111) plane, conducts the carriers over the same
plane where the T ∗ M preserving magnetic orderings are
placed. This nondivergent BC can be attributed to interband
coherence induced by the electronic field [66]. Avoided band
crossings at the Fermi energy level benefit the AHC due to
the strong interaction of the occupied and the unoccupied
bands [73–75]. The latter was observed for the computed BC
within the (111) plane included in Fig. S3 in the Supplemental
Material [36].

IV. CONCLUSIONS AND GENERAL REMARKS

Through first-principles calculations and theoretical anal-
ysis, we have investigated the strain-driven controlling of
AHC in Mn3NiN antiperovskite. We found that the strain
application in the (111) plane preserves the symmetries of
the system, allowing only control over the dispersion of the
bands in energy. Such preservation keeps intact the source
of the AHC, the T ∗ M in the �4g magnetic ordering, leaving
the AHC tensor form unchanged in each case. Therefore,
the AHC is a function of the distance between the Mn
atoms within the same and different kagome lattice planes.
Our results indicate a nondirect relationship between the
AHC magnitude and the epitaxial strain. Thus, compression
(tension) strain values lead to an enhancing (decreasing) of
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the AHC only within the range –2%� η � 1% of strain.
Moreover, we observed that the strain induced a redistribution
of the AHC function maxima and minima near the Fermi
energy. The magnitude of the AHC and the BC as strain
functions showed a correlation over their components in the
kagome lattice plane. However, there is a limit to this control
mechanism. The maximum AHC value is reached between
−1% � η � −2%; further compression only reduces the
AHC. Remarkably, neither the total nor the 3d orbital pro-
jected DOS in the vicinity of the Fermi energy presented
correlations to the AHC. Instead, the physics behind the tun-
ing of the AHC relies on the nondivergent Berry curvature
within the (111) kagome plane. Noteworthy, the AHC in this
compound showed no correlation to the band crossings (trivial
or topological), and the AHC could be traced to the avoided
crossings and the interband coherences. The BC in the L–T
path in this plane increases as the strain reduces the Mn-Mn
distance. Therefore, the strain in the (111) plane proved to be
an effective tool to tune the AHC in the �4g magnetic phase of
Mn3NiN.
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