
PHYSICAL REVIEW B 106, 195109 (2022)
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We study how polariton condensation modifies charge transport in organic materials. In typical organic
materials, charge transport proceeds via incoherent hopping. We therefore provide an approach to determine
how the rate and final state of this hopping process is affected by strong matter-light coupling and polariton
condensation. We show how the hopping process may create excitations when starting from a state with a
finite excitation density. That is, how hopping can change the state of a lower polariton condensate by creating
upper polaritons, optically inactive excitonic dark states, or by exciting vibrational sidebands. While the matrix
elements for these processes can be large, for typical materials at room temperature, such excitations are
suppressed by thermal factors, and ground-state processes dominate. We thus study how the ground-state hopping
rate depends on condensate density, matter-light coupling, and cavity photon detuning. All these factors change
the vibrational configuration associated with the optically active molecules, which can enhance or suppress
hopping by increasing or decreasing the vibrational overlap with the state of a charged molecule. We show that
hopping rates can be exponentially sensitive to detuning and condensate density, allowing an increase or decrease
of hopping rate by two orders of magnitude.
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I. INTRODUCTION

In organic light emitting devices, charge transport is an
incoherent process of hopping between molecules [1–4].
Understanding how such transport is affected by material
properties—such as disorder and vibrational dressing—is cru-
cial to enable design of more efficient light emitting and
light harvesting materials. Many organic materials also show
large oscillator strengths, so can reach the strong matter-light
coupling regime [5–9]. Strong coupling changes the energies
and nature of molecular eigenstates, and can thus influence
transport. In this paper, we discuss how strong matter-light
coupling affects incoherent hopping transport in the presence
of a polariton condensate.

The effects of strong matter-light coupling on material
properties have been extensively studied. This includes exper-
iments [10–13] and theory [14–26] considering how chemical
reaction rates can be changed (reviewed in Refs. [27–32]),
and papers on changing the superconducting transition tem-
perature [33,34], building on experiments on light-induced
superconductivity [35–38]. The effects of strong matter-light
coupling on transport have also been explored both experi-
mentally [39] and theoretically [14,40–46], including ballistic
and incoherent charge transport, as well as energy transport.

The focus of this paper is on the combined effect of strong
matter-light coupling and polariton condensation on hopping
transport. Polariton condensation [47–49] refers to a state with
a single macroscopically occupied polariton mode. In ther-
mal equilibrium this is akin to Bose-Einstein condensation.
With finite polariton lifetime it is closer to a laser, but with
stimulated emission replaced by stimulated scattering. Polari-

ton condensation has been seen in many organic materials
[50–58]; for a review, see [59]. In most cases, polariton con-
densation is driven by optical (i.e., external laser) pumping,
while electrical pumping has been realized with inorganic ma-
terials [60,61]. Some questions about the interaction between
a polariton condensate and charge transport have been con-
sidered for inorganic polariton condensates [62–65], where it
is appropriate to consider Wannier excitons, without strong
vibrational dressing. In contrast, in this paper we consider
organic molecules, and thus a Frenkel exciton picture, with
strong vibrational dressing, and incoherent hopping is the
principal mechanism of charge transport. Understanding how
incoherent charge transport is modified by polariton conden-
sation is a key ingredient toward realizing electrically driven
organic polariton condensates.

The questions of modification of chemical reaction rates
and of charge transport are closely related, since many chemi-
cal reactions can be understood as electron transfer processes.
This is particularly true for nonadiabatic chemical reactions,
where reaction rates are determined by Fermi golden rule
transition rates between reactant and product potential energy
surfaces [17,19–22,24]. Thus this is a similar calculation to
incoherent hopping transport [14,44]. Polariton condensation,
however, changes material properties in additional ways, so
the physics we discuss in this paper goes beyond calculations
of incoherent hopping transport “in the dark”. The question
of how chemical reactions are affected by a potential conden-
sate of vibrational polaritons—resulting from strong coupling
between vibrational modes and infrared photons—has been
recently considered [25], providing a complementary example
of this point.
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FIG. 1. Sketch of the system. (a) Organic molecules in an optical
cavity. The molecules are shown as two levels, HOMO and LUMO
that can be empty or occupied with electrons (small dots). Charge
hopping (black arrow) occurs between charged (doubly occupied)
and neutral (singly occupied) molecules. The strong coupling be-
tween the neutral molecules and the cavity produces polaritons that
can form a condensate and thus alter the charge hopping rates. (b) Po-
tential energy surfaces corresponding to different electronic states.
The dotted lines indicate the effective potential energy surfaces of the
neutral molecules that form the polariton condensate (see Sec. V).

In this paper we explore two main questions. How elec-
tronic hopping can induce transitions between states (through
exciting polaritons, or vibrational sidebands), and what de-
termines the effective hopping rates to these states. These
questions are related, as the effective hopping rates require
first identifying what final states can be reached, and summing
over the rates of transitions to these individual states. We find
that a range of final states are possible. The hopping matrix
elements to some states (such as exciting the upper polariton)
are suppressed in the thermodynamic limit (where there are
many molecules), but a range of possible final states still exist:
excitations of “dark” exciton states, and vibrational sidebands
of the lower polariton. However, at typical temperatures the
dominant process is that leaving the system with the same
macroscopically occupied lower polariton state. This picture
then allows a simplified calculation of how hopping rate varies
with matter-light coupling, exciton-photon detuning, and po-
lariton excitation density.

The remainder of this paper is arranged as follows. In
Sec. II we introduce the model we use to describe the molec-
ular states, and the form of hopping operator that describes
transitions between these states. To separate effects of exci-
ton delocalization from those of polaron formation, Sec. III
discusses the case where we neglect coupling to vibrational
states. We then extend this by including vibrational modes,
and thus vibrational sidebands in Sec. IV. In Sec. IV B we
also discuss why vibrational sidebands do exist in hopping,
but not in optical absorption. Having established the dominant
final state, Sec. V discusses how the hopping rate depends
on matter-light coupling. Appendices provide details of the
numerical method used throughout the paper, based on permu-
tation symmetry [66,67], as well as further numerical results
provided for completeness.

II. MODEL

A. Holstein–Tavis–Cummings and Holstein models

We describe the electronic state of molecules through
two electronic levels, the highest occupied molecular or-
bital (HOMO) and the lowest unoccupied molecular orbital
(LUMO), see Fig. 1. For simplicity, we assume identical

molecules, and neglect electron spin. For such a model, four
electronic states exist: two neutral states, with a single electron
in the HOMO (|↓〉) or LUMO (|↑〉) levels, and two charged
states, a positive empty molecule (|0〉), or a negative dou-
bly occupied molecule (|D〉). The molecules are placed in
an optical cavity, described as a single optical mode, which
couples to transitions between the |↓〉 and |↑〉 states, as in the
Tavis–Cummings model [68,69]. The cavity does not interact
with the charged states.

To model vibrational dressing of the electronic states,
we include a single intramolecular vibrational mode. For
the optically active molecules we thus have the widely-used
Holstein–Tavis–Cummings (HTC) model [66,70],

HHTC =ωcâ†â +
∑
n∈A

{
ω0σ̂

+
n σ̂−

n + ωR√
N

(σ̂+
n â + σ̂−

n â†)

+ ωv[b̂†
nb̂n − λσ̂+

n σ̂−
n (b̂†

n + b̂n)]

}
. (1)

Here â describes cavity photons with energy ωc, while the
N optically active molecules are described by Pauli operators
σ̂n, acting in the |↑〉, |↓〉 subspace, with energy splitting ω0.
We denote the set of such optically active molecules as A.
The collective Rabi splitting ωR parameterizes the matter-
light coupling. As we make a rotating wave approxima-
tion, the number of excitations Nex = â†â + ∑

n∈A σ̂+
n σ̂−

n is
conserved.

The operator b̂n describes a vibrational mode with energy
ωv , and vibrational coupling λ. We measure vibrational dis-
placement with reference to the equilibrium for the |↓〉 state.
As such, λ indicates the offset between the optimal vibrational
displacement for the |↑〉 and |↓〉 states. In reality, organic
molecules have many vibrational and rotational modes, and
different electronic states displace different patterns of these.
Our model relies on the common observation that a small
number of modes dominate coupling to the electronic state.

For the negatively charged molecules, there is no coupling
to light, so each such molecule evolves independently. For one
such molecule we have the simpler Holstein model [71,72],

HH = |D〉〈D|{ωD + ωv[b̂†b̂ − λD(b̂† + b̂)]}, (2)

where ωD is the bare energy of the doubly occupied state,
b̂ the same molecular vibrational mode as considered in
Eq. (1). The parameter λD indicates the offset between the
optimal vibrational displacement for the |D〉 and |↓〉 states.
This Hamiltonian can be diagonalized by the Lang–Firsov
(polaron) transformation [73,74],

ULF = exp[λD|D〉〈D|(b̂ − b̂†)],

ULF HHU †
LF = |D〉〈D|{ωD − λ2

Dωv + ωv b̂†b̂
}
. (3)

In the following we will use |� j〉 to denote the jth
eigenstate of the neutral molecules, Eq. (1). For the charged
molecule(s), we denote the kth such resulting eigenstate
as |�k〉.

B. Hopping processes

Incoherent charge transfer between neighboring molecules
can occur due to tunneling matrix elements. Hopping can
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proceed via two channels, LUMO-LUMO (labeled L), which
interchanges molecules in the states |D〉, |↓〉 and HOMO-
HOMO (labeled H), which interchanges molecules in the
states |D〉, |↑〉. Figure 1(a) illustrates hopping in the L chan-
nel. We will consider a single hopping process at a time. As
such, we will consider a single negatively charged molecule
described by Eq. (2) along with N neutral optically active
molecules described by Eq. (1). The operators describing hop-
ping from molecule p to q are

V̂ L
pq = |↓p Dq〉〈Dp ↓q|, V̂ H

pq = |↑p Dq〉〈Dp ↑q|. (4)

Associated with these operators are bare hopping amplitudes
JL, JH in each channel. If we were to consider positively
charged molecules and hopping of holes, the relation between
L, H and ↓, ↑ would swap.

Below, we will calculate the probabilities and energies of
the final states after hopping, and thus find how the overall
hopping rate is modified by the presence of a polariton con-
densate. Before hopping, we assume the whole system is in
the lowest energy state for a given number of excitations Nex.
This state is a condensate of lower polaritons along with a
charged molecule p in its relaxed state. Using the notation
for eigenstates introduced above, this state can be written as
|�0

A′∪{q}�
0
p〉. Here A′ indicates the set of N − 1 molecules in

the active sector not involved in the hopping, while A′ ∪ {q}
indicates the set of all active molecules before the hopping
event, which includes also the molecule q that is involved in
the hopping. In the following we will take the energy of this
state as a reference ε0,0 ≡ 0. This assumption corresponds to
assuming a sufficiently low-temperature state, kBT � ωR, ωv ,
where the population of vibrational excitations or of dark
states (see below) is negligible.

After the hopping process, the set of active molecules will
become A′ ∪ {p}, and molecule q will be charged. As well
as changing which molecule is charged, hopping can cause
transitions to excited states, |� j

A′∪{p}�
k
q〉, at energies ε j,k � 0.

With this notation, we can define hopping matrix elements

M̃l j,k ,tot. ≡
∣∣∣∣∣
〈
�

j
A′∪{p}�

k
q

∣∣∣∣∣ ∑
c=L,H

JcV̂ c
pq

∣∣∣∣∣�0
A′∪{q}�

0
p

〉∣∣∣∣∣
2

, (5)

where c ∈ {L, H} denotes the hopping channels, and l j,k in-
dexes the final state. In cases where JL � JH or vice versa,
hopping will be dominated by a single channel, and we may
consider the single channel matrix elements

Mlj,k (c) ≡ ∣∣〈� j
A′∪{p}�

k
q

∣∣V̂ c
pq

∣∣�0
A′∪{q}�

0
p

〉∣∣2
. (6)

When JL,H are comparable interference between the two hop-
ping channels can occur.

Transitions to excited states are possible because the sepa-
rate channel hopping processes effectively measure the elec-
tronic state of the hopping molecule. Restricting to the active
molecule involved in the hopping, and ignoring the fact its
location changes, the hopping processes have the effect V̂ L

p =
σ̂−

p σ̂+
p and V̂ H

p = σ̂+
p σ̂−

p , where we have used p to denote the
molecule q/p before/after hopping. That is, hopping in the
LUMO channel requires an active molecule in the ↓ state,
while hopping in the HOMO channel requires an active ↑
state. As such, by using completeness of the final states, we

see that the matrix elements in a given channel sum to give∑
j,k

Mlj,k (c) = pσ (c), (7)

where pσ is the probability to find the active molecule in
the |σ 〉 state, with σ (L) =↓, σ (H ) =↑. By measuring the
state on a single molecule, these operations can mix different
polaritonic eigenstates. We may also note that V̂ L + V̂ H = 1
within the electronic sector. That means that in the special
case JL = JH , interference between the channels prevents the
electronic state changing. The vibrational state may, though,
still change. It also means that (neglecting vibrations) when
j, k 
= 0, 0, one has that the single-channel matrix elements
are independent of channel, Mlj,k (H ) = Mlj,k (L).

Since transitions to states with ε j,k � 0 describe an in-
crease in energy of the molecular system, they require
extracting energy from a thermal reservoir—either delocal-
ized phonon modes, or low-energy intramolecular vibrational
modes not explicitly included in our model. This energy cost
leads to Boltzmann weights for excited state processes, giving
an overall hopping rate [1–4],

R =
∑

j,k

M̃l j,k ,tot.e−ε j,k/kBT . (8)

The charge mobility is proportional to the hopping rate R
[1–4]. In the following we will discuss how to evaluate Mlj,k (c)

in various cases, and thus determine hopping rates.

III. HOPPING-INDUCED TRANSITIONS
NEGLECTING VIBRATIONS

In this section we look at hopping without vibrational
modes. This is equivalent to setting λ = λD = 0, so that all
molecules remain in the vibrational ground state and Eq. (1)
becomes the Tavis–Cummings model [68,69]. We do this
to enable us to understand separately the effects of exciton
delocalization (present in this section) and those of polaron
formation (present in later sections with vibrations).

Without vibrational dressing, the charged molecule has
only a single state |D〉. As such, the states before and after
hopping can be written as |�0

A′∪{q}Dp〉 and |� j
A′∪{p}Dq〉, and a

single index j identifies the final state. To enumerate the final
states of the active sector, we must consider eigenstates of the
Tavis–Cummings model. These are formed of three kinds of
excitations: lower polaritons (LP), upper polaritons (UP), and
dark states. Polariton states involve superpositions of photons
and uniformly delocalized matter excitations, as created by
the operator

∑
n∈A σ̂+

n /
√

N . The dark states correspond to the
N − 1 degenerate modes of matter excitons, which are orthog-
onal to this uniform mode. One possible basis for dark states is
the Fourier basis

∑
n∈A ei2πkn/N σ̂+

n /
√

N for k = 1 . . . N − 1.
However, since dark states are degenerate, any basis spanning
this space is suitable. In writing this expression for dark states
we have implicitly assumed the sites n ∈ A can be numbered
n = 1 . . . N ; we will continue to assume this in the remainder
of this article.

In the following we will first discuss in Sec. III A the sim-
ple picture that occurs when Nex � N , where analytic results
are possible. Section III B then presents numerical results at

195109-3



ZEB, KIRTON, AND KEELING PHYSICAL REVIEW B 106, 195109 (2022)

arbitrary excitation density ρex = Nex/N . We conclude this
vibration-free discussion with analytic results in the other
extreme limit, where Nex � N , given in Sec. III C.

A. Analytic matrix elements at small excitation density

In the limit where Nex � N , the many particle states take a
simple form. To see this, we start by defining operators,

ĉ†
LP = cos θ â† − sin θ√

N

∑
n∈A

σ̂+
n , (9)

ĉ†
UP = sin θ â† + cos θ√

N

∑
n∈A

σ̂+
n , (10)

d̂†
k = 1√

N

∑
n∈A

ei2πkn/N σ̂+
n , (11)

where θ is the Hopfield angle, tan(2θ ) = 2ωR/(ω0 − ωc).
When Nex � N , these operators approximately obey bosonic
commutation relations, and the system eigenstates are ap-
proximately given by number states (Fock states) of these
operators. At higher density—as is discussed in subsequent
sections—the states are modified because of saturation of the
two-level systems.

Since hopping changes the state of only one molecule,
there are restrictions on the final states that can be reached
in this low excitation limit. In the low excitation limit, one
can invert the definitions of ĉ†

LP,UP, d̂†
k to write σ̂+

p as a linear
combination of these operators. As such, the hopping oper-
ators σ̂+

p σ̂−
p and σ̂−

p σ̂+
p correspond to a quadratic operation,

which can scatter at most one particle to the UP and dark
modes. That is, the possible final states involve Nex − 1 lower
polaritons, and one excitation, which is in either the LP, UP, or
a dark state. As we will discuss below, while this argument is
only strictly true for Nex � N , the resulting statement can be
shown to be approximately true much more broadly, as long
as N � 1.

1. Nex = 1 case

For Nex = 1, the probabilities have closed forms, which
also help explain behavior at Nex > 1. At resonance, i.e.,
ωc = ω0, the Nex = 1 LP and UP states are

|�LP/UP〉 = 1√
2

[
1√
N

N∑
n=1

|0P; ↑n⇓
=n〉 ∓ |1P; ⇓〉
]
, (12)

where |0P〉, |1P〉 denote the photon states with 0 or 1 photons,
and |↑n⇓
=n〉 indicates the molecular electronic state where the
nth molecule is excited and all other molecules unexcited. The
N − 1 dark exciton states can be written as

|�dk 〉 =
N∑

n=1

ei2πkn/N

√
N

|0P; ↑n⇓
=n〉, k ∈ [1, N − 1]. (13)

In this notation the state before hopping is |�LP
A′∪{q}Dp〉. To

find the probabilities for the L or H channel, we project onto
the space where molecule q is in the ↓ or ↑ state respectively.
This yields MLP(H ) = 1/4N2, MLP(L) = (1 − 1/2N )2.

For other final states, we use the result noted above that for
j 
= LP, the matrix element M j(c) is independent of channel
label c ∈ {L, H}. For the UP we find MUP(c) = 1/4N2, while

for dark states as defined above we have Mdk (c) = 1/2N2

independent of k. Summing over all dark states gives a total
probability MDark(c) = (N − 1)Mdk (c) = (N − 1)/2N2.

One may note that for this resonant case at large N , tran-
sitions to dark states saturates the sum rule for the HOMO
channel,

∑
j M j(H ) = 1/(2N ). In contrast, for the LUMO

channel, the sum rule
∑

j M j(L) = 1 is saturated by the tran-
sition to the lower polariton state. Thus, for Nex = 1, in the
limit N → ∞, the only surviving process is a transition to the
LP through the LUMO channel. This occurs because exciton
delocalization means local hopping only perturbs the state by
an amount ∝1/

√
N .

2. Nex = 2 case

Closed forms can also be found for Nex = 2, which allow
one to understand why the probability to create multiple ex-
citations remains small at arbitrary Nex/N , even though such
processes are not forbidden.

Considering first the polaritonic states, these are formed
from a basis of photon and bright excitonic states, which we
write as

|1P; B〉 = 1√
N

N∑
n=1

|1P; ↑n⇓
=n〉,

|0P; BB〉 = 1√
2N (N − 1)

N∑
n,m=1
n 
=m

|0P; ↑n↑m⇓
=n,m〉,

along with the two photon state |2P; ⇓〉. Writing the Tavis–
Cummings Hamiltonian in the basis |2P; ⇓〉, |1P; B〉, |0P; BB〉
one finds that at resonance, ωc = ω0, the eigenstates are

|�2LP/2UP〉 = 1√
2(1 + η2)

⎛⎝ 1
∓
√

1 + η2

η

⎞⎠, (14)

|�LP+UP〉 = 1√
1 + η2

⎛⎝ η

0
−1

⎞⎠, η =
√

N − 1

N
. (15)

Projected into this same basis, the HOMO hopping operator
V̂ H is a diagonal matrix (since it cannot change photon num-
ber) with diagonal elements (0, 1, 2)/N . This gives

M j(H ) = 1

[N (4N − 2)]2

⎧⎨⎩(4N − 3)2 j = 2LP
8N (N − 1) j = LP + UP
1 j = 2UP

.

(16)

Notably while the first two terms here are O(N−2), the last is
O(N−4), consistent with the suppression of transitions chang-
ing multiple excitations. For hopping in the LUMO channel,
as discussed above we have M j(H ) = M j(L), except for j =
2LP. For that case we get

M2LP(L) =
[

1 − (4N − 3)

N (4N − 2)

]2

. (17)

This saturates the LUMO channel sum rule at large N , and
we again find that LUMO channel hopping with the state
unchanged is the only term that survives in the N → ∞ limit.
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While the above shows individual matrix elements for final
states differing by more than one excitation are suppressed,
one may note that considering the dark excitonic states, there
are O(N2) states with two dark excitons, compared to O(N )
with one. As we next show, despite this counting effect, the
total weight of transitions to the sector with two dark excitons
is suppressed by 1/N .

The dark exciton states can be written as

|0P; dkdk′ 〉 =
N∑

n,m=1n 
=m

ei2π (kn+k′m)/N

√
N (N − 2)

|0P; ↑n↑m⇓
=n,m〉, (18)

as long as k 
= k′. (When k = k′, the normalization of this
state changes. Since k 
= k′ makes the dominant contribution
to the sum over dark states, we focus only on this case for
simplicity.) The state with a single dark exciton and one bright
exciton is a special case of this, |0P; dkB〉 = |0P; dkd0〉. One
may show that

〈0P; dkB|V̂ H
p |0P; BB〉 = ei2πkp/N

N

√
2(N − 2)

(N − 1)
, (19)

〈0P; dkdk′ |V̂ H
p |0P; BB〉 = −2

√
2ei2π (k+k′ )p/N

N
√

(N − 1)(N − 2)
. (20)

Without further calculation, one may see that after squaring
these rates and summing over the number of final states, the
total rate of transitions to states with one dark exciton will be
O(N × N−2) while transitions to states with two dark excitons
are O(N2 × N−4). Thus, transitions to states with multiple
dark excitons are indeed suppressed. Moreover, by construct-
ing the eigenstate |�LP+dk 〉 = (|0P; dkB〉 − |1P; dk〉)/

√
2 and

using results for matrix elements in the one and two excitation
subspaces one finds

MLP+dk (c) = 1

4N2

[√
2N − 4

2N − 1
+ 1

]2

. (21)

Note that we have again used that M j(c) is independent of c
when j 
= 2LP. Summing over the dark states, MLP+Dark(c) ≡
(N − 1)MLP+dk (c) = 1/N + O(1/N2) and so one again finds
these processes saturate the sum rule for Nex = 2 states,∑

j Ml j (H ) = 1/N .

3. Other initial states

As noted previously the focus in this paper is the hopping
process starting from an initial lower polariton condensate,
i.e., an initial state with Nex lower polaritons and no other
excitations. Here we comment briefly on the form of analytic
matrix elements for other initial states. The argument made at
the start of this section regarding the behavior for Nex � N
applies equally with alternate initial states: When Nex � N ,
operators effectively become bosonic, and so the hopping
process can change the state of at most one particle. As such,
only matrix elements where the initial and final states differ by
one particle survive in this limit. Also as above, one can also
explicitly consider the transitions in the Nex = 2 sector, by the
same approach as described above. We consider an initial state
LP + dk and focus on the HOMO channel (for all final states
except LP + dk , the result remains independent of channel).

0 0.5 1.0 1.5 2.0
ρex

0

0.25

0.50

0.75

1.00

M
x

(a)

N = 103

x=LP(L)

x=LP(H)
x=Dark
x=UP

2 10 20 50 100
N

0.00

0.25

0.50

M
x

(b)

ρex = 0.5

FIG. 2. Probabilities for hopping to produce a given state, ne-
glecting vibrations, via channels L, H . For dark and UP final states,
the result is independent of channel: (a) vs excitation density ρex at
N = 103; (b) vs number of molecules N at ρex = 0.5. Plotted on
resonance, ωc = ω0; in this limit the figure is independent of the
value of ωR.

We find that the matrix elements to final state j, denoted as
M j(H )

LP+dk
, take the form

M2LP/2UP(H )
LP+dk

= 1

4N2

(
1 ±

√
2N − 4

2N − 1

)2

, (22)

MLP+UP(H )
LP+dk

= N − 2

(2N − 1)(N − 1)N
, (23)

MLP/UP+dk′ (H )
LP+dk

=
{

1
4N2

(
1 ± N−4

N−2

)2
k 
= k′

1
4N2 (2 ± 1)2 k = k′,

(24)

Mdk′+dk′′ (H )
LP+dk

=
{

8
N2(N−2)2 k 
= k′, k′′

1
2N2

(
N−4
N−2

)2
otherwise.

(25)

In the final expression we assume k′ 
= k′′. These expressions
have the same property as before: those terms, which involve
only one change of particle (i.e., j = 2LP, LP + UP, LP +
d ′

k,UP + dk, dk + dk′ ) are O(N−2), while other processes, in-
volving two changes, are O(N−4).

B. Numerical matrix elements at arbitrary excitation density

We next consider behavior at finite ρex ≡ Nex/N . Brute
force calculations here are challenging, as the Hilbert space of
the Tavis–Cummings model scales exponentially with N . For-
tunately, for identical molecules, we can exploit permutation
symmetry to reduce the scaling to O(N ), which enables cal-
culations even at N ∼ 103; see Ref. [66,67] and Appendix A
for details. Note that in doing this we must treat the molecule
involved in the hopping separately from the others.

Figure 2 shows the behavior of the matrix elements as a
function of excitation density ρex at fixed N , and vs N at
fixed ρex. Since the only final states with significant weight
are those with one excitation, we will abbreviate the matrix
element M (Nex−1)LP+x(c) as Mx(c), where x ∈ {LP,UP, Dark}.
Figure 2(a) shows that at small ρex, the state-changing prob-
abilities grow linearly with ρex, so MUP(c) � Nex/4N2 and
MDark(c) � Nex/2N . Increasing ρex equalizes the probability
of finding a given molecule excited or unexcited. As such, at
large ρex, one finds MLP(L) decreases and MLP(H ) increases,
with both elements approaching 1/4 at large ρex. In this same
limit, the probability MUP(c) vanishes as 1/4N . On the other
hand, MDark(c) saturates at 1/4, matching the LP state. These
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FIG. 3. Probability to reach a final state differing by more than
one excitation from the initial state [see Eq. (26)]. (a) Probability vs
excitation density at fixed values of N as indicated. (b) Probability vs
N at fixed ρex as indicated. Plotted on resonance, ωc = ω0, and thus
the figure is independent of ωR. Note that for ρex = 0.5, the leftmost
point in panel (b) corresponds to N = 2, Nex = 1, thus final states
with two excitations are not possible.

results match analytic results available at large excitation
density, discussed in the next section. Figure 2(b) shows the N
dependence at intermediate ρex, showing which terms vanish
or remain finite in the large N limit.

As noted above, while transitions to states with multiple
excitations are possible, their weight is suppressed at large N .
Figure 3 shows numerically that this remains true even for
nonvanishing Nex/N . Specifically, defining

P1ex =
∑

x∈LP,UP,Dark

∑
c

M (Nex−1)LP+x(c), (26)

then any deviation of P1ex from 1 indicates the total amplitude
of processes producing multiple excitations, which is seen to
be small.

Although the probabilities for hopping to excite dark states
grow with ρex, the dominant process in the hopping rate R
remains the LP channel at all relevant temperatures. This
is because the Boltzmann weights in Eq. (8) suppress ex-
cited final states, so LP state dominates the hopping rates if
kBT � ωR.

C. Analytic matrix elements at large excitation density

Analytic results for hopping matrix elements can also be
found in the limit where Nex � N . These help explain the
numerical results found at general Nex/N .

To find the ground state in the limit Nex � N , we may note
that in this limit the photon mode will always be highly occu-
pied. Furthermore, the matrix element for photon raising and
lowering operators between sequential number states will al-
ways be approximately

√
Nex, as the difference between states

with Nex and Nex − N photons can be neglected. If we choose
a state where alternating photon number states have opposite
signs, this means that the Tavis–Cummings Hamiltonian be-
comes HTC � −ωR

√
Nex/NŜx, where Ŝx = ∑

n(σ̂+
n + σ̂−

n )/2
is a collective spin operator. The ground state of HTC in this
limit is a state with collective spin aligned along the x axis;
this is equivalent to

∑
{σ } |{σ }〉/

√
2N where we have used

{σ } to denote summation over all configurations of the spin
states in the σ̂ z basis, σn ∈ {↑,↓}. As a result, the ground
state at Nex � N—i.e., the state corresponding to (Nex − 1)

LP excitations—can be approximated by

|�0(Nex )〉 �
∑
{σ }

(−1)N{σ }
√

2N
|(Nex − N{σ })P; {σ }〉, (27)

where N{σ } = 〈{σ }|∑n σ̂+
n σ̂−

n |{σ }〉 counts the excited
molecules. As previously, |(m)P〉 denotes the photon
number state m. The state in Eq. (27) thus takes the
equally weighted spin configuration, and adjusts the photon
numbers to fix the total excitation number. The signs ensure
the photon matrix elements have negative signs. Since
all spin configurations have equal weight, the expression
〈�0|V̂ c

p |�0〉 = 1/2 corresponds to the fraction of terms
where molecule p is unexcited/excited respectively. As such,
the channel-dependent transition probabilities of going to the
unexcited final state, MLP(c) becomes 1/4 for both values of
c, as seen in Fig. 2(a).

Using the above state, we can also find the probabilities
for transitions to states with a single dark exciton or upper
polariton excited, MDark(c) and MUP(c). As noted above, in the
absence of vibrations, both these amplitudes are independent
of the channel label, as V̂ L + V̂ H = 1 in the relevant subspace
for hopping.

We first consider the amplitude for dark states. We must
first find the large excitation density limit of the state (Nex −
1)LP + dk , which, for brevity, we denote |�dk 〉. Making use
of Eq. (27) this can be written as

|�dk 〉 ∝ 1√
N

N∑
n=1

ei2πkn/N σ̂+
n |�0(Nex − 1)〉.

Clearly this involves Nex − 1 lower polaritons (as before), and
one excitation in a finite k state. By considering the action of
the spin raising operators we can rewrite this in a way that
simplifies subsequent calculations,

|�dk 〉 =
∑
{σ }

(−1)N{σ }Ñk,{σ }√
N2N−2

|(Nex − N{σ })P; {σ }〉,

Ñk,{σ } = 〈{σ }|
∑

n

ei2πkn/N σ̂+
n σ̂−

n |{σ }〉. (28)

The factor Ñk,{σ } sums up the phase factors that could arise in
producing a given final state. This form arises since exactly
one of the excited spins must come from the dark state oper-
ator, so for each possible spin state, we must add a copy of
the state with the corresponding phase factor. To verify the
normalization and work out the matrix elements it is useful to
use the result

Cn,n′ =
∑
{σ }

〈{σ }|(σ̂−
n σ̂+

n )(σ̂−
n′ σ̂

+
n′ )|{σ }〉

= 2N−2(1 + δn,n′ ),

from counting the number of spin configurations. The normal-
ization factor can then be found using∑

{σ }
|Ñk,{σ }|2 =

∑
n,n′

ei2πk(n−n′ )/NCn,n′ = N2N−2.
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We can then find the relevant matrix elements

〈�dk |V̂ H
p |�0〉 = 1√

N22N−2

∑
{σ }

Ñk,{σ }〈{σ }|σ̂+
p σ̂−

p |{σ }〉

= 1√
N22N−2

∑
n

ei2πkn/NCp,n = ei2πkp/N

2
√

N
.

(29)

Hence, summing over all dark states we find MDark(c) = (N −
1)/4N , matching Fig. 2.

For transitions to the upper polariton—i.e., a state (Nex −
1)LP + UP—we can proceed in a similar way. To identify
the state with exactly one upper polariton excitation, we note
that this state should exist within the manifold described by
the (symmetric) collective spin operators Ŝx, Ŝy, Ŝz. As such,
we can consider the state with one upper polariton to be the
first excited state in the symmetric sector. This corresponds
to acting once on the state in Eq. (27) with the operator,
which lowers the collective x spin by one unit. This operator
is

∑
n(−|↑〉n + |↓〉n)(〈↑ |n + 〈↓ |n)/2. Ignoring photons, this

state is thus

1√
N

∑
n

⊗
m

(
(−1)δn,m |↑〉m + |↓〉m√

2

)
.

Rewriting in terms of spin configurations as above, and re-
introducing the photons and their sign factors gives

|�UP(Nex )〉 � 1√
N2N

∑
n

∑
{σ }

(−1)Nn,{σ }+N{σ }

× |(Nex − N{σ })P; {σ }〉, (30)

where Nn,{σ } = 〈{σ }|σ̂+
n σ̂−

n |{σ }〉. One may easily check this
state is normalized. The overlap can then be found to be

〈�UP|V̂ H
p |�0〉 =

∑
{σ }

∑
n

(−1)Nn,{σ }

2N
√

N
〈{σ }|σ̂+

p σ̂−
p |{σ }〉

= − 1

2
√

N
, (31)

so MUP(c) = 1/4N , consistent with the vanishing value at
large N seen in Fig. 2.

IV. HOPPING-INDUCED TRANSITIONS
IN THE PRESENCE OF VIBRATIONS

In the previous section we analyzed the behavior of
hopping matrix elements in the Tavis–Cummings model, ne-
glecting vibrational excitations. In this section we explore a
similar question regarding changes to the molecular vibra-
tional state.

Due to the different vibrational offset of the electronic
states |↑〉, |↓〉, |D〉, hopping can excite vibrational modes of
both the charged and active molecules. In addressing this, one
must note that the delocalized nature of polaritons alters the
vibrationally dressed states. This question has been previously
explored in the context of optical absorption [14,66,75,76].
Comparing absorption to hopping processes poses an impor-
tant question: Is it possible to excite a vibronic sideband of
the lower polariton condensate state? For absorption, previous

0 1 2
ω/ωv
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4.0
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M
H

(ω
)

(a) N = 20
λ=λD=1

ρex = 0.05

ρex = 0.25

200 400 600

T (K)

0.9

0.95

1.0

R
L

P
0
/R

(b)

λD = −2
λD = 0
λD = +2

FIG. 4. (a) Vibrational sidebands near the LP state induced by
electron hopping, seen via the response function M (H )(ω). Lines
correspond to varying ρex from 0.05 (bottom) to 0.25 (top) in steps
of 0.05. Plotted for N = 20, ω0 = ωc, ωR = 1 eV, λ = λD = 1,
ωv = 0.2 eV. Frequencies are measured from the LP energy and a
linewidth of 0.02 eV is added to broaden the peaks. (b) Fraction of
total hopping rate associated with the final state being the unexcited
lower polariton (LP0) vs temperature. This illustrates the effect of the
Boltzmann weight of transitions to excited vibrational states. Shown
for three values of λD, with λ = 1.

papers [66,75,77] observed that there is only a single isolated
lower polariton peak, with no vibronic sidebands. As we show
below, the situation differs for hopping.

In the following we first discuss the excitations that can be
created during hopping in Sec. IV A, and then discuss how
this differs from those seen in the optical absorption spectrum
in Sec. IV B.

A. Hopping response function

To illustrate the potential excitations created by hopping,
we consider a hopping response function, defined by analogy
with the optical response function (see below)

M (c)(t ) ≡
∑

j,k

Mlj,k (c)e−iε j,kt

= 〈
�0

A′∪{q}�
0
p

∣∣V̂ c
qp(t )V̂ c

pq(0)
∣∣�0

A′∪{q}�
0
p

〉
. (32)

By defining this function in the time domain, it allows
straightforward calculation using the permutation symmetric
basis approach, see Appendix A, and in particular Sec. A 4 for
calculation of the time-domain response function.

Figure 4(a) shows the frequency-domain form of the hop-
ping response function M (H )(ω) for various values of ρex. To
give the peaks width, a numerical broadening is added, equiv-
alent to multiplying the time-domain function by a decaying
exponential. One clearly sees vibronic sidebands. Moreover,
we find that these sidebands appear to survive at large N , as
discussed in the next section. Such sidebands can in princi-
ple arise either from vibrational excitations on the charged
molecule or in the active sector, we have checked that both
processes occur.

While there is a nonvanishing matrix element for occu-
pying vibrational sidebands via hopping, as in the previous
section, their contribution to the overall hopping rate is sup-
pressed by a Boltzmann factor. Prominent vibrational modes
in organic materials are typically around ωv � 0.1–0.2 eV,
which is larger than kBT at room temperature. As such for
these modes the transition to the ground state once again
dominates. This is illustrated in Fig. 4(b), which shows the
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FIG. 5. (a) Vibrational sidebands near the LP state for optical
absorption. Lines correspond to N as indicated. Other parameters,
including broadening, as in Fig. 4. (b) Evolution of the weight of the
first vibronic sideband—(0 − 1) transition—for optical absorption
ALP1 , and hopping MLP1(H ) vs N . Parameters as for (a), with ρex = 0
and 0.5, respectively.

temperature dependence of the contribution of the lowest en-
ergy final state to the overall hopping rate. We denote the
lowest energy final state LP0 to indicate the vibrational ground
state of the lower polariton. We show this for various values of
λD. Note that when λD = 0 (and so matches the configuration
of the ↓ molecules), there is a low probability of vibrational
excitation at all temperatures. Note also that in a material
where there would be prominent vibrational modes compa-
rable to kBT , vibrational sidebands could become important.

B. Comparing hopping and absorption

The appearance of sidebands of the lower polariton con-
trasts with the known behavior of the optical absorption
[66,75,77], where it is found that in the N → ∞ limit there
are no vibronic sidebands to the lower polariton. The optical
absorption spectrum A(ω) can be defined as the Fourier trans-
form of the response function

A(t ) ≡
∑

j

A je−iε j t = 〈0|â(t )â†(0)|0〉, (33)

thus there is a close analogy to the hopping response function.
Since absorption only involves the active sector, states here
are labeled by a single index j.

Calculating the absorption spectrum using the permutation
symmetric approach (see Appendix A), one finds that vibronic
sidebands of the lower polariton do appear in the absorption
spectrum when N is small and ωR � ωv , as shown in Fig. 5(a).
That is, such states exist, but their weight Aj in the optical
absorption vanishes as 1/N due to the delocalized nature of
the polariton leading to a 1/N weight of the excitation on
any single molecule. For hopping, the excitation process is
localized to a single molecule. This allows the weight to
survive.

To verify the different dependence on N , Fig. 5(b) com-
pares the N dependence of the probability to create a single
vibrational excitation of the lower polariton LP1 in the two
cases: MLP1(H ) for hopping, and ALP1 , for optical absorption.
This shows that the probability of creating a vibrational exci-
tation survives at N → ∞ for hopping, while it vanishes for
optical absorption.

One may note that the hopping response and absorption
response differ both in the operators acting on the states, V̂ c

pq
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(a) λD = +2
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ρex = 1,λ = 1

ωv=0.2eV

(b) λD = +2

λD = −2

−1 −0.5 0 0.5
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10−4

10−2
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R
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P

0
/R

0

(c)
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ρex

(d)

0.1

0.4

0.7

1.0

ωR(eV)

FIG. 6. Effects of matter-light coupling on normalized hopping
rate R(c)

LP0
/R0 in the presence of the vibronic coupling. Left: [(a),

(c)] vs cavity detuning δ ≡ ωc − ω0 at ρex = 1. Right: [(b), (d)] vs
excitation density ρex at δ = 0. Top row [(a), (b)] shows the HOMO
channel, and bottom row [(c), (d)] the LUMO channel. For all panels,
various values of ωR are plotted, corresponding to the colorscale. In
addition, two sets of curves are shown for λD = ±2 as labeled, with
thicker (thinner) lines. We use N = 10, all other parameters as in
Fig. 4.

vs â†, and also in the initial state considered. We defined
absorption from the vacuum state, and hopping from a state
with finite Nex. Figure 5(b) also shows the result for optical
absorption starting from a state with ρex = 0.5, and in this
case the spectral weight of sidebands still vanishes at large N .
At larger ρex the sideband weight appears not to be suppressed
over the range of N accessible in our calculations.

V. CONTROLLING HOPPING MATRIX ELEMENTS
WITH MATTER-LIGHT COUPLING

When including Boltzmann factors, the conclusion of the
previous two sections is that at, typical temperatures, the
dominant hopping channel is the one which leaves the system
unexcited—i.e., LP0 as the final state. Based on this, we focus
the remainder of our discussion on the behavior of RLP0 , and
discuss how this rate is affected by matter-light coupling.
In particular, going beyond Refs. [14,44], we focus on how
the presence of a macroscopically occupied polariton mode
changes the hopping rates. (For a related discussion in the
context of vibrational strong coupling and vibrational polari-
ton condensation, see Ref. [25]). We find that for sufficiently
different λ, λD, this change can be significant. The numeri-
cal results presented in this section are all derived using the
methods of Appendix A.

A. Evolution of hopping with matter-light coupling

Figure 6 shows the normalized channel-dependent hopping
rates

R(c)
LP0

/R0 = MLP0(c)/e−2λ2
D ,

where the reference value R0 is the hopping rate for zero
matter-light coupling. Since the hopping rate depends on the
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vibrational offset, the bare hopping rates differ for the HOMO
and LUMO channels. We specifically chose R0 to be the hop-
ping in the LUMO channel. This ratio is shown as a function
of cavity detuning δ ≡ ωc − ω0 and excitation density at a
range of matter-light couplings and at λD = ±2.

The dependence on detuning, excitation density, and Rabi
splitting in Fig. 6 can be understood from considering two ef-
fects. First is the variation of the fraction of excited molecules
p↑. Hopping in the LUMO channel depends on p↓ = 1 − p↑,
while hopping in the HOMO channel depends on p↑. The sec-
ond effect is the electronic-state-dependent vibrational offset
λσ . Hopping in the LUMO channel depends on the difference
|λD − λ↓| while the HOMO channel depends on |λD − λ↑|.
The larger this difference, the smaller the hopping rate. Both
pσ and λσ are affected by detuning, excitation density, and
Rabi splitting [14,66].

At large negative detuning excitations are mostly in the
photon mode. Thus, all optically active molecules are in the
↓ state. For these conditions, as seen in Figs. 6(a) and 6(c),
hopping is only significant in the LUMO channel, and that
channel recovers the rate in the absence of matter-light cou-
pling. Increasing ωR transfers some excitations to the excited
state, leading to enhancement of hopping in the HOMO chan-
nel, Fig. 6(a). In the LUMO channel, Fig. 6(c), increasing
ωR has opposite effects depending on the sign of λD. This
dependence occurs because increasing ωR increases λ↓ (see
discussion Sec. V B below). For λD = +2, increasing λ↓ en-
hances hopping, while for λD = −2, increasing λ↓ suppresses
hopping.

At positive detuning, excitations are favored in the
molecules. Hopping is now significant in both channels. In
this case, increasing ωR decreases the fraction of excited
molecules. This effect suppresses hopping in the HOMO
channel, and enhances it in the LUMO channel. One may,
however, see that in the HOMO channel, Fig. 6(a), the behav-
ior at large positive δ depends on the sign of λD. In this case
this occurs because increasing ωR decreases λ↑ (see Sec. V B).

Figures 6(b) and 6(d) shows the dependence of hopping
on excitation density, plotted at δ = 0. Much of the behavior
seen in this figure follows directly from the physics described
above, with a general trend that increasing excitation den-
sity increases the fraction of excited active molecules. One
may note that at small ωR, the evolution of hopping is not
monotonic with ρex: there is a sharp minimum of R(L)

LP0
near

ρex = 1, and a cusp in R(H )
LP0

at the same point. This effect
follows directly from behavior of the probability of finding
an active molecule in the excited state p↑. The probability
p↑ first increases linearly with ρex, reaches a maximum at
ρex = 1, and then decreases toward 1/2 at large ρex. When
p↑ = 1, the LUMO channel hopping contribution vanishes.
The local maximum of p↑ at ρex � 1 has been observed and
discussed previously [78,79], as an effect, which occurs at
small ωR with positive detuning. Under such conditions, for
ρex < 1 it is preferable to occupy the molecular states rather
than the photon, so p↑ � ρex. For ρex > 1 the photon must be
occupied, and at very large ρex, one then finds p↑ decreases
to its asymptotic value of 1/2, corresponding to the ground
state in the presence of a large coherent photon field as was
discussed in Sec. III C. In Fig. 6, while the bare detuning
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FIG. 7. (a) Vibrational coordinate probability density P↑(x) for a
molecule being excited and having displacement x. Red–yellow solid
lines are for various values of ωR (see colorscale at right). Blue dotted
lines are Gaussian fits. (b) Effective displacements, conditioned on
ground or excited state of the given molecule, λ↓, λ↑. Black-dotted
lines show the behavior in the limit ωR → 0, found by perturbation
theory (Sec. V C). Parameters as indicated in panel (a).

δ � 0, the vibronic reorganization energy reduces the exciton
energy, so the effective detuning of the vibronically dressed
transition is δ̃ = δ + λ2ωv > 0.

B. Evolution of effective vibrational configuration

To further understand the behavior shown in Fig. 6(a),
we discuss how the vibrational configuration of the lower
polariton state evolves with coupling ωR and detuning δ. The
vibrational configuration for the singly excited state Nex = 1
was discussed extensively in Ref. [66]. It was shown there
that a Gaussian ansatz for the vibrational configuration was
very good. However, results limited to Nex = 1 correspond
to ρex → 0 at large N . Here we extend the discussion to
nonvanishing ρex.

Figure 7(a) shows the probability density of the vibrational
coordinate, x̂ = (b̂ + b̂†)/2, in the polaritonic state with a
particular electronic configuration σ ∈ {↑,↓},

Pσ (x) =
∑
μν

(ρ0
σ )μνψ

∗
μ(x)ψν (x),

where ψμ(x) is the μth Gauss-Hermite function, and ρ0
σ is

the reduced molecular density matrix element with electronic
state σ . We clearly see that Pσ (x) fits a Gaussian distribution
very well. Three fitting parameters are required: the overall
weight, which is pσ , the effective width (trapping frequency,
ωvσ ), and the vibrational displacement λσ . We focus here on
the displacements, λσ , as these have a strong effect on the
transport. We present and discuss the other fitting parameters
further in Appendix B, along with the dependence of all pa-
rameters on ρex.

The effective displacements λσ extracted from the Gaus-
sian fit are shown in Fig. 7(b) as a function of δ. The behavior
seen can be explained as follows. At large ωR, the vibrational
configuration is set by an average of the ↑ and ↓ potential
surfaces. As such, the results are similar for both displace-
ments λσ , and evolve smoothly with δ. This corresponds to
the polaron decoupling limit [14,66,76].

At small ωR the results are more complicated, but, as dis-
cussed in Sec. V C, can be calculated perturbatively in ωR, as
shown by the black-dashed lines. For negative δ excitations
are mostly in the photon, molecules in the ↓ state, and so the
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displacement λ↓ simply follows the configuration for unex-
cited molecules, so λ↓ = 0. In contrast, the behavior of λ↑
depends entirely on the weak excited molecule contribution
to the ground state, and the vibronic configuration associated
with that. At large positive δ, because we are considering
ρex = 1, the scenario reverses. Now the ground state is purely
excitonic, so λ↑ = λ, and λ↓ depends on the state of the small
fraction of unexcited molecules. Note that the switch between
the different regimes of detuning occurs when the effective
detuning δ̃ discussed above crosses zero, i.e., at δ = −λ2ωv .

Because the hopping rate depends exponentially on the
difference |λσ − λD|, the changes in λσ discussed here can
be responsible for the order-of-magnitude changes in hopping
rate seen in Fig. 6.

C. Perturbative calculation of displacements

As noted in the previous section, at small ωR, one can
calculate λσ perturbatively, corresponding to the dashed lines
shown in Fig. 7(b). In this section,we provide details of this
calculation.

In the absence of matter-light coupling, the eigenstates
of the HTC model are the vibrationally dressed versions of
states with a fixed number p of excited molecules and Nex − p
photons. We write this state as |(Nex − p)P; (p)ex〉. Measuring
energies with respect to the energy of the pure photon state
Nexωc, these states have energies Ep,k = −pδ̃ + kωv where
the non-negative integer k is the total number of vibrational
quanta and δ̃ ≡ δ + λ2ωv as above. In the following we will
differentiate behavior depending on various conditions on δ̃

and ρex. In each case we first discuss which state is the global
minimum, and then consider the first-order change to that state
due to matter-light coupling.

1. Negative detuning

For negative detuning, δ̃ < 0, at ωR = 0 the ground state is
purely photonic. Writing the vibrational state explicitly as |0n〉
for the nth molecule, we have the zeroth-order ground state

|�0(0)〉 = |(Nex )P; ⇓〉 ⊗
⊗

n

|0n〉. (34)

To first order in matter-light coupling, this state couples to the
one-exciton states with k � 0 vibrational excitations (denoted
1k in the following),

|�1k (0)〉 = 1√
N

N∑
n=1

|(Nex − 1)P; ↑n,⇓
=n〉

⊗ D̂n(λ)|kn〉 ⊗
⊗
m 
=n

|0m〉, (35)

where D̂n(λ) = eλ(b̂†
n−b̂n ) is the displacement operator for the

nth molecule. Any non-negative integer k is allowed.
The coupling between these states due to the matter-light

coupling is

〈�1k (0)| ωR√
N

∑
n

(σ̂+
n â + σ̂−

n â†)|�0(0)〉

= ωR
√

Nex〈k|D̂(−λ)|0〉. (36)

The factor
√

Nex here comes from the matrix elements of
the photon annihilation operator. The matrix element of the
displacement operator can be found from the overlap between
a number state and a coherent state

〈k|D̂(−λ)|0〉 = (−λ)k

√
k!

e−λ2/2.

We can thus write the ground state to first order in ωR,

|�0〉 = |(Nex )P; ⇓〉 ⊗
⊗

n

|0n〉

+ ωR
√

ρex

N∑
n=1

|(Nex − 1)P; ↑n,⇓
=n〉

⊗
∞∑

k=0

α
↑
k D̂n(λ)|kn〉 ⊗

⊗
m 
=n

|0m〉, (37)

where we have defined the coefficients

α
↑
k ≡ 〈k|D̂(−λ)|0〉

δ̃ − kωv

= −
∫

dx〈k|D̂(−λ)|0〉e(δ̃−kωv )x.

The second (integral) expression will be useful in the calcula-
tions below.

When we consider the molecular density matrix condi-
tioned on being in state |↑〉, the vibrational state of that
molecule is

∑
k αkD̂(λ)|k〉. From this, we can identify the pa-

rameter λ↑ by evaluating the expectation of the displacement
operator, x̂ = (b̂ + b̂†)/2 for the excited state,

λ↑ =
∑

k,k′ α
↑
k′α

↑
k 〈k′|D̂(−λ)x̂D̂(λ)|k〉∑

k |α↑
k |2

= λ +
∑

k=1

√
kα

↑
k α

↑
k−1∑

k |α↑
k |2 . (38)

By using the integral form of α
↑
k , one can evaluate the sums

over k to find

λ↑ = λ

[
1 − F0(−δ̃/ωv, λ) − F0(1 − δ̃/ωv, λ)

F1(−δ̃/ωv, λ)

]
, (39)

where we have defined

F0(a, b) ≡
∫ ∞

0
dx exp (−ax + be−x ), (40)

F1(a, b) ≡
∫ ∞

0
dxx exp (−ax + be−x ). (41)

Closed (but complicated) forms for these integrals exist in
terms of incomplete gamma functions and hypergeometric
functions respectively.

For λ↓ the calculation is simpler. Here we need the reduced
density matrix conditioned on being in |↓〉. In this case the
state is just the unperturbed wavefunction, so (up to linear
order in ωR) λ↓ = 0.

2. Positive detuning

For positive detuning, the zeroth-order lowest polariton
state |�0(0)〉 will be a highly excited molecular state. When
there are more excitations than molecules, ρex � 1, this will
be the maximally excited state with any extra excitations
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going into the photon mode. When there are fewer excita-
tions than molecules, ρex < 1, there are only Nex < N excited
molecules, and no photons. We consider these two cases
separately.

a. More excitations than molecules. For this case, the
zeroth-order state is

|�0(0)〉 = |(Nex − N )P; ⇑〉 ⊗
⊗

n

Dn(λ)|0n〉. (42)

The states this can couple to are the vibrational sidebands of
states with N − 1 excitons and Nex − N + 1 photons, which
we denote as

|�1k (0)〉 = 1√
N

N∑
n=1

|(Nex − N + 1)P; ↓n,⇑
=n〉

⊗ |kn〉 ⊗
⊗
m 
=n

Dj (λ)|0m〉. (43)

Following the same procedure as for δ̃ < 0, we obtain the con-
ditional state for an unexcited molecule is

∑
k α

↓
k |k〉, where

now we have

α
↓
k ≡ 〈k|D̂(λ)|0〉

δ̃ + kωv

.

Using the same methods as above, this gives the effective
displacement

λ↓ = λ

[
F0(δ̃/ωv, λ) − F0(1 + δ̃/ωv, λ)

F1(δ̃/ωv, λ)

]
, (44)

with the same definitions in Eqs. (40) and (41).
For λ↑ we require the excited part of the state, which is

unaffected by the perturbation so we have λ↑ = λ.
b. Fewer excitations than molecules. In this case, the max-

imum number of excited molecules is restricted to Nex <

N . The zeroth-order lowest polariton state thus has Nex

excitations in the excitons; |(0)P; (Nex )ex〉. This expression
introduces unexcited molecules in the zeroth-order lowest
polariton state. This changes the expressions for the reduced
density matrices, as both the ↑ and ↓ states have a dom-
inant contribution from the unperturbed wavefunction, i.e.,
λ↓ = 0, λ↑ = λ. This case is not seen in Fig. 7, since that
figure shows ρex = 1. Numerical results with ρex < 1 are
shown in the Appendix B; these figures confirm the expected
step-like behavior vs δ.

VI. CONCLUSIONS

We have found how a polariton condensate affects charge
transport in organic materials, where transport proceeds by
incoherent hopping. To do this, we considered an extension of
the Holstein–Tavis–Cummings model, incorporating charged
states of molecules. This model provides a framework to un-
derstand incoherent charge transport in systems with strong
matter-light coupling. We have presented exact numerical
results, based on the use of permutation symmetry [66,67],
which scales polynomially with the number of molecules N .
We have shown that in several limiting cases, these results
can also be understood by analytic expressions that hold at all
N . By combining these results, we demonstrate that the per-
mutation symmetric approach is capable of showing behavior
consistent with the large N asymptotic limit.

When a charge hops between molecules, various excited
states can be created, by transferring a lower polariton to an
upper polariton or dark state, or creating vibrational side-
bands. While these processes can have significant matrix
elements, the ground-state process dominates the hopping at
relevant temperatures. Even when remaining in the ground
state, the hopping rate depends strongly on the condensate
density, detuning, and matter-light coupling, through mod-
ification of the effective vibrational configuration of those
molecules forming the polariton condensate. This changes
the overlap between the vibrational configurations of the
molecules between which the charge hops, leading to dramatic
changes of the hopping rates.

One question for future work is to explore models be-
yond that considering a single vibrational mode, to consider
the role of low-frequency vibrational and rotational modes.
Another possible future direction would be to explore the con-
sequences of our results for producing an electrically pumped
polariton condensate [60,61] in an organic microcavity. Un-
derstanding and exploiting the strong dependence of transport
on matter-light coupling and excitation density may be signif-
icant for such experiments.
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APPENDIX A: PERMUTATION SYMMETRIC BASES
FOR EXACT DIAGONALIZATION

In this Appendix we describe the numerical method used to
calculate behavior at finite ρex. This is based on exploiting per-
mutation symmetry of the Holstein–Tavis–Cummings model
under interchange of molecules. This permutation symmetry,
in the single excitation subspace, as described in Ref. [66] (see
in particular the Supplemental Information of that reference)
and in Ref. [67]. Here we describe how to extend these ideas
to the case with multiple excited molecules. To make this Ap-
pendix self contained, we include here some points discussed
in those previous papers.

The main point to note is that, in general, there are many
states that are equivalent when transformed by interchanging
molecules. Our approach is based on keeping a single repre-
sentative state for all states related to it by such permutations.
We will first discuss how we label these representative states
in Sec. A 1, we then discuss how to write the Hamiltonian in
terms of these basis states in Sec. A 2. Section A 3 shows how
to extract information about the vibrational state of a given
molecule, while Sec. A 4 discusses calculation of the response
functions shown in Sec. IV.

1. Permutation symmetric basis set

In this section we define the permutation symmetric basis
set. We first consider the electronic and photonic states alone,
temporarily ignoring vibrations. In such a case, we know that
the Tavis–Cummings model could be efficiently solved using

195109-11



ZEB, KIRTON, AND KEELING PHYSICAL REVIEW B 106, 195109 (2022)

collective spin operators. However, to provide the framework
for the general case, it is useful to consider this explicitly
through permutations.

For N molecules and Nex excitations, the number of excited
molecules can range between zero and min(Nex, N ). If there
are p molecules excited, there are N − p molecules unexcited,
and Nex − p photons; we can write the excitonic part of this
state in the form

|(p)ex〉 ≡ 1√
NCp

×
N∑

n1>n2>...>np

|↑n1↑n2 . . . ↑np〉|⇓
=n1,n2,...,np〉, (A1)

where ⇓
=n1,n2,...,np denotes the state of the unexcited
molecules.

We next include vibrations. We first consider the vibra-
tional state of the excited molecules. The set of unexcited
molecules can then be treated in a similar fashion. Given p
excited molecules, there exist a set of vibrational states, which
are related by permuting the vibrational quantum numbers
on each molecule. If we denote {ν} as the set of vibrational
quantum numbers—i.e., the set of numbers of excitations,
then the permutation symmetric superposition of such states
|Sp{ν}〉, is given by

|Sp{ν}〉 ≡ 1√
Pp({ν})

∑
P

|P[{ν}]〉, (A2)

where P indicates a permutation, and Pp[{ν}] counts the num-
ber of distinct permutations, which will depend on the pattern
of occupations in {ν}. If we label the frequency fνn as the
number of times each value νn appears in the set {ν}, then
the number of permutations is the multinomial coefficient
Pp({ν}) = p!/(

∏
n fνn !). For example, for the set of occupa-

tions {0112}, the frequencies are 1,2,1 and so P4({0112}) =
12, and the permutation symmetric state is

|S4{0112}〉 ≡

(|0112〉 + |1012〉 + |1102〉 + |1120〉
+|0211〉 + |2011〉 + |2101〉 + |2110〉
+|0121〉 + |1021〉 + |1201〉 + |1210〉)√

12
.

We can write the permutation symmetric state for the un-
excited molecules, with vibrational configuration {μ}, in the
same fashion, |SN−p{μ}〉. Putting together the photon, elec-
tronic, and vibrational states, we can denote a general state in
the following form:

|{ν}p{μ}N−p〉
≡ |(Nex − p)P; (p)ex〉 ⊗ |Sp{ν}〉 ⊗ |SN−p{μ}〉. (A3)

Here, the first ket labels the photon and electronic states, while
the second and third are the vibrational states of the excited
and unexcited molecules, which have configurations {ν} and
{μ} respectively. In the following it is necessary to define a
canonical representative configuration of {ν}, {μ}, so we can
ensure to count each equivalent configuration only once. We
choose our canonical representation so that the occupations
are in increasing order, such as in the example {0112} written
above.

To perform numerical calculations, the vibrational number
states need to be truncated. We thus introduce the vibrational
cutoff νmax, such that νn, μn ∈ [0, νmax]. In the figures shown,
we always take νmax greater than 5, and in all cases we checked
the results were converged with the value of νmax used.

The size of the permutation symmetric subspace is ex-
ponentially smaller than the full Hilbert space. The total
number of distinct permutation symmetric vibrational states
for p excited molecules is νmax+pCνmax compared to a total of
(νmax + 1)p states. This counting comes from the number of
ways to pick p numbers in the range [0, νmax] ignoring order.
The size of the permutation symmetric space is therefore∑min(Nex,N )

p=0 [νmax+pCνmax × νmax+N−pCνmax ], which increases only
polynomially with N , much slower than the exponential size
of the full Hilbert space 2N × (νmax + 1)N . This far better
scaling makes it possible to calculate the lowest polariton
eigenstate of Holstein–Tavis–Cummings model for values of
N, Nex, νmax that are large enough to identify the behavior in
the thermodynamic limit. The downside of this approach is
that, as discussed next, the calculation of the matrix elements
of the Hamiltonian and the reduced vibrational density matri-
ces are not trivial.

2. HTC Hamiltonian in the permutation symmetric basis set

In this section we discuss how to write the HTC Hamil-
tonian in the permutation symmetric state space, considering
each term in turn.

a. Diagonal terms

The diagonal terms of Holstein–Tavis–Cummings model
are straightforward. In the state |{ν}p{μ}N−p〉, the operators
â†â and

∑
n σ̂+

n σ̂−
n count number of cavity photons (Nex − p)

and excited molecules (p), respectively. The vibrational exci-
tation number,

∑
n b̂†

nb̂n, becomes
∑p

n=1 νn + ∑N−p
m=1 μm.

b. Vibrational coupling

The term coupling the electronic and vibrational states,∑
n σ̂+

n σ̂−
n (b̂†

n + b̂n), acts only on the excited molecules and
involves matrix elements of the vibrational position operator.
As such, we must find the off-diagonal matrix elements in the
|{ν}p〉 subspace.

We consider the vibrational creation operator term, which
we can write as

∑
n σ̂+

n σ̂−
n b̂†

n = ∑
n∈excited b̂†

n; the annihilation
term follows by conjugation. By choosing the representative
state to have molecules n = 1 . . . p excited, the matrix element
can be written explicitly as a sum over permutations,

〈{ν ′}p{μ}N−p|
p∑

n=1

b̂†
n|{ν}p{μ}N−p〉

=
∑
P,P′

〈P′[{ν ′
1ν

′
2 . . . ν ′

p}]|√
Pp({ν ′})

p∑
n=1

b̂†
n

|P[{ν1ν2 . . . νp}]〉√
Pp({ν})

. (A4)

Let us consider a single term b̂†
n

∑
P |P[{ν1ν2 . . . νp}]〉.

For a given permutation P, if we write νP(n) for the vi-
brational quantum number of the nth molecule after that
permutation, then this term will give an expression of the
form

√
νP(n) + 1 times the state with νP(n) → νP(n) + 1. For

this to have a nonzero overlap with 〈P′[{ν ′
1ν

′
2 . . . ν ′

p}]| for at
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least one permutation P′ we require that {ν ′} is the same as
{ν} except νP(n) → νP(n) + 1; i.e., the multiset differences are
{ν}p \ {ν ′}p = {νP(n)} and {ν ′}p \ {ν}p = {νP(n) + 1}.

Since Eq. (A4) involves the sum over all active molecules
n, we may write expressions in a way independent of molecule
labels. The matrix element in Eq. (A4) will be nonzero if and
only if there exists ν∗ such that the multiset differences are
{ν}p \ {ν ′}p = {ν∗} and {ν ′}p \ {ν}p = {ν∗ + 1}. If so, every
ket in the permutation P finds its dual in P′. In other words,
the only difference between these two configurations is that
their frequencies of ν∗ and ν∗ + 1 are different and related
by fν∗ ({ν}) = fν∗ ({ν ′}) + 1 and fν∗+1({ν}) = fν∗+1({ν ′}) − 1.
Since, there are Pp({ν}) permutations of {ν}, we will get
Pp({ν}) × √

ν∗ + 1 for one such term. Noting that the ele-
ment ν∗ may occur multiple times in the set {ν}, and that its
frequency is fν∗ ({ν}), the matrix element then becomes

〈{ν ′}p{μ}N−p|
p∑

n=1

b̂†
n|{ν}p{μ}N−p〉

=
√

Pp({ν})

Pp({ν ′})
fν∗ ({ν})

√
ν∗ + 1

= √
(ν∗ + 1) fν∗ ({ν})( fν∗+1({ν}) + 1), (A5)

where the last expression uses the definition of Pp({ν}) given
after Eq. (A2).

c. Matter-light coupling

The matter-light coupling,
∑

n (σ̂+
n â + σ̂−

n â†), couples
states with p excited molecules to those with p ± 1 excited
molecules. While this term does not change the vibrational
state, the labeling of vibrational states before and after dif-
fers, due to the changing excitation number. We focus on the
photon creation term,

∑
n σ̂−

n â†, the other term follows by
conjugation.

We first write out the matrix element in terms of the explicit
states, Eq. (A3),

〈{ν ′}p−1{μ′}N−p+1|
∑

n

σ̂−
n â†|{ν}p{μ}N−p〉

= 〈(Nex − p + 1)P; (p − 1)ex|
∑

n

σ̂−
n â†|(Nex − p)P; (p)ex〉

× 〈Sp−1{ν ′};SN−p+1{μ′}|Sp{ν};SN−p{μ}〉
=

√
(Nex − p + 1)(p)(N − p + 1) × OV . (A6)

Here, OV ≡ 〈Sp−1{ν ′};SN−p+1{μ′}|Sp{ν};SN−p{μ}〉 is the vi-
brational overlap. It will be nonzero only when the vibrational
states of all molecules in the ket are the same as those in
the bra. This means that by taking a single element ν∗ out
of {ν}p, the rest should become equal to {ν ′}p−1, and, simi-
larly, by adding the same element ν∗ to {μ}N−p should make
{μ′}N−p+1. In such a case, the overlap is given by counting the
number of nonzero overlapping elements, and scaling by the
normalization of the initial and final states,

OV = Pp−1({ν ′})√
Pp−1({ν ′})Pp({ν})

PN−p({μ})√
PN−p+1({μ′})PN−p({μ})

=
√

fν∗ ({ν})

p

fν∗ ({μ′})

N − p + 1
. (A7)

Because the initial and final states here involve different num-
bers of excited molecules, we need to establish a map between
the indexing of states in the two manifolds. We will denote
this map Mp−1�→p. We first introduce Ip({ν}) as the index of
the configuration {ν} in the manifold with p excitations (see
below). We can then define a map Mp−1�→p from the pair of
integers (ν∗, Ip−1({ν ′})), which identifies which state Ip({ν})
one achieves when adding ν∗ to the set {ν ′}. A similar map,
MN−p�→N−p+1, results from the second condition.

d. Index and mapping

We choose to index the configurations {ν} in lexicographic
order, starting from Ip({0, 0, . . . , 0}) = 0. An explicit ex-
pression for Ip({ν}) can then be found as follows. Recall
first that our representative patterns {ν1, ν2, ν3, . . . , νp} are
arranged in increasing order, ν1 � ν2 � ν3 . . .. To find the
index Ip({ν}) we must count the patterns that occur before
the current pattern. This can be done recursively, by con-
sidering each successive label νn, starting from n = 1. That
is, the number of patterns preceding {ν1, ν2, ν3, . . . , νp} is
given by the sum of the following: the number of patterns
preceding {ν1, ν1, ν1, . . . , ν1}, the number of patterns between
{ν1, ν1, ν1, . . . , ν1} and {ν1, ν2, ν2, . . . , ν2}, the number of pat-
terns between {ν1, ν2, ν2, . . . , ν2} and {ν1, ν2, ν3, . . . , ν3}, etc.
Each of these expressions follows the same general form, as
the nth such term corresponds to enumerating the allowed
“previous” values of νn, i.e., the set ν ′ satisfying νn−1 �
ν ′ < νn, and then counting the number of ways of assign-
ing a limited set of indices [ν ′, νmax] to the remaining p − n
sites. This counting is given by the same combinatoric factor
as occurs when counting the total set of patterns. We thus
have

Ip({ν}) =
p∑

n=1

[
νn−1∑

ν ′=νn−1

(νmax−ν ′ )+(p−n)Cp−n

]
. (A8)

We note that for n = 1, the lower limit of the sum over
ν ′ should be taken as ν0 ≡ 0, since there is no previous
site to constrain the lower limit of ν ′. We note also that if
νn−1 = νn there are no terms in the inner sum so it gives
zero.

With such an explicit expression for the index, the con-
struction of the map Mp−1�→p becomes straightforward. One
first enumerates (in lexicographic order) the patterns {ν ′} =
{ν1, ν2, ν3, . . . νp−1}. For each such pattern one then enumer-
ates over the “extra” label ν∗ ∈ [0, νmax], and constructs and
sorts the set {ν} = {ν ′} ∪ {ν∗}. One then finds the index of this
new pattern, Ip({ν}), providing the map. Examples of this
map, along with an alternate method of its construction by
identifying a recursive pattern, can be founds in Ref. [67] and
the associated code [80].

3. Reduced vibrational density matrices

In this section, we discuss how one can determine the
reduced vibrational density matrices using the permutation
symmetric space. These density matrices can be used to
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calculate hopping rates to the vibrational ground state. In
Sec. A 4 below, we discuss how to calculate the hopping rates
in the general case.

We can write eigenstate r as follows:

|�r〉 =
min(Nex,N )∑

p=1

∑
kp≡Ip({ν})

lN−p≡IN−p({μ})

ψ r
kp,lN−p

|{ν}p{μ}N−p〉, (A9)

where kp, lN−p index the vibrational patterns of the excited
and unexcited molecules, as introduced above. A crucial step
to calculating observables is to define an object, which we will
denote as ρr

σ . This object, which in general is not a density
matrix, describes the vibrational configuration of a single
molecule associated with coherence between the ground state
|�0〉 and the state |�r〉, conditioned on the molecule in ques-
tion being in the σ ∈ ↑,↓ state. This is defined by taking a
trace over the electronic and vibrational configurations of all
molecules other than the one in question. This can be written
as

(ρr
σ )ν,ν ′ = 〈σν|�0〉〈�r |σν ′〉. (A10)

Here we suppressed molecule labels (since states are per-
mutation symmetric), and ν, ν ′ denote vibrational quan-
tum numbers of the molecule in question. As noted
above, unless r = 0, this object is not a reduced density
matrix.

To evaluate this, we need to trace out the vibrational state
of the N − 1 other molecules. This can be done using the maps
Mp−1�→p as defined above or MN−p�→N−p+1, applied respec-
tively to the p excited molecules or to the N − p unexcited
molecules. We discuss these two cases in turn.

a. Excited molecules ρr
↑

To find the element (ρr
↑)ν,ν ′ , we need to find all pairs of

states with p excited molecules, which are reduced to the same
p − 1 molecule state when ν, ν ′ are taken out. For example, if
we denote kp = Ip({ν}) and k′

p = Ip({ν ′}) as the indices of a
pair of states {ν} and {ν ′} of p excited molecules, that reduce
to the same state {ν ′′} of p − 1 excited molecules with index
jp−1 = Ip−1({ν ′′}), we can write

kp = Mp−1�→p(ν, jp−1), k′
p = Mp−1�→p(ν ′, jp−1). (A11)

With these maps, we can then trace over jp−1, describing the
state of the other excited molecules. The trace over the set of
unexcited molecules is trivial.

Taking kp, k′
p as defined by Eq. (A11) we find (ρr

↑)ν,ν ′ takes
the form(
ρr

↑
)
ν,ν ′ =

min(Nex,N )∑
p=1

N−1Cp−1√
NCp

NCp

NN−p∑
lN−p=1

×
Np−1∑
jp−1=1

ψ0∗
kp,lN−p

ψ r
k′

p,lN−p
Pp−1( jp−1)√

Pp(kp)Pp(k′
p)

=
min(Nex,N )∑

p=1

p

N

NN−p∑
lN−p=1

Np−1∑
jp−1=1

ψ0∗
kp,lN−p

ψ r
k′

p,lN−p
Pp−1( jp−1)√

Pp(kp)Pp(k′
p)

.

(A12)

Here Nq is the total number of the permutational symmetric
vibrational basis states involving q molecules.

The factors in the denominator come from the normaliza-
tion of the permutation symmetric basis states. The factor
N−1Cp−1 in the numerator counts how many terms in the
permutation symmetric superposition of excited molecules
contain the specific molecule under consideration. The final
factor Pp−1( jp−1) counts the number of matching terms in
the permutation symmetric superposition of the vibrational
states kp, k′

p—and thus give unit overlap—after taking out the
vibrational states of our subject molecule.

b. Unexcited molecules ρr
↓

We can use a similar approach to calculate ρr
↓. The in-

dices of the basis states with N − p and N − p − 1 unexcited
molecules can be written as

kN−p = MN−p−1�→N−p(ν, jN−p−1),

k′
N−p = MN−p−1�→N−p(ν ′, jN−p−1). (A13)

Taking kN−p, k′
N−p defined by Eq. (A13) the matrix elements

of ρr
↓ can then be written as

(ρr
↓)ν,ν ′ =

N−1∑
p=0

N−1CN−p−1√
NCp

NCp

Np∑
lp=1

NN−p−1∑
jN−p−1=1

×
ψ0∗

lp,kN−p
ψ r

lp,k′
N−p

PN−p−1( jN−p−1)√
PN−p(kN−p)PN−p(k′

N−p)

=
N−1∑
p=0

N − p

N

Np∑
lp=1

NN−p−1∑
jN−p−1=1

×
ψ0∗

lp,kN−p
ψ r

lp,k′
N−p

PN−p−1( jN−p−1)√
PN−p(kN−p)PN−p(k′

N−p)
. (A14)

4. Hopping response function

In this section we discuss how to calculate the hopping
response function, M (c)(ω), defined in Eq. (32). We describe
two approaches below; the first is the one we use numerically.
The second shows how this quantity can in principle be related
to the quantities introduced in the previous section.

a. Time evolution

We may find the hopping response function, M (c)(ω), by
computing M (c)(t ) using direct time evolution. We start with
an initial state, |�0

A′∪{q}�
0
p〉, where |�0

A′∪{q}〉 and |�0
p〉 are

the ground states of Holstein–Tavis–Cummings model in the
active sector, A′ ∪ {q}, and the Holstein model on molecule p
respectively. Applying the hopping operator we define a state
|ζ (c)(0)〉 = V̂ c

pq|�0
A′∪{q}�

0
p〉. After hopping, the active sector

becomes the set of molecules A′ ∪ {p}. We may then time
evolve this state:

|ζ (c)(t )〉 = e−i(HHTC
A′∪{p}+HH

q )t/h̄|ζ (c)(0)〉,
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by numerical integration of the Schrodinger equation be-
low. The time-domain response function is then M (c)(t ) =
〈ζ (c)(t )|ζ (c)(0)〉.

The operator V̂ σ
pq swaps the electronic states of molecules

p and q, and leaves their vibrational states unchanged. As
a result, the vibrational state of molecule q, which becomes
charged (thus optically inactive) after the hopping, remains
entangled with the state of all of the active molecules (except
molecule p). Because of this, we cannot factorize |ζ (c)(0)〉 into
active and charged sectors, and so we have to perform the time
evolution in the combined space of all molecules, A′ ∪ {p, q}.

In the following, we provide some technical details of our
numerical implementation of the above approach, which uses
the permutation symmetry of all molecules not involved in the
hopping process.

Hamiltonian. We focus on HHTC
A′∪{p}, as the calculation of

HH
q (acting on a single molecule) is trivial. First, consider the

relevant Hilbert space for HHTC
A′∪{p}, which we denote HHTC

A′∪{p}.
We define HHTC

A′,Nex
as the the permutation symmetric subspace

with Nex excitations distributed between the cavity mode and
the subset of active molecules A′ (which excludes molecules
p, q). We can then write the Hilbert space as

HHTC
A′∪{p} =HHTC

A′,Nex
⊗ {|↓p, νp〉}

⊕ HHTC
A′,Nex−1 ⊗ {|↑p, νp〉},

where νp is the number of vibrational excitations on molecule
p. Given this structure, it is helpful to divide the Hamiltonian
HHTC
A′∪{p} into blocks in the two subspaces using projection

operators P̂σp = |σp〉〈σp|,

HHTC
A′∪{p} = P̂↓p

(
HHTC
A′,Nex

+ ωv b̂†
pb̂p

)
+ P̂↑p

(
HHTC
A′,Nex−1 + ω0 + ωv[b̂†

pb̂p + λ(b̂†
p + b̂p)]

)
+ ωR√

N
(âσ̂+

p + â†σ̂−
p ). (A15)

Here, HHTC
A′,Nex

is the HTC Hamiltonian with Nex excitations
among the cavity mode and the active molecules A′. This
can be written using the method described in Sec. A 2. The
last line of Eq. (A15) has the effect of connecting the two
subspaces.

Initial state. Having defined the Hamiltonian, we need
next to specify how to find the initial state |ζ (c)(0)〉 =
V̂ c

pq|�0
A′∪{q}�

0
p〉. The original state |�0

A′∪{q}〉 can be found
by using the Lanczos algorithm, while |�0

p〉 can be written
directly.

As described above, the prehopping state lives in the space
HHTC

A′∪{q} ⊗ HH
p , while the state after the hopping |ζ (c)(0)〉 lives

in the space HHTC
A′∪{p} ⊗ HH

q (where Hq
H denotes the Hilbert

space of a single charged molecule). Since all molecules are
identical, instead of interchanging the electronic states of the
hopping molecules we can equivalently swap the labeling of
the molecules and their vibrational states. As such, to obtain
the vector |ζ (c)(0)〉, we can interchange the vibrational states
of the charged molecule with that of the active molecule in
the appropriate electronic state manifold |σp, νp〉|Dq, μq〉 →
|σp, μq〉|Dq, νp〉 for all ν, μ. This can be performed using the
indexing functions described above to determine the effect of

adding a molecule with a given vibrational state to the active
set A′.

Numerical integration. We use the Runge-Kutta algo-
rithm to integrate the Schrödinger equation, ih̄ d

dt |ζ (c)(t )〉 =
(H − iκ/2)|ζ (c)(t )〉, with the given initial condition, |ζ (c)(0)〉,
calculated as described above. Here, H = HHTC

A′∪{q} + HH
p and

κ is a small broadening added so that the state and hence cor-
relation M (c)(t ) decays with time producing a smooth Fourier
transform M (c)(ω).

b. Relation to vibrational density matrix elements

It is instructive to see how the response function M (c)(t )
can also be directly related to the reduced density matrices
mentioned above. We discuss this here.

Note that the hopping operators can be written
using a resolution of identity in the vibronic basis
states, V̂ c

pq = ∑
μν |σ (c)pμp, Dqνq〉〈Dpμp, σ (c)qνq|, where

σ (L, H ) =↓,↑ respectively. Using both the Holstein–Tavis–
Cummings and Holstein Hamiltonians, the response function
M (c)(t ) can be written as

M (c)(t ) =
∑

μνμ′ν ′

〈
�0

p, �
0
A′∪{q}|Dpν

′
p, σ (c)qμ

′
q

〉
×〈σ (c)pν

′
p, Dqμ

′
q|e−i(HHTC

A′∪{p}+HH
q )t/h̄|σ (c)pμp, Dqνq〉

× 〈
Dpμp, σ (c)qνq

∣∣�0
p, �

0
A′∪{q}

〉
. (A16)

We can factorize this expression as follows:

M (c)(t ) =
∑

μνμ′ν ′
χ

σ (c)
νμμ′ν ′ (t ) × χD

μνν ′μ′ (t ),

χσ
μνμ′ν ′ (t ) ≡ 〈�0|σν ′〉〈σμ′|e−iHHTCt/h̄|σν〉〈σμ|�0〉,

χD
μνμ′ν ′ (t ) ≡ 〈�0|Dν ′〉〈Dμ′|e−iHH t/h̄|Dν〉〈Dμ|�0〉. (A17)

We have suppressed the molecule labels, since only one of p, q
appears in each factor. The behavior on the doubly occupied
molecule χD

μνμ′ν ′ (t ) is straightforward to obtain, as this single
molecule evolves on its own. We thus have

χD
μνμ′ν ′ (t ) =

∑
s

D†
0,ν ′Dμ′,se

−isωvtD†
s,νDμ,0,

with Dμ,s = 〈μ|�s〉, and s counts the number of
vibrational excitations. This can also be written as,
χD

μνμ′ν ′ (t ) = ∑
s e−isωvt (ρs

D)μν (ρs
D)†

μ′ν ′ , where (ρs
D)μμ′ =

〈Dμ|�0〉〈�s|Dμ′〉 is the doubly-occupied sector equivalent
of ρr

σ defined in Sec. A 3.
The behavior of the optically active molecule χσ

μνμ′ν ′ (t ) can
then be obtained from the expressions ρr

σ given in Sec. A 3.
We may write a resolution of identity 1 = ∑

r |�r〉〈�r | in
terms of the eigenstates |�r〉 of the HTC model, with energies
EHTC

r . Inserting this after the exponential term in the expres-
sion for χσ

μνμ′ν ′ (t ), we obtain

χσ
μνμ′ν ′ (t )=

∑
r

〈�0|σν ′〉〈σμ′|�r〉e−iEHTC
r t/h̄〈�r |σν〉〈σμ|�0〉

=
∑

r

e−iEHTC
r t/h̄

(
ρr

σ

)
μν

(
ρr

σ

)†

μ′ν ′ .

The remaining sums and convolutions can in principle be
evaluated numerically.
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FIG. 8. Fitting parameters for the reduced density matrix ρ0
σ of

the ground state with Nex excitations. Plotted vs δ at various ωR as
shown by the colorscale. Each row shows a different values of Nex .
Left: Electronic state probability pσ . Middle: conditional displace-
ment λσ . Right: conditional frequency ωvσ . Unexcited state (σ =↓)
parameters are thin lines, and excited state (↑) are thicker lines. Other
parameters N = 7, λ = 1, ωv = 0.2 eV.

5. Evaluating spectral weights

In Figure 5, we plotted the system-size dependence of
the probability MLP1(H ). For calculating this, we used the

expression

Mlj,k (c) = ∣∣Tr
(
ρ j

σ

[
ρk

D

]T )∣∣2
, (A18)

in terms of the quantities (ρ j
σ )νμ = 〈� j |σμ〉〈σν|�0〉, and

(ρk
D)μν = 〈�k|Dν〉〈Dμ|�0〉 introduced above.

APPENDIX B: EVOLUTION OF GAUSSIAN FITTING
PARAMETERS WITH EXCITATION DENSITY

The results in Sec. V B discussed the evolution of λσ for a
special case where ρex = 1. Here we discuss how the behavior
evolves with changing ρex. Figure 8 shows all three fitting
parameters, pσ , ωvσ , λσ , with δ and ωR dependence as in
Fig. 7(b), but with each row corresponding to a different
excitation density ρex.

We first we discuss the left-hand column, pσ . By definition,
p↑ + p↓ = 1, so we focus on the evolution of p↑. At large neg-
ative detuning, the polariton state becomes purely photonic,
so p↑ → 0. The behavior at large positive detuning depends
on ρex. For ρex < 1, there are insufficient excitations for all
molecules to be excited, so p↑ � ρex. For ρex > 1, there will
always be a nonzero photon field, causing hybridization be-
tween excitonic states so pσ < 1. When ρex � 1, as discussed
in Sec. III C, this leads to pσ → 1/2.

Regarding λσ , the behavior at ρex = 1 was discussed in
Sec. V B and Sec. V C. At large ωR, the behavior remains
similar for other values of ρex. For small ωR, the behavior also
remains similar when ρex > 1 or δ̃ is negative. For δ̃ > 0, i.e.,
δ > −λ2ωv = −0.2 and ρex < 1, the behavior does change as
the ground state here is no longer a fully excited state. As
such (as discussed at the end of Sec. V C) one finds λ↓ → 0,

λ↑ → λ.
Regarding ωvσ , there is relatively little dependence on δ or

ρex (note the scale in the right column of Fig. 8). The slight
reduction below one means the probability distributions are
slightly broadened.
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