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We generalize the iterative diagonalization procedure adopted in the method of numerical renormalization
group to analyze the Kondo effect in strong magnetic fields, where the density of states for itinerary electrons at
the chemical potential varies discontinuously as the magnetic field changes. We first examine phases of many-
body ground states in the presence of a single impurity. By investigating the change of the z component of
total spin, �Sz, and spin-spin correlation between the impurity and conduction electrons, we find that there are
three states competing for the ground state when Zeeman splitting is present. One of the states is a doublet
in which the impurity spin is unscreened. The other two states are Kondo screening states with �Sz = 1

2 and
1, in which the impurity spin is partially screened and completely screened, respectively. For Kondo systems
with two impurities in strong magnetic fields, we find that the interplay between the Kondo screening effect,
Rudermann-Kittel-Kasuya-Yoshida interaction, and quantum oscillations due to Landau levels determines the
ground state of the system. A combination of these three factors results in different screening scenarios for
different phases in which spins of two impurities can form spin-0 or spin-1 states, while impurity spins in these
phases can be either screened, partially screened, or unscreened by conduction electrons. The emergence of the
ground state from these competing states oscillates with the change of magnetic field, chemical potential or
inter-impurity distance. This leads to quantum oscillations in magnetization and conductivity. In particular, we
find extra peak structures in longitudinal conductivity that reflect changes of Kondo screening phases and are
important features to be observed in experiments. Our results provide a complete characterization of phases for
Kondo effect in strong magnetic fields.

DOI: 10.1103/PhysRevB.106.195107

I. INTRODUCTION

How the magnetic order emerges from the interaction be-
tween localized magnetic moments and itinerary electrons is
an important issue to understand magnetism in correlated met-
als. The issue has been clarified at the level of single magnetic
moment, in which the moment gets screened and results in a
correlated Kondo screening state [1,2]. It is further realized
that when the number of magnetic moments exceeds one,
the Rudermann-Kittel-Kasuya-Yoshida (RKKY) interaction
is induced between moments, which starts to compete with
the Kondo effect. Depending on the distance between mo-
ments, the induced coupling between two magnetic moments
oscillates between ferromagnetic (FM) or antiferromagnetic
(AFM) coupling, leading to complicated competitions among
correlated singlet states, triplet states, and Kondo screening
states [3–11].

While the above understandings have been known for a
while, they were based on the analysis in conventional metal-
lic systems in which the density of states (DOS) for itinerary
electrons is nearly a constant near the chemical potential μ.
When external magnetic fields are present, the assumption
of constant DOS breaks down. In the case when magnetic
fields are weak, the degeneracy at the chemical potential for

different spin components is lifted. This leads to the differ-
entiation of possible correlated states for two impurities and
makes these correlated states observable in experiments [12].
More recently, the de Haas–Van Alphen effect is observed
for Kondo insulators in strong magnetic fields [13–15]. The
oscillation is shown to result from the emergence of Landau
levels in electronic structures [16]. In this case, the density of
states for itinerary electrons at the chemical potential varies
discontinuously as the magnetic field changes. Consequently,
the Kondo screening effect should be entirely different. For
instance, when μ lies at the middle between two Landau
levels without particle-hole symmetry, as suggested by Kondo
effects studied for gapped systems (such as semiconductors)
[17–19], one expects that the system should undergo a quan-
tum phase transition from singlet to doublet if the spacing
between Landau levels is compared with the Kondo temper-
ature, leading to the breakdown of screening effect at low
temperature. Here the energy gap in the gapped system plays
a similar role as the spacing of Landau levels for Kondo
systems in strong magnetic fields. In addition, the Kondo
effect is shown to exhibit reentrant behavior as the chemical
potential changes [20]. Perturbative studies of two Kondo im-
purities in graphene indicate that generic competition between
Kondo screening and the RKKY interaction persists even with
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Landau levels being present [20–25]. Nonetheless, the com-
plete phase diagram and behaviors of relevant physical quan-
tities such as entropy, specific heat, and susceptibility are still
unknown.

Theoretically, in the absence of Landau levels, the nu-
merical renormalization group (NRG) method has provided a
more complete description of the Kondo screening than the
mean-field and perturbation approaches [24]. In this paper,
we borrow the iterative diagonalization procedure from the
NRG method to investigate one and two magnetic impuri-
ties screened by discrete Landau levels at zero temperature.
We will show that the ground state generally oscillates in
Kondo screening state and partially screened and unscreened
spin states. This leads to quantum oscillations observed in
magnetization of the system. In particular, we find that two
impurities in the ground state can form spin-0 (singlet) and
spin-1 (triplet) states. Remarkably, these states can be either
screened, partially screened, or unscreened with the emer-
gence of these states being oscillating with the change of
magnetic field, chemical potential, or interimpurity distance.
Our results indicate that the oscillation in Kondo screening
phases is the key to understanding the observed quantum
oscillation in Kondo systems.

II. MODEL HAMILTONIANS

We start by considering the two-dimensional multi-
impurities Anderson model with the magnetic field �B being
along the z direction. By treating the conduction electron in
the continuum limit, the Hamiltonian can be written as

H = Hc + Hd + HV ,

Hc =
∫

d�r
∑

σ

c†
�rσ

( ��2

2m∗
e

− μ

)
c�rσ + gcμBBsz

c,�r,

Hd = U
∑

j

nd
j↑nd

j↓ +
∑

jσ

ξ d nd
jσ + gdμBB

∑
j

sz
d, j,

HV = Va
∫

d�r
∑

jσ

δ
(
�r − �r d

j

)
(d†

jσ c�rσ + H.c.).

(1)

Here Hc is the Hamiltonian for describing the conduction
electrons, Hd is the Hamiltonian for describing the impurities’
electrons, and HV is describing the hybridization between
conduction and impurity’s electrons. �� = �p + e �A/c is the
kinetic momentum operator with �A being the vector poten-
tial for �B, μ is the chemical potential, m∗

e is the effective
mass of the electron, a2 is the effective area of impurity
hybridization range, gc and gd are the g factors of conduc-
tion and impurities’ electrons, and V is the hybridization
strength between impurities and conduction electrons. c†

�rσ
and d†

jσ are the creation operators for conduction electrons
at position �r = (xd

j , yd
j ) and localized electrons at position

�r d
j with spin σ , respectively. sz

c,�r = 1
2 (c†

�r↑c�r↑ − c†
�r↓c�r↓) and

sz
d, j = 1

2 (d†
j↑d j↑ − d†

j↓d j↓) are spin operators for conduction
and impurities’ electrons, respectively. In the Landau gauge
�A = (0, Bx, 0), the single-particle eigenenergy and the corre-

sponding eigenfunction of the conduction electrons are

εc
n = εB

(
n + 1

2

)
, ξ c

n = εc
n − μ,

ψn,ky (�r) = e−ikyy

√
L

φn(x + xk ), xk = l2
Bky, (2)

φn(x) = 1√
2nn!π1/2lB

Hn(x/lB)e−x2/(2l2
B ),

where εB = h̄ωB is the Landau quantized energy with ωB =
eB/(m∗

e c) being the cyclotron frequency, ky is the wave vector
along the y direction, lB = √

h̄/(m∗
eωB) = √

ch̄/(eB) is the
magnetic length, and Hn(x) is the nth Hermite polynomial.
The magnetic length lB is approximated to 25.7 nm/

√
B(T),

where B(T) represents the magnetic field (B is unit of Tesla).
The restriction of −L/2 � xk � L/2 gives the allowed states
number of ky as Landau degeneracy

NL = L2/
(
2π l2

B

) = L2 m∗
e

2π h̄2 εB = L2ρεB, (3)

where L is the length of square system, and ρ = m∗
e/(2π h̄2)

is the density of states of two-dimensional free-electron gas
with effective mass m∗

e .
By using ψn,ky (�r), we can transform the annihilation oper-

ator to the basis of the Landau quantized states as

cnkyσ =
∫

d�r ψn,ky (�r)c�rσ ,

c�rσ =
∑
nky

ψ∗
n,ky

(�r)cnkyσ . (4)

After applying the transformation, the Hamiltonian projected
in Landau eigenstates is given by

H = Hd +
∑

{n},kyσ

ξ c
nσ c†

nkyσ
cnkyσ

+ Ṽ√
L

∑
j{n},kyσ

eikyyd
j φn

(
xd

j + xk
)
d†

jσ cnkyσ + H.c. (5)

Here Ṽ = Va, ξ c
n↑ = ξ c

n + gcμBB/2, ξ c
n↓ = ξ c

n − gcμBB/2,
and we also take an energy cutoff D so that ξ c

n = εc
n − μ ∈

[−D, D] and n = {Nmin, Nmin + 1, . . . , Nmax} with Nmax being
the maximum number and Nmin being the minimum number
of the Landau level index n.

A. Reduction in degrees of freedom for conduction electrons
coupling with impurities

Before further simplifying the Hamiltonian, we shall first
show that degrees of freedom for conduction electrons cou-
pling with impurities can be reduced. This is illustrated by
considering a toy model in which an impurity couples to
two degenerate one-dimensional chains Xn and Yn, with the
Hamiltonian

HT = Hd +
∑
{n},σ

ξnσ (X †
nσ Xnσ + Y †

nσYnσ )

+
∑
{n},σ

d†
σ (VX Xnσ + VY Ynσ ) + H.c. (6)
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By defining two new operators

Anσ = 1√
V 2

X + V 2
Y

(VX Xnσ + VY Ynσ ),

Bnσ = 1√
V 2

X + V 2
Y

(−VY Xnσ + VXYnσ ), (7)

it is then easy to see that Anσ and Bnσ obey fermionic commu-
tation relations: {A†

nσ , Anσ } = {B†
nσ , Bnσ } = 1, {A†

nσ , Bnσ } =
{Anσ , Bnσ } = 0. The Hamiltonian HT can be rewritten as

HT = Hd +
∑
{n},σ

ξnσ (A†
nσ Anσ + B†

nσ Bnσ )

+
√

V 2
X + V 2

Y

∑
{n},σ

d†
σ Anσ + H.c. (8)

Clearly, we see that the operator Bnσ decouples from the
impurity and only Anσ couples to the impurity with a stronger

hybridization strength
√

V 2
X + V 2

Y . Effectively, degrees of free-
dom for conduction electrons coupling with impurities are
reduced.

Going back to the Hamiltonian (5), the impurity operator
d†

jσ also couples to two degenerated state operators Xn and

Yn with a two-dimensional hybridization vector �V = (VX ,VY ).
Hence, similar reduction of degrees of freedom can be per-
formed (see the following subsection). In general, if the
conduction electrons possess more degeneracies characterized
by NL [NL = 2 for HT , for Landau levels, NL is the Landau
degeneracy given by Eq. (3)], the coupling of conduction
electrons to a single impurity can be characterized by a NL-
dimensional hybridization vector �V . By performing similar
analysis, it is clear that an impurity effectively only couples
to one channel with hybridization strength ‖ �V ‖. Furthermore,
if there are Nimp impurities operators d†

j coupling to NL degen-

erated conduction electrons with the hybridization vector �Vj ,
these impurities effectively couple to NL − Nimp channel when
NL � Nimp.

B. Reduced single-impurity Hamiltonian H1

We start with the single-impurity case with the position of
the impurity being at (0, R). The hybridization between the
impurity and conduction electrons is given by

HV = Ṽ√
L

∑
{n},kyσ

φn(xk )eikyRd†
σ cnkyσ + H.c. (9)

By collecting annihilation operators which couple to the im-
purity and redefining them as a new operator as

xnAnσ =
√

L

NL

∑
ky

eikyRφn(xk )cnkyσ , (10)

where xn =
√

L
NL

∑
ky

|eikyRφn(xk )|2 is the normaliza-

tion constant. The new hybridization term becomes
Ṽ

√
ρεB

∑
{n}σ (xnd†

σ Anσ + H.c.). According to the analysis in
Sec. II A, it is clear that the impurity only hybridizes to Anσ

and decouples from the remaining NL − 1 states if NL � 1.

To obtain the normalized constant xn, we first note that the
dimensionless function

φ̄n(x/lB) =
√

lBφn(x) = 1√
2nn!π1/2

Hn(x/lB)e−x2/(2l2
B ) (11)

satisfies the normalization condition
∫ ∞
−∞ dt φ̄2

n (t ) = 1. For
L 
 lB, the normalized constant xn can be simplified as fol-
lows:

xn =
√√√√ L

NL

∑
ky

φ2
n (xk ) =

√
L2

2πNL

∫ kmax
y

kmin
y

dkyφ2
n (xk )

=
√√√√∫ L

2

− L
2

dxkφ2
n (xk ) =

√∫ ∞

−∞
dt φ̄2

n (t ) = 1, (12)

where t = x/lB. Thus, we obtain the hybridization term in the
new basis as (ρṼ 2εB)1/2 ∑

{n}σ (d†
σ Anσ + H.c.). As a result, the

reduced single-impurity Hamiltonian H1 in terms of A†
n,σ is

given by

H1 = Ud†
↑d↑d†

↓d↓ +
∑

σ

ξ d
σ d†

σ dσ +
∑
{n},σ

ξ c
nσ A†

nσ Anσ

+
(

εB

π

)1/2
(∑

{n},σ
d†

σ Anσ + H.c.

)
, (13)

where  = πρV 2. It is important to note that only one channel
in the Landau level couples to the impurity in H1.

C. Reduced two-impurities Hamiltonian H2

In the two-impurities case, positions of impurities are set at
(0,±R/2). For general positions, please see the Supplemen-
tal Material [26]. The hybridization between impurities and
conduction electrons is given by

Ṽ√
L

∑
{n},kyσ

φn(xk )
(
eikyR/2d†

1σ + e−ikyR/2d†
2σ

)
cnkyσ + H.c. (14)

Hence, for impurity 1, the impurity operator d†
1σ couples to√

L/NL
∑

ky
eikyR/2φn(xk )cnkyσ , while for impurity 2, the impu-

rity operator d†
2σ couples to

√
L/NL

∑
ky

e−ikyR/2φn(xk )cnkyσ . It
is easy to see that the overlap of the coefficients in the above
operators is nonvanishing∫ ∞

−∞
dt

(
e−it (R/2lB )φ̄n(t )

)∗
eit (R/2lB )φ̄n(t )

=
∫ ∞

−∞
dt eiηt φ̄2

n (t ) �= 0, (15)

where η = R/lB. Hence, these operators are not orthogonal
when L 
 lB. However, if we define

xnAnσ =
√

L

NL

∑
ky

cos(kyR/2)φn(xk )cnkyσ ,

ynBnσ =
√

L

NL

∑
ky

i sin(kyR/2)φn(xk )cnkyσ , (16)
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where xn and yn are normalization constants to be determined,
we shall see that by fixing xn and yn correctly, Anσ and Bnσ are
two orthogonal annihilation operators with standard fermion
commutation relations. First, note that because the following
integral vanishes∫ ∞

−∞
dt sin

(ηt

2

)
cos

(ηt

2

)
φ̄2

n (t )

= 1

2

∫ ∞

−∞
dt sin(ηt )φ̄2

n (t ) = 0, (17)

we have {A†
nσ , Bnσ } = 0 when L 
 lB. The normalization con-

stants xn and yn are determined by the required commutation
relations and are given by [26]

xn =
√

1

2

∫ ∞

−∞
dt cos2 ηt

2
φ̄2

n (t ) =
√

1 + un

2
,

yn =
√

1

2

∫ ∞

−∞
dt sin2 ηt

2
φ̄2

n (t ) =
√

1 − un

2
, (18)

un = Re

(∫ ∞

−∞
dt eiηt φ̄2

n (t )

)
= e−η2/4Ln(η2/2),

where Ln(x) is the nth Laguerre polynomial. Thus, the effec-
tive hybridization becomes

(ρṼ 2εB)1/2[d†
1σ (xnAnσ + ynBnσ )

+d†
2σ (xnAnσ − ynBnσ ) + H.c.]. (19)

The reduced two-impurities Hamiltonian H2 in terms of A†
n,σ

and B†
n,σ is then given by

H2 = U
∑
j=1,2

d†
j↑d j↑d†

j↓d j↓ +
∑

j=1,2,σ

ξ d
σ d†

jσ d jσ

+
∑
{n},σ

ξ c
nσ (A†

nσ Anσ + B†
nσ Bnσ )

+
(

εB

π

)1/2 ∑
{n},σ

[(d†
1σ + d†

2σ )xnAnσ

+(d†
1σ − d†

2σ )ynBnσ + H.c.]. (20)

Note that if we redefine new operators Xnσ and Ynσ by per-
forming an orthogonal transformation between Anσ and Bnσ

as

Xn = xnAnσ + ynBnσ , Yn = −ynAnσ + xnBnσ , (21)

the hybridization shown in Eq. (19) becomes

(ρṼ 2εB)1/2
(
d†

1σ Xnσ + d†
2σ

(
unXnσ −

√
1 − u2

nYnσ

) + H.c.
)
.

(22)

It is clear from the above form of hybridization that when all
un vanish, two impurities decouple and the system is the same
as the case for a single impurity, while if all un are equal to 1,
both the impurity operators couple to the same operator Xnσ ,
the system thus becomes the well-known two-impurity–one-
channel Kondo problem. In Fig. 1, we show how un depends
on the dimensionless interimpurity distance η. Clearly, neither

FIG. 1. Illustration of un versus η = R/lB for n = 9, 10, and 11,
where R is the distance between two impurities and lB is the magnetic
length.

all un vanish nor un are all equal to 1. Hence, two impurities
in the Anderson model are a two-channel problem.

III. ITERATIVE DIAGONALIZATION

In this section, we will describe how to use the numerical
iterative diagonalization procedure adopted in the method of
NRG to analyze the Kondo effect in strong magnetic fields.
We emphasize that our calculation focuses on the low-energy
states at final iteration, which correspond to the low-energy
states of reduced Hamiltonian H1 or H2. At each iteration, the
iterative procedure disregards high-energy states. The conver-
gence of our results indicates the energy scale separation of
high- and low-energy modes.

A. Transform diagonal matrix into hopping matrix

The first step of the iterative diagonalization is to trans-
form the diagonalized Hamiltonian of conduction electron
into hopping Hamiltonian. Explicitly, it means to find the
hopping energy tm, atomic energy εm, and the transformation
Anσ = un,m fmσ , such that the kinetic energy

∑
nσ ξ c

nσ A†
nσ Anσ

in Eq. (20) becomes∑
nσ

ξ c
nσ A†

nσ Anσ

=
Nt∑

m=1,σ

εm f †
mσ fmσ + tm( f †

mσ fm+1σ + H.c.). (23)

Here we have renumbered the Landau-level index n from the
original range (Nmin, Nmax) to (1, Nt ) with the understanding
that the energy of the Landau level changes to εc

n = εB(n −
1 + Nmin + 1

2 ). {un,m} is the transformation matrix transform-
ing Anσ to fnσ . As the impurity operators d†

1σ and d†
2σ are

already put at site 1 [see Eq. (22)], un,1 is given by the coupling
coefficient to the impurity. For the remaining components
un,m, we consider a vector vm,n for fixed n as the eigenvector
to the Hamiltonian with hopping tm and onsite energy εm such
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FIG. 2. The hopping amplitudes tm follow the scaling form
tm/D = f (m/Nt ) with f (x) being roughly in the form of a − bx.

that vm,n satisfies⎛
⎝ε1 t1

t1 ε2 t2
t2 . . .

⎞
⎠

⎛
⎝v1,n

v2,n

. . .

⎞
⎠ = ξn

⎛
⎝v1,n

v2,n

. . .

⎞
⎠. (24)

Here, ξn is the eigenvalue. Clearly, the desired transforma-
tion {un,m} is given by un,m = vm,n. Hence, v1,n = un,1. From
Eq. (24), it is easy to find the recurrence relation for vm,n:

tmvm+1,n = (ξn − εm)vm,n − tm−1vm−1,n,

for 1 < m < Nt

t1v2,n = (ξn − ε1)v1,n,

tNt vNt −1,n = (ξn − εNt )vNt ,n. (25)

vm,n (and thus un,m) can be found by the initial condition
v1,n = un,1. The orthogonality requirement of transformation
v̂ = (vmn) is v̂v̂T = I , i.e.,

∑
n vm,nvm′,n = δm,m′ . Hence, by

multiplying vm,n in Eq. (25) and summing over n, we find

εm =
∑

n

ξ 2
n v2

m,n. (26)

By using Eqs. (25) and (26), v1,n, and the normalized
condition

∑
n v2

m,n = 1, all vm,n and tm can be determined
numerically. Numerically, as shown in Fig. 2, we find that for a
single impurity, εm = 0 and tm follows a scaling form tm/D =
f (m/Nt ) with f (x) being roughly in the form of a − bx. Fur-
thermore, we find that for Nt � 36, due to the accumulation
of numerical error that includes the error introduced by diago-
nalization in each recurrence step, the orthogonality of the first
and final states is poor. Hence, in our calculation, we limit our
calculations to systems with Nt < 30 so that the absolute value
of the inner product between first and final states <10−10. The
error generated from this step can be neglected, as it is the
order 10−10 of εB when comparing the eigenvalue of hopping
matrix with the original diagonal matrix. Note that tm does
not decay exponentially but exhibits a square-root-like decay
form for large m as indicated in the Supplemental Material
[26]. The accuracy problem related to the decay form of tm
will be discussed in the last subsection of this section.

B. Effective 1D chain Hamiltonians for single impurity
and two impurities

The transformation of single-impurity Hamiltonian H1 into
an effective one-dimensional (1D) chain Hamiltonian can
be achieved by setting the new annihilation operator f1σ =

1√
Nt

∑
n Anσ with Nt = Nmax − Nmin + 1 being the total num-

ber of Landau levels within the energy cutoff. This gives
un,1 = 1√

Nt
. With ξn = εB(n − 1 + Nmin + 1

2 ) − μ and un,1, tm
and εm can be obtained by solving Eqs. (25) and (26). After
the transformation, we obtained the single-impurity 1D chain
Hamiltonian as

HW
1 = Ud†

↑d↑d†
↓d↓ +

∑
σ

ξ d
σ d†

σ dσ + ̄
∑

σ

(d†
σ f1σ + H.c.)

+
Nt∑

m=1,σ

εmσ f †
mσ fmσ +

Nt −1∑
m=1,σ

tm( f †
mσ fm+1σ + H.c.),

(27)

where the effective coupling between the impurity electrons
and conduction electrons is ̄ = ( εB

π
)1/2N1/2

t . Similarly, the
transformation of the two-impurities Hamiltonian H2 can
be achieved by setting f1σ = 1√∑

n x2
n

∑
n xnAnσ and g1σ =

1√∑
n y2

n

∑
n ynBnσ . The resulting two-impurities 1D chain

Hamiltonian is given by

HW
2 = U

∑
j=1,2

d†
j↑d j↑d†

j↓d j↓ +
∑

j=1,2,σ

ξ d
σ d†

jσ d jσ

+
Nt∑

m=1,σ

ε f
mσ f †

mσ fmσ + εg
mσ g†

mσ gmσ

+
Nt −1∑

m=1,σ

(
t f
m f †

mσ fm+1σ + t g
mg†

mσ gm+1σ + H.c.
)

+
∑

σ

̄ f (d†
1σ + d†

2σ ) f1σ + ̄g(d†
1σ − d†

2σ )g1σ + H.c.,

(28)

where the effective couplings are ̄ f = (εB/π
∑

{n} x2
n )1/2

and ̄g = (εB/π
∑

{n} y2
n )1/2.

Finally, the procedure for transformation of the reduced
Hamiltonian H1 and H2 to an effective 1D chain Hamiltonian
Hw is schematically illustrated in Fig. 3.

C. Details of the 1D chain model calculation

Details of iteratively diagonalizing a single-impurity
one-channel Hamiltonian HW

1 is well known [24,27]. We
will only show details of iteratively diagonalizing a two-
or higher-channel Hamiltonian. We start with HW

2 shown
in Eq. (28), and relabel d1σ = P−1σ , d2σ = P0σ , fmσ =
P2m−1σ , gmσ = P2mσ . Then the Hamiltonian includes the
Hubbard terms P†

−1↑P−1↑P†
−1↓P−1↓, P†

0↑P0↑P†
0↓P0↓, the charge

terms
∑

σ P†
nσ Pnσ , the Zeeman interaction terms P†

0↑P0↑ −
P†

0↓P0↓, and several hopping terms such as P†
nσ Pn+1σ + H.c.,

P†
nσ Pn+2σ + H.c., and P†

nσ Pn+3σ + H.c. The Hamiltonian is the
summation of these terms and commutes with total charge Q̂N
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(a)

(b)

FIG. 3. A schematic diagram shows steps for transforming the
multi-impurity Anderson model to the effective 1D chain Hamilto-
nian for (a) a single impurity and (b) two impurities.

and the z component of total spin Ŝz
N , which are given by

Q̂N =
N∑
n

(P†
n↑Pn↑ + P†

n↓Pn↓ − 1),

Ŝz
N =

N∑
n,σσ ′

P†
nσ

τ z
σσ ′

2
Pnσ ′ . (29)

Here τ z is the z component of the Pauli matrices. N is num-
ber of P†

σ operators of any chain Hamiltonian. Hence, the
Hamiltonian is block diagonalized by using the basis specified
by quantum numbers Q and Sz. Furthermore, each block in
the Hamiltonian is specified by the quantum number (Q, Sz )
with the energy eigenstates for each block being represented
by |Q, Sz, r〉N , where r = 1, 2, 3, . . . is the ordering of the
eigenstates in each block. In addition, when two impurities
have the same strength in Hubbard interaction and atomic
energy, HW

2 possess additional parity symmetry. In order to
apply this symmetry in diagonalization, it is more convenient
to rearrange operators in HW

2 by using even or odd represen-
tations of operators defined by

deσ = 1√
2

(d1σ + d2σ ), doσ = 1√
2

(d1σ − d2σ ),

cm,eσ = fmσ , cm,oσ = gmσ , (30)

where the subscript e labels even and o labels odd parity. HW
2

then becomes

HW
2 = U

2
[(d†

e↑de↑ + d†
o↑do↑)(d†

e↓de↓ + d†
o↓do↓)]

+U

2
[(d†

e↑do↑ + d†
o↑de↑)(d†

e↓do↓ + d†
o↓de↓)]

+
∑

σ

ξ d
σ (d†

eσ deσ + d†
oσ doσ )

+
Nt∑

m=1,σ

ε f
mσ c†

m,eσ cm,eσ + εg
mσ c†

m,oσ cm,oσ

+
Nt −1∑

m=1,σ

(
t f
mc†

m,eσ cm+1,eσ + t g
mc†

m,oσ cm+1,oσ + H.c.
)

+
∑

σ

√
2̄ f d†

eσ c1,eσ +
√

2̄gd†
oσ c1,oσ + H.c. (31)

Using the relabeling notations deσ = P−1σ , doσ = P0σ ,
cm,eσ = P2m−1σ , cm,oσ = P2mσ , the parity operator is given by
P̂N = (−1)ÔN , where

ÔN =
∑

n=even,σ

P†
nσ Pnσ . (32)

Note that for a single impurity, one uses the quantum number
(Q, Sz ) to perform iterative diagonalization, while for two
impurities, one can either use (Q, Sz ) or (Q, Sz, P) for iterative
diagonalization. In the following, we will present the formal-
ism of the Hamiltonian involved in each iteration by using
either the set of quantum number (Q, Sz ) or (Q, Sz, P).

1. Iterative diagonalization in (Q, Sz ) basis

Let |Q, Sz, r〉N denote eigenstates of HN such that

HN |Q, Sz, r〉N = EN (Q, Sz, r)|Q, Sz, r〉N , (33)

where r = 1, 2, 3, . . . labels the ordering of the eigenstates in
each block specified by Q and Sz.

When adding a new site with fermion operator P†
N+1σ , new

states have to include extra particles (holon, one particle, or
two particles) at the new site so that we define new basis states
as follows:

|q, r, 1〉N+1 ≡ |0; Q + 1, Sz, r〉N ,

|q, r, 2〉N+1 ≡ ∣∣↑N+1; Q, Sz − 1
2 , r

〉
N
,

|q, r, 3〉N+1 ≡ ∣∣↓N+1; Q, Sz + 1
2 , r

〉
N
,

|q, r, 4〉N+1 ≡ | ↑↓N+1; Q − 1, Sz, r〉N ,

(34)

where we collectively denote the quantum number (Q + 1, Sz )
by q and the relevant states on the right-hand side are defined
by using P†

N+1σ as

|0; Q + 1, Sz, r〉N ≡ |Q + 1, Sz, r〉N ,∣∣↑N+1; Q, Sz − 1
2 , r

〉
N

≡ P†
N+1↑

∣∣Q, Sz − 1
2 , r

〉
N
,∣∣↓N+1; Q, Sz + 1

2 , r
〉
N

≡ P†
N+1↓

∣∣Q, Sz + 1
2 , r

〉
N
,

|↑↓N+1; Q − 1, Sz, r〉N ≡ P†
N+1↑P†

N+1↓|Q − 1, Sz, r〉N .

Note that |q, r, i〉N can be also written in the form |Q, Sz, r, i〉N ,
and the states |q, r, i〉N with i = 1, 2, 3, and 4 are built from
energy eigenstates |Q, Sz, r〉N−1 with the number of sites be-
ing N − 1 but they are not energy eigenstates for the number
of sites being N .

The Hamiltonian with an extra site is given by HN+1 =
HN + HI

N,1, where the nonvanishing matrix elements of hop-
ping Hamiltonian in the same block labeled by (Q, Sz ), HI

N,1 =∑
σ P†

Nσ PN+1σ + H.c., can be expressed as matrix elements of
P†

Nσ in the basis of energy eigenstates:

〈q, r, 1|HI
N,1|q, r′, 2〉N+1 = 〈Q + 1, Sz, r|P†

N↑
∣∣Q, Sz − 1

2 , r′〉
N
,

〈q, r, 3|HI
N,1|q, r′, 4〉N+1 = −〈

Q, Sz + 1
2 , r

∣∣P†
N↑|Q − 1, Sz, r′〉N ,

〈q, r, 1|HI
N,1|q, r′, 3〉N+1 = 〈Q + 1, Sz, r|P†

N↓
∣∣Q, Sz + 1

2 , r′〉
N
,

〈q, r, 2|HI
N,1|q, r′4〉N+1 = 〈

Q, Sz − 1
2 , r

∣∣P†
N↓|Q − 1, Sz, r′〉N .

(35)
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Hence, we need to calculate 〈Q, Sz, r|P†
Nσ |Q′, S′

z, r′〉N . For this
purpose, we first note the following identities by using the
definition of |Q, Sz, r, i〉N :〈

Q + 1, Sz + 1
2 , r, 2

∣∣P†
N↑|Q, Sz, r, 1〉N = 1,〈

Q + 1, Sz + 1
2 , r, 4

∣∣P†
N↑|Q, Sz, r, 3〉N = 1, (36)〈

Q + 1, Sz − 1
2 , r, 3

∣∣P†
N↓|Q, Sz, r, 1〉N = 1,〈

Q + 1, Sz − 1
2 , r, 4

∣∣P†
N↓|Q, Sz, r, 2〉N = −1.

Clearly, to get 〈Q, Sz, r|P†
Nσ |Q′, S′

z, r′〉N , we need the transfor-
mation matrix UN (Q, Sz, r,w, i) that diagonalizes the block
in HN labeled by Q and Sz. In other words, UN (Q, Sz, r,w, i)
connects the energy eigenstate |Q, Sz, r〉N with the basis states
|Q, Sz,w, i〉N by

|Q, Sz, r〉N = UN (Q, Sz, r,w, i)|Q, Sz,w, i〉N . (37)

Here both r and w label the ordering of the state and i = 1–4
with labels 1, 2, 3, and 4 representing the N state for adding
a holon, one spin-up particle, one spin-down particle, and two
particles to N − 1 state as we go from N − 1 to N states. Using
UN (Q, Sz, r,w, i), one can compute 〈Q, Sz, r|P†

Nσ |Q′, S′
z, r′〉N .

As a example, consider the computation of
〈q, r, 1|HI

N,1|q, r′, 2〉N+1, which can be reduced to
matrix element of P†

N↑ in the energy eigenstates as

〈Q + 1, Sz, r|P†
N↑|Q, Sz − 1

2 , r′〉N . By using Eq. (37), one can

express |Q, Sz − 1
2 , r′〉N in terms of |Q, Sz − 1

2 , r′,w, 1〉N−1

or |Q, Sz − 1
2 , r′,w, 3〉N−1. Similarly, |Q + 1, Sz, r〉N

can be expressed in terms of |Q + 1, Sz, r,w, 2〉N−1 or
|Q + 1, Sz, r,w, 4〉N−1. We find

〈q, r, 1|HI
N,1|q, r′, 2〉N+1

= U ∗
N (Q + 1, Sz, r,w, 2)UN

(
Q, Sz − 1

2 , r′,w, 1
)

+U ∗
N (Q + 1, Sz, r,w, 4)UN

(
Q, Sz − 1

2 , r′,w, 3
)
.

Similarly, we can find all other matrix elements.
Similarly, the nonvanishing matrix elements of hopping

Hamiltonian HI
N,2 = ∑

σ P†
Nσ PN+2σ + H.c. can be obtained as

HI,(q,1,2)N+2
N,2 = 〈Q + 1, Sz, r|P†

N↑
∣∣Q, Sz − 1

2 , r′〉
N+1,

HI,(q,3,4)N+2
N,2 = −〈

Q, Sz + 1
2 , r

∣∣P†
N↑|Q − 1, Sz, r′〉N+1,

HI,(q,1,3)N+2
N,2 = 〈Q + 1, Sz, r|P†

N↓
∣∣Q, Sz + 1

2 , r′〉
N+1, (38)

HI,(q,2,4)N+2
N,2 = 〈

Q, Sz − 1
2 , r

∣∣P†
N↓|Q − 1, Sz, r′〉N+1,

where HI,(q,i, j)N+2
N,2 is a shorthand symbol for

〈q, r, i|HI
N,2|q, r′, j〉N+2.

Similar construction shows that the nonvanishing matrix
elements of P†

Nσ in basis states with N + 1 sites are given by

〈q, r, 1|P†
Nσ |q′, r′, 1〉N+1 = 〈Q + 1, Sz, r|P†

Nσ |Q′ + 1, S′
z, r′〉N ,

〈q, r, 2|P†
Nσ |q′, r′, 2〉N+1 = −〈

Q, Sz − 1
2 , r

∣∣P†
Nσ

∣∣Q′, S′
z − 1

2 , r′〉
N ,

〈q, r, 3|P†
Nσ |q′, r′, 3〉N+1 = −〈

Q, Sz + 1
2 , r

∣∣P†
Nσ

∣∣Q′, S′
z + 1

2 , r′〉
N ,

〈q, r, 4|P†
Nσ |q′, r′, 4〉N+1 = 〈Q − 1, Sz, r|P†

Nσ |Q′ − 1, S′
z, r′〉N .

(39)

One can thus obtain 〈Q, Sz, r|P†
Nσ |Q′, S′

z, r′〉N+1 by using
UN+1(Q, Sz, r,w, i), UN (Q, Sz, r,w, i), Eq. (36), and Eq. (39).
Note that the above procedure can be easily generalized to
the hopping Hamiltonian

∑
σ P†

Nσ PN+lσ + H.c. for arbitrary
number l .

2. Iterative diagonalization in (Q, Sz, P) basis

Let |Q, Sz, P, r〉N denote the eigenstates of HN , i.e.,

HN |Q, Sz, P, r〉N = EN (Q, Sz, P, r)|Q, Sz, P, r〉N , (40)

where P = ±1 labels the parity of states.
The basis states for new states when adding new site

fermions P†
N+1σ depend on whether N is even or odd. For N

even, basis states are given by

|q, r, 1〉N+1 = |0; Q + 1, Sz, r〉N ,

|q, r, 2〉N+1 = ∣∣ ↑N+1; Q, Sz − 1
2 , P, r

〉
N ,

|q, r, 3〉N+1 = ∣∣ ↓N+1; Q, Sz + 1
2 , P, r

〉
N ,

|q, r, 4〉N+1 = | ↑↓N+1; Q − 1, Sz, P, r〉N ,

(41)

while for N odd, basis states are given by

|q, r, 1〉N+1 = |0; Q + 1, Sz, r〉N ,

|q, r, 2〉N+1 = ∣∣ ↑N+1; Q, Sz − 1
2 ,−P, r

〉
N ,

|q, r, 3〉N+1 = ∣∣ ↓N+1; Q, Sz + 1
2 ,−P, r

〉
N ,

|q, r, 4〉N+1 = | ↑↓N+1; Q − 1, Sz, P, r〉N ,

(42)

where q is the shorthand of (Q + 1, Sz, P). Note that the parity
of any many-particle state changes sign when adding an odd
number of fermions, while the parity stays the same when
adding an even number of fermions.
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Note that to preserve the parity, the hopping Hamiltonian now only includes HI
N,2 = ∑

σ P†
Nσ PN+2σ + H.c. terms, whose

nonvanishing matrix elements are given by

HI,(q,1,2)N+2
N,2 = 〈Q + 1, Sz, P, r|P†

N↑
∣∣Q, Sz − 1

2 , (−1)N+1P, r′〉
N+1,

HI,(q,3,4)N+2
N,2 = −〈

Q, Sz + 1
2 , (−1)N+1P, r

∣∣P†
N↑|Q − 1, Sz, P, r′〉N+1,

HI,(q,1,3)N+2
N,2 = 〈Q + 1, Sz, P, r|P†

N↓
∣∣Q, Sz + 1

2 , (−1)N+1P, r′〉
N+1,

HI,(q,2,4)N+2
N,2 = 〈

Q, Sz − 1
2 , (−1)N+1P, r

∣∣P†
N↓|Q − 1, Sz, P, r′〉N+1. (43)

The remaining steps for computing the matrix elements
〈Q, Sz, P, r|P†

Nσ |Q′, S′
z, P, r′〉N are the same as what were done

for basis states using (Q, Sz ). Here, relevant identities, similar
to Eqs. (36), are given by〈

Q + 1, Sz + 1
2 , P∗,w, 2

∣∣P†
N↑|Q, Sz, P,w, 1〉N = 1,〈

Q + 1, Sz + 1
2 , P∗,w, 4

∣∣P†
N↑|Q, Sz, P,w, 3〉N = 1,〈

Q + 1, Sz − 1
2 , P∗,w, 3

∣∣P†
N↓|Q, Sz, P,w, 1〉N = 1,〈

Q + 1, Sz − 1
2 , P∗,w, 4

∣∣P†
N↓|Q, Sz, P,w, 2〉N = −1,

(44)

where P∗ = (−1)N+1P, and relevant matrix elements are
given by

〈q, r, 1|P†
Nσ |q′, r′, 1〉N+1

= 〈Q + 1, Sz, P, r|P†
Nσ |Q′ + 1, S′

z, P′, r′〉N , (45)

〈q, r, 2|P†
Nσ |q′, r′2〉N+1

= −〈
Q, Sz − 1

2 , P, r
∣∣P†

Nσ

∣∣Q′, S′
z − 1

2 , P′, r′〉
N ,

〈q, r, 3|P†
Nσ |q′, r′3〉N+1

= −〈
Q, Sz + 1

2 , P, r
∣∣P†

Nσ

∣∣Q′, S′
z + 1

2 , P,′ r′〉
N ,

〈q, r, 4|P†
Nσ |q′, r′, 4〉N+1

= 〈Q − 1, Sz, r|P†
Nσ , P|Q′ − 1, S′

z, P′, r′〉N . (46)

D. Numerical iterative diagonalization and error analysis

Based on the effective 1D chain Hamiltonian, one can per-
form the iterative diagonalization procedure by diagonalizing
HW

1 and HW
2 iteratively [24,27,28]. Here, eigenstates of the 1D

chain Hamiltonian HW
1 are classified by the quantum number,

charge Q, z component of total spin Sz, and additional parity
number P in HW

2 . In the iterative diagonalization, one derives
matrix elements of the effective 1D chain Hamiltonian of N +
1 sites (single impurity) or N + 2 sites (two impurities) from
eigenstates of N sites [26]. The resulting effective 1D chain
Hamiltonian of N + 1 sites (single impurity) or N + 2 sites
are then exactly diagonalized. For each iteration step, numbers
of eigenstates kept are Ntr = 10 000 for the single-impurity
and Ntr = 6000 for the two-impurities case. By comparing
with the exact excitation energies when  = 0, the relative
error of our calculations at kBT � εB can be estimated to be
less than 0.01% for the single impurity and less than 1% for
two impurities.

Note that in typical research on Kondo effects, the impurity
is embedded in a continuous conduction band. The main dif-

ficulty in typical Kondo problem arises from infinite degrees
of freedom for excitation energies lower than any given finite
temperature T . Therefore, the suitable approximated NRG
Hamiltonian in wild-temperature range to zero-temperature
limit is required. This gives the requirement of the exponen-
tially decayed tm by the perturbation argument in Wilson’s
original NRG paper.

However, in our considered situation, which is primarily at
zero temperature, the system is under strong magnetic field
and is at temperature T much lower than the Landau-level
energy spacing εB. Only a small number (Nt < 20) of Lan-
dau levels is within the energy cutoff D. Therefore, below
our interested temperature, only few degrees of freedom for
excitation energies are allowed. Although tm does not decay
exponentially, for small Nt and a large number of kept states
in each iteration, the iterative diagonalization procedure still
provides low-energy excitations and states with high accuracy.
In particular, we find that our results converge as Nt increases.
This indicates that the energy scale of high- and low-energy
modes separates in our approach. Furthermore, we find that
tm follows a scaling form tm/D = f (m/Nt ) with f (x) being
roughly in the form of a − bx2. The existence of this scaling
form implies that there is a finite-size rescaling involved when
one goes from one scale to another, indicating the close rela-
tion of our method to the renormalization group analysis.

IV. PHASES OF MANY-BODY GROUND STATE

In this section, we will describe the emergent phases in the
many-body ground state. Before we describe these phases, we
shall first examine the application regime of our calculations.
In our iterative diagonalization procedure, there are Nt Lan-
dau levels with discrete energies within the cutoff D. For a
given temperature T , there are two regimes: (1) Regime of
weak magnetic fields in which εB � kBT � D so that Nt is
essentially infinite and the number of Landau levels below
kBT is also essentially infinite. This is the regime that one
may apply the Wilsons discretization scheme. (2) Regime of
strong magnetic fields in which there are a finite number Nt of
Landau levels within the cutoff D. For typical strong magnetic
fields around 10 T, Nt is the order of 10 to 102. This is the
situation concerned in our NRG scheme. In this regime, one
needs to consider Kondo effects from a finite number of Lan-
dau levels. Furthermore, because our iterative diagonalization
procedure is accurate for low-energy excitations, it further sets
a limit that the temperature is much lower than the Landau-
level energy spacing εB, i.e., kBT < εB. From the view of
renormalization group method, the system is finite and one
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FIG. 4. (a) Schematic diagram for single-impurity coupling to
Landau levels within the cutoff D (shaded area). (b) Many-particle
eigenenergy difference E (Q, 2S + 1, r) − E (0, 2, rmin), obtained
from the iterative diagonalization method, where numbers shown in
brackets label (Q, 2S + 1) and ρJ = 

π
( 1

|U+ξd | + 1
|ξd | ).

can not perform infinite iterations and go to the fixed point.
Instead, as it is well known, there will be finite-size effects
and one needs to do finite-size scaling to get results for infinite
systems. This is particularly true for scaling functions and
scaling exponents. In this work, however, we are interested
in phases of the ground states. Therefore, the finite-size effect
is not particularly important as one will see in the following
that changes of Nt have limited effects.

A. Transition between doublet and singlet ground states
and the phase diagram when gc = gd = 0

To realize how the Kondo physics affects the many-body
ground state, we start with the single-impurity case when gc =
gd = 0. In this case, the Hamiltonian possesses additional
SU(2) symmetry of total spin, which allows us to classify
eigenstates by total spin S [27,28], which provides more ac-
curate description of states and excitation energy. Therefore,
we shall label states by using quantum numbers Q and S and
denote eigenstates by |Q, 2S + 1, r〉 and energy eigenvalues
by E (Q, 2S + 1, r).

When  = 0, the ground state is |0, 2, rmin〉, where the
labeling rmin is used to indicate that the energy of the ground
state is the minimum of all |0, 2, r〉. The state |0, 2, rmin〉 is
doubly degenerated and will persist to be an eigenstate but
may not be the ground state when  �= 0. In Fig. 4(a), we
show the coupling of the impurity to Landau levels schemat-
ically. Here even the number of Landau quantized bands in
the energy cutoff D is shown. The chemical potential is set
in the central two Landau levels, and below the upper level
with 0.15εB. In Fig. 4(b), we show the energy difference
�E between first few low-energy states and doublet states
|0, 2, rmin〉 at different ρJ . Here in the calculations, we change
the parameter  but in the plot shown in Fig. 4(b), we use ρJ
as the variable for the x axis. ρJ is related to  by [1]

ρJ = 

π

(
1

|U + ξd | + 1

|ξd |
)

. (47)

For each given , from numerical calculation, one obtains
low-energy states |Q, 2S + 1, r〉 and spectrum E (Q, 2S +
1, r) classified by the quantum number (Q, 2S + 1). To
make the competition between two ground states more clear,
the energy difference �E is taken as E (Q, 2S + 1, r) −
E (0, 2, rmin) as shown in Fig. 4.

Let us first examine low-energy many-body states at  = 0
as shown in Fig. 4(b). When  = 0, the ground state |E0( =
0)〉 of the system is the direct product of the ground state
for the impurity ground state |Ed

0 ( = 0)〉 and the ground
state of conduction electrons |Ec

0 ( = 0)〉. Here, the ground
state of the conduction electrons |Ec

0 ( = 0)〉 is the state with
all levels below μ being doubly occupied. For ξ d < 0 and
U + ξ d > 0, the impurity prefers singly occupied and hence
the ground state of the spin is doubly degenerated due to spin.
As a result, the ground state |E0( = 0)〉 possesses Q = 0 and
degeneracy 2S + 1 = 2. The first excited state |E1( = 0)〉
has four degeneracies. This corresponds to the addition of a
charge into the ground state of the conduction electrons (so
its Q = 1) with energy 0.15εB, and the degeneracy 4 comes
from the spin of impurity and the spin of added charge. The
second excited state |E2( = 0)〉 has two degeneracies, which
correspond to the addition of two charges into the ground
state of the conduction electrons with total energy 0.3εB. The
degeneracy comes from the spin of the impurity.

When  is turned on, the Kondo spin-spin interaction starts
to show up between the impurity and conduction electron.
However, many-particle states of conduction electrons must
carry spins so that it can screen the spin of the impurity.
Therefore, as shown in Fig. 4(b), the competition between
single-charge excitation energy (0.15εB) at  = 0 and the
Kondo interaction energy when  is finite results in the quan-
tum phase transition between the local moment doublet and
Kondo singlet state, as displayed in the crossover between the
red solid line and blue dashed-dotted line. In addition, spin-
triplet states are shown in pink dashed line where its energy
increases when  increases as predicted by the sign of Kondo
interaction. Furthermore, we notice that the energy difference
between |E0( = 0)〉 and |E2( = 0)〉 is almost unchanged
when  increases to large values, which also agrees with the
argument that the Kondo interaction only significantly affects
many particles of conduction electrons.

Based on the degeneracy of ground state at different μ

and , we plot the phase diagram in the parameter space of
μ and ρJ in Figs. 5(a) and 5(b), where for doublet phase
(2S + 1 = 2) we denote it as Un (unscreened) phase and
for singlet phase (2S + 1 = 1) we denote it as Sc (screened)
phase. The Kondo screening feature in these phases can be
checked by examining the spin-spin correlation 〈�sd · �s f1〉 be-
tween the impurity d and the first site f1 of the 1D chain.
This is shown in Figs. 5(c) and 5(d), in which we see that
in agreement with the Kondo screening feature, the spin-spin
correlation is negatively enhanced when the system enters into
the screened phase.

B. Phase diagram and magnetic moment
when gc �= 0 and gd �= 0

When gc �= 0 and gd �= 0, the Zeeman splitting term in the
Hamiltonian generally breaks the typical temperature-driven
Kondo effect in weak fields [29]. To simplify the numerical
calculation, we define new g̃ factors as

g̃c = gc
μBB

εB
, g̃d = gd

μBB

εB
. (48)
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(a) (b)

(c) (d)

FIG. 5. Phase diagram of many-body ground states in the absence of Zeeman splitting. Here states are classified by degeneracy 2S + 1.
For 2S + 1 = 1 phase is denoted as Sc (screened), for 2S + 1 = 2 phase is denoted as Un (unscreened). Here ρJ = 

π
( 1

|U+ξd | + 1
|ξd | ), and

ξd = −5D. The vertical black dashed line marks the position of Landau level before hybridization. (a) U = 10D, the impurity Hamiltonian
possesses particle-hole symmetry. (b) U = 104D, this is the typical infinite-U region, which can be described by the t − J model. (c) U = 10D,
quantum oscillation of spin-spin correlation strength 〈�sd · �s f1 〉, which is negatively enhanced when the system enters into the screened phase.
(d) U = 104D.

Note that when the effective electron mass m∗
e is equal to the

free-electron mass, one has g̃c = gc and g̃d = gd .
Since gc �= 0 and gd �= 0, the total spin S is not a good

quantum number. Therefore, phase diagram at zero tempera-
ture is obtained by keeping track of change of the quantum
numbers Sz in the lowest-energy state. From Sz (the z com-
ponent of total spin) of the lowest energy state at ρJ = 0 and
finite ρJ , one obtains change of Sz that is due to the Kondo
interaction as

�Sz ≡ S0
z (ρJ ) − S0

z (ρJ = 0), (49)

where the superscript 0 indicates that S0
z is Sz of the ground

state. Using �Sz, we identify phases of the system as shown
in Figs. 6(a), 6(b), 7(a), and 7(b). Note that the system is
composed by electrons and hence possible values of total

spin are half-integers, i.e., S = 0, 1
2 , 1, 3

2 , . . . . Hence, possible
values of �Sz are 0, ± 1

2 , ±1,....

When g̃d > 0, g̃c > 0, and ρJ = 0, Simp
z of the impurity in

ground state is − 1
2 ; while Sc

z of conduction electrons can be
− 1

2 or 0, depending on whether the chemical potential lies
between two Zeeman-split Landau levels or not. Therefore,
total Sz at ρJ = 0 is equal to −1 or − 1

2 , i.e., S0
z (ρJ = 0) = −1

or − 1
2 . When ρJ > 0, Simp

z can be screened or unscreened.

Clearly, if Simp
z is unscreened, we have �Sz = 0. This is the

situation when Simp
z = − 1

2 and Sc
z = 0 as conduction electrons

have no spin to screen the impurity. In general, finite 〈Simp
z 〉 <

0 of the impurity together with the Kondo interaction gener-
ates an effective negative g factor J〈Simp

z 〉Sc
z . This changes Sc

z

of conduction electrons from − 1
2 to 0 or 1

2 , which corresponds
to �Sz = 1

2 or �Sz = 1, respectively, which is consistent with
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(a) (b)

FIG. 6. Phase diagram of many-body ground states in the presence of Zeeman splitting. Here states are classified by �Sz ≡ S0
z (ρJ ) −

S0
z (ρJ = 0). “Sc” denotes the Kondo screening state with �Sz = 1

2 , “Sc*” denote the Kondo screening state with �Sz = 1, and “Un” denotes
the unscreened impurity state. The parameter is taken as ρJ = 

π
( 1

|U+ξd | + 1
|ξd | ), U = 10D, ξd = −5D. The vertical black dashed line marks

the position of Landau level before hybridization. (a) g̃c = 0, ρJ = 0.127. (b) g̃c = g̃d = 2, D/εB = 10.

�Sz anticipated for half-integer systems. Thus, by exploring
�Sz, we obtain unscreened phases with �Sz = 0, and the
Kondo screening state with �Sz = 1

2 and �Sz = 1 labeled by
Sc and Sc∗, respectively. In the Sc∗ phase, both the impurity
spin and spin of conduction electrons vanishes due to Kondo
screening. Clearly, as shown in Figs. 6(a), 6(b), 7(a), and 7(b),
phases of the ground state oscillate among “Sc,” “Un,” and
“Sc∗” states as the chemical potential μ changes.

This results in quantum oscillations in magnetic moments
as shown in Figs. 7(c) and 7(d). Here the total magnetic mo-
ment Mtot is computed by the definition Mtot = − ∂�

∂B , where
� = − 1

β
Tr(e−βH ) [30] and can be decomposed as the sum-

mation of the magnetic momentums due to the orbit moment
of conduction electrons Mc, the hybridization part Mhyb, the
spin moment of conduction electrons Mc,s, the spin moment
of the impurity Md,s. The detail of each parts is as follows:

Mc = −2μB

∑
{n},σ

(
n + 1

2

)
〈A†

nσ Anσ 〉,

Mhyb = −μB(/πεB)1/2
∑
{n},σ

〈d†
σ Anσ + H.c.〉,

Mc,s = −μBgc

2

∑
{n}

〈A†
n↑An↑ − A†

n↓An↓〉,

Md,s = −μBgd

2
〈d†

↑d↑ − d†
↓d↓〉.

(50)

Note that we only keep one channel in the Landau level that
couples to the impurity in H1 and the remaining NL − 1 chan-
nels are disregarded [cf. Eq. (13)]. Hence, for dilute impurity
systems with impurity number being Nimp, the moment of to-
tal system is given by (NL − Nimp)(M0

c + M0
c,s) + NimpMtot =

NL(M0
c + M0

c,s) + NimpM0
d,s + Nimp(Mtot − M0

tot ), where M0
c

and M0
c,s are magnetic moments due to the orbit and spin of

conduction electrons in the absence of hybridization,  = 0.

The total magnetic moment induced by impurity, shown in
Fig. 7(d), is then given by M imp

ind = Mtot − M0
tot, where the

magnetic moment with the superscript 0 denotes the same
moment when  = 0. The total moment of Kondo system with
dilute impurities in strong fields is equal to

M = M0 + NimpMimp + NimpM imp
ind , (51)

where M0 is the moment of pure Landau quantized system,
Mimp is the single-impurity moment equal to gdμB at low
temperature, and M imp

ind is the induced moment by impurity.
We now explore two Kondo impurities in the presence of

strong magnetic fields. In Fig. 8, we show results of numeri-
cal iterative diagonalization on allowed phases of the system
for different density of states. For two impurities in strong
magnetic fields, we find that the interplay between the Kondo
screening effect, RKKY interaction, and quantum oscillations
due to Landau levels determines the ground state of the sys-
tem. Specifically, the combination of these factors results in
different screening scenarios for different phases as shown in
Fig. 8(c). Here as determined by RKKY interaction, spins of
two impurities marked by red color may form a singlet state,
triplet state, or two independent spin- 1

2 states. The impurity
spins then get screened by conduction electrons marked by
blue color. As a result, as shown in Fig. 8(c), we find that
ground states can be an unscreened triplet state, unscreened
singlet state, partial screened triplet state, partial screened
singlet state, and two screened spin- 1

2 states. These states are
characterized by different quantum number Sz’s that reflect
the scenario such that the corresponding Sz = 1, 0, 1

2 , 1
2 , and

0. Furthermore, states shown in Fig. 8(c) form different phases
so that the ground state of the system with Kondo impurities
oscillates between these states when either the magnetic field
or the distance between Kondo impurities changes as shown
in Figs. 8(a) and 8(b). This oscillation leads to quantum oscil-
lation in magnetization and conductivities as shown in Fig. 9.
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FIG. 7. (a) Phase diagram of single Kondo impurity in the parameter space ρJ versus chemical potential μ. Here gc = 0.8, gd = 2, “Sc”
denotes the Kondo screening state with �Sz = 1

2 , “Sc*” denotes the Kondo screening state with �Sz = 1, and “Un” denotes the unscreened
impurity state. (b) Phase diagram of single Kondo impurity in the parameter space gc versus chemical potential. Here gd is fixed at 2.
(c) Quantum oscillation in total magnetic moment at temperature kBT/D = 0.005 (sum of magnetic moments of the Kondo impurity and
the conduction electrons, see text for definition), the vertical black dashed line marks the position of split Landau level before hybridization
is turned on. (d) Quantum oscillation of the total magnetic moment induced by impurity. Here parameters are εB/D = 0.2, U/D = 10,
ξd/D = −5, and ρJ = 

π
( 1

|U+ξd | + 1
|ξd | ).

Here the longitudinal conductivity σxx and Hall conductivity
σxy are computed by

σ xx =
∑

s

σ xx
s ,

σ xx
s = e2ε2

B

2π2h̄

∫
dE

−∂ f (E )

∂E

×
∑

n

(n + 1)ImGc
n,s(E + iδ)ImGc

n+1,s(E + iδ), (52)

�σ xy =
∑

s

−2
Im�s(0 + iδ)

εB
σ xx

s . (53)

Here s labels the spin of conduction electrons, f (E ) = 1/(1 +
eE/kBT ) is the Fermi-Dirac function [31], and Gc

n,s(E ) =
〈Gc

n,ky,s
(E )〉 is the renormalized Green’s function for conduc-

tion electrons with the average over all Landau degeneracies
ky of nth Landau level being taken. In terms of the self-energy
�n,ky,s, Gc

n,ky,s
(E ) can be expressed as

Gc
n,ky,s(E ) = 1

E − (n + 1/2 + s)εB − �n,ky,s
. (54)

Here the contribution to the self-energy comes from the
scattering of the conduction electrons by magnetic impu-
rities. At low impurity density, this self-energy �n,ky,s can
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FIG. 8. Phase diagram of two Kondo impurities in strong mag-
netic fields for (a) ρJ = 0.18 and (b) ρJ = 0.45. (c) Different
screening scenarios of two Kondo impurities in phases shown in
(a) and (b). Here parameters used are gc = gd = 2, εB/D = 1

3 ,
U/D = 10, and ξd/D = −5. As determined by RKKY interaction,
spins of two impurities marked by red color may form singlet state,
triplet state, or two independent spin- 1

2 states. The impurity spins
then get screened by conduction electrons marked by blue color.

be expanded in terms of the impurity density O(nimp). For
the single-impurity case, �n,ky,s = nimp/(πρ)Gd

s , while for
the two-impurities case, �n,ky,s = nimp/(πρ)(Gd

11,s + Gd
22,s).

Here Gd
s generally represents the Green’s function for elec-

trons of the impurities, i.e., the d electrons. The one-impurity
Green’s function is represented by Gd

s and the two-impurities
Green’s function is represented by Gd

i j,s with i and j being the
position of impurities. In the Lehmann representation, using
eigenstates |α〉 and eigenenergies Eα obtained from numerical
calculations, these Green’s functions are given by

Gd
s = 1

Z

∑
αα′

|〈α|ds|α′〉|2 e−βEα + e−βEα′

E − (Eα′ − Eα ) + iδ
,

Gd
i j,s = 1

Z

∑
αα′

〈α|dis|α′〉〈α′|d†
js|α〉 e−βEα + e−βEα′

E − (Eα′ − Eα ) + iδ
.

(55)

Clearly, additional peak structures are seen in σxx and �σxy

shown in Fig. 9. The main peak right at the Landau level
is due to the resonant scattering of conduction electrons in
phase with screened impurities, while side peaks are located
at the phase boundaries when extra density of states is released
from the total screened state to partial screened or unscreened
states. For instance, side peaks in Fig. 9(c) are due to the
density of state released from the screened state to unscreened
state for one Kondo impurity. These peaks are important ex-
perimental signatures for phases of Kondo impurities in strong
magnetic fields.

FIG. 9. Quantum oscillation exhibited in two Kondo impuri-
ties under strong magnetic field. (a) Total magnetization versus the
chemical potential (μ) in unit of εB. Comparison of contribution of
nonmagnetic and magnetic impurities to Hall conductivity (b) and
longitudinal conductivity (c) for one impurity. (d) Same comparison
of two impurities for longitudinal conductivity. Here side peaks are
due to extra density of states released from total screened state to
partial screened or unscreened states (see text). Parameters used are
εB/D = 1

3 , U/D = 10, ξd/D = −5, ρJ = 0.18, B = 10 T, kBT/D =
0.005, R/lB = 216 nm, and the effective impurity scattering constant
is wimp = 0.0025 (see [26]).

In summary, we have generalized the iterative diago-
nalization procedure adopted in NRG to investigate Kondo
impurities screened by discrete Landau levels. We find that
the ground state generally oscillates in Kondo screened state,
partially screened, and unscreened spin states. This leads to
quantum oscillations observed in magnetization and conduc-
tivity of the system. In particular, we find peak structures
in longitudinal conductivity that reflect changes of Kondo
screening phases and are important features to be observed
in experiments. While we have been focusing on one and two
Kondo impurities, our results are applicable to systems with a
finite density of Kondo impurities. Our results thus provide a
complete characterization of phases for Kondo effect in strong
magnetic fields.
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