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Boundary theory of the X-cube model in the continuum
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We study the boundary theory of the ZN X-cube model using a continuum perspective, from which the
exchange statistics of a subset of bulk excitations can be recovered. We discuss various gapped boundary
conditions that either preserve or break the translation and rotation symmetries on the boundary, and further
present the corresponding ground-state degeneracies on T 2 × I . The low-energy physics is highly sensitive to
the boundary conditions: even the extensive part of the ground-state degeneracy can vary when different sets of
boundary conditions are chosen on the two boundaries. We also examine the anomaly inflow of the boundary
theory and find that the X-cube model is not the unique (3 + 1)-dimensional theory that cancels the ’t Hooft
anomaly of the boundary.
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I. INTRODUCTION

Fracton phases constitute a new class of quantum mat-
ter, which involve emergent quasiparticles with constrained
mobility [1–8]: They can either move only in certain di-
rections (type I), or cannot move at all without creating
additional excitations (type II). Similar to topologically or-
dered phases, (3 + 1)-dimensional [(3 + 1)D] gapped fracton
phases exhibit robust ground-state degeneracies (GSDs) when
defined on nontrivial manifolds, i.e., manifolds with noncon-
tractible cycles. However, unlike topological orders where the
the GSDs are constants, fracton phases often host extensive
GSDs which grow exponentially with the linear size of the
system.

Realistic samples are naturally finite systems with open
boundaries. Experiences from conventional topological or-
ders show that essential topological properties of the bulk
are encoded in their boundary theories, i.e., there is a bulk-
boundary correspondence. Examples include the fractional
statistics of emergent bulk quasiparticles, transport proper-
ties and entanglement entropy, etc. [9–16]. Many fracton
phases of matter can be constructed by stacking and coupling
conventional (2 + 1)-dimensional [(2 + 1)D] topological or-
ders [17–22]. Most recently, it has also been conjectured
that all gapped fracton phases of matter can be constructed
using networks of defects in (3 + 1)D topological orders
[23,24].

The boundary theories for fracton phases might be more
exotic and interesting because the systems are very sensitive
to boundary geometries. However, the studies of the fracton
boundaries are sparse. In Refs. [25,26], the authors focused on
the Z2 X-cube model [6], which is the canonical example for
type I or foliated fracton orders [21,27]. Both works analyzed
certain typical gapped boundary conditions on the lattice:
Ref. [25] focused on the boundary excitations and mobility
constraints, while [26] is concerned with possible dislocations
in the bulk.

In this work, we instead take the perspective of continuum
theories [28–47], which typically render the symmetries and
universal properties of the system more manifest. We will
focus on the ZN version of the X-cube model [35,44,48,49]
and its boundaries perpendicular to the (001) direction. The
boundary theory encodes the braiding statistics of certain bulk
excitations and is governed by a generalization of the U(1)
Kac-Moody algebra. Interestingly, it is the ZN version of the
exciton bose liquid found in [50]. Various gapping terms are
considered, which not only match with all gapped boundaries
found in Ref. [25] from the lattice perspective, but also include
additional gapped boundary conditions not present there. We
then count the GSDs with these boundary conditions on the
T 2 × I geometry. Interestingly, even the extensive part in the
GSD changes with different boundary conditions.

To further understand the relation between the boundary
and bulk theories, we examine the anomaly inflow [51]. The
boundary theory itself is anomalous in the sense that it cannot
be consistently coupled to background gauge fields. We ask
whether this anomaly uniquely determines the bulk theory to
be the X-cube model, and the answer is negative. We present
a simple (3 + 1)D theory that cancels the boundary anomaly
and is distinct from the X-cube model. This result is closely
related to the fact that certain exchange statistics that involves
the movement of the bulk quasiparticles in the third spatial
direction perpendicular to the boundary cannot be recovered
purely from that boundary. The nonuniqueness of bulk the-
ories given a boundary theory is expected to be common in
fracton phases of matter [52,53].

The remainder of this work is organized as follows. We first
review the bulk continuum theory of the ZN X-cube model in
Sec. II. Then we derive its boundary Lagrangian, discuss its
symmetries, spectrum, and indications of exchange statistics
of the bulk excitations in Sec. III. Later, in Secs. IV, V, VI, and
VII, we examine several simple examples of gapped boundary
conditions and count their GSDs from both the continuum and
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present alternative lattice countings as consistency checks.
Next, we study more general gapped boundary conditions in
Sec. VIII, including those that arise from mixtures of elemen-
tary boundary conditions. In Sec. IX, we examine the anomaly
inflow, and then end with a discussion in Sec. X.

II. REVIEW OF THE CONTINUUM DESCRIPTION
OF THE X-CUBE MODEL ON T 3

We begin by recapitulating the effective field theory for the
X-cube model [35,44] and will largely follow the conventions
in [44]. We will mostly work in Euclidean signature unless
otherwise stated.

Since the X-cube model is defined on a three-dimensional
cubic lattice, we will focus on the orientation-preserving
subgroup of the cubic group, which is S4. In particular, we
are interested in the gauge fields (A0, Ai j ) which furnish the
(1, 3′) irreducible representations of S4, and the gauge fields
(Âk(i j)

0 , Âi j ) in the (2, 3′) irreducible representations of S4.
(See Appendix A for details of the representations.) They have
the following gauge transformations:

A0 ∼ A0 + ∂0α, Ai j ∼ Ai j + ∂i∂ jα,

Âi( jk)
0 ∼ Âi( jk)

0 + ∂0α̂
i( jk), Âi j ∼ Âi j + ∂kα̂

k(i j), (1)

where repeated indices are summed over, α is a 2π -periodic
scalar, α̂k(i j) lies in the representation 2 of S4 and is also 2π

periodic. These gauge transformations preserve the following
field strengths:

Ei j = ∂0Ai j − ∂i∂ jA0, Bk(i j) = ∂[kAi] j + ∂[kA j]i,

Ê i j = ∂0Âi j − ∂kÂk(i j)
0 , B̂ = 1

2∂i∂ j Â
i j . (2)

Again, repeated indices are summed over.
In Euclidean signature, the X-cube model is a BF theory:

a product of the gauge fields (A0, Ai j ) with the field strengths
for (Âk(i j)

0 , Âi j ), or vice versa:

L = i
N

4π

[
A0(∂i∂ j Â

i j ) + Ai j
(
∂0Âi j − ∂kÂk(i j)

0

)]
. (3)

The equations of motion enforce vanishing of all four
field strengths in (2), ensuring that no nontrivial local
gauge-invariant operators exist. However, the theory contains
nonlocal gauge-invariant operators that are analogs of Wil-
son lines. They can be constructed from either (A0, Ai j ) or
(Âk(i j)

0 , Âi j ) fields. These operators can be viewed as probe
limits of the massive excitations of the X cube; we simply
refer to them as “excitations” hereafter.

The simplest defect constructed from the (A0, Ai j ) fields is
a charge at a spatial point

W = exp

[
i
∫ ∞

−∞
dt A0(t, x, y, z)

]
(4)

which describes a single, immobile fracton with gauge charge
+1 at a fixed point in space. Certain composites of such
fractons are, however, mobile. This is encapsulated by the
operators of the form

Wxy(z1, z2, Cxy)=exp

[
i
∫ z2

z1

dz
∫
Cxy

(dt∂zA0+dxAxz+dyAyz )

]

(5)

which describe a dipole of fractons with gauge charges ±1,
separated in the z direction, and moving along a curve Cxy in
the (t, x, y) hyperplane. Since such a dipole can freely move
in the spatial xy plane, it is called a “planon.” (We omit t in
the subscript of Cxy to emphasize the spatial mobility of this
dipole.) Similarly, we can construct gauge-invariant operators
in the other spatial planes as well.

Turning to the (Âk(i j)
0 , Âi j ) fields, the simplest defect with

gauge charge +1 one can write is

Ŵ = exp

[
i
∫ ∞

−∞
dt Âi( jk)

0

]
, (6)

which is mobile in one spatial direction. For example, one can
write the following defect operator

Ŵ z(x, y, Ĉz ) = exp

[
i
∫
Ĉz

(
dtÂz(xy)

0 + dzÂxy
)]

, (7)

where Ĉz is a space-time curve in the (t, z) plane. The expres-
sion above describes a “lineon” that can only move along a
spatial line in the z direction, which we call a “z lineon.” A
dipole of lineons can be further combined to form planons,
such as

Ŵ zy(x1, x2, Ĉyz ) = exp

[
i
∫ x2

x1

dx
∫
Ĉyz

(
dt ∂xÂz(xy)

0

+ dz ∂xÂxy − dy (∂xÂxz + ∂yÂyz )
)]

, (8)

where a dipole of z lineons (7) is separated in the x direction,
located at x1 and x2, respectively, and Ĉyz is a space-time curve
in the (t, y, z) plane.

We will call the defects described by Ŵ ’s the electric ones,
and those described by W ’s the magnetic ones, as they exhibit
mixed anomalies which will be discussed soon. Their names
should not be confused with the (E , B) and (Ê , B̂) fields in
(2). The restricted mobilities of these defects are reflected
in the fact that Ĉ and C are constrained in subdimensional
space, indicative of the foliation structure of the theory and
in stark contrast to the analogous story in topological field
theories. One useful observation from Eqs. (5) and (8) is that,
magnetic (electric) planons can be formed by a dipole of
fractons (lineons) separated in the xi direction, and can only
move on the plane perpendicular to xi.

In the remainder of this section we quickly review the
counting of ground-state degeneracy (GSD) when the field
theory is regularized on a lattice on T 3. Part of this material
will be repeated again when encountered in later sections.

For any point (x, y) in the xy plane at fixed time, one can
define the ZN tensor symmetry operator

Ŵ z(x, y) = exp

[
i
∮

dz Âxy(x, y, z)

]
, (9)

which is a special case of (7) where Ĉz forms a closed loop
around the z direction. Using the fact that B̂ = 0, one can
derive ∂x∂y

∮
dz Âxy = 0, such that the spatial dependence of

Ŵ z(x0, y0) factorizes:

Ŵ z(x, y) = Ŵ z
x (x)Ŵ z

y (y). (10)
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Thus, there is a U(1) gauge redundancy between the two:
multiplying Ŵ z

x by a phase factor and Ŵ z
y by the conjugate

phase, Ŵ z(x, y) is invariant.
In addition, one can define the ZN dipole winding operators

Wyz,y(x1, x2, Cyz,y ) = exp

[
i
∫ x2

x1

dx
∮
Cyz,y

dy Axy + dz Axz

]

Wxz,x(y1, y2, Cxz,x ) = exp

[
i
∫ y2

y1

dy
∮
Cxz,x

dx Axy + dz Ayz

]
,

(11)

which are the special cases of (5), where Ci j,i is a curve in the
i j plane that wraps once around the noncontractible i direction
but not along the j direction.

The operators defined above in (9) and (11) obey the fol-
lowing commutation relations:

Ŵ z(x, y)Wyz,y(x1, x2, Cyz,y )

= e2π i/NWyz,y(x1, x2, Cyz,y )Ŵ z(x, y),

Ŵ z(x, y)Wxz,x(y1, y2, Cxz,x )

= e2π i/NWxz,x(y1, y2, Cxz,x )Ŵ z(x, y), (12)

with x ∈ (x1, x2), y ∈ (y1, y2). When regularized on a lattice
with lx × ly × lz sites, these relations (12) form an algebra iso-
morphic to lx + ly − 1 copies of the ZN Heisenberg algebra,
with the −1 coming from the constraint

Wyz,y(0, Lx, Cyz,y ) = Wxz,x(0, Ly, Cxz,x ). (13)

Li = ali with a being the UV cutoff (lattice constant), and
Li the linear size of the system in the xi direction. Equa-
tion (12) makes manifest the mixed anomaly between the two
ZN subsystem symmetries generated by the Ŵ z and Wxz, Wyz

operators when they intersect, respectively. Accounting for
similar relations in other directions as well leads to

GSDT 3 = N2lx+2ly+2lz−3. (14)

For later convenience, we summarize the counting of ground-
state degeneracy in the table below. One can also arrive at the
same ground-state degeneracy by considering the nontrivial
commutation relations between the planon operators in the
electric sector Ŵ i j and those in the magnetic sector Wi j . We
will, however, not take this viewpoint as Ŵ i j are not the
elementary mobile electric excitations.

III. ADDING BOUNDARIES

The BF theory (3) for the X-cube model is not gauge
invariant on manifolds with boundary, similar to the case of
(2 + 1)D Chern-Simons theory. To see this, consider the
X-cube model with a toroidal boundary at z = 0. A gauge
transformation α changes the action in the following way:

S → S − iN

2π

∫
z=0

dτ dx dy [(∂x∂yα)Âz(xy)

+ (∂0∂yα)Âyz + (∂0∂xα)Âxz]. (15)

To retain gauge invariance, we follow the strategy used in
Chern-Simons theories (see, for example, [54–57]) and only
allow the gauge transformations that vanish on the boundary.

By restricting gauge transformations, we are introducing new
degrees of freedom that live on the boundary. In this section,
we derive and analyze the action for those degrees of freedom.

To start, note that the the boundary at z = 0 adds yet
another complication. The variation of the action has another
term along the boundary:

δS|= − iN

2π

∫
∂M

d3x
[
δAxyÂz(xy)

0 + δA0
(
∂yÂyz + ∂xÂxz

)]
.

(16)

To preserve the bulk equations of motion, we force δS| to
vanish by imposing the boundary conditions

A0

∣∣ = 0, Âk(i j)
0

∣∣ = 0. (17)

We can extend this boundary condition into the bulk as
a gauge choice, i.e., by removing the “ | ” in the equa-
tions above, leading to the following constraints:

B̂ = 0, Bk(i j) = 0. (18)

Recalling (2), solutions to these equations of motion are sim-
ply

Ai j = ∂i∂ jϕ, Âi j = ∂kϕ̂
k(i j), (19)

where ϕ̂k(i j) is in the irreducible representation 2 of S4, sat-
isfying i, j, k, not equal to each other and ϕ̂x(yz) + ϕ̂y(zx) +
ϕ̂z(xy) = 0.

In the following, we will simplify the notation ϕ̂k(i j) ≡ ϕ̂k .

Inserting the above solutions back into the bulk action, we find
that the only nonzero contributions come from the boundary:

L0 = −i
N

2π
[(∂x∂yϕ) ∂0ϕ̂

y + (∂x∂yϕ) ∂0ϕ̂
x]. (20)

Since the z = 0 boundary is a square lattice in the UV, the
orientation-preserving subgroup of the boundary symmetry
group is Z4. ϕ transforms in the trivial representation of
Z4. ϕ̂z = −ϕ̂x − ϕ̂y transforms in the 12 representation, while
ϕ̂x − ϕ̂y transforms in the 10 representation of Z4. See Ap-
pendix A for details.

These fields are compact, subject to the following identifi-
cations on the boundary:

ϕ(τ, x, y) ∼ ϕ(τ, x, y) + 2πwx(x) + 2πwy(y),

ϕ̂x(τ, x, y) ∼ ϕ̂x(τ, x, y) − 2πŵy(y),

ϕ̂y(τ, x, y) ∼ ϕ̂y(τ, x, y) + 2πŵx(x),

ϕ̂z(τ, x, y) ∼ ϕ̂z(τ, x, y) − 2πŵx(x) + 2πŵy(y), (21)

where we have used the identity ϕ̂z = −ϕ̂x − ϕ̂y. wx, wy, ŵx,
and ŵy are all integer-valued functions. Operators such as
∂x∂yϕ, eiϕ , ∂xϕ̂

x, ∂yϕ̂
y, ∂x∂yϕ̂

z, and eiϕ̂i
survive the identifica-

tion whereas operators such as ϕ, ∂xϕ, ∂yϕ, ϕ̂i, ∂xϕ̂
z, and ∂yϕ̂

z

do not.
Notice the fact that only ϕ̂z appears in L0 means that the

dynamics is governed by ϕ̂x + ϕ̂y, not the other combination
of ϕ̂x − ϕ̂y. But the degree of freedom ϕ̂x − ϕ̂y is still present
in the system and can have nontrivial winding configurations.

Using the identity ϕ̂z = −ϕ̂x − ϕ̂y and defining for con-
venience � = (�1,�2) = (ϕ, ϕ̂z ), the Lagrangian can be
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written in a more compact form

L0 = iKIJ

4π
∂0�I∂x∂y�J , K = −iNσ y, I, J = 1, 2 (22)

where the summation over I, J is implicit. Notice that K is
antisymmetric because of the double spatial derivatives above.
This boundary theory exhibits the following momentum sub-
system symmetries:

�I (t, x, y) → �I (t, x, y) + fI (x, y), (23)

with fI an arbitrary function of x and y. These symmetries are
generated by the currents

JI,0 = −KIJ

2π
∂x∂y�J , JI,xy = 0. (24)

From the equation of motion, ∂0JI,0 = 0 and consequently the
charge is conserved everywhere on the surface. The symmetry
(23) is in general broken by local gauge-invariant terms, such
as A2

xy, (∂xÂxz + ∂yÂyz )2, and Axy(∂xÂxz + ∂yÂyz ), that can be
added on the boundary. We thus arrive at the following general
Lagrangian, presented in the Lorentizan signature:

L∂M = 1

4π
[KIJ∂0�I∂x∂y�J − VIJ (∂x∂y�I )(∂x∂y�J )], (25)

where VIJ is a nonuniversal, constant matrix, which is pos-
itive definite as it is the only term in the Hamiltonian. V
thus resembles the velocity matrix of the boundary theory of
the (2 + 1)D K-matrix Chern-Simons theory [55,58–60]. The
remaining symmetries are momentum dipole symmetries

�I → �I + fI,x(x) + fI,y(y) (26)

with fI,i(xi ) being arbitrary functions of xi. The corresponding
currents are

J0
I = KIJ

4π
∂x∂y�J ,

Jxy
I = −KIJ

4π
∂0�J − (VIJ + VJI )

4π
∂x∂y�J , (27)

satisfying ∂0J0
I = ∂x∂yJxy

I . Plugging in the plane-wave ansatz

�I = CI eiωt+i�k·�x into the equation of motion with CI being a
constant, we arrive at the following dispersion relation:

ω2 = [4V11V22 − (V12 + V21)2]k2
x k2

y /4N2, (28)

which is gapless. The system also exhibits the following
dipole winding symmetries,

J̃I,0 = N

2π
∂x∂y�I , J̃I,xy = N

2π
∂0�I , (29)

satisfying ∂0J̃I,0 = ∂x∂yJ̃I,xy. The winding symmetries of ϕ̂x

and ϕ̂y are inherited from the bulk theory.
Note that the boundary theory (25) is a ZN version of the

exciton bose liquid [50] theory upon integrating out one of the
two components of the � field.

To examine the boundary excitations and statistics, we
identify the charge densities on the boundary as (the coupling

of the boundary theory to background tensor gauge fields are
presented in Appendix B in the spirit of Ref. [52])

ρI = 1

2π
∂x∂y�I . (30)

They constitute the boundary Hamiltonian and govern the
edge dynamics,

H∂M = πVIJρIρJ . (31)

Next, we define the vertex operators

VI = ei�I , V †
I = e−i�I , (32)

which satisfy the following commutation relations with the
charge densities:

[ρI (�x),V †
J (�x′)] = (K−1)IJδ

(2)(�x − �x′)V †
I (�x′),

[ρI (�x),VJ (�x′)] = −(K−1)IJδ
(2)(�x − �x′)VI (�x′). (33)

Therefore, V †
I or VI should be interpreted as the creation and

annihilation operators of the fractons or z lineons (correspond-
ing to the violations of B̂ = 0 or Bz(xy) = 0, respectively).
Equation (33) can be seen by performing the Fourier expan-
sion in real space,

�I (�x) = (LxLy)−1/2
∑

�k
ei�k·�x �I,�k, (34)

where ki = 2πni/li with ni ∈ Z. One can then read off from
the Lagrangian

[�I,�k,�J,�k′ ] = 2π i
(K−1)IJ

kxky
δ�k,−�k′ , (35)

where the δ above is the Kronecker delta. Multiply both sides
by kxky and transform back into the real space,

[ρI (�x),�J (�x′)] = i(K−1)JIδ
(2)(�x − �x′). (36)

One then arrives at (33) upon exponentiation. It can also be
easily seen that ρI�k’s form an analog of the U(1) Kac-Moody
algebra

[ρI�k, ρJ�k′ ] = i(K−1)IJ

2π
kxkyδ�k+�k′ . (37)

The mutual statistics of these boundary excitations can be
further computed:

VI (�x)VJ (�x′) = e−[�I (�x),�J (�x′ )]VJ (�x′)VI (�x). (38)

The commutator can be again obtained from (35):

[�I (�x),�J (�x′)] = iπ

2
(K−1)JIsgn(x − x′) sgn(y − y′). (39)

However, the above equation (39) should not be understood as
the phase arising from the exchange of a fracton and a lineon
because of the restricted mobility of the two: a single fracton is
immobile and therefore cannot wind around a z lineon, while
a z lineon can only move along the z direction and therefore
immobile on the xy boundary. One can, however, consider
the mutual statistics of a dipole of fractons, which form a
magnetic planon, and a single z lineon. For example, taking
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a dipole of fractons at (x1, y1) and (x′
1, y′

1), and a z lineon at
(x2, y2), with x1 < x2 < x′

1 and y1 = y′
1, then

V1(x1, y1)V †
1 (x′

1, y′
1)V2(x2, y2)

= eiθV2(x2, y2)V1(x1, y1)V †
1 (x′

1, y′
1), (40)

where the statistical angle θ is

θ = [�1(x′
1, y′

1),�2(x2, y2)] − [�1(x1, y1),�2(x2, y2)]

= −π i

N
sgn(y1 − y2). (41)

Alternatively, one can also study the mutual statistics between
a dipole of z lineons separated in the x (or y) direction, which
is mobile along the y (or x) direction on the xy boundary, and
a single fracton. For instance, taking a dipole of two z lineons
at (x2, y2) and (x′

2, y′
2) and a fracton at (x1, y1), with x2 < x1 <

x′
2 and y2 = y′

2, then

V1(x1, y1)V2(x2, y2)V †
2 (x′

2, y′
2)

= e−iθV2(x2, y2)V †
2 (x′

2, y′
2)V1(x1, y1). (42)

Below we will be interested in the possible gapped bound-
aries arising from local interactions. The discussions will
include nontrivial generalizations of the gapped boundaries
in nonchiral gapped topological phases in (2 + 1)D [58–73].
For an arbitrary N , there always exist at least four gapped
boundary conditions, among which two preserve both trans-
lation and rotation symmetries of the boundary (the smooth
and rough boundaries), and the other two break the fourfold
rotation symmetries down to twofold. We will discuss each of
them separately in the forthcoming sections, and then present
further results regarding more general gapped boundary con-
ditions. For some of the cases where lattice results are also
available [25], our results are consistent with theirs.

IV. SMOOTH (MM) BOUNDARIES

One simple gapping term is

L(mm)
g = g cos(Nϕ), (43)

where the constant g is taken to be very large, “enforcing”
ϕ = 2πm/N , with m(x, y) being an integer-valued function.
We are only interested in the possible local interactions that
can gap out the boundary, so the perturbative relevance or
irrelevance of Lg is not of interest to us, in the same spirit
as the studies of gapped boundary conditions of (2 + 1)D
topological phases [58–60]. The superscript (mm) is used in
(43) because magnetic excitations mobile in either x or y
directions in the bulk become condensed on this boundary,
i.e., the corresponding Wilson operators are trivial, which will
be discussed in more detail later in this section. With (43), the
spectrum (28) obtains a gap proportional to

√
g:

ω2 = 2gπV22 + [4V11V22 − (V12 + V21)2]k2
x k2

y /4N2. (44)

We now discuss the ground-state degeneracy on the topol-
ogy of T 2 × I , with two toroidal boundaries perpendicular to
the z direction. L(mm)

g is added on both boundaries. To obtain
a finite ground-state degeneracy, we will impose an UV cutoff
a. For a generic boundary termination, there will be dangling
links or open tails with only one end point, living on the

TABLE I. Summary of Wilson operators and their contributions
to the ground-state degeneracy.

Noncommuting Copies of Contribution
operators Heisenberg alg. to GSD

Ŵ x , Wxz,z ly Nly+lz−1

Ŵ x , Wxy,y lz

Ŵ y, Wyz,z lx Nlx+lz−1

Ŵ y, Wxy,x lz

Ŵ z, Wyz,y lx Nlx+ly−1

Ŵ z, Wxz,x ly

boundary. So for the T 2 × I topology, with lx, ly, and lz sites in
each direction, the number of links, excluding the open tails,
would be lx, ly, and lz − 1. Recall Li = ali is the linear size of
the system, while li is a dimensionless number.

When boundaries are absent, the gauge-invariant Wilson
operators in the system are those presented in Table I. In the
case with two (mm)-type boundaries perpendicular to the z di-
rection, the remaining Wilson operators are shown in Table II.
The Ŵ x and Ŵ y operators are unaffected by the boundaries,
while Ŵ z = exp(iϕ̂z |zt

zb
), using the identifications (19). Ŵ z

thus amounts to the creation and annihilation of finite-energy
excitations on the boundaries as discussed near (33), which
brings the system out of the ground-state subspace and should
therefore not be counted.

For the unhatted, magnetic Wilson operators, we have

Wxz,z(y1, y2, Cxz,z|) = exp

[
i
∫ y2

y1

dy
∫ zt

zb

dz ∂y∂zϕ

]
, (45)

where Cxz,z | labels a path that lives in the xz plane and spans
the entire z direction of the system, i.e., starts from the bot-
tom boundary z = zb and ends at the top boundary z = zt ;
but the path does not wind around the x direction. We have
again used the identifications (19). Since ϕ |= 2πm/N , the
expectation values of the Wxz,z(y1, y2, Cxz,z|) operators are thus
ZN numbers that depend on (y1, y2), forming ly copies of ZN

Heisenberg algebras with Ŵ x. Similarly, Wyz,z(x1, x2) form lx
copies of ZN Heisenberg algebras with Ŵ y.

TABLE II. Numbers of nontrivial Wilson operators, copies of ZN

Heisenberg algebras, and contributions to the ground-state degener-
acy for the [(mm) × (mm)]-type boundaries. The slashed operators
were present in the case without boundaries, but do not preserve
the ground-state subspace on T 2 × I . The operators in boldface are
condensed on the boundary.

Noncommuting Copies of Contribution
operators Heisenberg alg. to GSD

Ŵ x , Wxz,z ly Nly+lz−1

Ŵ x , Wxy,y lz − 1
Ŵ y, Wyz,z lx Nlx+lz−1

Ŵ y, Wxy,x lz − 1
Ŵ z, W yz,y 0 N0

Ŵ z, W xz,x 0
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As for a dipole of fractons separated in the z direction and
wind around the y direction in the xy plane, we have

Wxy,y(z1, z2, Cxy,y) = exp

[
i
∫ z2

z1

dz
∮
Cxy,y

dy ∂y∂zϕ

]
. (46)

When z1 � z � z2, such operator forms ZN Heisenberg
algebras with Ŵ x(y, z), and there are lz number of such combi-
nations. However, when (z1, z2) = (zb, zt ), Wxy,y(zb, zt , Cxy,y)
is just Wxz,z(0, Ly, Cxz,z|) which has already been counted, so
altogether we have (lz − 1) additional copies of Heisenberg
algebra from this set of Wilson operators. The analyses for
Wxy,x operators can be carried out in parallel.

Finally, the Wxz,x operator is

Wxz,x(y1, y2, Cxz,x ) = exp

[
i
∫ y2

y1

dy
∫
Cxz,x

dx ∂x∂yϕ

]
. (47)

Such operators are independent of z and evaluates to a finite
value on the boundary. This independence of z was discussed
in [44] and can be directly extended to the case with bound-
aries,

Wxz,x(y1, y2, Cxz,x )

Wxz,x(y1, y2, C ′
xz,x )

= exp

[
i
∫ y2

y1

dy
∫
D

(∂xAyz − ∂zAxy)

]
,

(48)

where C ′
xz,x is a slightly deformed loop of Cxz,x, and D is

the surface between these two loops. The integrand on the
right-hand side, however, is a gauge-invariant operator that
vanishes on shell: Using the identification (19), the left-hand
side reduces to a number, 1. Similarly, Wyz,y also evaluates to
one on the boundary. The triviality of both operators implies
that the bulk magnetic dipoles mobile in either xz or yz plane
become condensed on the boundary. This explains the label
(mm) in (43): The gapping term describes a boundary where
the magnetic excitations (dipoles) condense in both directions
of the two-dimensional boundary.

We summarize the discussions above in Table II. Combin-
ing everything, the total ground-state degeneracy in the system
is

logN GSD(mm)×(mm) = lx + ly + 2lz − 2, (49)

where the two sets of parentheses in the superscript describe
the boundary conditions on both toroidal boundaries.

Next, we provide two additional ways of counting the
ground-state degeneracy, from a lattice point of view. The first
way amounts to counting the lattice degrees of freedom, while
the second way is analogous to the above discussions in the
continuum and is counting different ways of threading fluxes
through the system.

A. Counting of lattice DOFs

In this part, we take the alternative view and count the
ground-state degeneracy using a lattice Hamiltonian. The
boundary Hamiltonian for the Z2 case was worked out in
Ref. [48], and what we present below is a generalization to
ZN .

The system is defined on a three-dimensional cubic lattice
and the degrees of freedom live on the links of this lattice. The
Hamiltonian is a summation over all the terms shown in Fig. 1

FIG. 1. Bulk terms in (50). X and Z label the generalized Pauli
matrices. Each term is a product over all the X ’s or Z’s on the corre-
sponding links. The daggered terms A†

v,i and B†
c are straightforward.

in the bulk, and Fig. 2 on the boundaries,

H = −
∑
v,i

(Av,i + A†
v,i ) −

∑
c

(Bc + B†
c ) + H.c., (50)

where v labels vertices, c labels cubes, and i = x, y, z labels
three different types of vertex operators [operators that act
on the vertices of the lattice, not to be confused with the
VI operators introduced in (32)]. Av,i and Bc are defined via
the generalized (N × N )-dimensional Pauli matrices X and Z
which satisfy

ZX = ωXZ, ω = e2π i/N , (51)

and they share the same set of eigenvalues {1, ω, . . . , ωN−1}.
All terms in the Hamiltonian commute with each other and
can therefore be simultaneously diagonalized.

The boundary described in Fig. 2 is called the smooth
boundary since there is no dangling open tail on the surface.
Because of this, the magnetic excitations (dipoles of fractons)
in the bulk that are mobile in xz or yz planes, when moved
towards the boundary, can freely pass through the boundary
and vanish into the vacuum. Alternatively, one can create
magnetic dipoles on the boundary by acting X on the surface
links. These excitations are thus condensed at the boundary,
matching with what we discussed in the continuum.

We will count the ground-state degeneracy on T 2 × I by
subtracting the number of independent constraints from the
number of degrees of freedom. This explicitly computes the
dimension of the ground-state subspace. Recall that the num-
ber of sites in the three directions are lx, ly, and lz, respectively.
For a T 2 × I topology with two toroidal boundaries perpen-
dicular to the z axis, the total number of degrees of freedom is
the total number of links in the system: 3lxlylz − lxly. Each
term in the Hamiltonian contributes one constraint to the
system, giving 2 × [3lxlylz + (lz − 1)lxly] constraints in total,
not necessarily independent from each other. The factor of

FIG. 2. (mm)-type or smooth boundary Hamiltonian terms. Ax ,
Ay, Az shown here are on the top boundary of T 2 × I . The terms
on the bottom boundary are analogous. Notice that Av,i’s here result
from directly erasing all top legs in Fig. 1.
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2 comes from the coexistence of daggered and undaggered
terms.

Among those constraints, there are relations to consider.
First of all, the daggered and undaggered Hamiltonian terms
are simply related by Hermitian conjugation, so only half of
them are independent. We, in the following, therefore only
consider Av,i and Bc in (50). Second, Av,xAv,yAv,z = 1 on
each vertex v, giving lxlylz relations. This is because upon
acting Av,xAv,yAv,z, each link around v is acted on by both
X and X † operators. Third, the product of all Av,i’s in each
plane perpendicular to the i direction is always 1, so we
end up with (lx + ly + lz ) additional relations. However, the
above-mentioned two types of relations are again not indepen-
dent: the product of all Av,x’s throughout the whole system is
trivial because this product can be decomposed into products
of Av,x’s within each yz plane, and then further multiplied
over all planes. Similarly, the product of all Av,y’s or Av,z’s
throughout the whole system is also trivial. We can combine
these into the expression( ∏

v

Av,x

)( ∏
v′

Av′,y

)( ∏
v′′

Av′′,z

)
= 1. (52)

However, the left-hand side can be easily rewritten as∏
v

Av,xAv,yAv,z = 1, (53)

where the equality can be easily seen from Av,xAv,yAv,z = 1.
So, we now have lxlylz + (lx + ly + lz ) − 1 number of inde-
pendent relations. Finally, the product of all Bc’s in each xy
plane is always 1 (Z on the opposite edges on each face of
the cube are always Hermitian conjugate of each other), and
we have altogether lz − 1 of such planes, so they contribute
another set of relations. Taking into account of everything, we
have

logN GSD =(No. DOF) − (No. constraints)

+ (No. independent relations). (54)

and therefore arrive at (49) again, matching perfectly with the
countings in the continuum.

B. Counting of string operators

Next, we turn to the counting of different ways of threading
fluxes, or equivalently the counting of different string opera-
tors. In quantum information terms, this is also the counting
of logical operators.

Let us for a moment go back to the case without bound-
aries, namely, fix the topology to be T 3. Starting from the
ground state, we consider creating a dipole of z lineons (mo-
bile along the z direction), then winding one of them around
the noncontractible z loop, and finally annihilating the dipole.
This can be achieved by a string operator which is the product
of the (generalized) Pauli operator Z’s on the z links around
this z loop. Since lineons correspond to the violations of the
vertex Av terms: we call such a procedure the “z threading” of
electric flux. We can choose to thread electric flux along z at
any (x, y) coordinates. Therefore, naïvely, there are lxly ways
of doing z threading. However, they are not all independent
of each other. As shown in Fig. 3, for any plaquette on a

FIG. 3. Topology here is T 3. Top: Threading four z fluxes at the
vertices surrounding a plaquette in each xy plane is equal to a product
of cube operators along the z loop. Bottom: Knowing the z fluxes
threading through the blue vertices is sufficient to derive the fluxes
threading the remaining vertices.

fixed xy plane, threading electric z fluxes at all four corners
of this plaquette together is trivial because this just amounts
to multiplying all cube B operators along the z loop. From
this, one can easily derive that there are only lx + ly − 1 in-
dependent electric string operators along z passing through
this plane. Since we have three different directions, altogether
there are 2lx + 2ly + 2lz − 3 ways of threading electric fluxes
when there is no boundary.

Now, we return to the T 2 × I case when the z direction is
open, with both boundaries being smooth. The string operator
can no longer wind around the full z loop and can only start
(end) at the bottom (top) boundaries. Such string operators
comprising Z operators, however, will not commute with the
boundary Ax or Ay terms. As in the T 3 case, we can still
count the independent string operators along the remaining
two directions, giving once again (49).

V. ROUGH (ee) BOUNDARIES

In this section, we focus on the case where the following
gapping term is added on each independent boundary:

L(ee)
g = gx cos(N ϕ̂x ) + gy cos(N ϕ̂y), (55)

which, at large gi, leads to ϕ̂i = 2πm̂i/N , with m̂i(x, y) ∈ Z.
One can again check that the spectrum is gapped,

ω2 = −2πV11gxgy

gx + gy
+ k2

x k2
y

4N2
[4V11V22 − (V12 + V21)2], (56)
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TABLE III. Rough boundaries. The slashed-out operators do not
preserve the ground-state subspace. The operators in boldface are
condensed on the boundaries.

Noncommuting Copies of Contribution
operators Heisenberg alg. to GSD

Ŵ
x
, Wxz,z, 0 Nlz

Ŵ x , Wxy,y lz

Ŵ
y
, Wyz,z, 0 Nlz

Ŵ y, Wxy,x lz

Ŵ z, Wyz,y lx Nlx+ly−1

Ŵ z, Wxz,x ly

with the gap proportional to
√

gxgy/(gx + gy). We will soon
see that the electric excitations are condensed on this bound-
ary, justifying the name (ee) in (55).

We turn to the T 2 × I geometry. Again we have lz number
of sites along the z direction, and lz − 1 number of links
excluding the open tails. The Ŵ x(y, z) operators, namely x
lineons, when evaluated on the boundary, have definite values
because of the gapping terms (55), but remain nontrivial in the
bulk. This reflects the condensation of the electric planon and
dipole operators Ŵ xz on the boundary:

Ŵ xz,z(y1, y2, Ĉxz,z |) = exp

[
i
∫ y2

y1

dy
∫ zt

zb

dz ∂y∂zϕ̂
x

]
, (57)

where Ĉxz,z | is an open path living in the xz plane and connect-
ing the top and bottom boundaries. The integral thus reduces
to two separated y integrals on the two boundaries, which
evaluate to constants when gx and gy are large. Henceforth,
we say the dipoles of electric x lineons are condensed on
the boundary. This justifies the name of (ee)-type boundary.
Similarly, y lineons Ŵ y(x, z) also evaluate to numbers on
the boundaries, corresponding to the condensation of Ŵ yz

operators on the boundaries. In this in contrast to the smooth
boundary case where the magnetic planons are condensed on
the boundaries. Finally, the Ŵ z operators can still start (end)
on the top (bottom) boundaries although the z loop is broken,
and their expectation values are ZN phases.

Turning to the unhatted magnetic operators, Wxz,z and Wyz,z

create boundary excitations and therefore should not be in-
cluded when analyzing the ground-state subspace. There are
lz of Wxy,y(z1, z2) which form lz copies of Heisenberg algebra
with Ŵ x(y, z) when z1 < z < z2. Similarly, Wxy,x(z1, z2) and
Ŵ y(x, z) form another lz copies of Heisenberg algebra. Fi-
nally, Wyz,y(x1, x2), Wxz,x(y1, y2), and Ŵ z(x, y) together form
(lx + ly − 1)-independent copies of Heisenberg algebras, due
to the constraint discussed in (13).

We summarize the discussions above in Table III. The total
ground-state degeneracy in this case of two rough boundaries
is then

logN GSD(ee)×(ee) = lx + ly + 2lz − 1. (58)

A. Counting of lattice DOF

Below we recalculate the ground-state degeneracy of the
[(ee) × (ee)]-type boundary from a lattice perspective as a
consistency check. The bulk Hamiltonian was reviewed in

FIG. 4. (ee)-type or rough boundary Hamiltonian terms. The ver-
tex operators are the same as in the bulk, while the cube operators are
missing the horizontal links on the boundary.

Fig. 1, while the boundary Hamiltonian is shown in Fig. 4.
Such a boundary is called a rough one because of the dan-
gling tails on the surface. Due to these open tails, the electric
planons are condensed at the boundary, i.e., can freely vanish
or emerge, matching with the discussions in the continuum.
As usual, li is the number of sites in the i direction. Since in
the z direction there are now dangling tails on the boundary,
the number of degrees of freedom (DOF) is then 3lxlylz + lxly,
and the number of constraints, i.e., terms in the Hamiltonian,
is 2 × (4lxlylz + lxly).

Next, we count the relations among these constraints. First
of all, the Av,i and A†

v,i are related by Hermitian conjugate, and
similarly for Bc and B†

c . So at most only half of the constraints
are independent. Second, the product of AxAyAz at each vertex
is trivial, giving rise to another lxlylz relation. Third, the prod-
uct of Az operators in each xy plane is trivial, giving rise to
lz relations. Furthermore, the product of all the B operators in
any plane is also trivial, leading to lx + ly + (lz + 1) relations.
But, these relations involving B are not all independent, i.e.,
there are “relations among relations”:∏

c

Bc =
∏

different i j planes

∏
c ∈ fixed i j plane

Bc = 1, (59)

the above equation holds for three different combinations of
i, j, giving rise to two “relations among relations.” Conse-
quently, we have altogether (lx + ly + 2lz − 1)-independent
relations. Using (54), we arrive at the ground-state degeneracy
(58).

B. Counting of string operators

Now we turn to the counting of different flux threadings or
independent string operators from a lattice perspective. Since
we expect certain electric fluxes to condense, we will count
the magnetic fluxes instead.

We start with briefly reviewing the counting in the case
without boundaries. Consider a dipole of fractons (violated
cube terms) separated in the z direction, namely, a z lineon.
Recall this dipole can move freely in the xy plane (see Fig. 5).
Therefore, upon acting a string of (generalized) Pauli X oper-
ators on all the blue (or green) links, one can thread magnetic
fluxes in the x (or y) direction in this xy plane. Since there
are lz number of such xy planes, altogether we have 2lz-
independent magnetic stringlike operators winding around x
and y directions. There are also lx number of yz planes and
ly number of xz planes, so one would expect that they give
altogether 2lx + 2ly + 2lz number of string operators. But,
these are not all independent: Figure 6 shows a quadruple of
fractons in the xz plane, which can be split into two dipoles in
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FIG. 5. A dipole of fractons separated in the z direction can move
freely in the xy plane. It moves along y by acting generalized Pauli
X on the green links, while it moves along x by acting X on the blue
links.

different ways. It can be viewed either as a dipole of fractons
separated in the x direction (the bottom pair of cubes) and
winding around the z direction, or as a dipole of fractons
separated in the z direction (the left pair of cubes) and winding
around the x direction. In other words, the blue links in Fig. 6
come either from the product of the blue links in Fig. 5 along
the z direction, or from the product of blue links of Fig. 7
along the x direction. Consequently, each pair of directions
gives rise to one global constraint, and we are left with alto-
gether 2lx + 2ly + 2lz − 3 ways of threading magnetic fluxes
in this closed system.

When the z direction is open and the boundaries are rough,
dipoles of fractons can no longer wind around the full z loop.
The string of Pauli X operators can still start (end) at the
bottom (top) boundaries, but will not commute with the B
terms on the boundary. Namely, we will, for example, lose
the string operator associated with the blue links in Fig. 7. In
addition, the global constraints involving string operators in
the z direction will also be lost, and there are two of these.
Combining everything, the ground-state degeneracy thus re-
duces to (58) again.

VI. MIXED SMOOTH-ROUGH BOUNDARIES

In the last two sections, we have discussed the cases where
the two gapped boundaries in the system are of the same type,

FIG. 6. This quadrupole of fractons can be viewed as either two
horizontal dipoles separated vertically, or two vertical dipoles sepa-
rated horizontally. See main text.

FIG. 7. A dipole of fractons separated in the x direction can move
freely in the yz plane.

i.e., either both smooth, or both rough. It can also happen
that one of the two boundaries is smooth, and the other is
rough, such that we have a (mm) × (ee) or (ee) × (mm) type
of boundaries. The result amounts to the following Table IV,
where we slash out all the operators that have already been
slashed out in either Table II or III, and boldface all the
operators that were bold in either tables. The ground-state
degeneracy is

logN GSD(ee)×(mm) = 2lz. (60)

The counting of lattice degrees of freedom goes as follows.
The number of links is 3lxlylz, and the number of constraints
is 4lxlylz. The relations among the constraints include again
AxAyAz = 1 at each vertex, leading to lxlylz number of rela-
tions. The product of Az in each xy plane is trivial, and the
product of B in each xy plane is also trivial, giving rise to addi-
tional 2lz relations. There are no “relations among relations.”
So, the final result is again (60).

VII. ANISOTROPIC (ME) BOUNDARIES

In this section, we consider gapped boundaries that break
the fourfold rotational symmetry and condense the magnetic
(electric) planons only in the x (y) direction, respectively.

TABLE IV. Mixed boundary (mm) × (ee). The slashed operators
do not preserve the ground-state subspace. The operators in boldface
are condensed on at least one boundary.

Noncommuting Copies of Contribution
operators Heisenberg alg. to GSD

Ŵ
x
, Wxz,z 0 Nlz

Ŵ x , Wxy,y lz

W y, Wyz,z 0 Nlz

Ŵ y, Wxy,x lz

Ŵ z, W yz,y 0 N0

Ŵ z, W xz,x 0
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We first add the auxiliary fields χ , χ̂ , decoupled from the
boundary fields ϕ and ϕ̂i, to the boundary Lagrangian:

Laux = − i

2π
(∂yχ )∂0∂xχ̂ . (61)

Laux attaches to the system the boundary theory of a trivial Z1

X-cube model, which can be easily gapped out by itself. Laux

will not modify the ground-state degeneracy, quasiparticle
contents, or any topological property of the system. A single
(me) boundary then amounts to further adding the following
gapping terms [an (em)-type boundary can be easily obtained
by exchanging x ↔ y],

L(me)
g = g1 cos(Na∂xϕ̂

x + a∂xχ̂ ) + g2 cos(N ϕ̂y)

+ g3 cos(Na∂yϕ − Na∂yχ ). (62)

The fact that the UV cutoff a enters the gapping terms
is a manifestation of UV/IR mixing. The g2 term, when
large, pins ϕ̂y = 2πm̂y/N , with m̂y(x, y) generally an integer-
valued function of x and y. Consequently, ϕ̂z = −ϕ̂x −
2πm̂y/N . The arrangements of N’s inside the cosines
of Eq. (62) guarantee that these terms mutually com-
mute with each other, such that they can be simultane-
ously satisfied without frustration: [N∂yϕ − N∂yχ, N∂xϕ̂

x +
∂xχ̂ ] = N2[∂yϕ, ∂xϕ̂

x] − N[∂yχ, ∂xχ̂ ] = 0. Furthermore, the
N’s guarantee that Lg implements the condensations of
bosonic excitations only. When all the gi’s are large, we have
the following relations:

∂xϕ̂
x = −∂xχ̂/N + 2πm̂x/N, ϕ̂y = 2πm̂y/N,

∂yϕ = ∂yχ + 2πm/N, (63)

with both m and m̂i being spatially dependent, periodic
integer-valued functions. The full boundary Lagrangian, to-
gether with the auxiliary term Laux, then simply reduces to
zero.

To understand these gapping terms better, we turn to the
Wilson operators. We again take two (me)-type boundaries
at z = zt and zb, where χ (zb) and χ (zt ) are not necessarily
the same, and similarly for χ̂ (zb) and χ̂ (zt ). We start with
the analyses of the hatted electric Wilson operators to see the
effects of large g1 and g2. Ŵ x(y, z) are still ZN operators on
the boundaries,

Ŵ x |= exp

[
i
∮

dx(∂xχ̂ + 2πm̂x )/N

]
. (64)

Therefore, they give rise to (ly + lz − 1)-independent values
as if there is no boundary. Ŵ y(x, z) simply evaluates to one
on the boundary because of the g2 term and the fact that m̂y

is periodic in y. This corresponds to the fact that the electric
planons Ŵ yz are condensed on the boundary, similar to the
rough boundary case. But, Ŵ y(x, z) can still take (lz − 2)
different values in the bulk. Ŵ z(x, y) = exp[iϕ̂z |zt

zb
], creates

boundary excitations. There are, however, additional Wilson
operators that connect the top and bottom boundaries, and

create no excitations:

Ŵ yz,z(x1, x2, Ĉyz,z )

= exp

[
−i

∫ x2

x1

dx
∫ zt

zb

dz(∂xÂxy + ∂zÂ
yz )

]

= exp

[
−i

∫ x2

x1

dx
∫ zt

zb

dz(∂x∂zϕ̂
z + ∂z∂xϕ̂

x )

]
. (65)

It describes a dipole of y lineons separated in the x direction
and move between the two boundaries. Usually, this creates
excitations on the boundary, but exactly due to the g2 term,
we have ϕ̂z = −ϕ̂x − 2πm̂y/N, and the expectation value of
Ŵ yz,z is a ZN phase for fixed (x1, x2). In other words, since the
y lineons are condensed on the boundary, Ŵ yz,z acts within
the ground-state subspace. They have (lx − 1)-independent
values, with the “−1” due to the fact that

∮
dx ∂xm̂y = 0.

Next, we turn to the magnetic Wilson operators. We first
look at Wxz,x(y1, y2, Cxz,x ) and Wyz,y(x1, x2, Cyz,y ). As discussed
near (48), their values are independent of the z coordinate.
Consequently, we take the closed path Ciz,i to span the entire z
direction, ending on both boundaries. Then, the exponents in
both Wxz,x and Wyz,y are double integrals in x and y, with the
same integrand, ∂x∂yϕ, but different integration limits: one is
integrated over a noncontractible cycle in x, while the other is
over y. At large g1, ∂x∂yϕ reduces to ∂x∂yχ + 2π∂xm/N . Both
ei

∮
dx ∂x∂yχ and ei

∮
dy ∂x∂yχ are trivial since Laux has level one.∮

dx ∂xm = 0 since m is periodic, while
∮

dy ∂xm depends
on x. Consequently, Wxz,x(y1, y2, Cxz,x ) is trivial, reflecting the
fact that the magnetic dipoles separated in the y direction
are condensed on the boundary, while Wyz,y(x1, x2, Cyz,y ) has
lx-independent values corresponding to different choices of
(x1, x2). Among these choices, when (x1, x2) = (0, Lx ), there
is a relation Wxz,x(0, Ly, Cxz,x ) = Wyz,y(0, Lx, Cyz,y ), and the
left-hand side is trivial. Hence, they give only (lx − 1) number
of nontrivial Wilson operators and form Heisenberg algebras
with Ŵ yz,z.

The operators Wxz,z are, due to (63),

Wxz,z(y1, y2, Cxz,z|) = exp
[
i[χ (y2) − χ (y1)] |zt

zb

+ 2π i[m(y2) − m(y1)] |zt
zb

/N
]
. (66)

There are ly number of them, forming Heisenberg algebras
with Ŵ x(x, y) when y1 < y < y2. The operators Wyz,z, on the
other hand, are

Wyz,z(x1, x2, Cyz,z|) = exp[iϕ(x2) − iϕ(x1)]zt
zb
. (67)

They insert excitations on the boundary as usual. Finally, the
operators Wxy(z1, z2, Cxy) are also nontrivial:

Wxy,x(z1, z2, Cxy,x ) = exp

[
i
∫ z2

z1

dz
∮
Cxy,x

dx ∂x∂zϕ

]
,

Wxy,y(z1, z2, Cxy,y) = exp

[
i
∫ z2

z1

dz
∮
Cxy,y

dy ∂y∂zϕ

]
. (68)

Wxy,x(z1, z2, Cxy,x ) and Ŵ y(x, z) form (lz − 2) copies of
ZN Heisenberg algebra, for z1 < z < z2, and similarly for
Wxy,y(z1, z2, Cxy,y) and Ŵ x(y, z). In addition, when (z1, z2) =
(zb, zb + a) or (zt − a, zt ), Wxy,y(z1, z2, Cxy,y) has a nontrivial
commutation relation with Ŵ x(y, zb) or Ŵ x(y, zt ), giving two
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TABLE V. Ground-state degeneracy for the anisotropic bound-
aries (me) × (me). The slashed operators excite the boundary, while
the bold operators are condensed on at least one of the two
boundaries.

Noncommuting Copies of Contribution
operators Heisenberg alg. to GSD

Ŵ x , Wxz,z ly Nly+lz−1

Ŵ x , Wxy,y lz

Ŵ
y
, Wyz,z 0 Nlz−2

Ŵ y, Wxy,x lz − 2
Ŵ yz,z, Wyz,y lx − 1 Nlx−1

Ŵ z, W xz,x 0

additional copies of Heisenberg algebras. Taking into account
the global constraint Wxy,y(0, Lz, Cxy,y) = Wxz,z(0, Ly, Cxz,z|),
we thus have altogether (lz − 2) + (lz − 2 + 2 − 1) = 2lz − 3
copies of Heisenberg algebras.

We summarize the above discussions in Table V, and the
ground-state degeneracy is

logN GSD(me)×(me) = lx + ly + 2lz − 4. (69)

A. Counting using the lattice Hamiltonian

The lattice Hamiltonian on the anisotropic boundary is
described in Fig. 8, which is smooth along x and rough along
y. The Z2 version of this boundary Hamiltonian and the cor-
responding condensations were discussed in [25]. The (em)
boundary case can be obtained by a 90◦ rotation.

The total number of degrees of freedom, or links, is
3lxly(lz − 1). The number of constraints which impose the
ground-state condition is 2 × [3lxly(lz − 1) + lxly(lz − 1)],
with the first term coming from A terms at each vertex and the
second term coming from the total number of B terms. The
Hermitian conjugation relates the daggered and undaggered
terms as usual, so we focus only on the undaggered terms.

There are lxly(lz − 2) relations due to the trivial product of
Av,xAv,yAv,z = 1 at each vertex in the bulk. The trivial product
of Az in each xy plane (excluding the boundary surfaces) gives
(lz − 2) relations. The trivial product of Ay over each xz plane
gives ly relations. Additionally, there are lx relations coming
from the trivial product of all cube B operators in the yz
planes, and (lz − 1) relations from the trivial product of all
B operators in the xy planes. There is one “relation among
relations,” which is the equality between (a) the product of
the cube B operators in each yz plane, and further multiplied
over all different yz planes, and (b) the product of the cube
B operators in each xy plane, and further multiplied over all
different xy planes. Both (a) and (b) are equal to the product

FIG. 8. (me) and (em) boundary terms.

FIG. 9. Counting for the electric string operators along x loops
are unaffected by boundaries. Left: The relation that the product
of four string operators surrounding a plaquette is trivial still holds
because it can be realized by a product of cube operators shown
in black. Right: Side view of the geometry. Knowing the fluxes at
ly + lz − 1 blue vertices is enough to derive the remaining fluxes.

of all cube operators in the sample. So, altogether we have
(69).

B. Counting of string operators

In this section we use the flux-threading argument to count
the ground-state degeneracy for the anisotropic boundary
cases. We can either count the electric or magnetic fluxes or
string operators.

We start with counting electric strings of Z operators along
the x direction. As shown in Fig. 9, this counting is not at
all affected by the existence of boundaries, and therefore con-
tributes ly + lz − 1 number of independent strings. Next, we
count the number of independent electric string operators in
the y direction. Clearly, this is not possible on the boundaries
as there are no links along y. Consequently, near the boundary,
the relation that “the product of four string operators sur-
rounding a plaquette is trivial” (as discussed in both Figs. 3
and 9 in different directions), reduces to “the product of two
string operators separated in the x direction is trivial”; see the
left panel of Fig. 10. Consequently, as long as one knows
the string operator at one x coordinate, the string operator
at other x’s can be derived from it. From the right panel of

FIG. 10. Left: Simultaneously threading the two blue y fluxes is
trivial because it is a product of black cube operators on the boundary.
Right: Front view of the geometry. We only need to know lz − 2
number of different fluxes living at the blue vertices in order to derive
the rest since the fluxes are independent of the x coordinate.
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FIG. 11. A dipole of fractons separated in y can wind along x but
gives trivial flux because this winding procedure can be realized by
taking a product of Ay operators in the Hamiltonian. See main text.

this figure, one sees that there are only (lz − 2)-independent
electric string operators along the y direction. The strings of
Z operators along the z direction, starting and ending on the
two boundaries, respectively, no longer commute with all the
Hamiltonian terms. However, one can consider the product of
Pauli Z operators over a big closed string in the xz plane. The
loop spans the entire z direction, but not the x direction. Such
operators commute with all bulk and boundary Hamiltonian
terms, and correspond to the operators Ŵ yz,z discussed in (65).
There are (lx − 1) of them, with the minus one coming from
the fact that when the loop also spans the entire x direction,
this string operator is simply a product of the two string
operators that wind along x and live on the top and bottom
surfaces, which already have been counted. Summarizing the
counting, we get lx + ly + 2lz − 4 electric string operators in
total.

We can alternatively discuss the magnetic string operators
instead and arrive at the same number. Consider a dipole of
fractons separated in the y direction. It can still wind along the
x direction by a product of Pauli X operators on the blue links
in the top panel of Fig. 11. The value of such string operator
is independent of the z coordinate because if one acts the Ay

stabilizers on all the orange vertices, the string operator on
the bottom layer moves one step up to the top layer. Next,
in the bottom panel, if one further acts the Ay stabilizers on all
the green vertices on the boundary, the operator moves up and
vanishes into the vacuum. Therefore, such magnetic fluxes or
string operators are simply trivial.

We can also consider a dipole of fractons separated in the
y direction and move it from the bottom to the top bound-
ary. This is realized by a string of Pauli X operators acted
on the x links along the z direction. Such string operators
still commute with all Hamiltonian terms and there are ly of
them.

Next, we consider the dipole of fractons separated in the
x direction. It can still wind along the y direction by acting
Pauli X on the green links in Fig. 7. There are thus lx differ-
ent string operators. (Notice, since the operators Ax are not
defined on the boundary, we cannot repeat the argument in
Fig. 11, so each of these string operators is not necessarily
trivial.) The product of these lx string operators, however, is

trivial and reduces to combinations of Hamiltonian terms. So,
in fact there are only (lx − 1)-independent string operators.
A string of Pauli X operators acting on the blue links of
Fig. 7 will not commute with the boundary half-cube terms
Bc.

The dipoles of fractons separated in the z direction can
wind along both x and y directions as shown back in Fig. 5.
This gives 2(lz − 2) different fluxes. Additionally, a single
fracton living on the boundary can freely move along the y
direction without forming dipole, by simply acting a string of
X operators on the x links on the boundary. Such windings
along the y direction are, unlike the fluxes resulting from
dipoles of fractons, dependent on the x coordinate now. In
other words, there is no product of the Hamiltonian terms that
can move the y flux of single fractons on the boundary, in
the x direction. But, those single boundary fractons with dif-
ferent x coordinates are related through products of planons,
which are dipoles of fractons on the boundary, separated in
the x direction. Consequently, on each boundary, there is
only one independent flux of single fracton that has not been
counted.

There is an additional global constraint among these string
operators, corresponding to the fact that the product of all the
magnetic y fluxes, in the z direction, is equal to the product
of all the magnetic z fluxes in the y direction. Summarizing
the counting from the magnetic fluxes, we again get lx + ly +
2lz − 4 in total.

VIII. GENERAL BOUNDARY CONDITIONS

As briefly mentioned in Sec. III, there can be more gap-
ping terms in addition to those introduced in the previous
sections. There are roughly two types of them: (1) gapped
boundary conditions with general geometries that break trans-
lation or/and rotational symmetries; and (2) gapped boundary
conditions that preserve the lattice symmetries but condense
different quasiparticle contents. We will discuss each type
separately in the two subsections below.

A. Boundaries with domain walls

In this part, we will discuss multiple boundary conditions
living on a single z = constant boundary. Recall that in the
case of a rough boundary, we had

L(ee)
g = gx cos ϕ̂x + gy cos ϕ̂y,

which at large gi’s pins all ϕ̂i’s to be trivial. Below we will
make some modifications on top of this rough boundary con-
dition. The resultant boundary theories can also be viewed as
describing domain walls between different elementary bound-
ary conditions.

1. Adding one line on the surface

We start by proceeding just a little step away from the
rough boundary, by adding auxiliary fields χ , χ̂ similar to
those in the anisotropic boundary case discussed in Sec. VII,
but now only at y = y0:

L(ee′ )
aux = − i

2π
δ(y − y0)(∂yχ )(∂0∂xχ̂ ), (70)
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which again does not modify the contribution to the ground-
state degeneracy or give rise to nontrivial quasiparticles. The
gapping terms are then

L(ee′ )
g = g1[1 − δ(y − y0)/δ(0)] cos(N ϕ̂x ) + g2 cos(N ϕ̂y)

+ g3δ(y − y0)[cos(Na∂yϕ − Na∂yχ )

+ cos(Na∂xϕ̂
x + a∂xχ̂ )]. (71)

We have labeled this boundary condition (ee′) as it is a mini-
mal modification of the rough boundary condition (ee). When
both g1 and g2 are large, Lg pins ϕ̂i at all positions on the
boundary to be trivial, except at y = y0. There, the gapping
terms are the same as those for the (me) boundary. When
all gi’s are large, the full boundary Lagrangian is zero. This
boundary condition can be viewed as a nontrivial domain wall
between two regions of rough boundaries.

We now count the Wilson operators by examining this
system on T 2 × I , with both boundaries of the type (ee′).
Again, there are lz number of sites along the z direc-
tion. We start with electric and hatted Wilson operators.
Ŵ x operators are trivial on the boundaries except at y =
y0, and there are (lz − 3) nontrivial operators in the bulk.
Ŵ y operators are trivial on the boundaries and nontrivial only
in the bulk. The Ŵ z operators evaluate to ZN phases except at
y = y0, where Ŵ z(x, y0) creates excitations on the boundary.
So at y = y0 we need to use Ŵ yz,z(x1, x2) defined in (65)
instead, which gives lx − 1 values. The minus one comes from
the fact that when (x1, x2) = (0, Lx ), the operator is trivial.
Hence, we get altogether (lx − 1) + (ly − 1) electric Wilson
operators that span the entire z direction.

Next, we turn to the magnetic and unhatted Wilson oper-
ators Wxz,x(y1, y2, Cxz,x ), which are nontrivial away from y0

when evaluated on the boundaries, and form (ly − 1) copies
of ZN Heisenberg algebras with Ŵ z. On the other hand,
Wyz,y(x1, x2, Cyz,y ) can be nontrivial and form lx copies of
Heisenberg algebras with Ŵ z. Between the two sets, there
is again one global constraint, namely, Wyz,y(0, Lx, Cyz,y ) =
Wxz,x(0, Ly, Cxz,x ), giving us (lx + ly − 2)-independent copies
of Heisenberg algebras.

Wilson operators Wyz,z(x1, x2, Cyz,z ) always create bound-
ary excitations and should therefore be excluded. The opera-
tors Wxz,z(y1, y2, Cxz,z ) create excitations except when (y1, y2)
sandwich y0, giving a ZN phase factor and forming one copy
of Heisenberg algebra with Ŵ x. Finally, Wxy,x(z1, z2, Cxy,x ) and
Wxy,y(z1, z2, Cxy,y) are both nontrivial in the bulk. In particular,
when z1 � z � z2, they have nontrivial commutation relations
with Ŵ y(x, z) and Ŵ x(y, z), respectively, giving (lz − 3) +
(lz − 1) copies of Heisenberg algebra.

Summarizing the countings above, we have

logN GSD(ee′ )×(ee) = 2lz + lx + ly − 5. (72)

From the lattice perspective, this boundary condition amounts
to adding a single line along the x direction on the bound-
ary surface. The boundary Hamiltonian terms are shown in
Fig. 12, which all mutually commute. There are no addi-
tional local terms that commute with these. This is pictorially
two regions with rough boundary conditions separated by an
anisotropic (me)-type boundary condition on the blue line.
Again, we put the system on T 2 × I , with both boundaries

FIG. 12. Left: The boundary differs from a rough boundary in
Fig. 4 in including just one additional blue line along the x direction.
Right: The boundary Hamiltonian terms. For convenience, we have
omitted the Pauli X and Z operators acting on the links.

of the (ee′) type in Fig. 12. We now count the magnetic string
operators. The electric ones will lead to the same result.

For the dipoles of fractons separated in the x direction and
wind around the y direction, their behavior is unaffected by
the boundary and contributes lx-independent magnetic string
operators. When dipoles of fractons separated in the x di-
rection move from the one boundary to the other, however,
excitations are created on the boundaries. For the dipoles of
fractons separated in the y direction and wind around the
x direction, most of them remain nontrivial except for the
dipole immediately sandwiching the blue line. So, they give
(ly − 1)-independent string operators. In addition, acting X
on all the vertical links on the boundary can be interpreted
as winding a dipole of fractons separated in the x direction
by Lx around the y direction, or winding a dipole of fractons
separated in the y direction by Ly around the x direction. So,
removing this one constraint gives us (lx + ly − 2) ways of
threading magnetic fluxes.

As for the string operators that are products of X on the
x links in the z direction, they correspond to the dipoles of
fractons separated in the y direction and moves from the
bottom boundary to the top one. Most of the times there are
excitations left on the boundaries. Only when the dipole sand-
wiches the blue line does the corresponding string operator
commute with all Hamiltonian terms and the system remains
in the ground state. Consequently, there is only one such string
operator to count.

One can also consider dipoles of fractions separated in
the z direction and wind around the x or the y direc-
tion, giving 2(lz − 2) additional independent string operators.
Combining all the results above, we arrive at (2lz + lx + ly −
5)-independent windings.

We would like to briefly comment on the comparison with
the boundary theory of the conventional (3 + 1)D ZN toric
code [16]. The (3 + 1)D ZN toric code can also have such a
boundary as in the left panel of Fig. 12. When there is no blue
line, magnetic fluxes in the y direction can be nontrivial. But,
all the magnetic fluxes in the x direction will become com-
pletely trivialized due to the existence of this blue line, unlike
the X-cube case where only the magnetic fluxes adjacent to
the link are trivialized.

2. Smooth and rough boundaries on one surface

Going one step further ahead from the previous section,
now we consider the domain wall between smooth and rough
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boundaries. The simplest possibility is

L(ee\mm)
g = �(y − y0)[g1x cos(N ϕ̂x ) + g1y cos(N ϕ̂y)]

+ δ(y − y0)g2 cos(Na∂yϕ − Na∂yχ )

+ δ(y − y0)g3 cos(Na∂xϕ̂
x + a∂xχ̂ )

+ δ(y − y0)g4 cos(N ϕ̂y)]

+ �(y0 − y)g5 cos(Nϕ). (73)

When y > y0, the rough boundary condition is imposed, and
when y < y0, the smooth boundary condition is imposed. We
take the definition of the Heaviside step function as �(y) = 1
when y > 0, and �(y) = 0 when y � 0. At y = y0, the gap-
ping terms are the same as those for the (ee′) boundary. The
boundary is gapped and the ground-state degeneracy can be
straightforwardly analyzed using the results from the smooth,
rough, and anisotropic boundary conditions.

B. Boundaries with dyon condensations

In this part, we describe gapped boundaries that preserve
translation and rotation symmetries, of which the smooth
and rough boundaries form a subset. In general, dyonic ex-
citations, which are combinations of electric and magnetic
excitations, will be condensed. Most of the results are direct
generalizations of the known gapping conditions of (2 + 1)D
ZN toric codes [58–60] with small modifications.

For convenience, we repeat the boundary Lagrangian (25),

L0 = −i
N

2π
[(∂0∂xϕ)∂yϕ̂

y + (∂0∂yϕ)∂xϕ̂
x]. (74)

When N is a prime number, the only possible topological
boundaries are the smooth and rough ones as discussed in
Secs. IV and V. But, when N is composite, there is one more
gapped boundary for each ordered decomposition N = sŝ with
s, ŝ ∈ Z. One can see this by further adding some auxiliary
degrees of freedom decoupled from ϕ and ϕ̂i:

L[sŝ]
aux = −i

1

2π
[(∂0∂xχ )∂yχ̂

y + (∂0∂yϕ)∂xχ̂
x], (75)

which has the same form as L0 but with N = 1. Such addi-
tional terms will not modify the bulk or the boundary physics,
i.e., they will not affect the quasiparticle contents or the
ground-state degeneracy of the system. Then, we further add
the following gapping terms:

L[sŝ]
g = g1 cos(N ϕ̂x − ŝχ̂ x ) + g2 cos(N ϕ̂y − ŝχ̂ y)

+ g3 cos(Nϕ + sχ ). (76)

One can easily check that at large gi’s, the total boundary
Lagrangian L∂M = L0 + Laux + L[sŝ]

g vanishes. The velocity
terms of the ϕ, ϕ̂i fields, and those of the χ , χ̂ i fields will also
cancel out upon carefully choosing the velocity matrix for χ

and χ̂ i.
In general, such boundary conditions would lead to the

combined condensation of quasiparticles of both electric and
magnetic types, namely, dyons, on the boundary. In particular,

(Ŵ x )s |= exp

[
i
∮

dx ∂xχ̂
x

]
= 1 (77)

TABLE VI. Summary of Wilson operators and their contribu-
tions to the ground-state degeneracy when both boundaries are of
type (76). In the first column of each row, the two Wilson operators
are those that would have formed one copy of ZN Heisenberg algebra
if there were no boundaries. The second column describes the copy
numbers of algebras formed by the operators in the first column, and
the third column explains the properties of those algebras. The last
column shows the contribution from those Wilson operators to the
ground-state degeneracy.

Noncommuting Z# Heisenberg Contribution
operators Copies algebras to GSD

Ŵ x , Wxz,z ly Zs sly−1Nlz

Ŵ x , Wxy,y lz ZN

Ŵ y, Wyz,z lx Zs slx−1Nlz

Ŵ y, Wxy,x lz ZN

Ŵ z, Wyz,y lx Zŝ ŝlx+ly−1

Ŵ z, Wxz,x ly Zŝ

is condensed on the boundary. Similarly, (Ŵ y)s |, (Wxz,x )ŝ |,
and (Wyz,y)ŝ | are also condensed. The contributions from
these operators to the ground-state degeneracy are summa-
rized in Table VI. The total ground-state degeneracy is thus

GSD(sŝ) = Nlx+ly+2lz s−2ŝ−1, (78)

which recovers the results for the smooth and rough bound-
aries when (s, ŝ) = (N, 1) and (1, N ), respectively.

Finally, we would like to comment that different dyonic
quasiparticles can condense in different directions like what
electric and magnetic planons did on the anisotropic boundary
discussed in Sec. VII, and different dyonic condensations
can happen in different regions separated by domain walls,
as discussed in Sec. VIII A. This combination of topological
(dyon condensation) and geometric (domain wall arrange-
ment) properties leads to the possibilities of a great number
of different gapped boundary conditions in just this single
X-cube model.

IX. ANOMALY INFLOW

In this section, we ask that starting from the boundary
theory L0, whether the X-cube bulk theory is the unique bulk
theory that cancels the anomaly. Spoiler: No.

Recall that on the boundary we have

L0 = iKIJ

4π
∂0�I∂x∂y�J , (79)

where K = −iNσ y. The symmetries were presented in (23)
and, for convenience, we repeat the corresponding currents
here:

JI,0 = −KIJ

2π
∂x∂y�J , JI,xy = 0. (80)

One can couple them to the background tensor gauge fields,
which have the following U(1) gauge transformations:

(
AI

0, AI
xy

) ∼ (
AI

0 + ∂0αI , AI
xy + ∂x∂yαI

)
. (81)
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The coupled Lagrangian is

L2+1[A] = L0 − iKIJ

2π
AI

0∂x∂y�J + iKIJ

4π
AI

0AJ
xy, (82)

where the last term is a local counterterm added to make the
expressions look cleaner, but will not affect the analysis of
anomaly. It will not affect the discussions of anomalies. Under
the U(1) gauge transformations, L2+1[A] becomes [�I also
needs to shift by αI , as dictated by (19)]

L2+1[A] → L2+1[A] + iKIJ

4π

[
AJ

xy∂0αI − AI
0∂x∂yαJ

]
. (83)

In the equations above, we have used the fact that K is an-
tisymmetric: KIJ∂0�I∂x∂yαJ = KIJ∂x∂y�J∂0αI , such that the
terms linear in � cancel each other. We can easily observe
that the anomaly in (83) cannot be removed by any local
counterterm because of the relative sign in the middle. This
anomaly can be canceled by coupling to a (3 + 1)D bulk, with
the following gauge fields and gauge transformations:

(AI
0, AI

xy, AI
z ) ∼ (

AI
0 + ∂0αI , AI

xy + ∂x∂yαI , AI
z + ∂zαI

)
. (84)

There are three field strengths for each flavor I:

BI = ∂zA
I
xy − ∂x∂yAI

z,

EI
xy = ∂0AI

xy − ∂x∂yAI
0,

EI
z = ∂0AI

z − ∂zA
I
0. (85)

The bulk theory is then described by the following La-
grangian:

L3+1 = iKIJ

4π

( − AI
0BJ + AI

zE
J
xy + AI

xyEJ
z

)
. (86)

Under the gauge transformations (84), the Lagrangian gets
changed by

L3+1 → L3+1 − iKIJ

4π
∂z

(
AJ

xy∂0αI − AI
0∂x∂yαJ

)
(87)

which is simply a boundary term and cancels the anomaly
we found in (83). One can easily see that L3+1 does not de-
scribe the X-cube phase, by looking at its symmetry operators.
Consider L3+1 with periodic boundary conditions on all three
directions, i.e., T 3. To distinguish from Wilson operators W in
the X-cube model, we denote symmetry operators here by M:

MI
y (x1, x2) = exp

[
i
∫ x2

x1

dx
∮

dy AI
xy

]
,

MI
x (y1, y2) = exp

[
i
∫ y2

y1

dy
∮

dx AI
xy

]
,

MI
z (x, y) = exp

[
i
∮

dz AI
z

]
. (88)

Note that the spatial dependence of MI
z (x, y) factorizes,

MI
z (x, y) ≡ MI

z,x(x)MI
z,y(y). This is because when BI = 0, we

have

∂x∂y

∮
dz AI

z =
∮

dz ∂zA
I
xy = 0. (89)

So, there are in general (lx + ly − 1) number of MI
z (x, y), with

“−1” one from the factorization relation. On the other hand,
MI

i with i = x, y is independent of z and there is one constraint

MI
y (0, Lx ) = MI

x (0, Ly). Therefore, for each flavor I , there are
(2lx + 2ly − 2) number of Wilson operators.

Based on the mobilities of excitations, we identify this
alternative bulk theory as the anisotropic model in reference
[21], which can be obtained from the X-cube model via
condensation of fracton dipoles separated in the z direction
[74]. Intuitively this is because the different fracton dipoles
separated in z are not distinguishable when looking from the
z = constant boundary.

The nonuniqueness of the anomaly-canceling bulk theories
is common in systems with subsystem symmetries because
there are various ways to extend the boundary foliation into
the bulk [52,53].

X. SUMMARY AND DISCUSSION

In this work, the boundary theory of X-cube model was
studied from a continuum field theory perspective. This
boundary theory is a generalization of the boundary theory
of (2 + 1)D ZN toric code to one higher dimension. We exam-
ined its symmetries, algebras, and extracted bulk quasiparticle
statistics from the boundary fields. We analyzed general pos-
sible gapped boundary conditions that either preserve or break
the rotation and translation symmetries on the boundary, and
their corresponding ground-state degeneracies. In particular,
both the extensive and the constant parts in the ground-state
degeneracy can vary with different choices of boundary con-
ditions. We further discussed the anomaly inflow from a single
boundary and found the bulk theory is not unique.

We would like to comment that we have described the
gapped boundary conditions in terms of cosine potentials
for the boundary theory. Alternatively, one might consider
directly using Dirichlet boundary conditions of the tensor
gauge fields. For the simplest smooth and rough boundary
cases, this is possible. For example, the smooth boundary
can be easily achieved by choosing A0 = 0, Axy = 0, while
the rough boundary can be obtained by imposing Âz(xy)

0 = 0
and Âxz = 0 = Âyz. However, for general gapped boundaries
breaking rotation and translation symmetries or those with
dyon condensations, it is not obvious how one can formulate
them using Dirchlet boundary conditions. For instance, the
anisotropic boundary in the continuum requires

∮
dx Axy on

the boundary to be trivial, while
∮

dy Axy remains nontrivial.
Consequently, one cannot simply take Axy = 0 on the bound-
ary. As for boundaries with general dyon condensations, the
Wilson operators need satisfy equations of the format 〈W s〉 =
const, with s > 1. From this perspective, our formalism with
boundary dynamical fields ϕ and ϕ̂i are more natural.

This work leads naturally to the following questions that
we will leave for future work.

(i) We have focused on the z = constant type of bound-
aries. Generally, there are other types of planar boundaries
such as ones with x + y = constant. However, such boundary
theories keep less symmetries and cannot be analyzed by a
straightforward extension of this work. For example, consider
the x + y = 0 boundary. Following the similar procedures that
lead to (20), we find the variation of action under a gauge
transformation vanishes when the boundary condition (17) is
imposed. Extending this as a temporal gauge into the bulk,
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we again solve for the relations between the gauge fields and
(ϕ, ϕ̂i ) as in (19), and the Lagrangian reduces to

L = iN

2π

1

2
∂u[(∂uϕ)∂0∂zϕ̂

z + (∂vϕ)∂0∂z(ϕ̂y − ϕ̂x )]. (90)

The second term in the square brackets is a pure boundary
term, but the first term contains double derivatives ∂2

u . This
complication reflects the fact that the chosen boundary is not
compatible with the cubic symmetry. To correctly describe the
(110)-type boundary, one needs to examine a staircase-shaped
termination of the bulk theory, which will be left for future
work.

(ii) We have ignored the perturbative relevance or irrel-
evance of the gapping terms, as we are only interested in
whether local interactions can gap out the boundary when they
are strong enough, analogous to the case of topological orders
[58–60]. The concept of renormalization in fractonic systems
is a subtle one as discussed in [18,20,21,75–78], but since our
boundary theory is equivalent to the ZN exciton bose liquid,
one can use the results in Refs. [50,79] which examined the
renormalization group of EBL.

(iii) We have written the boundary theory in terms of a
K matrix. One might wonder if more exotic fracton phases
of matter can be generated in this way, by allowing K to be a
general antisymmetric integer matrix, and extending back into
the bulk. Unfortunately, for a general (d × d)-dimensional
antisymmetric matrix K of rank 2n, one can always linearly
transform it to the factorized form of ⊕n

i=1Niiσ y ⊕ 0d−2n,
where 0d−2n is a [(d − 2n) × (d − 2n)]-dimensional block of
zeros. The details should be examined more carefully, but we
do not expect superexciting consequences with a general K .

(iv) One can further study the relationship between the
boundary and the bulk theories by examining the relations
between the boundary energy spectrum and the entanglement
spectrum [80] in the bulk. The entanglement entropy for frac-
ton phases has been investigated in Refs. [77,81,82].
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APPENDIX A: SYMMETRY GROUPS AND THEIR
IRREDUCIBLE REPRESENTATIONS

In this Appendix, we present the irreducible representa-
tions of the symmetry groups of the system and relate them
to the bulk and the boundary fields. The bulk result is a review
of that in [44].

Since the bulk of the system lives on a cube lattice, all
the fields can be labeled by irreducible representations of the
cubic group. In particular, the orientation-preserving subgroup
of the cubic group is S4, on which we will focus. Following
the notations in [44], we label irreducible representations of
S4 by their dimensions: the trivial representation 1, the sign
representation 1′, the two-dimensional representation 2, the
standard representation 3, and another three-dimensional rep-
resentation 3′ = 1′ ⊗ 3.

It is useful to decompose the irreducible representations
of SO(3) furnished by symmetric traceless tensors into the
irreducible representations of S4. The first few are

SO(3) ⊃ S4,

1 = 1,

3 = 3,

5 = 2 ⊕ 3′,

7 = 1′ ⊕ 3 ⊕ 3′,

9 = 1 ⊕ 2 ⊕ 3 ⊕ 3′. (A1)

We will follow the standard conventions for indices: (ab)
symmetrizes indices and [ab] antisymmetrizes indices. Using
the decompositions above, the representations of S4 can be
expressed in terms of the following tensors:

1 : S,

1′ : T(i jk); i �= j �= k

2 : B[i j]k ; i �= j �= k;

B[i j]k + B[ jk]i + B[ki] j = 0,

2 : Bi( jk); i �= j �= k;

Bi( jk) + Bj(ki) + Bk(i j) = 0,

3 : Vi,

3′ : Ei j ; i �= j; Ei j = Eji. (A2)

The two different expressions for 2 come from the 2 in
3 ⊗ 3 = 1 ⊕ 2 ⊕ 3 ⊕ 3 and 3 ⊗ 3′ = 1′ ⊕ 2 ⊕ 3 ⊕ 3′, respec-
tively, and can be related to each other.

On the boundary, we have a square lattice with the
orientation-preserving subgroup being Z4, corresponding to
the fourfold rotation with respect to an axis perpendicular to
the square lattice and passing through a site. Z4 has four one-
dimensional irreducible representations labeled by 1q with
q = 0, 1, 2, 3.

Again, we decompose the irreducible representations of
SO(3) in terms of these irreducible representations of Z4.
The first step is SO(3) → SO(2). There is one irreducible
representation 2q + 1 of SO(3) for each integer q, which can
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be decomposed into representations of SO(2):

SO(3) ⊃ SO(2),

2q + 1 = 2q ⊕ 2q−1 ⊕ · · · ⊕ 21 ⊕ 10, (A3)

where 2q corresponds to the two-dimensional rotation matrix
with rotation angle qθ , while 10 is a one-dimensional matrix,
i.e., a number, 1.

In the second step, we combine the equation above with the
decomposition in (A1), we arrive at

S4 → SO(2),

1 = 10,

3 = 21 ⊕ 10,

2 ⊕ 3′ = 22 ⊕ 21 ⊕ 10,

1′ ⊕ 3 ⊕ 3′ = 23 ⊕ 22 ⊕ 21 ⊕ 10. (A4)

The second and the last equations in (A4) can be combined to
give

1′ ⊕ 3′ = 23 ⊕ 22. (A5)

We further decompose

SO(2) ⊃ U (1),

2q = 1q ⊕ 1−q, (A6)

obtained from the diagonalization of the two-dimensional
rotation matrix. Going from U(1) to Z4, we simply take
1q = 1q mod 4. Therefore, Eqs. (A4) and (A5) result in

S4 ⊃ Z4,

1 = 10,

3 = 11 ⊕ 13 ⊕ 10,

2 ⊕ 3′ = 12 ⊕ 12 ⊕ 11 ⊕ 13 ⊕ 10,

1′ ⊕ 3′ = 13 ⊕ 11 ⊕ 12 ⊕ 12. (A7)

Next, we multiply both sides of the second equation in (A7)
by 1′ and make use of the fusion rule 3′ = 3 ⊗ 1′ in S4.
Assuming the 1′ representation in S4 is identified with the 1a

representation in Z4, we have

3′ = 1a+1 ⊕ 1a+3 ⊕ 1a. (A8)

Plugging it back into the last line of (A7), we arrive at the
following consistency equation for a:

1a ⊕ 1a+1 ⊕ 1a+3 ⊕ 1a = 13 ⊕ 11 ⊕ 12 ⊕ 12. (A9)

It is then straightforward to see that a = 2, and 3′ =
13 ⊕ 11 ⊕ 12. Finally, using the third equation in (A7), we
arrive at

2 = 12 ⊕ 10. (A10)

Since the boundary Lagrangian L0 ∝ (∂0ϕ)(∂x∂yϕ̂
z(xy) ) is in-

variant under the Z4 and ∂x∂y transforms under 12, ϕ̂z(xy)

must transform under 12. The remaining degree of freedom
ϕ̂x(yz) − ϕ̂y(xz) thus transforms under the 10 representation
of Z4.

APPENDIX B: COUPLING TO BACKGROUND FIELDS

In this Appendix, we further explain the interpretation of
ρI as the dipole density by coupling to background tensor
fields. The background gauge fields for the ZN subsystem
symmetries of the X-cube model and their couplings to the
bulk dynamical fields were discussed in [52]. The coupling is

LJ = i

4π

[ − Ai j
(
∂0âi j − ∂kâk(i j)

0

) − A0(∂i∂ j â
i j )

+ Âi j (∂0ai j − ∂i∂ ja0) + Âk(i j)
0 (∂ia jk − ∂ jaik )

]
, (B1)

where (a0, ai j ) and (âk(i j)
0 , âi j ) are the U(1) background gauge

fields. They can be Higgsed down to ZN by coupling to dy-
namical tensor or scalar fields. In the temporal gauge of the
dynamic gauge fields, the above coupling reduces to

LJ = i

4π

[
∂kϕ̂

k (∂0ai j − ∂i∂ ja0) − ∂i∂ jϕ
(
∂0âi j − ∂kâk(i j)

0

)]
,

(B2)

where we have also used (19). Focusing on the terms con-
taining the temporal components of the background field, we
reduce them to the boundary term

i

2π
∂z

[
âz(xy)

0 (∂x∂yϕ) − a0(∂x∂yϕ̂
z )

]
. (B3)

We thus notice that ∂x∂yϕ̂
z describes the density of fractons on

the boundary, while ∂x∂yϕ describes the density of z lineons on
the boundary.
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