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With the evidence of intervalley attraction-mediated by phonon or topological fluctuations, we assume the
intervalley attraction and aim at identifying universal properties of moiré flat bands that shall emerge. We show
that by matching the interaction strength of intervalley attraction with intravalley repulsion, the flat-band limit
becomes exactly solvable. Away from the flat-band limit, the system can be simulated via quantum Monte Carlo
(QMC) methods without sign problem for any fillings. Combining analytic solutions with large-scale numerical
simulations, we show that upon increasing temperature, the superconducting phase melts into a bosonic fluid
of Cooper pairs with large/diverging compressibility. In contrast to flat-band attractive Hubbard models, where
similar effects arise only for on-site interactions, our study indicates this physics is a universal property of moiré
flat bands, regardless of microscopic details such as the range of interactions and/or spin-orbit couplings. At
higher temperature, the boson fluid phase gives its way to a pseudogap phase, where some Cooper pairs are torn
apart by thermal fluctuations, resulting in fermion density of states inside the gap. Unlike the superconducting
transition temperature, which is very sensitive to doping and twisting angles, the gap and the temperature scale
of the boson fluid phase and the pseudogap phase are found to be nearly independent of doping level and/or
flat-band bandwidth. The relevance of these phases with experimental discoveries in the flat-band quantum moiré
materials is discussed.

DOI: 10.1103/PhysRevB.106.184517

I. INTRODUCTION

As one of the most intriguing development in two-
dimensional (2D) materials, moiré superlattices offer a new
opportunity to access novel quantum states and quantum
phenomena [1–4] such as flat bands at magic angle twisted
bilayer graphene (TBG) or transition metal dichalcogenides
(TMD) [5–7]. Recently, these systems were brought to the
forefront of research by a series of intriguing experimental
discoveries, such as correlated insulating states, continuous
Mott transition, and superconductivity [8–34]. In addition to
TBG, superconductivity has also been observed in other 2D
materials such as MoS2 [35,36], NbSe2 [37], and possibly
in twisted bilayer and double-bilayer WSe2 [10,32], which is
believed to be due to intervalley attractions [38–40]. In TBG,
intervalley attractions were also considered as a key candidate
mechanism for the superconducting state, though the origin
of such attractions is still under investigation, i.e., whether it
is phononic or has some more exotic (and even topological)
mechanism [41–58].

Here, we focus on universal principles/properties that flat-
band moiré superconductors shall obey/exhibit in that we
introduce an intervalley attractive interaction and study its
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nontrivial consequence. By matching intervalley attraction
strength with intravalley repulsion, we find that at the flat-
band limit, such systems can be solved exactly. Away from
the flat-band limit, although an exact solution is absent, the
model can be simulated via the momentum-space quantum
Monte Carlo (QMC) method [59–61] without suffering the
sign problem at any fillings, as the case in attractive Hubbard
model [62–66]. By combining the exact analytic solution,
exact diagonalization at small sizes, and the fully momentum-
space QMC, we show that moiré flat-band superconductors
exhibit a rich phase diagram, in sharp contrast to conven-
tional Bardeen-Cooper-Schrieffer (BCS) superconductors. As
shown in Figs. 2(a) and 2(b), at the temperature above the
superconducting dome the system does not directly transform
into a Fermi liquid. Instead, it first turns into a supercompress-
ible bosonic fluid phase, where fermionic excitations are fully
gapped but the compressibility is high and increases/diverges
upon cooling. This physics is in strong analogy to the flat-
band attractive Hubbard model [67,68], but also with clear
differences. In the flat-band Hubbard model, the same type of
physics only arises when the interactions are strictly on-site,
and nononsite interactions, such as nearest neighbor, quickly
lead to other physics, e.g., phase separation [68]. In contrast,
for moiré flat bands, our studies indicate that the exact solution
and related phenomena are extremely robust and fully insen-
sitive to such microscopic details. No matter if the interaction
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FIG. 1. Excitation spectrum for intervalley attractive and repulsive model where the system size is 12 × 12 and parameters come from
Appendix A. (a) Single-paritcle excitation (red line) and Goldstone excitation (blue lines) along high symmetry line for intervalley attractive
model. (b) Single-paritcle excitation (red line) and gapped charge neutral excitation (blue lines) along high symmetry line for intervalley
repulsive model.

is short range or longe range and no matter if the spin-orbit
coupling is weak (e.g., graphene) or strong (TMD), our exact
solution and all qualitative features remain the same. This
robustness is of crucial importance for the experimental study
of moiré lattices where on-site interactions are not expected
to be dominant and the spin-orbit effect may or may not be
strong depending on the materials. As one further increases
the temperature, this bosonic fluid gives way to a pseudogap
phase where fermion states start to emerge inside the gap and
gradually fill it up upon increasing the temperature. These
nontrivial sequence of phase transitions/crossovers arise at
filling range larger than the superconducting dome and sur-

vive to a temperature much higher than the superconducting
transition Tc.

The bosonic fluid phase can be viewed as a liquid of
Cooper pairs, where, although the Cooper pairs have fully
formed, (quasi)-long-range phase coherence has not yet been
developed due to strong fluctuations. Experimentally, the key
signature of this phase is a large single-particle gap around the
Fermi energy, combined with a high/diverging compressibil-
ity. The pseudogap phase is a partially melted boson liquid,
where thermal fluctuations start to tear apart some of the
Cooper pairs, feeding the single fermion spectral weight into
the energy gap.

FIG. 2. QMC simulations of the flat-band limit (top row) and away from the flat-band limit (bottom row). The bandwidths of noninteracting
band structures are set to 0 and 0.8 meV, respectively. (a,b) Phase diagrams. In the flat-band limit (a), a finite chemical potential drives the
system into a trivial insulator with either empty (μ � 0) or completely filled (μ � 0) bands. In (b), the yellow/purple region is the pseudogap
(PG)/supercompressible bosonic fluid (SCBF) phase, and the blue region marks the superconducting (SC) dome. (c,d) Density of states
for a 9 × 9 system at μ = 0. The Cooper gap survives above the superconducting transition temperature and turns into a pseudogap above
T ∼ 0.3. (e,f) Critical scaling of P × Lη versus T with Berezinskii-Kosterlitz-Thouless (BKT) anomalous dimension η = 1/4. The crossing
point of different system sizes (L = 6, 7, 8, 9) marks the superconducting transition temperature: Tc ∼ 0 in (e) and ∼0.13 in (f). (g,h) Inverse
of compressibility κ for L = 6, 7, 8, 9 at μ = 0. At low temperature, diverged compressibility κ in (g) converges in superconducting phase as
shown in (h).
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Simulations and analytic theory also indicate that the
crossover temperatures between the normal fluid and the pseu-
dogap phase (or between the pseudogap and the bosonic fluid
phases) are dictated by the energy scale of the intervalley
attractions, and is nearly independent of filling levels or flat-
band bandwidth. In contrast, the superconducting transition
temperature depends strongly on the bandwidth of the flat
band, as well as filling fractions. In the QMC simulations,
a superconducting dome is observed, which is qualitatively
consistent with the experimental observations in TBG and
TMD systems with the chemical potential partially filling all
flat bands [10,13,15,32]. As the bandwidth reduces to zero
(i.e., towards the flat-band limit), the height of the dome (i.e.,
the superconducting transition temperature) decreases to zero,
although the noninteracting density of states (DOS) for the flat
band diverges.

II. MODEL

We consider a generic system with two valleys, labeled
by the valley index τ and −τ , respectively, connected by
the time-reversal transformation (T τ = −τ ). In the flat-band
limit, kinetic energy can be dropped once other bands are
projected out. For interactions, we define it in the momentum
space as

HI = 1

2�

∑
G

∑
q∈mBZ

V (q + G)δρq+Gδρ−q−G, (1)

where q is the momentum transfer in a moiré Brillouin zone
(mBZ) and G is the moiré reciprocal lattice vector. We set
the interaction strength V (q + G) to be an arbitrary positive
function and δρq+G is the density difference between two
valleys

δρq+G = ρτ ;q+G − ρ−τ ;q+G, (2)

where ρτ and ρ−τ are the fermion density from the two val-
leys. In the band basis, δρ can be projected to the flat band

δρq+G =
∑
k,m,n

[λm,n,τ (k, k + q + G)c†
k,m,τ ck+q,n,τ

− λm,n,−τ (k, k + q + G)c†
k,m,−τ ck+q,n,−τ ], (3)

where the form factor λ is computed via the unitary transfor-
mation between the plane-wave basis and the band basis (see
Appendix A for details). This interaction contains intervalley
attraction and intravalley repulsion with the same strength V ,
and this is how intervalley attractions are introduced in our
model. With this interaction, this model is exactly solvable in
the flat-band limit, while away from the exactly solvable limit
(i.e., with the finite bandwidth and chemical potential), it can
be simulated via QMC without sign problem.

III. EXACT SOLUTION

After dropping the trivial kinetic energy, the flat-band limit
of our Hamiltonian is reduced to H = HI [Eq. (1)], which can
be solved exactly due to an emergent SU(2) symmetry with
generators

σx = 
 + 
†, σy = i(
 − 
†), σz = N̂p − Nd , (4)

where 
† = ∑
k,m c†

k,m,τ c†
−k,m,−τ and 
 = ∑

k,m c−k,m,−τ

ck,m,τ creates/annihilates one intervalley Cooper pair and N̂p

is the particle number operator of flat bands. The constant Nd

is the max electron number that these flat bands can host in
one valley. It is easy to verify that these three operators obey
the su(2) algebra [σi, σ j] = 2iεi jkσk and they all commute
with δρ and HI , [σi, HI ] = 0. In other words, these three
operators generate a SU(2) symmetry group.

This emergent SU(2) symmetry and exact solution are in
analogy to the flat-band Hubbard model [67] and the SU(4)
emergent symmetry of TBG flat bands [69–72], but there are
some key differences. For the Hubbard model, the emergent
symmetry and exact solution only arises when the interaction
is on-site and the interactions beyond on-site (e.g., nearest
neighbor) take away the exact solution and results in other
instabilities like phase separation [68]. In contrast, our exact
solution is insensitive to the range and/or the functional form
of interactions. It is also worthwhile to highlight that the
attractive Hubbard model can be exactly mapped to a repul-
sive Hubbard at half filling via a particle-hole transformation.
Such a mapping does not exist in general for moiré flat bands
because the particle-hole transformation will change the λ

function used in the flat-band project. For the inter-valley
repulsive model at half filling

δρ ′
q+G = ρτ ;q+G + ρ−τ ;q+G

=
∑
k,m,n

λm,n,τ (k, k + q + G)

× (c†
k,m,τ ck+q,n,τ − c̄†

k,m,−τ c̄k+q,n,−τ ). (5)

Here, we use the particle-hole transformation c̄k,m,−τ =
c†
−k,m,−τ . It is obvious that ground states for a general inter-

valley repulsive model have valley polarized Z2, not SU(2)
symmetry. This difference can also be seen in charge-neutral
excitation spectrums as shown in Fig. 1. One can see that,
although the two models share the same single-particle ex-
citation spectrum as the red lines in Figs. 1(a) and 1(b), their
two-particle spectra are totally distinct [i.e., continuous ex-
citation in Fig. 1(a) and gapped in Fig. 1(b) as the blue lines
indicate]. The attractive model is gapless due to the Goldstone
mode from the SU(2) symmetry, while the repulsive one is
gapped due to the absence of SU(2) symmetry and Goldstone
modes. We will show how to derive exact solutions briefly
below and leave the details for Appendix D.

Because our Hamiltonian is semi-positive-definite [V > 0
in Eq. (1)], two obvious zero-energy ground states can be im-
mediately identified: The empty and fully filled states labeled
by |ψ0〉 and |ψ2Nd 〉, where δρ|ψ0〉 = δρ|ψ2Nd 〉 = 0. In terms
of the SU(2) symmetry group, these two states are fully po-
larized states of the σz operator, known as the highest weight
states, where the eigenvalues of σz reach the highest/lowest
possible values ±Nd . Due to the SU(2) symmetry, any SU(2)
rotation of these two ground states must also be a degenerate
ground state. Here, we can use 
† and 
 as raising and
lowering operators of the su(2) algebra, and generate all the
degenerate ground states from the empty state |0〉 ≡ |ψ0〉

|ψ2n〉 ≡
√

(Nd − n)!

n!(Nd )!
(
†)n|0〉, (6)
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where 0 � n � Nd and |ψ2n〉 is the degenerate ground state
with 2n fermions. Another way to understand these degenerate
ground states is to realize [HI ,


†] = 0 implies that it costs
no energy to create a Cooper pair. Thus, we can introduce
an arbitrary number of Cooper pairs to the empty state and
obtain a degenerate ground state |ψ2n〉 with n Cooper pairs.
It is worthwhile to highlight that the BCS wave function
ψBCS = 1

N exp( v
u 
†)|0〉 is also an exact ground state of this

model. But this one is nothing unique and just one of Nd + 1
degenerate ground states. The BCS wave function may not be
favored when the kinetic term and chemical potential are in-
troduced since the chemical potential term will favor a certain
filling but not mixing states with different particle number.

In the exact solution, the single-particle correlation
function can be computed by noticing c†

k,τ |ψ2n〉 =√
Nd −n

Nd
|ψ2n+1,k,τ 〉, ck,τ |ψ2n〉 =

√
n

Nd
|ψ2n−1,−k,−τ 〉, where

|ψ2n+1,k,τ 〉 ≡
√

(Nd −n−1)!
n!(Nd −1)! (
†)nc†

k,τ |0〉. As shown by the red

line in Fig. 1, single-particle excitation is fully gapped
and independent with intervalley interaction (no matter the
repulsion or attraction). For repulsive interactions, the gap
is an insulating gap without another charged excitation
inside [70–74]. In our model, this gap is the Cooper gap, i.e.,
the energy cost to break a Cooper pair. The Cooper gap scales
linearly with interaction energy V and there are continuously
charged excitations within the gap such as the blue line in
Fig. 1(a). Thus, at low temperature T � V , all electrons are
paired into Cooper pairs, i.e., the system is a fluid of Cooper
pairs without unpaired fermions.

We can also compute the correlation function of
Cooper pairs 〈
(t )
†(0)〉 by noticing 
†|ψ2n〉 =√

(Nd − n)(n + 1)|ψ2n+2〉. Because [HI ,
] = [HI ,

†] = 0,

this correlation function is time independent at any
temperature. At T = 0, this correlation function is

〈
(t )
†(0)〉 = Nd (Nd + 2)

6
∼ N2

d

6
, (7)

which is in good agreement with QMC simulations [see
Figs. 4(a) and 4(b)]. It is also worthwhile to point out that, in
the thermodynamic limit, this N2

d scaling diverges faster than
the system size, indicating an instability towards supercon-
ductivity at T = 0.

Despite the finite Cooper gap and diverging superconduct-
ing correlation function, Cooper pairs in this boson fluid do
not lead to superconducting at any finite temperature. This
is because the superconducting order parameter is part of a
SU(2) generator. Therefore, a superconducting state would
spontaneously break the SU(2) symmetry instead of just the
U(1) charge symmetry. In other words, the symmetry breaking
pattern here is in the Heisenberg universality class, instead of
XY . For 2D systems at finite T , it has long been known that
thermal fluctuations will destroy any order that spontaneously
breaks a SU(2) symmetry (i.e., there is no finite temperature
order for Heisenberg spins in two dimensions). Thus, although
Cooper pairs have formed at T ∼ V , long-range or quasi-
long-range phase coherence cannot be developed at any finite
temperature. This conclusion is verified in QMC simulations,
where we observe a fully developed Cooper gap at finite
T , but the phase coherence remains disordered even down
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FIG. 3. Dispersion of the top three bands in mBZ.

to the lowest accessible temperature [Figs. 2(a), 2(c) 2(e),
and 2(g)]. In addition to preventing the formation of a finite
T superconducting phase, the SU(2) symmetry also offers an
interesting link between superconductivity fluctuations and
particle-number fluctuations. From the SU(2) symmetry, we
have 〈σ 2

z 〉 = 〈σ 2
x 〉 and thus 〈N̂2

p 〉 − 〈N̂p〉2 = 2〈

†〉. Because
superconductivity fluctuations diverge as ∝ N2

d at T = 0,
particle-number fluctuations must also diverge as ∝ N2

d . This
scaling violates one fundamental assumption of statistical
physics, the central limit theorem, which requires square fluc-
tuations to scale linearly with system sizes. Such a violation
is a consequence of the infinite ground-state degeneracy.

From the fluctuation-dissipation theorem, this divergence
in particle-number fluctuations implies a diverging com-

pressibility at low T : κ = 1
Nd

d〈N̂p〉
dμ

= β
〈N̂2

p 〉−〈N̂p〉2

Nd
= 2β

Nd
〈

†〉.

When the temperature is reduced, κ increases. In the low-
temperature limit, because 〈

†〉 ∝ N2

d , κ diverges as κ ∝
βNd . This divergence is also seen in the QMC simulations in
Fig. 2(g).

In summary, in the flat-band limit, exact theory analysis
predicts a bosonic fluid of Cooper pairs within a full Cooper
gap. This bosonic fluid has a high compressibility, which di-
verges at T → 0. To highlight this diverging compressibility,
we call this state the supercompressible bosonic fluid (SCBF)
in our phase diagrams in Figs. 2(a) and 2(b).

IV. ED AND QMC SIMULATIONS

For simplicity, here we only consider one flat band per
valley and choose parameters according to twisted homobi-
layer TMDs [75,76] to carry out exact diagonalization (ED)
and QMC simulations (see Fig. 3 and Appendix A). The same
techniques can also be applied to systems with more flat bands
(e.g., TBGs), and all qualitative features shall remain. We first
simulate systems with sizes 3 × 3 and 3 × 4 (number of mo-
mentum points in mBZ) via ED. The number of ground states
and single-particle excitations perfectly match the analytic
theory (see Fig. 5). The implementation of the momentum
space QMC simulation are shown in Appendixed B and C,
where we prove the absence of sign problem at any fillings
and regardless of bandwidth. This allows us to efficiently
simulate this model (for system size up to 9 × 9) and explore
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FIG. 4. Benchmark results for QMC. (a)–(c) are results at flat-band limit, (d) is simulated with kinetic term. (a) The blue line is the
single-particle Green’s function for 9 × 9 momentum mesh in mBZ with β = 6 at � point from QMC, while the red line is the exact solution
(ES) according to Eq. (D3). (b) Superconductivity pairing correlation function for 3 × 3 and 6 × 6 systems from QMC and ES. ES result
comes from Eq. (D4). (c,d) slope = d ln(P)

d ln(L2 )
vs β at μ = 0. At the superconducting transition temperature, this slope shall reach − η

2 = − 1
8 (the

red horizontal line), in good agreement with Figs. 2(e) and 2(f).

the phase space both at and away from the flat-band limit. For
a benchmark, we compute the single-particle Green’s function
and superconductor correlation function at the flat-band limit,
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(
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FIG. 5. ED results for 3 × 4 system at particle number N =
12 and N = 11. Black point represents ground state, red points
are single-particle excitations, and blue points are all one-charge
excitations.

which agree nicely with the analytic theory [see Figs. 4(a)
and 4(b)].

With the imaginary-time correlation functions obtained
in QMC, we further employ the stochastic analytic contin-
uation (SAC) method to extract the real-frequency spectra
[61,77–87]. In Figs. 2(c) and 2(d), we plot the fermion DOS
at different temperature for a 9 × 9 system. At T < 0.3, a
full gap is observed, which is the Cooper gap discussed
above. For 0.3 < T < 0.8, the fermion spectral weight starts
to emerge inside the gap, i.e., a pseudogap (PG) is formed.
Defining P = 1

2N2
d
〈

† + 
†
〉, we also try to determine

the superconducting phase transition temperature Tc by prob-
ing the onset of quasi-long-range order. This is achieved via
the data cross of P × Lη versus T as shown in Figs. 2(e)
and 2(f) and by comparing the slope of d ln(P)

d ln(L2 ) versus β [see
Figs. 4(c) and 4(d)] with the BKT anomalous dimension expo-
nent η = 1

4 [66,88–90], using P = L−η f [L · exp(− A
(T −Tc )1/2 )].

In Fig. 2(e) for the case of the flat-band limit, the cross point is
indeed approaching Tc → 0, confirming the absence of a finite
temperature phase transition, in full agreement with the exact
solution.

With the exactly solvable limit understood, a kinetic energy
term with finite (but small) bandwidth is introduced, which
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FIG. 6. DOS for 9 × 9 with different β from QMC+SAC. (a)–(d) represent μ = −0.03, 0, 0.01, 0.02, respectively.

explicitly breaks the SU(2) symmetry. Here, again, we use
the kinetic term of a homobilayer TMD and expand the band-
width to 0.8 meV. The same qualitative features are expected
for other, more complicated setups, such as TBGs. Without
the SU(2) symmetry, a BKT superconducting phase becomes
allowed, and in QMC simulations we indeed observe a super-
conducting dome with chemical potential partially filling the
flat bands, in analogy to the experiments reported in TBGs.
Above the superconducting dome, the pseudogap and SCBF
phases remain. Because the bandwidth is still smaller than the
interaction energy scale, the temperature scales for the pseu-
dogap and SCBF phases, which are dominated by interactions,
are almost invariant for different band fillings [see Figs. 2(b)
and Fig. 6], consistent with the STM experiment in TBG
between different integer fillings [91]. Another observation in
the TBG experiment is dμ/dn reduces towards 0 at supercon-
ducting dopings [2], which implies a large compressibility κ .
This is also seen in our simulation results.

V. DISCUSSION

We propose a model describing a 2D flat-band intervalley
superconductor. The exact solution and QMC simulations re-
veal nontrivial phenomena, such as a doping-independent gap

and large compressibility above the superconducting dome,
which seems consistent with experimental studies. The su-
percompressible fluid phase and pseudogap phases acquire
intriguing features. In transport measurements, these states are
conductors, but in tunneling experiments they behave like an
insulator, with a finite gap/pseudogap. However, as the system
is cooled down to the superconducting phase, this gap evolves
adiabatically across the superconducting transition, in direct
contrast to an insulating-superconductor transition. Upon gat-
ing, the large compressibility will lead to a large response in
fermion density, which is a unique feature due to moiré flat
bands and distinguishes this bosonic fluid from other failed
superconductors of non flat bands [92]. It is also important to
point out that, despite the absence of superconductivity, the
boson fluid phase may exhibit certain properties of a super-
conductor, e.g., Andreev reflection, because all fermions have
been paired up. These Cooper pairs may also lead to other
nontrivial phenomena. For example, because charge carriers
now have charge 2e, an extra factor of 2 may emerge in
interferometry via the Aharonov-Bohm effect. The bosonic
nature of the Cooper pairs may also lead to non-Fermi liquid
behavior, such as the violation of Wiedemann-Franz law, the
absence or suppression of quantum oscillations and/or Friedel
oscillations, and the departure of C ∝ T scaling in heat
capacity.
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APPENDIX A: SIMULATION SETTING

In homobilayer TMDs, after two layers are rotated by a
small angle θ , we can see in the moiré Brillouin zone (mBZ)
+K valley for the top and bottom layers are shifted to Kt and
Kb (see, for example, Fig. 1 in Ref. [75]). A moiré continuum
Hamiltonian [7,75] for the +K valley, which is similar to the
Bistritzer-MacDonald (BM) model in Ref. [6]: H+(k, r) =
(
− h̄2(k−Kb)2

2m∗ + Pb(r) PT (r)

P†
T (r) − h̄2(k−Kt )2

2m∗ + Pt (r)
), where b and t

refer to the bottom and top layers, m∗ is the effec-
tive mass, and k is the momentum measured from the
+K point. The moiré potential Pb,t,T can be parameter-
ized as follows: PT (r) = w(1 + e−iG2·r + e−iG3·r ), Pl (r) =
2wz

∑
j=1,3,5 cos(G j · r + lψ ), where l ∈ {b, t} = {+1,−1}

and G j are the moiré reciprocal lattice vectors with length
|G j | = 4π√

3aM
and polar angle π ( j−1)

3 . Here aM = a0/θ is
the moiré lattice constant when θ is small. These pa-
rameters were obtained from the first-principle calcula-

tions for the MoTe2 homobilayer (h̄2/2m∗a2
0,wz,w, ψ ) =

(495 meV, 8 meV,−8.5 meV,−89.6◦)[7]. The Hamiltonian
of the other valley −K can be obtained by applying the time-
reversal operation H−(k, r) = H+(−k, r)∗.

Our form factor λm,n,τ (k, k + q + G) is defined by
λm,n,τ (k, k + q + G) = ∑

G′,X u∗
m,τ ;G′,X (k)un,τ ;G′+G,X

(k + q), where u∗
m,τ ;G′,X (k) is the unitary transformation ma-

trix linking the plane-wave and band basis, while the index
X represents all other degrees of freedom, such as layer,
sublattice, spin indices, and so on. To describe twisted TMDs,
one can simply discard this subindex X .

For our interaction V (q), we use a double-gate-screened
Coulomb interaction

V (q)

�
≈ θ

Nk

4π√
3

tanh(q · d)

q · aM
meV. (A1)

Here θ is the twist angle 1.38◦, Nk is the number of momentum
points in mBZ, and d is the distance between two screened
gates set as d = 2aM . At this twist angle, the dispersion of the
top three bands is plotted in Fig. 3.

APPENDIX B: IMPLEMENTATION OF QMC

We follow the implementation of the momentum space
quantum Monte Carlo developed by us in Ref. [59]. Starting
from the Hamiltonian in the flat-band basis

HI = 1

2�

∑
G

∑
q∈mBZ

V (q + G)δρq+Gδρ−q−G,

δρq+G =
∑
k,m,n

[λm,n,τ (k, k + q + G)c†
k,m,τ ck+q,n,τ

− λm,n,−τ (k, k + q + G)c†
k,m,−τ ck+q,n,−τ ]. (B1)

According to the discrete Hubbard-Stratonovich trans-
formation, eαÔ2 = 1

4

∑
l=±1,±2 γ (l )e

√
αη(l )ô + O(α4), where

γ (±1) = 1 +
√

6
3 , γ (±2) = 1 −

√
6

3 , η(±1) = ±
√

2(3 − √
6)

and η(±2) = ±
√

2(3 + √
6), we can rewrite the partition

function as

Z = Tr

{∏
t

e−
τHI (t )

}

= Tr

{∏
t

e−
τ 1
4�

∑
|q+G|�=0 V (q+G)[(δρ−q−G+δρq+G )2−(δρ−q−G−δρq+G )2]

}

≈
∑
{l|q|,t }

∏
t

[ ∏
|q+G|�=0

1

16
γ (l|q|1,t )γ (l|q|2,t )

]
Tr

{∏
t

[ ∏
|q+G|�=0

eiη(l|q|1 ,t )Aq (δρ−q+δρq )eη(l|q|2 ,t )Aq (δρ−q−δρq )

]}
. (B2)

Here t is the imaginary time index with step 
τ , and Aq+G =
√


τ
4

V (q+G)
�

and {l|q|1,t , l|q|2,t } are the four-component auxiliary
fields.

Generally, the average of any observables Ô can be written as

〈Ô〉 = Tr(Ôe−βH )

Tr(e−βH )
=

∑
{l|q|,t }

P({l|q|,t })Tr[
∏

t B̂t ({l|q|,t })] Tr[Ô
∏

t B̂t ({l|q|,t })]
Tr[

∏
t B̂t ({l|q|,t })]∑

{l|q|,t } P({l|q|,t })Tr[
∏

t B̂t ({l|q|,t })]
, (B3)
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P({l|q|,t }) = ∏
t [
∏

|q+G|�=0
1

16γ (l|q|1,t )γ (l|q|2,t )], B̂t ({l|q|,t }) = ∏
|q+G|�=0 eiη(l|q|1 ,t )Aq (δρ−q+δρq )eη(l|q|2 ,t )Aq (δρ−q−δρq ), respectively. We

see Pl = P({l|q|,t })Tr[
∏

t B̂t ({l|q|,t })] as the possibility weight and 〈Ô〉l = Tr[Ô
∏

t B̂t ({l|q|,t })]
Tr[

∏
t B̂t ({l|q|,t })]

as the sample value for configuration

{l|q|,t }. Then the Markov chain Monte Carlo can be implemented to compute 〈Ô〉.

APPENDIX C: ABSENCE OF SIGN PROBLEM

Here, we prove there is no sign problem for our Hamiltonian. Single-particle matrices between two valleys satisfy

δρq+G,τ =
∑
k,m,n

[λm,n,τ (k, k + q + G)c†
k,m,τ ck+q,n,τ ],

δρq+G,−τ =
∑
k,m,n

[−λm,n,−τ (k, k + q + G)c†
k,m,−τ ck+q,n,−τ ]

=
∑
k,m,n

[−λ∗
m,n,τ (k, k − q − G)c†

−k,m,−τ c−k+q,n,−τ ]

=
∑
k,m,n

[−λ∗
m,n,τ (k, k − q − G)c̃†

k,m,−τ c̃k−q,n,−τ ]

= −δρ∗
−q−G,τ . (C1)

Here, c̃k,m,−τ = c−k,m,−τ . Then we can see that, even with flat-band kinetic terms,

B̂t,τ ({l|q|,t }) = e−
τH0,τ

∏
|q|�=0

eiη(l|q1 |,t )Aq (δρ−q,τ +δρq,τ )eη(l|q2 |,t )Aq (δρ−q,τ −δρq,τ ),

B̂t,−τ ({l|q|,t }) = e−
τH0,−τ

∏
|q|�=0

eiη(l|q1 |,t )Aq(−δρ∗
q,τ −δρ∗

−q,τ )eη(l|q2 |,t )Aq(−δρ∗
q,τ +δρ∗

−q,τ ) = B̂∗
t,τ ({l|q|,t }),

Tr

[∏
t

B̂t ({l|q|,t })

]
= Tr

[∏
t

B̂t,τ ({l|q|,t })

]
· Tr

[∏
t

B̂t,−τ ({l|q|,t })

]
=

∣∣∣∣∣Tr

[∏
t

B̂t,τ ({l|q|,t })

]∣∣∣∣∣
2

. (C2)

This is always a nonnegative number so that there is no sign
problem.

APPENDIX D: DETAILS FOR EXACT SOLUTION

First, we show the Nd + 1 degenerate ground states belong
to one Nd + 1-dimensional irrep of SU(2), which can be rep-
resented by the normal Young diagram below:

(D1)

The dimension of irrep can be calculated by hook length
formula

d[Nd ](SU (2)) =
∏

j

2 + j − 1

j
= (Nd + 1)!

Nd !
= Nd + 1.

(D2)
Then, we derive the single-particle excitation of the Hamil-

tonian in Eq. (1). In the single-particle Hilbert subspace HI =
1

2�

∑
G,q V (q + G)

∑
k,m,n,n′,τ λm,n′,τ (k, k + q + G)λn′,n,τ

(k + q + G, k)c†
k,m,τ ck,n,τ , where m, n, n′ are flat-band

labels. One can see there is no intervalley term, so it is
expected that this single-particle spectrum is the same as that
in the intervalley repulsion Hamiltonian, which can be seen
as the red lines have the same dispersion as shown in Fig. 1.
By diagonalizing [λτ (k, k + q + G)λ†

τ (k, k + q + G)]m,n,
we can obtain excited eigenstates |ψ1,k,τ 〉 = c†

k,τ |0〉. Then

(
†)nc†
k,τ |0〉 is also an excited eigenstate with the same

eigenvalue εk,τ .
We would like to normalize the ground-state and

single-particle excitation states above it, such as, |ψ2n〉 =√
(Nd −n)!

n!Nd ! (
†)n|0〉, |ψ2n+1,k,τ 〉 =
√

(Nd −n−1)!
n!(Nd −1)! (
†)nc†

k,τ |0〉,
and c†

k,τ |ψ2n〉 =
√

Nd −n
Nd

|ψ2n+1,k,τ 〉, ck,τ |ψ2n〉 =√
n

Nd
|ψ2n−1,−k,−τ 〉, and 
†|ψ2n〉 = √

(Nd − n)(n + 1)|ψ2n+2〉.
Here |ψ2n〉 and |ψ2n±1,k,τ 〉 are normalized eigenstates with
2n and 2n ± 1 electrons. According to those normalization
relations, we can derive the single-particle Green’s function
at the zero temperature limit

Gk,τ (t ) = Tr(e−(β−t )HI ck,τ e−tHI c†
k,τ )

Tr(e−βHI )

lim
β→∞= 1

Nd + 1

[
Nd −1∑
n=0

e−tεk,τ |〈c†
k,τψ2n|ψ2n+1,k,τ 〉|2

+
Nd∑

n=1

e−(β−t )εk,τ |〈ψ2n−1,−k,−τ |ck,τψ2n〉|2
]

= 1

2
[e−tεk,τ + e−(β−t )εk,τ ], (D3)

note we use t ∈ [0, β] instead of the usual τ to represent the
imaginary time as τ has been occupied as a valley index.
Besides, we can also exactly derive the imaginary time cor-
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relation of Cooper pair operators at zero temperature

〈

(t )
†(0)

〉 = Tr(e−(β−t )HI 
e−tHI 
†)

Tr(e−βHI )

lim
β→∞= 1

Nd + 1

Nd −1∑
n=0

|〈
†ψ2n|ψ2n+2〉|2

= Nd (Nd + 2)

6
. (D4)

Since pairing correlation function P is defined as P =
1

2N2
d
〈

† + 
†
〉, we actually achieve P at zero temperature.

Next, following the proof of statement 4 in Ref. [59], we
formulate in QMC framework and give a proof of relation
〈N̂2

p 〉 − 〈N̂p〉2 = 2〈

†〉 when there is no kinetic term in our
Hamiltonian.

We can see B̂t,τ ({l|q|,t }) is a unitary operator for any config-
uration {l|q|,t }. In the single-particle basis, we write the matrix
form of

∏
t B̂t,τ ({l|q|,t }) as U = eM1 eM2 · · · eMn . According to

QMC’s formula, the Green’s function for this configuration is
defined as

Gi, j (τ ) = Tr
[
ci,τ c†

j,τ

∏
t B̂t,τ ({l|q|,t })

]
Tr

[∏
t B̂t,τ ({l|q|,t })

] = [(I + U )−1]i, j .

(D5)

By seeing G(τ ) + G†(τ ) = (I + U )−1 + (I + U −1)−1 =
(I + U )−1 + U (I + U )−1 = I , we have Gi, j (τ ) + G∗

j,i(τ ) =
δi, j . To compute particle fluctuations, we can write 〈N̂2

p 〉l and
〈

†〉l as

〈

†〉l =
〈∑

k1,m1

c−k1,m1,−τ ck1,m1,τ

∑
k2,m2

c†
k2,m2,τ

c†
−k2,m2,−τ

〉
l

=
∑
k1,m1

∑
k2,m2

〈
c−k1,m1,−τ c†

−k2,m2,−τ

〉
l

〈
ck1,m1,τ c†

k2,m2,τ

〉
l

=
∑
k1,m1

∑
k2,m2

∣∣Gk1m1,k2m2

∣∣2
,

〈
N̂2

p

〉
l =

〈 ∑
k1,m1,τ1

c†
k1,m1,τ1

ck1,m1,τ1

∑
k2,m2,τ2

c†
k2,m2,τ2

ck2,m2,τ2

〉
l

=
∑

k1,m1,τ1

∑
k2,m2,τ2

〈
c†

k1,m1,τ1
ck1,m1,τ1

〉
l

〈
c†

k2,m2,τ2
ck2,m2,τ2

〉
l + 〈

c†
k1,m1,τ1

ck2,m2,τ2

〉
l

〈
ck1,m1,τ1 c†

k2,m2,τ2

〉
l

=
(∑

k1,m1

2 − [
Gk1,m1 (τ ) + G∗

k1,m1
(τ )

])2

+
∑
k1,m1

∑
k2,m2

∑
τ

[
δk1,k2δm1,m2 − Gk2m2,k1m1 (τ )

]
Gk1m1,k2m2 (τ )

= N2
d + 2

∑
k1,m1

∑
k2,m2

∣∣Gk1m1,k2m2

∣∣2

= N2
d + 2〈

†〉l . (D6)

Since we can also easily see 〈N̂p〉l = Nd , after averaging all configurations, we will get 〈N̂2
p 〉 − 〈N̂p〉2 = 2〈

†〉.

Finally, we would like to derive two-fermion excitations following a similar method as was used in Ref. [74]. For p �= 0, it is
easy to check 〈0|
nc−k2−p,−τ ck2,τ c†

k1,τ
c†
−k1−p,−τ

(
†)n|0〉 = δk1,k2 A and 〈0|
nc†
k2+p,τ

ck2,τ c†
k1,τ

ck1+p,τ (
†)n|0〉 = δk1,k2 A where A

is a normalization constant. This means two-fermion excitations on ground states c†
k1,τ

c†
−k1−p,−τ

(
†)n|0〉 or c†
k1,τ

ck1+p,τ (
†)n|0〉
are orthogonal so that they can be seen as a well-defined basis. According to SU(2) symmetry, they should have the same
excitation spectrum. By noticing HI applying on this basis forms a closed subspace

HI c
†
k,τ ck+p,τ (
†)n|0〉 = [HI , c†

k,τ ck+p,τ ](
†)n|0〉
=

∑
q+G �=0

V (q + G)[λτ (k, k + q + G)λτ (k + q + G, k)c†
k,τ ck+p,τ

− 2λτ (k + p, k + p + q + G)λτ (k + q + G, k)c†
k+q,τ ck+q+p,τ

+ λτ (k + p + q + G, k + p)λτ (k + p, k + p + q + G)c†
k,τ ck+p,τ ](
†)n|0〉. (D7)

One can diagonalize this matrix in subspace to compute eigenexcitation states as shown in Fig. 1(a). These excitations can be
c†

k1,τ
ck1+p,τ with zero charge or c†

k1,τ
c†
−k1−p,−τ

with charge 2e. Thus within the single-particle gap, there are continuously charged
bosonic excitations.
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FIG. 7. DOS for 9 × 9 at low temperature T from QMC+SAC. (a) DOS without kinetic term. (b) DOS with kinetic term.

APPENDIX E: ADDITIONAL FIGURES

Here, we use our exact solution results to benchmark the
numerical code. As shown in Figs. 4(a) and 4(b), QMC sim-
ulations at low temperature match perfectly with the exact
solution Eq. (D3) and superconductivity pairing correlation

function P from QMC with increasing β also matches the one
computed from Eq. (D4). In Figs. 4(c) and 4(d), one can see
the critical temperature determined by slope crossing matches
well with Figs. 2(e) and 2(f) in the main text.

We show our ED results here for the 3 × 4 system at
particle number N = 12 and N = 11 in Fig. 5. One can
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FIG. 8. Average particle number 〈N̂p〉 versus chemical potential μ for 6 × 6 (a) without kinetic term and (c) with kinetic term. Compress-

ibility versus chemical potential derived from κ = 1
Nd

d〈N̂p〉
dμ

(colorful lines) by numerical differentiation and κ = β
〈N̂2

p 〉−〈N̂p〉2

Nd
(colorful circles)

by QMC direct measurement (b) without kinetic term and (d) with kinetic term.
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see the one-charge excitations are gapped at all momentum
points and there are some excitations within the single-particle
gap.

QMC + SAC DOS results with kinetic term at differ-
ent chemical potential are shown in Fig. 6. One can see
a small kinetic term with small chemical potential almost
does not change the single-particle excitation. Also, the DOS
figures below temperature T = 0.3 (β = 3.3) which are the
low-temperature supplement of Figs. 2(c) and 2(d) are shown
in Fig. 7. One can see after being fullly gapped, the position
of the peak is almost unchanged around the single-particle ex-
citation energy. It can be understood intuitively that the DOS
only measures the single-particle Green’s function so that the

pair excitation, which is described by two particle Green’s
function as shown in Fig. 4(a) within the single particle gap,
cannot be observed by DOS.

The average particle number 〈N̂p〉 versus chemical poten-
tial μ is plotted with kinetic term in Fig. 8(a) and without
kinetic term in Fig. 8(c) as a supplement to Figs. 2(g) and 2(h).
Due to the huge compressibility at low temperature, it is

hard to compute d〈N̂p〉
dμ

by numerical differentiation precisely.
We use the particle fluctuation measured from QMC directly
to derive the compressibility data in Figs. 2(g) and 2(h) by

κ = β
〈N̂2

p 〉−〈N̂p〉2

Nd
. The comparison of these two methods for

different temperature is shown in Figs. 8(b) and 8(d).
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