
PHYSICAL REVIEW B 106, 184513 (2022)

Spin transport in a normal metal–Ising superconductor junction
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The combination of spin-orbit coupling and superconductivity induces unconventional spin-triplet correlation
in Ising superconductors. We theoretically investigate the spin transport through a normal metal–Ising super-
conductor junction, showing that Ising superconductors also have the characteristic of spin superconductivity.
Due to the existence of spin-triplet Cooper pairs, not only charge supercurrent but also spin supercurrent can
transport in Ising superconductors. We analyze the transport process in the junction, which is mainly contributed
by the equal-spin Andreev reflection and spin-flip reflection, and calculate the spin conductance and the spin
injection efficiency under different conditions. Our findings broaden the boundary of spin superconductivity and
reveal the potential applications of Ising superconductors in spintronics, especially in controlled long-distance
dissipationless spin transport.
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I. INTRODUCTION

The manipulating of spin transport is one of the most
significant topics in spintronics [1,2]. Due to the vectorial
feature of spin operators, in general, the spin current is a
tensor and can be driven by a spin bias [3,4]. Such spin
bias, especially in metals, splits the chemical potentials of
electrons with opposite spin. Therefore, electrons with oppo-
site spin move oppositely, generating a nonzero spin current.
However, this transport suffers from the suppression of spin
relaxation and dephasing mechanisms, causing the decreasing
of the spin lifetime and transport distance, which prevents it
from wide applications [1,5,6]. To this end, the newly pro-
posed state of spin superconductivity [7–13] can effectively
overcome such difficulty. As a counterpart of the charge su-
perconductivity, the spin superconductivity was proposed in
the research of ferromagnetic graphene. The condensation of
spin-triplet electron-hole pairs can form a superfluid state to
achieve zero spin resistance while the whole system remains
a charge insulator [7]. As an analogy to the charge super-
conductor, spin superconductor can mediate dissipationless
transport of spin current and has an electric Meissner effect
as well as spin-current Josephson effect [7,14–16], both of
which can be described by the Ginzburg-Landau-type equa-
tions [7,10,11,17]. Since its appearance, the domain of spin
superconductivity has been broadening, including spin-triplet
exciton condensation, spin superfluidity in magnetic insula-
tors, and so on [18–22].

Since the discovery of graphene, the emerging two-
dimensional materials have offered a unique platform for spin-
tronics, providing opportunities for future applications [6,23].
Among them, two-dimensional transition-metal dichalco-
genides (TMDs) have gained growing interests due to their
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strong spin-orbit coupling (SOC) in both conduction and va-
lence bands [24]. In recent years, experiments have observed
exotic superconducting state in two-dimensional TMDs films,
which exhibits an enhancement of in-plane upper critical
field far beyond the Pauli paramagnetic limit [25–28]. Both
theories and experiments have revealed that this supercon-
ductivity is due to the intervalley pairing protected by the
SOC-induced Zeeman-type spin-valley locking, namely Ising
superconductivity [25–27,29,30]. Further research found that
there exist spin-triplet correlations in Ising superconductors
[31–33]. Such spin-triplet correlations can affect the transport
process in Ising superconductors, ensuring the appearance
of equal-spin Andreev reflection. Unlike normal Andreev re-
flection, in the equal-spin Andreev reflection, the incident
electrons and reflected holes are in the same spin sub-band, in-
jecting spin-triplet Cooper pairs into the Ising superconductor.
It has been found that in ferromagnet-Ising superconductor
junctions, there exists equal-spin Andreev reflection, which
has a magnetoanisotropic period π different from 2π in the
conventional magnetoanisotropic system [34]. Similarly, in
Ising superconductor Josephson junctions with a ferromag-
netic center, the equal-spin Andreev reflection also results
in a π -period magnetoanisotropic behavior in the current-
phase difference relations and induces a switch effect and
0-π transition for the charge transport [35,36]. Besides, equal-
spin cross Andreev reflection is also found in junctions
where the Ising superconductor is sandwiched by two ferro-
magnets [37]. As the spin-triplet Cooper pairs possess both
charge 2e and spin h̄, the unconventional Ising superconductor
should not only be the charge superconductor but also be
viewed as a superconductor of spin [17]. Therefore, with the
help of the equal-spin Andreev reflection, the spin current
would be able to flow dissipationlessly through the Ising
superconductor.

In this paper, we theoretically investigate the spin trans-
port through a normal metal–Ising superconductor junction,
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FIG. 1. (a) Schematics of the normal metal–Ising superconductor
junction with the normal state energy band of the heterostructure
in the upper part. While the left lead remains a metal state, for
different Fermi energy, the right lead would be in different phases.
Here μ1 and μ2 indicate the Fermi energy for double-band and
single-band cases, respectively. Besides, n̂ denoting the direction
of spin bias. (b) The spin transport process under a spin bias.
The spin bias drives a spin supercurrent injected into the Ising su-
perconductor by the equal-spin Andreev reflection, as spin-triplet
Cooper pairs carrying opposite spin flow oppositely in the Ising
superconductor.

showing that Ising superconductors are also spin supercon-
ductors. Under a spin bias [3], a spin current can flow through
the junction. Two spin transport processes, the equal-spin An-
dreev reflection and spin-flip reflection, occur at the interface
of the junction. They correspond to injecting the spin into
Ising superconductor and dissipating spin at the interface,
respectively. Using nonequilibrium Green’s function method,
we obtain the corresponding coefficients. Then we investigate
the spin current of the system and the spin injection efficiency
under various parameters. These results show the possibility
to detect spin superconductivity in Ising superconductors and
its potential applications for controlled dissipationless long-
distance spin transport.

The rest of the paper is organized as follows. In Sec. II,
we give the Hamiltonian of the normal metal–Ising supercon-
ductor junction and derive the formula for the spin transport
process. In Secs. III and IV, we study the equal-spin Andreev
reflection and spin-flip reflection, respectively. They are the
main processes contributing to the spin transport. In Sec. V,
we further consider the impact of spin bias and calculate the
total spin conductance of the system. Finally, a brief summary
is presented in Sec. VI.

II. MODEL AND FORMULA

We consider the system depicted in Fig. 1(a), consisting of
a normal metal coupled to an Ising superconductor. The sys-
tem is described by the following tight-binding Hamiltonian

Htot = HN + HIS + HC , with [34]

HN =
∑
ms

(ε − EL + λmβ )a†
msams +

∑
〈mn〉s

ta†
msans,

HIS =
∑
ms

(ε − ER + λmβ )b†
msbms +

∑
〈mn〉s

tb†
msbns

+
∑

〈〈mn〉〉ss′
iβsνmnσ

z
ss′b†

msbns′ +
∑

m

(�b†
m↑b†

m↓ + H.c.),

HC =
∑
mns

tc(m, n)a†
msbns + H.c., (1)

where HN , HIS, HC represent the Hamiltonians of normal
metal, Ising superconductor, and their coupling, respectively.
ams and bns are electron annihilation operators in the nor-
mal metal and Ising superconductor, with m, n denoting the
discrete sites and s =↑,↓ denoting the electron spins. Here
both the normal metal and Ising superconductor are hexag-
onal lattice, with ε − EL/R denoting the on-site energy and
λmβ = ±β for the energy difference between A-B sublattice.
Moreover, the on-site energy EL/R can be modulated by the
gate voltage in experiments [26,38] so that the right lead
can be regulated to either single-band or double-band Ising
superconducting state with the left lead remaining the metal
state [see the energy band in Fig. 1(a)]. The SOC in Ising
superconductor is described by the second-nearest-neighbor
hopping term with νmn = ±1 depending on the orientation
of the two sites m to n [39], and βs denoting the strength
of SOC, causing a band splitting of 2βso = 6

√
3βs. Besides,

the nearest-neighbor hopping and the superconducting pairing
potential are denoted as t and �, respectively.

We assume that the left and right leads are naturally con-
nected, i.e., the coupling only exists in the outmost layer of
each lead, and set tc(m, n) = t when m, n are in the outmost
layers. By considering the junction width in y direction to
be large, we can adopt the periodic boundary condition and
apply the Bloch theorem along y direction to introduce the
transverse wave vector ky. While ky = 0 represents the normal
incident case, the nonzero ky characterizes the process of
oblique incidence. Thus the total Hamiltonian can be rewritten
as Htot = ∑

ky
Htot (ky). By calculating the transport processes

of each independent ky channel and summing them up, we can
obtain the whole transport property of this two-dimensional
normal metal–Ising superconductor junction.

The spin current flowing from the left lead into the junction
can be expressed as [3,40]

Js = h̄

2
(J+ − J−), (2)

where we consider an arbitrary orientation of spin bias n̂ and
the corresponding basis |±〉 = |n̂ · �S = ±h̄/2〉. In the pres-
ence of good quantum number ky, we can derive the total spin
current as Js = h̄

2

∑
ky

[J+(ky) − J−(ky)]. We apply a spin bias
onto the left normal-metal lead and keep the right Ising su-
perconductor lead under zero bias, so the chemical potentials
of the left and right leads are μL± = ±eV and μR± = 0 with
V the spin bias strength. After choosing the outmost layer of
the normal-metal lead to be the center region and expressing
the Green’s functions Gr,a and linewidth matrices �L/R in
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generalized 4×4 Nambu basis, we obtain each specific spin
current Jσ (σ = ±) by using nonequilibrium Green’s function
method [34,41],

Jσ = 1

h

∫
dω[( fL,eσ − fL,hσ )The,σ + ( fL,eσ − fL,eσ̄ )Tēe,σ

+ ( fL,eσ − fR)Ttrans,σ ], (3)

where The,σ = Tr[�L
eeσσ Gr

ehσσ�L
hhσσ Ga

heσσ ] is the equal-spin
Andreev reflection coefficient representing the process that
an incident electron with spin σ is reflected as a hole in
the same spin sub-band. Tēe,σ = Tr[�L

eeσσ Gr
eeσ σ̄�L

eeσ̄ σ̄ Ga
eeσ̄ σ ] is

the spin-flip reflection coefficient, with σ̄ indicating the op-
posite spin of σ . Ttrans,σ = Tr[�L

eeσσ (Gr�RGa)eeσσ ] is the
transmission coefficient corresponding to the quasiparticle
tunneling. The spin bias setting requires fL,eσ = fL,hσ̄ =
f (ω − eV ) and fL,eσ̄ = fL,hσ = f (ω + eV ) in the normal-
metal lead and fR = f (ω) in the Ising superconductor lead,
with f (ω) being the Fermi distribution function. Besides, as
the sign of the spin σ only affects the phases of the amplitudes
of the equal-spin Andreev reflection and spin-flip reflection, it
would not change the coefficients. Therefore, we simply omit
the subscript σ of the The, Tēe in the discussions below.

III. EQUAL-SPIN ANDREEV REFLECTION

As demonstrated in previous works [31,34,42], the pair-
ing symmetry in Ising superconductors can be expressed as
pairing correlation F = �[ψsσ0 + d · σ]iσy, with a scalar ψs

parametrizing the spin-singlet pairing correlation and a vector
d parametrizing the spin-triplet pairing. Near the K valley,
d = (0, 0, dz ) with

dz(p + K, ω)

= 2βsoξp

[ω2+ − (ξp + βso)2 − �2][ω2+ − (ξp − βso)2 − �2]
,

(4)

where βso = 3
√

3βs, ω+ = ω + i0+, and ξp = |p|2/2m − EF

is the kinetic energy measured from the Fermi surface with
m the effective mass [34]. We thus find that dz vanishes
without SOC (βs). By choosing an arbitrary orientation of
the spin quantization axis n̂ = (sin θ cos φ, sin θ sin φ, cos θ )
with the azimuth angles θ and φ [see Fig. 1(a)], we fur-
ther get the equal-spin-triplet pairing correlation as Fσσ =
σdz sin θeiφ, σ = ±. It shows that the spin of Cooper pair
has finite component in xOy plane but none in the z direction.
Such Cooper pairs carry both charge and spin, so they can
transport not only charge supercurrent but also spin supercur-
rent [17].

The nonzero Fσσ indicates that it is possible to generate
and inject spin-triplet Cooper pairs into Ising superconduc-
tors to achieve dissipationless spin transport. This is done
through the equal-spin Andreev reflection process [34,40,43]
[see Fig. 1(b)]. The strength of The determines the magnitude
of the spin supercurrent and is related to the equal-spin-triplet
pairing correlation Fσσ , showing a strong anisotropic angular
dependence. Figure 2(a) shows how The depends on the spin
direction of incident electrons. When the spin bias is along
z direction, Fσσ |θ=0 = 0. The zero equal-spin-triplet pairing

FIG. 2. Polar angle θ dependence of equal-spin Andreev reflec-
tion coefficient The (a) and spin-flip reflection coefficient Tēe (b) with
different on-site energy ER. We keep � = 1 meV, β = ε = −1eV,

t = −3 eV, βs = 2 meV, EL = 20 meV, ky = 0, ω = 0, and φ = 0
in calculations.

correlation indicates that all the Cooper pairs are without
z-direction spin component. Thus, none can carry z-direction
spin supercurrent and The disappears. As the orientation de-
viates from z axis, The rises up, which is consistent with the
Fσσ − θ relation, indicating the increase of spin-triplet Cooper
pairs. Both The and Fσσ reach their maxima when the spin
orientation is in xOy plane, where only Cooper pairs formed
by equal-spin electrons contribute to the spin-triplet pairing
correlation. Due to the dissipationless nature of Cooper pairs,
it is beneficial to long-distance spin transport. Moreover, as
the azimuth angle φ only attaches a phase factor to Fσσ , it
does not affect The and the transport process.

Besides, the equal-spin Andreev reflection process also
depends on the SOC strength βs and the on-site energy ER/L

[shown in Figs. 3(a) and 3(b)], which splits the energy band
and affects the Fermi surface in the Ising superconductor,
respectively. As we consider the normal incident case (ky = 0)
with zero incident energy, for a fixed βs, the increasing of
ER shifts the Fermi surface below the bottom of bands to the
middle of two spin sub-bands or even higher [see Fig. 1(a)],
making the right lead experience a phase transition from
normal insulating (NI) state through single-band Ising super-
conducting (SIS) state to double-band Ising superconducting
(DIS) state. The transition lines are given as

ER = ±3
√

3βs. (5)

In different phases, the strength of the equal-spin Andreev
reflection The appears to be quite different. When the right
lead is in the NI state, no carrier can flow through it so that
The disappears [see Figs. 3(a) and 3(b)]. As ER increases, the
magnitude of The is first dramatically enhanced in the SIS
phase but then suppressed in the DIS phase [Figs. 3(a) and
3(b)]. These behaviors can be qualitatively understood from
|dz| that has two extrema at ξp ≈ ±βso. If we consider the
normal incident case (ky = 0), these extrema appear at

ER = k2
x

2m
± 3

√
3βs. (6)

For the transport processes, kx varies, passing both extrema if
ER > 3

√
3βs, one extremum if −3

√
3βs � ER � 3

√
3βs or no

extremum if ER < −3
√

3βs. Only the second case can intro-
duce large dz and ensure the arising of remarkable equal-spin
Andreev reflection process in the SIS phase. Meanwhile, for
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FIG. 3. (a) and (b) are the color-coded equal-spin Andreev re-
flection coefficient The as functions of SOC strength βs and on-site
energy EL/R. The phases separated by dashed lines are normal insu-
lating (NI) state, single-band Ising superconducting (SIS) state, and
double-band Ising superconducting (DIS) state, respectively. (c) and
(d) are the equal-spin Andreev reflection coefficient The as functions
of transverse wave vector ky and incident energy ω with different
on-site energy ER. The starting points in (c) (ky = 0) and (d) (ω = 0)
correspond to the cross dots in (a). We keep θ = π/2 in calculations
while other parameters are the same as those in Fig. 2.

a large ξp, dz undergoes a cubic decay along with the increase
of ξp [see Eq. (4)]. This means that few spin-triplet Cooper
pairs exist apart from the extrema, resulting in The being small
in both the DIS and NI phases.

Further calculations tell us more characteristics of the
equal-spin Andreev reflection The that it can be influenced
by the Fermi wavelength mismatch in two leads, the trans-
verse wave vector ky and the incident energy ω. As shown
in Fig. 3(b), when EL < 0, the Fermi surface in the left lead
locates in the energy gap, making it an insulating state. There-
fore, no electron can transport through the left lead, causing
the zero value of The. As EL varies greater than zero, it affects
the Fermi wavelength kF,L in the left lead so that The can
get enhancement at some appropriate EL. In other cases, The

suffers a decrease due to the Fermi wavelength mismatch in
two sides [34].

We then select cross dots from Fig. 3(a) as the start-
ing points to investigate the influence of oblique incidence
and nonzero incident energy. The results are plotted in the
Figs. 3(c) and 3(d). For oblique incident cases, the incoming
electrons have nonzero transverse momentum, corresponding
to nonzero ky. At some large |ky| > |kF,L|, The vanishes be-
cause there exists no electron in the left lead. Otherwise, we
can rewrite the extrema condition as

ER − k2
y

2m
= k2

x

2m
± 3

√
3βs. (7)

Under the same argument with Eq. (6), we can get notable The

values at region −3
√

3βs � ER − k2
y /2m � 3

√
3βs. It means

that the oblique equal-spin Andreev reflection process can
occur even in the DIS phase, consistent with the numerical
results in Fig. 3(c). For varying incident energy ω, Fig. 3(d)
shows that The decays quickly outside the superconducting gap
�, regardless of the value of ER. Inside the superconducting
gap �, the increase of ω can effectively enhance the strength
of The in the SIS phase but suppress the process in the DIS
phase. This enhancement can also be understood from dz as
its absolute value increases with ω approaching � inside the
gap.

IV. SPIN-FLIP REFLECTION

Next we turn to another process associated with spin
transport, that is the spin-flip reflection. Although it always
contributes to the spin current in the normal-metal side,
whether this current can flow into the other side depends on
carriers. In exciton spin superconductors [7–9], the carrier is
electron-hole pair that form a dissipationless superfluid state,
which makes the spin-flip reflection act as an Andreev reflec-
tion. Therefore, in the metal-spin superconductor interface,
such reflection injects spin supercurrent into the spin super-
conductor by inducing electron-hole pairs [44,45]. However,
in Ising superconductors, those who carry the spin supercur-
rent are spin-triplet Cooper pairs generated only through the
equal-spin Andreev reflection. Thus the spin-flip reflection
process cannot inject the spin into the Ising superconductor
but dissipates it around the interface of the junction. Calcu-
lated results about spin-flip reflection coefficient Tēe are shown
in Fig. 2(b) and Fig. 4. Tēe = 0 when the polar angle θ = 0, π

and it reaches the maximum at θ = π/2, 3π/2, which is sim-
ilar to the equal-spin Andreev reflection The. But the behavior
of Tēe as functions of βS and ER (EL and ER) [see Figs. 4(a)
and 4(b)] is quite different from The [see Figs. 3(a) and 3(b)].

The spin-flip reflection can be understood from the torque
provided by the SOC-induced effective Zeeman field. As the
effective field is along z direction, the incident electrons can
feel the torque as soon as their spin orientations are apart
from z axis. Such effect reaches its maximum when the spin
orientation is perpendicular to z axis, namely along the xOy
plane, which explains the anisotropic angular dependence [see
Fig. 2(b)]. Moreover, due to the existence of SOC, the spin-flip
process can happen even in the NI phase and shows two
maximum peaks around the transition lines [see Figs. 4(a) and
4(b)]. While The appears to be larger near the NI-SIS line, the
peak of Tēe near the NI-SIS line is, however, lower than that
near the SIS-DIS line, showing the different influence of EL

on two processes.
Our calculations further reveal that for oblique incident

cases, the spin-flip reflection in both SIS and DIS phases are
enhanced at some high |ky| [see Fig. 4(c)]. This is because the
transition lines satisfy

ER − k2
y

2m
= ±3

√
3βs (8)

for a nonzero ky. As ER varies, the peaks correspond to a
higher |ky|. Besides, for different incident energy ω, the be-
havior of the spin-flip reflection Tēe differs slightly from that
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FIG. 4. (a) and (b) are the color-coded spin-flip reflection coeffi-
cient Tēe as functions of SOC strength βs and on-site energy EL/R.
(c) and (d) are the spin-flip reflection coefficient Tēe as functions
of transverse wave vector ky and incident energy ω with different
on-site energy ER. The starting points in (c) (ky = 0) and (d) (ω = 0)
correspond to the cross dots in (a). We keep θ = π/2 in calculations
while other parameters are the same as those in Fig. 2.

of the equal-spin Andreev reflection The [see Fig. 4(d)]. Inside
the superconducting gap, the suppression of Tēe happens not
only in the DIS phase but also near the SIS-DIS transition re-
gion. As ω varies greater than �, unlike The decaying quickly
to zero, Tēe remains a finite strength and is only suppressed in
or near the DIS phase, showing that the spin-flip reflection is
contributed by SOC rather than superconducting.

V. SPIN CONDUCTANCE

We then investigate the total spin current of the system,
considering the differential spin conductance in the small spin
bias limit and finite spin bias cases.

The differential spin conductance is defined as Gs =
dJs/dV . In small spin bias limit where V → 0, it can be repre-
sented by Gs = ∑

ky
(e/2π )[The,+ + The,− + Tēe,+ + Tēe,−] for

the absence of the quasiparticle tunneling process. This re-
sult presents the contribution of equal-spin Andreev reflection
and spin-flip reflection to the spin conductance. As shown in
Fig. 1(b), considering the spin bias in x direction as an exam-
ple, the occupied spin x channel injects Cooper pairs with spin
S = 1, Sx = 1 into the right lead, while those Cooper pairs
carrying S = 1, Sx = −1 flow out of the Ising superconduc-
tor to the unoccupied spin x̄ channel of the left lead, both
with the help of the equal-spin Andreev reflection. Therefore,
Cooper pairs carrying opposite spin flow oppositely in the
Ising superconductor, causing a dissipationless spin super-
current. Meanwhile, the spin-flip process can dissipate the
spin current near the interface of the junction, consuming
the injected spin current from the left side and offering a
channel to contribute to the spin conductance. Next we further

FIG. 5. (a) is the calculated results of linear spin conductance
Gs as a function of ER and βs. Here G0 = e/2π · W/3a with a the
nearest-neighbor site-site distance and W the ribbon width. We select
vertical and transverse dots to further investigate the characteristics
of Gs [shown in Figs. 6(a) and 6(b), respectively]. (b) is the spin in-
jection efficiency η as a function of ER and βs. We select vertical dots
to further investigate the characteristics of η [shown in Fig. 6(d)]. We
keep θ = π/2 and sum up all the ky channels in calculations while
other parameters are the same as those in Fig. 2.

consider the quasiparticle tunneling process occurring in the
finite bias. Compared with the enhancement of spin lifetime
of quasiparticles in normal superconductors [46], the situa-
tion here is more complicated. On one hand, the spin-orbit
scattering would flip the spin of quasiparticles, on the other
hand, the spin-triplet correlations induced by SOC gives the
way that the recombination of quasiparticles would also in-
duce spin-triplet Cooper pairs and carry a spin supercurrent
[47]. Our calculated results show in Fig. 5(a) that although
the spin transport for the normal incidence (ky = 0) mainly
occurs in the SIS phase, the linear spin conductance Gs is still
appreciable in the DIS phase for the enhancement contributed
by oblique incidence.

As discussed above, this spin conductance is defined in the
left lead and is usually unequal to the spin supercurrent in
the Ising superconductor. Therefore, to investigate the spin
supercurrent flowing in the Ising superconductor, we further
define the spin injection efficiency as η = 1 − Gs,dis/Gs,tot ,
where Gs,dis is the dissipated part, which is governed by the
spin-flip reflection, and Gs,tot is the total spin current in the
normal-metal lead. One can see from Fig. 5(b) that in the DIS
phase, η is a relatively small value and most of the spin current
flowing through normal-metal lead will be dissipated near the
interface. This is consistent with the result in Fig. 3 that the
equal-spin Andreev reflection is suppressed in the DIS phase.

Starting from Gs in small spin bias limit, we further calcu-
late the spin conductance under finite spin bias [see Figs. 6(a)
and 6(b)]. When the spin bias varies from zero to �, the
spin conductance Gs increases slightly in the SIS phase, but
decreases in the DIS phase [see the curve with ER/� = 20
in Fig. 6(a)]. Out of the superconducting gap, Gs decreases
slightly in the SIS phase and increases in the DIS phase with
the increase of spin bias V . When V > 2�, Gs remains nearly
unchanged. If we further look at the part contributed by the
equal-spin Andreev reflection [denoted as GA in Fig. 6(c)], we
find that it always grows up inside the superconducting gap
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FIG. 6. Results of differential spin conductance Gs in finite spin
bias cases with (a) fixed βs = 2 meV and (b) fixed ER = 15 meV.
(c) is the differential spin conductance GA contributed by equal-spin
Andreev reflection and (d) is the spin injection efficiency η, both
fixing βs = 2 meV in calculations. While (a), (c), (d) use the same
legend in (c), we keep θ = π/2 in calculations and other parameters
are the same as those in Fig. 2.

but decays quickly at eV > �. This is similar to the normal
Andreev reflection coefficient in normal lead-superconductor
heterostructures, where a resonant Andreev reflection happens
near the gap edges [48]. Meanwhile, the calculated results of
spin injection efficiency η in Fig. 6(d) show that no matter eV
is smaller or larger than �, in the SIS phase, η is almost un-
changed, but in the DIS phase, η grows quickly as the spin bias
approaches the superconducting gap and remains a relatively
high level at eV > �. This large η is due to the large double-
band-induced transmission coefficients Ttrans,σ , together with
the limited interface dissipation in the DIS phase. Similar
to the current-to-superflow conversion in charge transport
[47], we expect here a conversion from spin current carried
by quasiparticles to spin supercurrent carried by spin-triplet
Cooper pairs. So the spin injection by Ttrans,σ can convert into
the dissipationless spin supercurrent. On the other hand, when
eV < �, the spin injection efficiency η has a larger value
in the SIS phase than in the NI and DIS phases. Here η in
the SIS phase can exceeds 40% at the suitable parameter. In

particular, for eV < �, the spin injection efficiency is com-
pletely contributed by the equal-spin Andreev reflection and
the spin current is carried by the spin-triplet Cooper pairs, so
it is undoubtedly nondissipative.

VI. DISCUSSION AND CONCLUSIONS

The calculations above show the transport characteristics
of spin superconductivity in Ising superconductors, as well
as the possibility of detecting spin superconducting state. As
both spin supercurrent and spin dissipation can be controlled
by various parameters, it is convenient in experiments to ad-
just the transport by electrical gate controlling. Moreover, as
the spin-triplet component can be regarded as the combination
of ferromagnetism and superconducting order parameter, in
traditional superconducting spintronics, this is usually ob-
tained by the proximity between a normal superconductor and
a ferromagnet [2,46,49–52]. However, the spin-triplet Cooper
pairs here in Ising superconductors are intrinsic quantum co-
herent states, providing unique advantages in long-distance
spin transport. As the spin transport highly depends on spin
directions and gate voltages, it makes Ising superconductors
competitive in the aspect of controlled long-distance spin
transport.

In summary, we show that Ising superconductors also
have the characteristic of spin superconductivity, as its spin-
triplet component can carry spin supercurrent. Using the
nonequilibrium Green’s function method, we comprehen-
sively investigate the spin transport in the normal metal–Ising
superconductor junction. The calculations show that spin su-
percurrent can be injected into the Ising superconductor by
equal-spin Andreev reflection process, while some spin cur-
rent is dissipated near the interface of the junction by spin-flip
process. We emphasize that the characteristic of spin su-
perconductivity in Ising superconductors makes it useful to
controlled long-distance dissipationless spin transport, which
can promote the further development of spintronics.

ACKNOWLEDGMENTS

This work was financially supported by NSF-China (Grant
No. 11921005), National Key R and D Program of China
(Grant No. 2017YFA0303301), and the Strategic priority Re-
search Program of Chinese Academy of Sciences (Grant No.
XDB28000000).
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