
PHYSICAL REVIEW B 106, 184511 (2022)
Editors’ Suggestion

Insulating phase in two-dimensional Josephson junction arrays investigated by nonlinear transport
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We present experimental investigations of transport properties in the insulating phase of two-dimensional
Josephson-junction arrays (JJAs) by systematically changing the ratio of Josephson energy EJ and charging
energy EC. The observed temperature dependence of resistance indicates that the JJAs do not show a sharp
phase transition but exhibit a gradual crossover to the insulating phase. At low temperatures, the current-voltage
(I-V ) characteristics become nonlinear as described by I = cV + bV a (a, b, and c are temperature-dependent
coefficients). This nonlinear behavior is understood in terms of the Berezinskii-Kosterlitz-Thouless mechanism
by taking into account the influence of a finite-range cutoff of the logarithmic interaction between Cooper pairs.
From the analysis of the nonlinearity, we deduce the crossover temperature to the insulating phase and determine
the phase diagram in the insulating side as a function of EJ/EC. We also show that, at very low temperatures, the
I-V characteristics continuously develop into the negative differential conductance caused by coherent single-
Cooper-pair tunneling.
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I. INTRODUCTION

The superconductor-insulator transition (SIT) that occurs
at zero temperature is a representative example of quantum
phase transitions (QPTs) [1–3]. It is observed in a wide range
of systems from amorphous metal films [4–7] to supercon-
ducting oxides [8]. In some of the systems, the insulating
phase occurs not by breaking Cooper pairs but by localiza-
tion of Cooper pairs [1,5,6,8–10]. The SIT to such a Bose
insulating phase involves only bosonic degrees of freedom,
and investigations of such a simple system offers a starting
point to explore more complex QPTs. To understand the
nature of the QPT to the Bose insulating phase, uncover-
ing detailed properties of the insulating phase is of prime
importance.

A pivotal model system to gain a deeper understanding
of the Bose insulating phase is Josephson-junction arrays
(JJAs) [11–22]. They are artificial quantum many-body sys-
tems composed of superconducting islands connected via
small Josephson junctions. In two-dimensional (2D) JJAs,
the QPT between the superconducting and insulating phases
occurs due to the competition between two energies: the
Josephson energy EJ, which allows for tunneling of Cooper
pairs to neighboring islands, and the charging energy EC,
which tends to pin Cooper pairs to each island [11–13,15,23].
Intensive experimental studies have clarified fundamental
properties in the superconducting phase realized at EJ � EC,
such as the Berezinskii-Kosterlitz-Thouless (BKT) transition
to superconducting phase [24–28] and the phase diagram
of the superconducting phase as a function of EJ/EC [15].
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Compared to the superconducting phase, however, the nature
of the insulating phase realized at EC � EJ has been less
investigated experimentally.

A key concept that may illuminate properties of the insulat-
ing phase is duality, which is approximately present between
vortices and charges in 2D JJAs [11,23]. From the duality ar-
gument, the thermodynamic transition to the insulating phase
is driven by the BKT mechanism of binding of Cooper pairs
and anti-Cooper pairs (charge BKT transition). This is asso-
ciated with the fact that Cooper pairs and anti-Cooper pairs,
which are elementary excitations in the insulating phase, inter-
act with the logarithmic potential as analogous to vortices in
the superconducting phase, if screening of the interaction by
the capacitance to ground is neglected (see Sec. II). However,
divergence of the resistance at a nonzero temperature expected
from the charge BKT transition has not been observed experi-
mentally [13,16,17]. This may be due partly to smearing of the
transition by screening of the interaction by the capacitance to
ground. Kanda et al. discussed their transport data in terms of
the charge BKT transition by taking into account the influence
of the screening [29,30] although the investigated range of
EJ/EC was limited.

In this paper, we present systematic investigations, in par-
ticular, of nonlinear transport over a wide range of EJ/EC

and discuss how the insulating phase is formed when the
temperature is decreased. Investigation of nonlinear trans-
port is the key to understanding properties of the insulating
phase because a specific power-law dependence of current-
voltage (I-V ) characteristics as well as the universal jump in
the power exponent are expected in the charge BKT transi-
tion [23]. We also show that, at low temperatures, the I-V
characteristics continuously develop into the negative differ-
ential conductance arising from coherent single-Cooper-pair
tunneling.
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II. JJA AND CHARGE BKT TRANSITION

In a JJA, each superconducting island has two quantum
variables: the order parameter phase φ j and the number of
excess Cooper pairs n j (here the subscript j is a label of
the island). These are conjugate variables satisfying the com-
mutation relation [φ j, nk] = iδ j,k . Using these variables, the
Hamiltonian of the JJA in a magnetic field is described by

H = (2e)2

2

∑
〈i, j〉

niC
−1
i j n j − EJ

∑
〈i, j〉

cos(φi − φ j − Ai j ), (1)

where e is the elementary charge, Ci j is a capacitance
matrix element composed of the capacitance between nearest-
neighbor islands, CJ, and that between each island and the
ground, Cg, and Ai j = (2π/�0)

∫ j
i A · dl is the line integral

of the vector potential A from an island i to an island j
with flux quantum �0 = h/2e (h is the Planck constant) [11].
The first term is associated with the charging effect with an
energy scale of EC = e2/(2CJ ), and the second term represents
the Josephson effect characterized by the Josephson energy
EJ. Below we consider the case in zero magnetic field un-
less otherwise mentioned. At EJ � EC, the JJA exhibits the
superconducting transition with decreasing temperature. The
transition is driven by the binding of vortex and antivortex
pairs associated with the BKT mechanism. At EC � EJ, on
the other hand, the charging effect prevents tunneling of a
Cooper pair to the neighboring island because of the Coulomb
blockade, resulting in the insulating phase at ground state.
Because of the competition between the Josephson effect and
the charging effect, the quantum phase transition between
the superconducting and insulating phases occurs at EJ ∼
EC [11,15,23] [see the phase diagram shown in Fig. 2(d)]. We
note that, even in the insulating phase, Cooper pairs exist in
each island. However, the phase coherence over the system is
destroyed because of the large fluctuations of the phase under
the fixed number of Cooper pairs in each island.

At EC � EJ, fluctuations of {ni} are suppressed. Thus, the
JJA is characterized by a well-defined set of {ni} across the
whole array. Under this situation, we consider an isolated
charge −2e added on an island. This charge generates polar-
ization on the surrounding islands within the spatial range of
� = √

CJ/Cg unit cells. Such a Cooper pair dressed with the
polarization is referred to as a Cooper-pair soliton [13,23].
The charge also produces an electrostatic potential V (r) =
−e/(πCJ )K0(r/�) at distance r, where K0(x) is the modified
Bessel function. In the limit of r/� � 1, this potential is ap-
proximated to be V (r) = e/(πCJ ) ln(r/�). Thus, in the case
of Cg = 0, the interaction between a pair of charges +2e and
−2e with a separation r is given by [13,23]

Up(r) = 4EC

π
ln(r). (2)

The system is therefore described as a 2D Coulomb gas with
the logarithmic interaction, where the BKT transition to the
insulating phase is expected at low temperatures [31,32]. The
transition from the normal to insulating phases with decreas-
ing temperature is driven by the BKT mechanism associated
with binding of a Cooper pair and an anti-Cooper pair. In
the limit of EJ = 0, the transition temperature is T BKT

i =
EC/(πεkB) [13,23], where ε is a nonuniversal constant of
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FIG. 1. (a) Josephson junction array (JJA). It consists of 100 ×
100 plaquettes connected to two electrodes. Islands at right and left
edges are galvanically connected without junctions. (b) Schematic
diagram of transport experiments employed in the insulating regime.
Bias voltage Vbias is applied on a JJA through a load resistance Rload,
and current I is detected. Voltage V on the JJA is determined from
V = Vbias − RloadI .

an order unity and kB is the Boltzmann constant. We note
that there is an approximate duality between the charges
and vortices [11,23]. Thus, as mentioned above, the transi-
tions at EC � EJ and EJ � EC are both driven by the BKT
mechanism mediated by binding of charge and vortex pairs,
respectively.

In the case of Cg �= 0, the ground capacitance screens the
logarithmic interaction at r > � [11,13,33]. Then, Up(r) falls
off exponentially at r � �, while Up(r) is still logarithmic at
r � �. This suggests that the BKT mechanism works only
at r < �. Hence, charges with a separation shorter than �

can form a bound pair while those separated further than �

cannot. This fact implies that the system size is effectively
finite with a size of ∼�, causing smearing of the transition
and modification of properties of the transition.

III. EXPERIMENT

Our JJAs consist of superconducting islands of Al films
connected in a square network of 100 × 100 plaquettes via
Josephson junctions [Fig. 1(a)], fabricated on top of a sili-
con substrate. The size of each Josephson junction is 100 ×
200 nm2 and the area of each plaquette is 6 × 6 μm2. The
JJAs have two different kinds of edges: islands are gal-
vanically connected without junctions at the left and right
edges which are connected to respective electrodes, while
islands at the top and bottom edges are connected via Joseph-
son junction. The Josephson energy EJ is determined from
normal-state resistance of the junction at low temperatures
using the Ambegaokar-Baratoff relation [34]. The nearest-
neighbor capacitance CJ = 1.7 fF (and thus EC/kB = 530 mK)
is determined from the offset voltage Voff in the nonlinear
current-voltage characteristics observed at high voltages V �
2N�s/e using the relation Voff = Ne/(2CJ ) [11,12,16,35],
where �s is the superconducting gap of Al films and N = 100
is the number of junctions in series. The capacitance to
ground, Cg, is estimated to be 14 aF from a finite element
calculation. The screening length is thus � = √

CJ/Cg ∼ 11.
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FIG. 2. (a) Temperature dependence of the resistance of JJAs. From top to bottom, EJ/EC = 0.14, 0.19, 0.25, 0.28, 0.31, 0.37, 0.41, 0.48,
0.65, 1.4, and 2.3. Red lines are the fitting to the BKT transition in the superconducting phase (see text). (b) Resistance as a function of T −1 in
the insulating phase. Solid lines are the fitting to R ∝ exp(Ea/kBT ). (c) Activation energy Ea as a function of EJ/EC obtained from R vs T −1 in
(b) and c−1 vs T −1 in Figs. 3(d)–3(f), respectively. The vertical line indicates the quantum critical point (QCP) separating the superconducting
(S) and insulating (I) phases. (d) Phase diagram. The superconducting transition temperature Ts is determined by fitting to the expectation from
the BKT theory. The crossover temperature T ∗

i is deduced from the nonlinearity observed in the I–V characteristics (see text). The horizontal
arrow indicates the theoretical charge BKT transition temperature T BKT

i in the limit of EJ = 0. The error bars in Ts are associated with the
uncertainty depending on the choice of the temperature range for the fitting. The error bars in T ∗

i indicate the temperature region where the
criterion of a = 3 is within the error bars in a.

Inhomogeneity in EJ and EC within a single array is estimated
to be about 5%.

Experiments are carried out using a dilution refrigerator.
dc transport properties are measured by a standard four-probe
technique for superconducting JJAs. For insulating JJAs, a
two-probe configuration is employed, where the sample is
biased with voltage Vbias through a load resistor Rbias and
current I is detected as shown in Fig. 1(b). (Unless other-
wise mentioned, Rload = 1.2 × 105 	, which is the sum of
resistances of electrical wires and filters in the measurement
lines.) The voltage on the sample, V , is determined from
V = Vbias − RloadI . All electrical wires inside the cryostat are
carefully filtered; each wire has a π filter with a cutoff fre-
quency of 3 MHz at room temperature, RC low-pass filters
with a cutoff frequency of 2.4 and 38 kHz at the 4-K and
mixing-chamber plates, respectively, and a microwave filter
at the base temperature. A resistance of 19 k	 is also in-
serted near the sample in each wire. The JJA is placed in a
very low magnetic field environment of ∼6 × 10−4 G (i.e.,
∼1 × 10−3�0 per plaquette) realized by using a μ metal and
a superconducting shield as well as applying a cancellation
field.

IV. FORMATION OF INSULATING PHASE

In this section, we discuss how the insulating phase de-
velops when the temperature is lowered, based on observed
transport properties. Figure 2(a) shows the temperature depen-
dence of the zero-bias resistance R measured by applying a
small enough voltage to avoid nonlinearity. At EJ/EC > 0.31,

the JJAs undergo the superconducting transition, while those
with EJ/EC < 0.31 exhibit the insulating behavior with di-
verging resistance at low temperatures. Therefore, the JJA
shows a quantum phase transition between the superconduct-
ing and insulating phases as EJ/EC is varied, as illustrated
in the phase diagram in Fig. 2(d). In the superconducting
phase, the BKT transition temperature Ts was determined by
fitting the temperature dependence of resistance to R/RN =
C exp(−B/

√
t − ts) with fitting parameters B, C, and ts [solid

lines in Fig. 2(a)] [36], where t = kBT/EJ, ts = kBTs/EJ, and
RN is the resistance of the normal-state array. In the insulating
phase, a crossover between the normal and insulating phases
occurs instead of a sharp transition as discussed later, and the
crossover temperature T ∗

i determined as shown later is plotted
in the phase diagram. Hereafter, we focus on behaviors of the
insulating phase.

The resistance in the insulating phase does not show di-
vergence at a nonzero temperature, but rather it shows the
Arrhenius behavior R ∝ exp(Ea/kBT ) at low temperatures
[Fig. 2(b)]. The activation energy Ea obtained from the fitting
is on the order of EC for small EJ/EC (Ea ∼ kB × 860 mK
= 1.6EC for EJ/EC = 0.14) and decreases steeply toward the
quantum critical point as shown in Fig. 2(c). The similar
Arrhenius behavior has been observed in previous experi-
ments [16,17,29,30]. According to Delsing et al. [17], there
are two different mechanisms that generate the Arrhenius
behavior depending on the ratio EC/�s (�s is the BCS gap
of an Al film). The first mechanism is thermal hopping of
Cooper pairs, which occurs if EC is small enough compared
to �s (theoretically EC/�s < 4/3). This mechanism gives
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FIG. 3. (a)–(c) I-V characteristics in the logarithmic scale (upper panel) and linear scale (lower panel). (a) EJ/EC = 0.28, (b) 0.25, and
(c) 0.19. Solid curves in upper panels are the fitting to I = cV + bV a. The fittings are performed in a voltage range of less than (a) 1.5 × 10−5 V,
(b) 2.5 × 10−5 V, and (c) 4.5 × 10−5 V. Arrows in lower panels indicate the maximum voltage observed in the Coulomb-blockade region, Vb.
Data below (b) 50 mK and (c) 60 mK are measured with Rload = 1.12 × 106 	, and other data are taken with Rload = 1.2 × 105 	. (d)–(f) a
(upper panel) and c−1 (lower panel) obtained from the fitting as a function of T −1 for (d) EJ/EC = 0.28, (e) 0.25, and (f) 0.19. The error bars in
a are associated with the uncertainty depending on the choice of the voltage range for the fitting. The solid blue curves in the upper panels are
the behavior expected from the charge BKT mechanism for Cg = 0 (a = 2T BKT

i /T + 1 at T < T BKT
i ). The red solid lines in the lower panels

are the fitting to c−1 ∝ exp(Ea/kBT ).

rise to Ea ∼ EC when EJ is negligible. On the other hand,
if EC is larger than �s (theoretically EC/�s > 4/3), another
mechanism sets in. In this case, the activation energy can be
decreased by breaking a Cooper pair into two quasiparticles
on tunneling. The activation energy in this case is given by
Ea = �s + 1

4 EC if EJ is negligible. Our JJAs have EC much
smaller than �s (EC/�s ∼ 0.2), indicating that hopping of

Cooper pairs without pair breaking is responsible for the
Arrhenius-type transport at low temperatures.

To clarify the properties of the insulating phase in more de-
tail, we investigate nonlinear transport phenomena. As shown
in Figs. 3(a)–3(c), the I–V characteristics exhibit notable non-
linear behaviors at low temperatures. First, we discuss the
data of EJ/EC = 0.25 [Fig. 3(b)] as a typical example. At
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high temperatures (T � 150 mK), I is proportional to V up
to ∼3 × 10−5 V [see upper panel of Fig. 3(b)]. As the tem-
perature is lowered, nonlinearity emerges: The current shows
a steeper increase around 2 × 10−5 V although it is propor-
tional to V at the low voltage region. The increase around
2 × 10−5 V becomes even steeper at lower temperatures.
At temperatures below 40 mK, back-bending characterized
by negative differential conductance (dI/dV < 0) develops,
which is more clearly seen in the linear plot shown in the
lower panel of Fig. 3(b). We note that multiple jumps are
observed at very high voltages (V > 2 × 10−4 V) [see up-
per panel of Fig. 3(c)], which are caused by successive row
switching into a dissipative state [37]. They are not a peculiar
feature of the insulating phase but also observed in the super-
conducting phase.

In order to help in understanding the observed behaviors,
we first review nonlinear transport properties expected for the
unscreened logarithmic interaction [i.e., Eq. (2) expected for
Cg = 0]. In this case, the charge BKT transition is expected
to occur at T BKT

i , and the I-V characteristics should show
a peculiar nonlinearity below T BKT

i . In particular, I ∝ V a is
expected, where a = 2T BKT

i /T + 1, as a result of charge-pair
breaking under large voltages [23]. (This -V relation can be
derived in a way parallel to the relation of V ∝ Ia for the vor-
tex BKT system [28,36,38].) At T > T BKT

i , on the other hand,
I is proportional to V (i.e., a = 1). Therefore, the exponent
a shows a universal jump from 1 to 3 at T BKT

i , which is a
hallmark of the charge BKT transition.

In the case of Cg �= 0, as in our JJAs, the logarithmic
interaction is cut off at r ∼ � due to the screening by the
ground capacitance. At r � �, the interaction diminishes
exponentially, and charges and anticharges separated further
than � cannot form bound pairs even below the BKT tem-
perature. Therefore, the charge binding mechanism works
only at r < �. This suggests that the system size is effec-
tively finite. The BKT transition then becomes a continuous
crossover rather than a sharp transition, resulting in rounding
of the universal jump. Furthermore, because Cooper pairs and
anti-Cooper pairs separated further than � cannot form bound
pairs, free Cooper pairs exist even below T BKT

i with a den-
sity proportional to exp[−Up(�)/2kBT ]. These free Cooper
pairs experience dissipative transport under a small bias volt-
age, showing linear conductance. Thus, I = cV + bV a with a
smeared universality jump in a is expected for Cg �= 0; the first
term arises from transport of free Cooper pairs, and the sec-
ond term represents nonlinearity associated with charge pairs
bounded by the BKT mechanism. This I-V relation is indeed
parallel with the nonlinear transport property V = cI + bIa

in a finite-size vortex BKT system [39], where the first term
arises from dissipative transport of free vortices present due to
the finite-size effect and the second term represents the non-
linear transport associated with the vortex BKT mechanism.

Based on the above argument, we fit the nonlinear data to
I = cV + bV a. The data are well fitted as shown in Figs. 3(a)–
3(c) when the temperature is not too low. The obtained
exponent a and the linear coefficient c are shown in Figs. 3(d)–
3(f) as a function of T −1. With decreasing T , the exponent
a begins to increase from 1, where the I-V characteristic
deviates from the linear behavior. We note that a has large
uncertainties around the temperature at which a deviates from

1 because the linear term cV dominates over the term bV a

around this temperature.
The exponent a is expected to show a universal jump from

1 to 3 at the transition in the case of Cg = 0. For Cg �= 0,
the transition becomes crossover and the jump should be
rounded, as described above. The crossover to the insulating
phase is expected to take place at a ∼ 3. Thus, the criterion
a = 3 can be taken as a reasonable estimation of the crossover
temperature T ∗

i to the insulating phase. This criterion was
also used in Ref. [29]. As shown in the phase diagram in
Fig. 2(c), T ∗

i determined in this way decreases with increas-
ing EJ/EC, followed by the quantum phase transition to the
superconducting phase at EJ/EC ∼ 0.32. This value is close
to those derived through the quantum Monte Carlo simula-
tions (EJ/EC ∼ 0.4 in Ref. [40] and ∼0.35 in Ref. [41]) but
is somewhat different from that of the previous experiment
(EJ/EC ∼ 0.59 in Ref. [15]). At EJ/EC � 1, T ∗

i approaches
the charge BKT transition temperature T BKT

i = EC/πεkB ex-
pected for the classical case (EJ = 0) [23] (ε ≈ 1.16 for a
square lattice [42]).

We note that Kanda et al. obtained T ∗
i by fitting the tem-

perature dependence of R to the formula expected from the
charge BKT transition [29,30]. Our resistance data, however,
show a broad bump with a peak at ∼500 mK [Fig. 2(a)], which
prevents us from performing a similar analysis. The origin of
the bump is unknown.

As shown in the upper panels of Figs. 3(d)–3(f), the tem-
perature dependence of a at low temperatures is stronger than
that expected from the theory (a = 2T BKT

i /T + 1) except for
EJ/EC = 0.28. This is because another nonlinear effect asso-
ciated with negative differential conductance caused by the
Bloch oscillations sets in at low temperatures as discussed in
the next section.

The linear coefficient c−1 shows the Arrhenius-type tem-
perature dependence c−1 ∝ exp(Ea/kBT ) at low temperatures
as shown in the lower panels of Figs. 3(d)–3(f). Because c−1

corresponds to R taken at small bias voltage, Ea obtained from
c−1 ∝ exp(Ea/kBT ) should be the same as that obtained from
R as a function of T −1 displayed in Fig. 2(b). Indeed, Ea ob-
tained from the two is almost the same as shown in Fig. 2(c).
As discussed above, the linear term c arises from transport of
Cooper pairs, not from thermally excited quasiparticles. This
is also evident from the fact that the linear term has a period
of flux quantum �0 = h/2e when magnetic flux piercing a
plaquette of JJA, � (= BS), is varied as demonstrated in
Fig. 4, where B is a magnetic field and S = 6 × 6 μm2 is the
area enclosed by a plaquette. Here, the �0 periodicity reflects
the fact that the conduction is carried by particles with charge
−2e, i.e., Cooper pairs, and arises from the �0-period modu-
lation of the Josephson term in Eq. (1). (If quasiparticles are
responsible for the linear term, it should have a period of 2�0.)
The observation of the �0 periodicity is consistent with the
above-described picture that unbound Cooper pairs remaining
even below T ∗

i are responsible for the linear conductance.
The activation energy Ea derived from c−1 ∝ exp(Ea/kBT )

corresponds to an energy required for separating a charge pair
at a distance up to �. This energy should be ∼Up(�)/2 in the
case of EJ = 0. [For the parameters of our JJAs, Up(�)/2 ∼
1.5EC.] As shown in Fig. 2(c), Ea ∼ 1.6EC for our smallest
EJ/EC (= 0.14), being consistent with the expectation. With

184511-5



HIROKI IKEGAMI AND YASUNOBU NAKAMURA PHYSICAL REVIEW B 106, 184511 (2022)

FIG. 4. Resistance R as a function of magnetic flux � piercing a
plaquette of the JJA. The data are taken at 90 mK for EJ/EC = 0.19,
and are measured at a small voltage indicated by the vertical solid
line in the inset. Thus, R in the main figure corresponds to the linear
part of the I-V curve. R has a period of �0 = h/2e, indicating that
Cooper pairs are responsible for the linear term. The fluctuations in
R observed around �/�0 = 0.5 and 1.5 are due to noise in current.
Inset: I-V characteristics taken for three different �/�0.

increasing EJ/EC, Ea decreases steeply toward zero as EJ/EC

approaches the quantum critical point [Fig. 2(c)]. This is be-
cause EJ provides a kinetic energy for the charges [11,23].
Indeed, the kinetic energy provided by EJ becomes large
enough to unbind charge pairs to induce the quantum phase
transition to the superconducting phase at the quantum critical
point.

In the above discussion, we have not considered excitations
with charge ±e. Although the density of quasiparticles is
exponentially small at low temperatures, they could have in-
fluences on the formation of the insulating phase. Feigel’man
et al. suggested that excited quasiparticles screen the Coulomb
interaction between Cooper pairs even if their density is
small [43]. This effect becomes crucial when the temperature
is increased up to around the so-called parity tempera-
ture T ∗ defined by kBT ∗ = �s/ ln Neff (T ∗), where Neff (T ) =
V ν(0)

√
8π�skBT is the effective number of states available

for quasiparticles [V is the island volume and ν(0) is the
density of states for the normal metal at the Fermi energy].
In our JJAs, T ∗ is estimated to be ∼180 mK. [We used
V = 3.9 × 10−19 m3, ν(0) = 1.45 × 1047 m−3 J−1 [44], and
�s = kB × 2.56 K.] We note that T ∗ is the temperature at
which the number of quasiparticles on an island becomes of
the order unity [45,46]. The effect of the screening at T �
�s/kB can be described in terms of self-capacitance Cqp

g =
(2e)2V ν(0)

√
2π�s
kBT e−�s/kBT [43]. It decreases exponentially

with lowering T because of the reduction of the quasiparticle
density, and it becomes an order of magnitude smaller than
Cg (= 14 aF) at 110 mK (Cqp

g ∼ 5 aF). Thus, the JJAs with
T ∗

i � 110 mK (i.e., EJ/EC � 0.19) are not affected by quasi-
particles. Only the JJAs with higher T ∗

i (i.e., smaller EJ/EC)
could be influenced. In this region, we have studied two JJAs.
For the JJA with the smallest EJ/EC (= 0.14), for example,
Cqp

g (∼2 fF) at T ∗
i (∼150 mK) is comparable to CJ (= 1.7 fF).

Then quasiparticles significantly screen the Coulomb interac-
tion at T ∗

i , which should further smear the BKT transition.

So far, we have neglected the influence of random back-
ground offset charges which may be induced on the islands
due to charges trapped in the substrate or the insulating barri-
ers. Such offset charges should be distributed between −e/2
and +e/2 because quasiparticles partly compensate the offset
charges. Delsing et al. suggested that the influence is small
because a Cooper-pair soliton, which covers about 100 (∼�2)
of the islands, sees an offset charge averaged over ∼�2 is-
lands [17]. Apart from this suggestion, there have been some
theoretical studies on the influence of offset charges [47–49].
To our best knowledge, however, none has investigated trans-
port of the insulating phase of a 2D JJA in a realistic situation.
Only Zaikin and Panyukov studied it under a practical situ-
ation but in a normal junction array [47]. They investigated
an array with offset charges distributed between −e/2 and
+e/2 having a particular correlation in the case of no screen-
ing of the Coulomb interaction by the ground capacitance.
Their result suggests that a finite density of free charges is
generated at finite temperatures, which alters the charge BKT
transition into the Arrhenius-type behavior with an activation
energy of Ea ∼ 0.18EC. In our JJAs, however, the screening
of the interaction by the capacitance to ground already alters
the BKT transition into the Arrhenius-type resistance at low
temperature, as mentioned above. Thus, the problem now is
how the Arrhenius-type resistance caused by the screening is
modified by the presence of offset charges in JJAs. It is also
a problem how the nonlinear transport is altered if the offset
charges are taken into account.

V. BLOCH OSCILLATIONS

The I-V characteristics exhibit the back-bending charac-
terized by the negative differential conductance (dI/dV < 0)
at low temperatures [Figs. 3(b) and 3(c)] as mentioned
above. The similar back-bending has been reported in the
Coulomb-blockade or insulating regime of current-biased
single Josephson junctions [50–52], one-dimensional (1D)
JJAs [53,54], and 2D JJAs [12], and is understood by
coherent single-Cooper-pair tunneling called Bloch oscilla-
tions [55–58]. In Bloch oscillations, as well as in Coulomb
blockade and Zener tunneling which will be discussed below,
the charging effect of a single charge (a single Cooper pair
and a single electron) plays an important role.

To obtain basic ideas about Bloch oscillations, we first
outline them in the case of a single Josephson junction. The
Hamiltonian is given by H = Q2/2CJ − EJ cos φ, where Q
and φ are, respectively, charge on the junction electrode and
phase difference across the junction, satisfying [Q/2e, φ] = i.
Here we consider the charging energy to be comparable to
or larger than the Josephson energy. This Hamiltonian is the
same as that of an electron in a periodic lattice, and thus
behaviors of the system are understood in terms of Bloch
bands with 2e periodicity against the quasicharge q, which
is an analog of the quasimomentum of an electron in a
lattice [55–58]. Such a concept of Bloch bands was recently
employed for implementing a novel type of qubit [59]. Under
dc bias current, the single Josephson junction shows the
unique I-V characteristics as depicted in Fig. 5(a) [55–58],
where stochastic tunneling of single quasiparticles is
incorporated to account for the dissipation in the system.
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FIG. 5. (a) Schematic illustration of I-V characteristics for a
current-biased single Josephson junction with a small CJ. Three
regions of Coulomb blockade (CB), Bloch oscillations (BOs), and
Zener transition (ZT) are indicated. The arrow denotes Vb. (b) Vb

observed in Fig. 3 as a function of EJ/EC.

The I-V curve at low external currents is caused by the
Coulomb blockade with a small rate of quasiparticle tunneling
[Coulomb-blockade (CB) region in Fig. 5(a)]. At higher
currents, Bloch oscillations (BOs), which are characterized by
the negative differential conductance [BO region in Fig. 5(a)],
set in. In this region, a coherent single-Cooper-pair tunneling
takes place when q reaches the band edge of the Brillouin zone
at q = +e and Bragg-reflected to q = −e. The process repeats
and voltage across the junction oscillates with a frequency
f = I/(2e). The average voltage across the junction thus
decreases, resulting in the negative differential conductance
[Fig. 5(a)]. At high currents, the differential conductance
returns positive [Zener-transition (ZT) region in Fig. 5(a)].
In this region, the system is driven into higher energy bands
by Zener transitions, which counterbalances dissipative
quasiparticle tunnelings from higher to lower bands. We
note that the structure in the I-V curve caused by Coulomb
blockade and Bloch oscillations is often called Bloch nose.

Having gained the above picture for a single Josephson
junction, we discuss our experimental data on 2D JJAs ob-
tained at low temperatures. First, we focus on the results of
EJ/EC = 0.25 [Fig. 3(b)]. With increasing V from zero, I ini-
tially shows extremely small values of less than 1 × 10−13 A
before V reaches the maximum at Vb indicated by the ar-
row (Coulomb-blockade region). The current in this region
is exponentially small [I ∝ exp(−Ea/kBT ) with Ea ∼ EC for
Cooper pairs and with Ea ∼ �s + 1

4 EC for quasiparticles] be-
cause the energy required to inject for a Cooper-pair soliton is
∼EC and that for a soliton of a thermally excited quasiparticle
into the array is ∼ 1

4 EC, from the similar discussion in Sec. IV.
The voltage then decreases while I keeps increasing, exhibit-
ing negative differential conductance. In this region, the Bloch
oscillations take place. At higher currents (I � 1 × 10−10 A),
the differential conductance turns positive and the voltage

rapidly increases, suggesting that the Zener tunneling occurs.
Such nonmonotonous behaviors are also observed for other
JJAs except for the one located closest to the quantum critical
point (EJ/EC = 0.28). We note that the signals detected in the
negative differential conductance region are noisy, especially
for smaller EJ/EC, because of the absence of sufficiently large
load resistance in the vicinity of the JJA as described in
Appendix B in detail.

In single Josephson junctions and also in single normal
junctions, phenomena associated with the single charging
effect, such as Bloch oscillations and/or Coulomb block-
ade, are observable only when the junctions are placed in
an electromagnetic environment with an impedance much
higher than the quantum resistance (i.e., RQ = h/4e2 ≈
6.45 k	 for Cooper pairs and RK = h/e2 ≈ 25.8 k	 for
electrons) [60–63]. This is because charge fluctuation on
the junction capacitance caused by quantum fluctuation
of the electromagnetic environment, which otherwise smears
the charging effect, is suppressed by isolating the junction
from the environment by using a high impedance. Indeed, a
Bloch nose has been observed in single Josephson junctions
only when they are placed in a high-impedance environment
realized with highly resistive metal strips or dc-SQUID ar-
rays installed in the vicinity of the junction [50–52]. In our
experiments for the 2D JJAs, however, the Bloch nose is
observed without employing such elaborate wiring, i.e., in
the low-impedance environment. In arrays, charge fluctuation
on the junction capacitance is suppressed due to quantization
of charge on the islands [62,63]. Therefore, when a single
charge tunnels a junction, other junctions protect the junction
capacitance from charge fluctuation caused by the environ-
ment. Such a protection by other junctions repeats when the
charge tunnels junction by junction, allowing for observation
of Coulomb blockade and Bloch oscillations in arrays [62,63].
We note that, in the low-impedance environment, the tun-
neling process is considered to be governed by the so-called
global rule [62,63], where the tunneling rate is determined by
the difference in electrostatic energies of the whole system
before and after the tunneling process.

Bloch oscillations in the case of 2D JJAs were theoreti-
cally investigated by Schön and Zaikin [57,64]. They studied
behaviors of current-biased JJAs by assuming that coherence
of Cooper-pair tunneling is maintained over the whole ar-
ray, which allows the higher-order, simultaneous tunneling
of multiple Cooper pairs even at distant junctions. Their in-
vestigation suggests that Bloch oscillations set in when the
charge on each outer junction [each of the right and left
outermost junctions in Fig. 1(a)] reaches e/M in the case of
the global rule for quasiparticle tunneling (M is the number
of junctions along the width of the array) [57,64]. The I-V
characteristics then show a Bloch nose with the maximum
voltage Vb of ∼ N

M
e

CJ
or a factor smaller. In our JJAs, the global

rule is expected because they are placed in the low-impedance
environment as mentioned above [62,63]. Therefore, for our
JJAs with N = 100 and M = 100, Vb is expected to be ∼e/CJ

or smaller. The observed Vb in our JJAs is of the order of e/CJ

as shown in Fig. 5(b), which steeply decreases toward zero
as EJ/EC approaches the quantum critical point. The order
of magnitude of Vb is similar to that calculated by Schön
and Zaikin, but we cannot reach a clear understanding of the
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observed behavior because the theoretical study was per-
formed for situations different from our experiments in
some respects; (i) the current-biased situation (i.e., the high-
impedance environment) is considered in the theory and (ii)
the coherence in Cooper-pair tunneling is assumed to persist
across the whole array, which should be destroyed at some
length in a real JJA. In addition, (iii) the influence of EJ is not
taken into account in the theoretical investigation although our
results show the strong suppression of Vb as EJ/EC approaches
the quantum critical point. Therefore, it urges theoretical in-
vestigations for the situation similar to our experiments to
reach a quantitative understanding of the observed behavior.

VI. SUMMARY

Our systematic investigations of nonlinear transport sug-
gest that the crossover from the normal to the insulating
phase is understood in terms of the charge BKT transition by
including the influences of the finite-range screening of the
interaction between Cooper pairs. The analyses based on the
charge BKT transition allows for deducing the crossover tem-
perature to the insulating phase, which continuously decreases
toward the quantum critical point. The transport measurement
described here detects averaged nonequilibrium behaviors of
excitations. Further studies of dynamics of individual excita-
tions using, for example, circuit-QED techniques may clarify
detailed properties of the crossover to the insulating phase as
well as those of the quantum phase transition.
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APPENDIX A: MEASUREMENT SETUP

The experimental setup used for transport measurements
is schematically shown in Fig. 6. In the insulating phase, a
voltage-bias scheme with a two-probe configuration is em-
ployed, where the bias voltage Vbias is applied with a dc source
(Yokogawa GS200) and the current I flowing through the
JJA is amplified using a current preamplifier (DL Instruments
1211) and detected. All the wires used for the measurements
are carefully filtered. Each wire has a π filter with a cutoff
frequency of 3 MHz at room temperature, RC low-pass filters
with a cutoff frequency of 2.4 and 38 kHz at the 4-K and
mixing-chamber plates, respectively, and a microwave filter,
made of Eccosorb MFS-117 (Emerson and Cuming), with
a cutoff frequency of ∼1 GHz at the base temperature. A
resistance of 19 k	 is also inserted in the vicinity of the
sample in each wire. The JJA is installed in a microwave-
tight copper box, which is mounted on the mixing-chamber
plate of a cryogen-free 3He - 4He dilution refrigerator (Oxford
Instruments, Triton200). The JJA is placed at the center of
a superconducting magnet, which is covered with a μ-metal
shield and a superconducting shield made of aluminum as
shown in Fig. 6. Each dc line for the magnet has a π filter

4 K plate

mixing-chamber
plate

room 
temperature

low-pass
filter

-filter

current
amplifier

microwave
filter

copper box

JJA

coaxial
cable

twisted pair

voltage
source

magnet

current
source

low-pass
filter

-metal shield

superconducting
shield

FIG. 6. Experimental setup of dc transport measurements. A
voltage-biasing scheme with a two-probe configuration employed in
the insulating phase is shown. The magnetic field is applied perpen-
dicular to the plane of the JJA.

with a cutoff frequency of 3 MHz at room temperature and an
RC low-pass filter with a cutoff frequency of 2.4 kHz at the
4-K plate.

In our voltage-biasing scheme, the voltage on the sample,
V , is determined from V = Vbias − RloadI , where Rload is the
sum of the resistance of electrical wires and the resistance
inserted in the wire at room temperature. We use Rload =
1.2 × 105 or 1.12 × 106 	 depending on the measurements.
Because the resistance of JJAs at low temperatures is orders
of magnitude higher than Rload, the current-biased condition is
not fully achieved in our setup.

Temperature dependence of R is taken by warming up the
mixing chamber slowly at a rate of 60 mK/h at T � 400 mK
and at faster rates at higher temperatures. Smaller bias voltage
is used at lower temperatures to avoid nonlinear effects. In
I-V curves measured at fixed temperatures, there is voltage
offset of the order of 1 μV. The offset is subtracted from
V so that the positive and negative voltage parts of the I-V
curve become symmetric with respect to the origin. The pulse
tube cryocooler used for the dilution refrigerator produces
noise in the detected current. The cryocooler is turned off
for a short period (shorter than 30 min) when small current
(<5 × 10−11 A) is measured. Such a short stop of the cry-
ocooler does not affect the temperature of the mixing chamber.

As mentioned above, the JJA is placed inside the μ-metal
shield and the superconducting shield, which reduce the field
below 6 × 10−3 G. The remnant field is further canceled out
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FIG. 7. (a),(b) Simplified I-V curve of a JJA at low temperatures.
The -V relation in the Bloch-oscillation region is given by Eq. (B1).
The red line indicates Eq. (B2). (a) Rload > RBO and (b) Rload < RBO.
(c) Simplified model of the measurement circuit. R1 represents the
resistance inserted in the electrical wire at room temperature. R2 and
C, respectively, represent total resistance and capacitance of the wire
and the filters inside the cryostat.

down to ∼6 × 10−4 G (i.e., ∼1 × 10−3�0 per plaquette) by
applying a magnetic field perpendicular to the plane of the
JJA. The cancellation field is set at the minimum of the
resistance observed in the field dependence measured at an
appropriate temperature (at 60 mK for EJ/EC = 0.25, for ex-
ample).

APPENDIX B: INSTABILITY OF SIGNALS
IN BLOCH-OSCILLATION REGION

As shown in Fig. 3(c), the signal becomes noisy in the
region of the negative differential conductance. This is be-
cause signals in the negative differential conductance region
are unstable in our setup as shown below.

We assume that the I-V curve of the JJAs is represented
by a set of line segments as shown in Fig. 7(a) for simplicity.
Here, the I-V relation in the Bloch-oscillation region is given,
using two constants, I0 and RBO, by

I = I0 − 1

RBO
V, (B1)

where RBO corresponds to the negative differential resistance
in the Bloch-oscillation region, which is ∼1 M	 for the data
at 10 mK in Fig. 3(c). We also assume that the measurement
circuit is modeled by a simple lumped circuit illustrated in
Fig. 7(c). Here, R1 is the resistance inserted in the electrical
wire at room temperature, and R2 and C, respectively, repre-
sent total resistance and capacitance of the wire and the filters
inside the cryostat. In our definition, Rload = R1 + R2.

First, we consider the case of C = 0. From Fig. 7(c), we
find

I = 1

Rload
(Vbias − V ). (B2)

The current I flowing in the JJA is given by the intersection
point between the straight line of Eq. (B2) and the I-V curve
of the JJA [see Fig. 7(a)]. Now, we consider that Vbias is swept

up from zero slowly. When Vbias is small enough, the JJA is
in the Coulomb-blockade region, and I is given by the current
at the intersection point of Eq. (B2) and the I-V curve of the
Coulomb-blockade region. When the current reaches point A,
the Bloch oscillations set in. If Rload > RBO, there is an inter-
section point on the I-V curve of the Bloch-oscillation region.
From Eqs. (B1) and (B2), the current flowing though the JJA is
given by

I = IC=0 ≡ Vbias − RBOI0

Rload − RBO
. (B3)

With increasing Vbias further, the Zener transition sets in
at point B, and the intersection point moves to the I-V
curve of the Zener transition region. Now we consider the
case of Rload < RBO. In this case, there is no intersection
point between Eq. (B2) and the I-V curve of the Bloch-
oscillation region after the intersection point passes point
A [see Fig. 7(b)]. Therefore, the system jumps from the
Coulomb blockade to Zener transition regions when Vbias is
swept up, and the Bloch-oscillation region cannot be traced.
From the argument in this paragraph, Rload > RBO is required
to observe the negative conductance in the Bloch-oscillation
region in the case of C = 0.

Next, we consider the case of C �= 0. In this case, I and V
satisfy the following relations:

Vbias = V1 + R1I1, (B4)

V1 = R2I + V, (B5)

and

dV1

dt
= 1

C
(I1 − I ), (B6)

where V1 and I1 are the voltage and the current indicated
in Fig. 7(c), respectively. In the Bloch-oscillation region, we
obtain, from Eqs. (B1), and (B4)–(B6),

dI

dt
= 1

τ
(I − IC=0), (B7)

where

τ = CR1(RBO − R2)

R1 + R2 − RBO
. (B8)

Thus, the current is given by

I = I∗ exp (t/τ ) + IC=0, (B9)

where I∗ is a constant determined by an initial condition. If
R2 < RBO and R1 + R2(= Rload ) > RBO, as in our case, τ is
positive, and therefore I does not converge. Indeed, all the
points on the I-V curve of the Bloch-oscillation region are
unstable points, and I changes as a function of time. In this
case, we observe a different value of I at a different time,
and the system gives unstable signals. For a clear observation
of the Bloch-oscillation region, τ < 0 is required in addition
to the condition for the case of C = 0 (i.e., Rload > RBO).
These conditions can be satisfied when R2 > RBO. We note
that, in the real measurement setup, the capacitance C is
distributed over the electrical wires. This suggests that a
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resistance sufficiently larger than RBO should be inserted in
the vicinity of the JJA in each wire for clear observation of

the negative differential conductance in the Bloch-oscillation
region.
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