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Effect of realistic out-of-plane dopant potentials on the superfluid density of overdoped cuprates
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Recent experimental papers on hole-doped overdoped cuprates have argued that a series of observations
showing unexpected behavior in the superconducting state imply the breakdown of the quasiparticle-based
Landau–BCS paradigm in that doping range. In contrast, some of the present authors have argued that a
phenomenological “dirty d-wave” theoretical analysis explains essentially all aspects of thermodynamic and
transport properties in the superconducting state, provided the unusual effects of weak, out-of-plane dopant
impurities are properly accounted for. Here we attempt to place this theory on a more quantitative basis by
performing ab initio calculations of dopant impurity potentials for LSCO and Tl-2201. These potentials are
more complex than the pointlike impurity models considered previously, and require calculation of forward
scattering corrections to transport properties. Including realistic, ARPES-derived band structures, Fermi liquid
renormalizations, and vertex corrections, we show that the theory can explain semiquantitatively the unusual
superfluid density measurements of the two most studied overdoped materials.
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I. INTRODUCTION

Cuprates have represented a challenge to the central
paradigms of condensed matter physics since their discovery
in 1986 [1,2]. High-temperature superconductivity evolves
with doping out of the Mott state together with a host of
exotic and poorly understood phenomena such as the pseu-
dogap phase, the strange metal phase and various intertwined
orders, so it has been natural to formulate the problem as
one of understanding the ground state of the doped Mott
insulator. Indeed, there is general agreement that aspects of
the underdoped phase diagram imply a definitive breakdown
of the Landau–BCS quasiparticle-based approach to interact-
ing electrons. On the other hand, an alternative philosophy
consists in assuming that it is equally valid to attack the
superconductivity problem from the overdoped side, where in-
tertwined orders are largely absent and there is no pseudogap.
It is assumed in such an approach that the Landau–BCS theory
applies for sufficiently high doping p, implying that in the
range of experimental interest between p � 20–30% it should
be a good starting point, with significant but perturbative
corrections due to reduced quasiparticle weights, and residual
quasiparticle interactions represented by Landau parameters.

Recently, this notion was challenged by several experi-
ments on epitaxially grown overdoped LSCO films, closely
spaced in doping. Papers reporting both superfluid density [3]
and terahertz conductivity [4] measurements revealed strong
deviations from naive expectations for a clean d-wave su-
perconductor, and claimed furthermore that disorder could
not explain these effects, primarily based on the observed
linearity of the measured superfluid density. However, in a

series of papers [5–7], some of the present authors argued
that accounting for the weak-scattering nature of the dominant
out-of-plane dopant impurities, as well as the realistic low-
energy electronic structure, could explain these observations.
These works calculated, for the same set of phenomenological
impurity parameters within the so-called “dirty d-wave” the-
ory [8,9], not only superfluid density and optical conductivity,
but also specific heat and thermal conductivity, concluding
that the theory accounted well for the properties of the su-
perconducting state in the overdoped regime of LSCO and
Tl-2201 (crystal structures shown in Figs. 1 and 2), the two
materials that have been systematically studied at high over-
doping. Nevertheless, there has been an ongoing reluctance to
accept that simple impurity models, based on pointlike defects
and predominantly Born-limit scatterers, are applicable and
operating in a physically relevant parameter regime [4,10].

Accounting semiquantitatively for differences among over-
doped cuprate materials requires a detailed understanding of
the dopant impurities themselves. In Refs. [5–7], overdoped
cuprates were modeled by a 2D tight-binding band, and speci-
fying a relatively weak onsite impurity potential, of order 0.1t ,
where t is the nearest neighbor Cu–Cu hopping in the plane.
But in real cuprates, the dopants and defect atoms are situated
in various sites of the crystal, and may therefore be expected
to produce quite different effective scattering potentials as
experienced by electrons propagating in the CuO2 plane. For
example, in LSCO, both the apical oxygen vacancies, and
the Sr dopants that substitute for La at the so-called A site,
are located only one layer away (0.5a away, where a is the
in-plane lattice spacing) from the nearest CuO2 plane (Fig. 1).
In Tl-2201, oxygen interstitials, and the excess Cu that
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FIG. 1. Several unit cells of body-centered-tetragonal
La2−xSrxCuO4, showing the location of the dominant defects:
Sr dopants, substituting for La at the A site; and apical-oxygen
vacancies, VO. (Impurity locations are indicated by dashed circles.)
Note that, as experienced by electrons propagating in the CuO2

planes, each defect plays a dual role: once for the closest CuO2

plane, located a distance 0.5a away; and again for the more distant
CuO2 plane, a distance 1.2a away. The body-centered tetragonal
structure means that in one case the impurity is site centered, and
in the other plaquette centered. In particular, the apical-oxygen
vacancy is centered directly above a Cu site, imparting significant
pointlike character to its impurity potential, as we will see below.

substitutes for Tl [11], are located at least two layers (1.2a)
away, producing correspondingly weaker in-plane poten-
tials [12,13] (Fig. 2). In addition to the effect on the magnitude
of the potential, defects residing outside the CuO2 planes
produce a longer-range scattering “footprint” in the CuO2

plane, which is particularly important for transport, where a
predominance of forward scattering enhances the current. As
we show below, the in-plane momentum dependence of the
effective impurity potential is nontrivial, being determined by
the projection of the impurity position onto the CuO2 plane. In
particular, the nature of the scattering depends sensitively on
whether the defect is site-centered or plaquette-centered with
respect to the CuO2 lattice, as shown schematically in Fig. 3.
(For the body-centered tetragonal structures shown in Figs. 1
and 2, each defect is simultaneously site-centered with respect
to one neighboring CuO2 plane, and plaquette-centred—albeit
at different distance—from its other neighboring CuO2 plane.)
These factors all influence the strength and range of the
potential, and in turn determine the degree of pairbreaking
and the resulting anisotropy of the quasiparticle and transport
scattering rates.

Recognizing the importance of apical oxygen vacancies
in LSCO, a recent study has taken the first steps toward
understanding the role of these defects in the overdoped
cuprates [14]. Unfortunately, that work assumed an incorrect
form for the impurity potential, stating without proof that the
apical O vacancy has zero potential on the Cu site below
it. In addition, the study did not carry out a self-consistent
treatment of the self energy, using instead the normal-state
form for the scattering rate. Furthermore, Ref. [14] ne-
glected to consider forward-scattering corrections and explicit
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FIG. 2. Several unit cells of body-centered-tetragonal
Tl2Ba2CuO4+δ . Tetragonal Tl-2201 naturally grows with an
excess of Cu (indicated by dashed circles) that substitutes for
Tl atoms in the Tl2O2 double layers, and makes a significant
contribution to the hole doping of this material [11]. As in LSCO,
these copper defects play a dual role: simultaneously site-centered
with respect to the nearest CuO2 plane and plaquette-centered with
respect to the more distant one. (The Tl2O2 double layers also host
interstitial oxygen dopants, not shown here.) The large unit cell
height of Tl-2201 means that these defects are located well away
from the CuO2 planes (at least 1.2a), leading to weaker impurity
potentials that have strong forward-scattering character.

gap renormalization, both of which are important when the
impurity potential is momentum dependent, and have a sig-
nificant effect on both the qualitative and quantitative behavior
of the superconductivity and the electrodynamics. We discuss
this work further in a separate comment [15].

Confirming the general dirty d-wave description of the
overdoped cuprates thus requires a more accurate calculation
of impurity potentials, including the vertex corrections to the
transport properties that arise with extended impurity poten-
tials. In this paper, we perform a series of ab initio calculations
of the tight-binding impurity potentials due to various dopants
and defects, including their local modification of the hop-
ping parameters, using a Wannier-function-based supercell
approach [16], and revisit the calculations of Refs. [5–7]. We
also discuss the influence of band-structure effects, includ-
ing the proximity in the overdoped regime of the van Hove
singularity at the (π, 0) point, which necessitates the use of
momentum sums rather than Fermi-surface integrals. We find
that the success of the previous phenomenological approach is
confirmed by the more complete ab initio-based calculations
presented here.
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FIG. 3. A one-band model of the square CuO2 lattice, depicting
the tight-binding impurity potential as experienced by an electron
propagating in the CuO2 plane. Terms δHi

RR′ in the impurity Hamil-
tonian, Eq. (1), that are equivalent by symmetry have been grouped,
resulting in a sequence of site energies, Vi, and a hierarchy of modifi-
cations of the nearest-neighbor hopping integral, δti, which are listed
in Tables I–III for the various impurities. (For clarity, modifications
of the next-nearest-neighbor hopping integrals are not shown, but are
also included in the model.) (a) An in-plane, site-centered defect,
e.g., a Cu vacancy in the CuO2 plane, which we treat as a point
scatterer with a single, on-site impurity term V0; (b) an out-of-plane,
site-centered defect, e.g., an apical O vacancy, located a height z
above the nearest Cu; and (c) an out-of-plane, plaquette-centered de-
fect, e.g., a Sr substituting for La at an A site located a height z above
the nearest CuO2 plaquette. Note that while a site-centered defect
can be predominantly pointlike (i.e., V0 � V2,V4, . . .), a plaquette-
centered defect is always equidistant from its four closest Cu sites:
it therefore has finite range and is inherently of forward-scattering
character.

The nonuniversal details of the calculations may seem te-
dious to those interested in drawing broad conclusions for the
generic cuprate phase diagram, but we regard them as essen-
tial to establishing the applicability of the quasiparticle-based
Landau–BCS paradigm to the overdoped cuprates in the sense
described above. We believe that it is important to investigate
conventional explanations for the apparently unusual physics
uncovered in Refs. [3,4] and other works before turning to
more exotic explanations [17]. Conversely, if alternative theo-
ries beyond the Landau–BCS paradigm are put forward, then
it seems reasonable to insist that they be capable of explaining
the experimental data, and the variation of properties between
different cuprates, at the same level of detail as presented
here.

II. FORMALISM

A. Band structure

For our purposes here, an ab initio description of the ef-
fective impurity potentials is desired to convince the reader
that a realistic, materials-specific description of overdoped
cuprates has been obtained. Here one immediately encoun-
ters the usual challenge associated with describing cuprates
by first principles approaches, namely that density func-
tional theory (DFT) in its simplest form fails for the cuprate
parent compounds because it cannot describe the Mott in-
sulating state. While considerable progress has been made
incorporating correlations into DFT to describe high-energy
physics [18,19], these methods are not appropriate for a com-
plete ab initio description of low-energy phenomena, accurate
at the few meV level. We therefore adopt a hybrid approach,

starting with a low-energy tight-binding model describing the
CuO2-plane states of the notional pure material, with hopping
matrix elements taken from fits to ARPES measurements on
LSCO [20,21] and Tl-2201 [22]. To capture the continuous
evolution of electronic structure with doping, tight-binding
parameters for LSCO are interpolated between the fixed dop-
ings at which the ARPES measurements were performed [20].
The only parameter with strong doping dependence is the
chemical potential, which is set using the direct correspon-
dence between hole doping and Fermi volume. The doping
dependence of the next-nearest-neighbor hopping is relatively
weak, and all other tight-binding parameters are doping inde-
pendent. For Tl-2201, limited ARPES data [22] means that
doping dependence of electronic structure is generated via
rigid band-shift, with the only doping-dependent parameter
the chemical potential. (For more details of the procedure see
Refs. [5,7].)

The only additional renormalization that needs to be con-
sidered when modeling the pure electronic structure is the
many-body renormalization that occurs close to the Fermi
level, which flattens the dispersion ξk by a factor of m/m∗.
As discussed in Ref. [7], the ARPES measurements of Plate
et al. for Tl-2201 were performed at very low energies [22]
(tens of meV) and already capture the m∗ renormalization.
In LSCO, by contrast, the ARPES tight-binding fits to the
dispersion [21] are carried out over a wider energy range—
typically 0.5 eV—and therefore do not include the many-body
renormalization. While some flattening of the LSCO dis-
persion is visible in ARPES (see Fig. 6 of Ref. [21]), it
is not sufficiently well resolved to determine m∗/m. In-
stead, we turn to heat capacity measurements on Zn-doped
LSCO [23,24], where the Zn doping has been used to suppress
Tc to access the Sommerfeld coefficient in the low temper-
ature limit. We model the Zn dopants as strong-scattering
impurities with normal-state scattering rate �N , and obtain
a good fit to the doping-dependent Sommerfeld coefficient
with �N = 85 K and m∗/m = 2.5, as shown in Fig. 4. This
value of m∗/m has been used in all subsequent calculations on
LSCO.

B. Impurity potentials

We then describe the influence of the impurity in question
in terms of a lattice impurity Hamiltonian Himp, as described
below. The impurity Hamiltonian consists of modifications of
both the site energies and hopping matrix elements relative
to the pure system, and is determined by a Wannier-based
method for calculating impurity potentials [16] that has been
used successfully, e.g., to accurately simulate strong disorder
in superconducting materials [16,25–27]. In this method, two
DFT calculations are carried out for each type of impurity:
one of a 3 × 3 × 1 supercell containing a single impurity
(La35SrCu18O72, La36Cu18O71, or Tl35Ba36Cu19O108); and
a reference calculation for the corresponding pure system
(La4Cu2O8 or Tl4Ba4Cu2O12). For the (La,Sr) substitution
and the O vacancy impurity potential in LSCO we have
repeated the calculations for two different hole dopings, deter-
mined in each case by integrating the density of states (DOS)
down from the top of the band to the Fermi level. In addition to
the undoped calculations (in which no holes or electrons were
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FIG. 4. Sommerfeld specific heat coefficient γ for Zn-doped
LSCO. Experimental heat capacity data from Ref. [23] are fit using
the ARPES-derived band structure [20] with scattering rate �N and
Fermi-liquid mass enhancement m∗/m as adjustable parameters, from
which we determine m∗/m = 2.5. The unrenormalized Sommerfeld
coefficient is shown below for comparison.

added, other than those added by the impurity itself), we have
repeated the calculations with a hole doping (pvH) for which
the van Hove singularity in the single impurity supercell lies
at the Fermi level, and a second doping with 0.07 extra holes
per Cu (pvH + 7%). The reason for deriving the potentials at
pvH and pvH + 7% is that the enhanced density of states at the
van Hove singularity has a strong effect on screening, making
the impurity potentials substantially more local. More details
of the first principles derivation of the impurity potential are
given in Appendix A.

Each pair of DFT calculations is Wannier-projected onto
a one-orbital lattice to obtain the supercell Hamiltonian for
the ith impurity type, Hi

supercell, and the reference Hamiltonian,
H0, respectively. The difference between the two tight-binding
models then defines the Hamiltonian associated with the ith
impurity,

Hi
imp ≡ (

Hi
supercell − μiN̂ i

) − (H0 − μ0N̂ )

=
∑

R,R′,σ

δHi
RR′c†

Rσ cR′σ

≡
∑
R,σ

V i
Rc†

R,σ cRσ +
∑

R �=R′,σ

δt i
RR′c†

Rσ cR′σ , (1)

for which the Bloch-wave matrix elements are

V i
k,k′ =

∑
R,R′

δHi
RR′e−ik·Reik′ ·R′

=
∑

R

V i
Re−i(k−k′ )·R +

∑
R �=R′

δt i
RR′e−ik·Reik′ ·R′

. (2)

Here μi and μ0 are the chemical potentials of the simulation
with and without the impurity, respectively, determined di-
rectly from the DFT calculations via integration of the DOS.
The 2D lattice vectors R and R′ are measured in a coordinate
system in which the impurity sits directly above (or below)
the origin. Unlike the tight-binding Hamiltonian of a transla-
tionally invariant system, where all the site energies VR are

equivalent and the hopping integrals tRR′ can be classified into
a small hierarchy of increasing-range terms (nearest neighbor,
next-nearest neighbor, etc.), the impurity Hamiltonian lacks
translational symmetry, with V i

R and δt i
RR′ falling off with

distance from the impurity site. It is nevertheless useful to
group equivalent terms together: this is illustrated in Fig. 3,
and leads to the momentum-dependent form factors discussed
in Appendix A and listed in Tables I–III. For the materials of
interest here, defects can be classified into two types—site-
centered and plaquette-centered—depending on where they
sit with respect to the Cu atoms of the CuO2 plane. For
the body-centered-tetragonal structures of LSCO and Tl-2201
shown in Figs. 1 and 2, each out-of-plane defect in fact plays
a dual role: site-centered with respect to one neighboring
CuO2 plane and plaquette-centered with respect to the other.
To illustrate the qualitative differences between the impurity
potentials, the impurity matrix elements are plotted in Fig. 5 as
|V (q)|2, using the site energies from Tables I–III and Eq. (2).
The Cu substituents in Tl-2201, located well away from the
CuO2 planes, have strong forward-scattering character, with
|V (q)|2 peaked sharply near q = 0 and its Umklapp replicas.
By contrast, the impurity matrix elements in LSCO are more
rounded, reflecting the much smaller separation of the defects
from the CuO2 planes. The pointlike nature of the apical
oxygen vacancy results in a significant constant contribution
to |V (q)|2.

Since DFT calculations on cuprates systematically over-
estimate the electronic bandwidth relative to the bandwidth
measured in ARPES experiments, the DFT impurity po-
tentials are first expressed in units of the DFT-derived
nearest-neighbor hopping |t |, with the physically relevant
value of |t | set later by ARPES, when including the impu-
rity potentials in subsequent parts of the calculation. With
these approximations in mind, a full, material-specific tight-
binding model including disorder is obtained, to which we
add a phenomenological d-wave pair potential to describe
the superconducting state. The same procedure is followed
systematically for all material systems considered.

As mentioned above, the dominant defects in LSCO are
apical oxygen vacancies and the Sr2+ dopant ions that substi-
tute for La3+, thereby removing electrons from the conduction
band. It is expected that each added Sr atom should dope one
hole into the CuO2 planes, but the reality is more complicated.
A discrepancy between Fermi volume and Sr content has been
found in a number of ARPES studies [20,28,29], with the
careful 3D Fermi-surface measurements of Ref. [29] revealing
a Fermi volume equivalent to p = 0.32, significantly larger
than the Sr concentration of their La1.78Sr0.22CuO4 sample,
x = 0.22. A possible explanation of this effect is that in chem-
ically tuning the Sr concentration, the equilibrium oxygen
content is also changed. One way of taking this into account
is to set the doping-dependent concentration of Sr defects,
nSr, using the relation nSr = x = 0.69p. We also consider the
conventional relation, nSr = p, and show that this does not
significantly change our results. The relevant concentration
of oxygen vacancies is more difficult to determine, but is
known to be significant [30–32]. There are two inequivalent
oxygen sites in LSCO: planar oxygen and apical oxygen.
Structural refinements of x-ray diffraction data for LSCO in
Ref. [31] reveal that the planar oxygen site is fully occupied
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in well-annealed crystals (i.e., annealed at 500◦C for 1 week,
in 1 atm O2). By contrast, the apical oxygen is much less
tightly bound, with the same sample containing apical oxygen
vacancies at the nVO ≈ 9% level. Apical oxygen vacancies are
also likely to be highly relevant to the molecular-beam epitaxy
(MBE) thin films [3] of interest in the current study: their
large lateral dimension makes diffusion times long, and their
very high quality and crystallinity mean there are no grain
boundaries or screw dislocations to provide an easy diffusion
path perpendicular to the film. This is particularly apparent
when the MBE films are patterned into narrow microbridges
and annealed in ozone [3]—rapid diffusion of oxygen across
the microbridges reduces their residual resistivity by up to a
factor of 4 compared to the unpatterned cm2 films [4]. With
this in mind, our calculations of superfluid density for LSCO
have been performed over a range of apical oxygen vacancy
concentrations, 4% � nVO � 8%.

The dominant defect in Tl-2201 is a consequence of its
crystal growth. The high volatility of Tl2O3 at the growth tem-
perature leads to a deficit of Tl, which is replaced by an excess
of Cu that substitutes onto 4% to 7.5% of Tl sites [11,33–
35]. Attempts to suppress the Cu–Tl substitution using
high-pressure encapsulation [11] have been partially success-
ful, but reveal that the excess Cu+ plays a vital role in making
Tl-2201 an overdoped cuprate. (Cu+ has a valence of −2
relative to Tl3+, making it an effective hole dopant. Interstitial
O2− in the Tl2O2 double layers is similarly effective at doping
holes into the CuO2 planes.) We have calculated the impurity
potential of the Cu substituent and, assuming each Cu dopes
two holes, have set its concentration to be nCu = p/2. Here
nCu gives the concentration of Cu substituents as a fraction of
the in-plane Cu and varies smoothly from 8% to 15% across
the overdoped range. This is broadly in line with the direct
measurements of Cu concentration cited above, remembering
that there are two Tl sites for every in-plane Cu. To the extent
that oxygen interstitials are present, we expect them to behave
as dopants, and as scatterers, in much the same way as the Cu
substituents, given their similar location and relative valence.

C. Superconducting state

Within the Matsubara formalism, the Nambu space Green’s
function for a dirty superconductor can be written as [36]

G(k, iωn) = − iω̃k,nτ0 + 
̃k,nτ1 + ξkτ3

ω̃2
k,n + 
̃2

k,n + ξ 2
k

, (3)

where ξk is the single-particle dispersion relative to the Fermi
level and τi are the Pauli particle–hole matrices. In anticipa-
tion of momentum-dependent scattering effects that arise from
out-of-plane scatterers (and unlike the more common case of
point scatterers) we include momentum dependence in the
renormalized Matsubara frequencies, ω̃k,n ≡ ω − �0(k, ωn),
and allow for explicit renormalization of the superconducting
gap, 
̃k,n ≡ 
k + �1(k, ωn). We give the explicit forms of
ω̃k,n and 
̃k,n below. In principle, the band energy ξk should
also be self-consistently renormalized by the disorder, but
this effect is generically weaker, indeed vanishing identically
in the case of pointlike impurities in a particle–hole sym-
metric system. Furthermore, the real part of the self energy

�3 ≡ ξ̃k − ξk is already incorporated into the ARPES-derived
electronic structure employed here.

For a separable pairing interaction, V0dkdk′ , the gap equa-
tion for a weak-coupling unconventional superconductor
is [36]


k = 2T

N

�c∑
ωn>0

∑
k′

V0dkdk′

̃k′,n

ω̃2
k′,n + 
̃2

k′,n + ξ 2
k′

, (4)

where �c is a high-frequency cutoff, the k′ sum runs over the
first Brillouin zone, and N is the number of sites in the lattice.
For the tetragonal cuprates we are interested in, the d-wave
eigenfunction takes the form

dk ∝ [cos(kxa) − cos(kya)], (5)

where a is the in-plane lattice spacing, and dk is normalized
such that 1

N

∑
k d2

k = 1. The system thus condenses into the
state 
k = 
0dk at all temperatures below Tc.

In addition to the weak-scattering ab initio potentials
discussed above for the out-of-plane impurities, we also al-
low for a small density of in-plane strong scatterers, such
as Cu vacancies. The combined effect of the strong and
weak scatterers is shown diagrammatically in Fig. 6. Since
the out-of-plane potentials are relatively weak, they can be
treated in the Born approximation, a statement that we jus-
tify in more detail below. The in-plane strong scatterers are
treated as pointlike unitarity scatterers in the t-matrix approx-
imation. The out-of-plane defects generate potentials with
significant spatial extent, leading in turn to strong momentum
dependence in the matrix elements Vk,k′ . As a result, vertex
corrections must be included in the calculation of two-particle
properties such as superfluid density, resistivity and optical
conductivity.

Including the extended nature of the dopant defects, the
renormalization equations acquire a somewhat different form
than is usual, but the self-energy contributions from the vari-
ous impurity types are still additive [37]:

ω̃k,n = ωn + 1

N

∑
i, k′

ni

∣∣V i
k,k′

∣∣2 ω̃k′,n

ω̃2
k′,n + 
̃2

k′,n + ξ 2
k′

+ �U
N

G0
, (6)


̃k,n = 
k + 1

N

∑
i, k′

ni

∣∣V i
k,k′

∣∣2 
̃k′,n

ω̃2
k′,n + 
̃2

k′,n + ξ 2
k′

, (7)

where

G0 = 1

πNN0

∑
k

1

2
Tr[τ0G(k, iωn)]; (8)

N0 is the single-spin density of states per unit cell, calcu-
lated self-consistently at the Fermi level; ni = Ni/N is the
concentration of the ith impurity; and �U

N is the normal-state
scattering rate associated with the strong-scattering impuri-
ties.

We note that the use of the Born approximation has been
criticized as corresponding to an unphysical limit consisting
of an infinite number of infinitely weak scatterers [4]. This is
too narrow an interpretation. In fact, for dilute pointlike scat-
terers in effectively three dimensions, the Born approximation
is justified whenever the quantity VimpN0 is significantly less
than one. (It is also common to parametrize the strength of a
scatterer in terms of the cotangent of its scattering phase shift,
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FIG. 5. Impurity matrix elements as a function of momentum transfer k − k′ ≡ q = (qx, qy ) for: (a) the apical oxygen vacancy in LSCO;
(b) the Sr dopant in LSCO; and (c) the Cu–Tl substitution in Tl-2201. Matrix elements V (q) are obtained from Eq. (2), using the site-energies
V i

R from Tables I to III, respectively. (Hopping modifications are not included, but are in any case small.)

c = cot δ = 1/(πVimpN0): the Born-limit then corresponds to
c significantly greater than 1.) In our previous work assum-
ing pointlike impurities, we compared results for superfluid
density calculated over a wide range of scattering phase shifts
and showed that ρs(T ) was qualitatively unchanged for c � 2,
illustrating the broad applicability of the Born limit [7]. For
the extended impurities considered here, the need to include
vertex corrections to two-particle properties would make the
full t-matrix approximation computationally expensive. There
is, however, a simple test we can perform. The ab initio
calculations show that our strongest scatterer, the near api-
cal oxygen vacancy in LSCO, is essentially pointlike (i.e.,
V0 � V2,V4, . . .), allowing it to be treated as a point scatterer
in the t-matrix approximation, then compared to results ob-
tained in the Born approximation. This test is carried out in
Appendix D, with the conclusion that the Born approximation
is well justified for all of our out-of-plane extended defects.

Another interesting aspect of extended impurities is that
they give rise to momentum-dependent first-order corrections
to the impurity self-energy, in contrast to the case of pointlike
scatterers, for which the first-order correction is a constant
that can be absorbed into the chemical potential. However, as
discussed in Appendix A, the momentum dependence of the
first-order self-energy arising from the hopping modifications

FIG. 6. Diagrammatic expansions of the disorder-averaged self
energy � and polarization bubble �, in the realistic disorder model.
Circles denote pointlike strong impurities, which are treated in the
t-matrix approximation. Crosses denote one type of weak extended
scatterer, treated in the Born approximation. For simplicity the other
species of weak scatterer are not shown, but appear as additive
terms in the actual calculations. Only weak scatterers contribute to
the vertex function �, and there are no crossing diagrams between
different impurity types.

corresponds to the same form factors as in the normal state
dispersion, such that these terms simply renormalize the band
structure. Since we use tight-binding models derived from
ARPES experiment, these effects are already incorporated
into the dispersions adopted.

D. Transition temperatures Tc0 and Tc

For a clean system, ωn and 
k are unrenormalized and the
gap equation is [36]


k = 2T

N

�c∑
ωn>0

∑
k′

V0dkdk′

k′

ω2
k′,n + 
2

k′ + ξ 2
k′

. (9)

This allows the pairing strength V0 and cutoff �c to be
parameterized in terms of a notional, clean-limit transition
temperature Tc0, by carrying out the Matsubara sum in Eq. (9)
at temperature Tc0, where 
k is vanishingly small and can be
eliminated from the denominator:

1

V0
= 2Tc0

N

�c∑
ωn>0

∑
k

d2
k

1

ω2
k,n + ξ 2

k

. (10)

In the presence of disorder, the gap equation at Tc reduces to


k = 2Tc

N

�c∑
ωn>0

∑
k′

V0dkdk′

̃k′,n

ω̃2
k′,n + ξ 2

k′
. (11)

We now take Tc(p) to be given roughly by experiment, in
each case assuming a parabolic form for the “superconducting
dome.” Equations (10) and (11) can then be solved numer-
ically in the presence of disorder to infer the value of Tc0

required to produce a given Tc. The variation of Tc0 with
doping reflects the intrinsic physics of the cuprate pairing
interaction, in particular its weakening on the overdoped side.
We note that Tc0 should be considered an upper bound on the
clean-limit transition temperature, as we have not included
pair-breaking effects arising from inelastic scattering, or fluc-
tuation effects such as the Berezinskii–Kosterlitz–Thouless
vortex-unbinding transition.

E. Superfluid density

The superfluid density is calculated within the Matsubara
formalism by evaluating the electromagnetic response func-
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tion in the static limit, � → 0 [38,39]:

Qi j = e2T

N

∑
ωn>0

∑
k

vi
k Tr[G(k, ωn)� jG(k, ωn)

− τ3G(k, ωn)� jτ3G(k, ωn)], (12)

where the first term and second terms are the diagmagnetic
and paramagnetic contributions, respectively. The group ve-
locity along the j direction is v j

k = ∂ξk/∂k j , and � is the
impurity-renormalized current vertex function,

�(k, ωn) = vk[γ0(k, ωn)τ0 + iγ1(k, ωn)τ1 + γ3(k, ωn)τ3], (13)

where explicit expressions for the vertex components γn(k, ωn) are given in Appendix E. The final result for the 2D superfluid
density is

ρ2D
s (T ) = μ0Qxx = 8μ0e2T

N

∑
ωn>0

∑
k

(
v j

k

)2 
̃2
k,nγ0(k, ωn)− ω̃k,n
̃k,nγ1(k, ωn)(

ω̃2
k,n+ 
̃2

k,n + ξ 2
k

)2 . (14)

The alert reader will note that we have presented formulas
in which the k-sum is performed over the whole Brillouin
zone, rather than over the Fermi surface itself as in the previ-
ous work of Refs. [5–7]. This is done both because the kernel
in the energy integration of Eq. (14) does not necessarily
fall off rapidly enough near the Fermi surface, and because
quantitative inaccuracies arise if calculations are carried out
on the Fermi surface near those dopings where the van Hove
singularity is close to the Fermi level. A comparison of the

two approaches is given in Appendix B, along with details of
the implementation of the full-Brillouin-zone sum.

Sufficiently far from the van Hove singularity, where it
is possible to linearize the spectrum ξk and carry out the ξ

integration, Eq. (14) can safely be recast as a Fermi surface
average. Including vertex corrections, this leads to the follow-
ing expression for ρ2D

s :

ρ2D
s (T ) = 2πμ0e2N0T

∑
ωn>0

〈(
v j

k

)2 
̃2
k,nγ0(k, ωn) − ω̃k,n
̃k,nγ1(k, ωn)(

ω̃2
k,n + 
̃2

k,n

)3/2

〉
FSk

, (15)

which reduces to the familiar form for superfluid density used,
e.g., in Refs. [5–7] in the limit γ0 → 1 and γ1 → 0 when the
impurity potentials are pointlike.

III. RESULTS

The ab initio calculations of impurity potentials are pre-
sented in Appendix A, in Tables I to III. DFT calculations
were initially performed for LSCO, for the undoped super-
cells La35SrCu18O72 and La36Cu18O71. In LSCO, the density
of states has a particularly strong doping dependence: at a
hole doping of around 19%, the Fermi surface undergoes a
Lifshitz transition and a van Hove singularity passes through
the Fermi level. To understand how this influences screen-
ing, two further sets of calculations were carried out: one at
p = pvH, with electron count adjusted to place the van Hove
singularity at the Fermi level; and an even more overdoped
calculation at pvH + 7%. Proximity to the van Hove singu-
larity does indeed have a significant effect on the potentials,
particularly for the near apical oxygen vacancy Vnear

O . In Ta-
ble I, we see that for undoped La36Cu18O71, the impurity
potential for Vnear

O is rather extended: the on-site energy V0

is comparable in magnitude to the combined energies of the
four nearest-neighbor sites (4 × V2). This changes markedly at
pvH: Vnear

O becomes essentially pointlike, with V0 � V2,V4. As
expected, the screening effect diminishes somewhat beyond
the van Hove singularity: at pvH + 7% the on-site energy V0

increases by 6%, while the nearest-neighbor energy V2 dou-

bles, leading to a slightly more extended impurity potential.
Proximity to the van Hove singularity also has a systematic
effect on the screening of the potential of the Sr dopant, as
seen in Table II. However, the changes are not as strong,
nor as important: unlike Vnear

O , the Srnear defect is plaquette-
centered, so its impurity potential is inherently extended.
Results for the Cu defect in Tl-2201 are presented in Table III.
Here DFT calculations were only carried out for the undoped
Tl35Ba36Cu19O108 supercell: there is no Lifshitz transition in
Tl-2201 in the relevant doping range and, as discussed in
Sec. II A, the Cu–Tl substitution already has a hope-doping
effect.

As mentioned above, the spatially extended nature of the
realistic disorder model gives rise to impurity matrix elements
Vk,k′ with very strong momentum dependence. This, com-
bined with anisotropic electronic structure, leads to elastic
scattering rates that vary strongly around the Fermi sur-
face, something that is a well-established part of cuprate
phenomenology [21,22,40–49]. Recognizing that our calcu-
lation includes only disorder contributions, and not inelastic
scattering, the normal-state elastic scattering rate �N (φ) is
plotted in Figs. 7(a) and 7(b), for LSCO and Tl-2201. �N (φ)
is defined to be the imaginary part of the τ0 self energy
above Tc, evaluated on the Fermi surface, at angle φ. The
scattering rate has significant angle dependence in both ma-
terials, being strongest in both cases at the antinodes, with
minima along the zone diagonals, in qualitative agreement
with ARPES [21,22,42,45,47,48] and transport [40,46,49]
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FIG. 7. Comparison of point-scattering and realistic disorder models in LSCO and Tl-2201. (a, b) Normal-state elastic scattering rate �N as
a function of angle φ, measured from the zone axes. Dashed lines indicate the values of �N used in the point-scattering models of Refs. [5–7].
(c, d) Clean-limit transition temperatures Tc0(p) parametrize the pairing strength required to produce the parabolic “superconducting domes”
Tc(p) of LSCO and Tl-2201. Disorder parameters for the LSCO and Tl-2201 plots are as shown in panels (c) and (d), respectively.

experiments on various cuprate materials. In LSCO, the calcu-
lated �N (φ) has very little doping dependence, but in Tl-2201,
both the magnitude and angle dependence of �N (φ) increase
significantly with hole doping.

ARPES experiments do not, in general, have sufficient
resolution to allow a quantitative comparison with our cal-
culated �N (φ). Clearer insights come from angle-dependent
magnetoresistance (ADMR), with �(φ) accessible through
detailed, Boltzmann-transport fits to the ADMR data. We are
not aware of ADMR measurements on LSCO, but results have
recently been reported for Nd-doped LSCO [49], in which
the Nd dopants shift the Lifshitz transition upwards from
p = 19% to p = 24%. By carrying out these measurements
at multiple temperatures, elastic and inelastic contributions to
�(φ) have been separated. The results from Ref. [49] reveal
an elastic scattering rate in Nd-LSCO qualitatively similar to
our calculations, with minima along the nodal directions and
maxima at the antinodes. Converting the ADMR values to
temperature units, and remembering that the experimentally
accessible scattering rate is 2�N (φ), the nodal minimum in
Nd-LSCO corresponds to �elastic

ADMR(φ=45◦) = 35 K. This is
somewhat smaller than our calculated nodal minimum for
LSCO in Fig. 7(a), �N (φ=45◦) ≈ 65 K, which assumes a
concentration of apical oxygen vacancies nVO = 6%. We have
also carried out calculations for nVO = 4% and find �N (φ=
45◦) ≈ 43 K. This is significantly closer to the ADMR value,
and indicates that a lower concentration of apical oxygen
vacancies in the Nd-LSCO crystals could easily account for
the difference. The antinodal scattering rate is another matter,
however. In our calculations, the angular variation in �N is
slightly less than a factor of 2. The scattering rate inferred
from ADMR varies by a factor 8 around the Fermi surface,
reaching an antinodal maximum of 275 K in �N units. We
suspect that this discrepancy is an artifact of the Fermi-
surface-based Boltzmann-transport approach used to model
the ADMR data, which breaks down in the vicinity of a van
Hove singularity for the reasons we give in Appendix B,
requiring full-Brillouin-zone k-sum methods instead.

For overdoped Tl-2201 (Tc = 15 K), the detailed interpre-
tation of ADMR data in Ref. [46] found an elastic scattering

rate corresponding to �N = 20 K, with no significant variation
around the Fermi surface. This is close to what we calculate
for Tl-2201 at optimal doping, but not with the doping de-
pendence we show in Fig. 7(b). A detailed investigation of the
behavior of the normal state scattering rate is beyond the scope
of the current work, but it is worth emphasizing two key differ-
ences between LSCO and Tl-2201 that must play an important
role in any attempt to do so. First, LSCO passes through a Lif-
shitz transition in the overdoped superconducting range, with
the van Hove singularity significantly enhancing its antinodal
density of states; the Tl-2201 Fermi surface is far from the
vHS, with a relatively isotropic density of states. And second,
the elastic scatterers in Tl-2201 are located much further from
the CuO2 planes than in LSCO, with concomitantly softer and
longer-range potentials, as can be seen in Tables I to III.

For comparison purposes, the values of �N used in the
point-scattering models of Refs. [5–7] are also shown in
Figs. 7(a) and 7(b), and correspond quite closely to the
minima of �N (φ) in LSCO and Tl-2201. This leads to an
important insight—when defects are spatially extended, sig-
nificantly higher scattering rates can be tolerated, particularly
near the antinodes. This is because extended defects are
inherently forward scattering. Near the antinodes, forward
scattering couples states for which the d-wave gap has the
same sign, a process akin to Anderson’s theorem [50], and
harmless to superconductivity [51,52]. This can further be
seen in Figs. 7(c) and 7(d), where plots of clean-limit tran-
sition temperature, Tc0(p), show the pairing strength needed
to produce the parabolic “superconducting domes” of LSCO
and Tl-2201. We see that the required pairing strength is
somewhat lower than for the point scatterers of Refs. [5–7],
despite the larger average scattering rate in Figs. 7(a) and 7(b).
For LSCO this is particularly welcome, as the large values
of Tc0(p) needed in Refs. [5–7] were a distinct weakness
of the point-scattering approach. It is intriguing that this
suggests an intrinsic pairing scale of about 80 K in doped
La2CuO4, slightly higher than the 70 K of superoverdoped
Ba3Cu2O4−δ [53]. As expected, in the Tl-2201 system, the
Tc suppression by disorder is considerably weaker than in
LSCO.
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FIG. 8. Zero-temperature superfluid density as a function of tran-
sition temperature Tc for LSCO and Tl-2201. Disorder parameters are
as shown including, for LSCO, two different doping dependencies
of Sr concentration, nSr (p). LSCO data: MBE thin-film mutual
inductance [3]. Tl-2201 data: single-crystal microwave [54];
single-crystal μSR [55]; , polycrystalline μSR [56,57].

Figure 8 shows zero-temperature superfluid density as a
function of transition temperature Tc in LSCO and Tl-2201
(and compares with experimental data from Refs. [54–57]).
The ab initio calculations do a remarkably good job of cap-
turing the experimental behavior, particularly in the case of
Tl-2201, where the sole assumption is that the concentration
of out-of-plane scatterers is given by nCu = p/2. In LSCO,
the data of Ref. [3] are well described by a calculation based
on 6% apical oxygen vacancies. In Appendix C, the effect of
varying the concentration of Sr and VO defects in LSCO is
explored in more detail. The pointlike potential of the apical
oxygen vacancies has a significant pair-breaking effect; the
spatially extended potential of the Sr defects renders them
fairly benign to the superfluid density, as can be seen in Fig. 8
by comparing the traces for nSr = p and nSr = 0.69p.

Figure 9 shows the temperature dependence of ρs for the
same ab initio potentials as in Fig. 8, along with the ex-
perimental data for LSCO from Ref. [3]. As expected from
Refs. [5,7], the temperature dependence is remarkably linear
down to temperatures of order 1 K, at which point the mate-
rials enter a gapless regime indicative of a narrow impurity
band, controlled in our model by the presence of a small den-
sity of unitarity scatterers. In general, the agreement with the
data of Ref. [3] shown in Fig. 9(a) is excellent over the entire
temperature and doping range, with the exception of devia-
tions near Tc, which are discussed in Ref. [5]; and for the very
lowest Tc sample, which was discussed in detail in Ref. [10].
We do not currently understand the latter discrepancy: the
disorder-averaged theory suggests that significant curvature
will occur in ρs(T ) at the lowest temperatures, but this is not
visible in the experimental data on that sample. It may be that
the very low Tc samples are more inhomogeneous and have
such low superfluid density that they are indeed dominated by
phase fluctuations rather than Bogoliubov quasiparticles.

IV. DISCUSSION

A. Critical assessment of approach

Here we present what we regard as the strong and weak
points of the analysis we have presented. A major advantage
of our approach, a simple extension of “dirty d-wave theory,”
is certainly its simplicity: one can work in the superconducting
state with a theory of well-defined quasiparticles and calculate
essentially any observables. We have now updated this theory
to start from ab initio calculations of the relevant impurity
strengths in the systems of interest and shown that the re-
sults continue to agree well with recent superfluid density
experiments; the number of free parameters not precisely
constrained by experimental data or the ab initio calculations
has thus been significantly reduced. Furthermore, we show
in Appendix B that the van Hove singularity, which naively
could give rise to anomalies in such a theory at dopings when
it approaches the Fermi level, is in fact rather benign when
properly treated using momentum-sum methods rather than
Fermi-surface averages.

(a) (c)LSCO Tl-2201
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FIG. 9. Temperature-dependent superfluid density of overdoped LSCO and Tl-2201. (a) Superfluid density data for LSCO from Ref. [3],
with shading indicating the stated 2% experimental uncertainty. The dashed line indicates the construction used to estimate the corresponding
mean-field transition temperature T MF

c . (b,c) Superfluid density for LSCO and Tl-2201 calculated in the realistic disorder model, for the
disorder parameters shown, as doping (and therefore Tc) are varied.
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Nevertheless, the present approach could be improved in
several ways. First, as we have noted above, one could study
the out-of-plane dopant impurities within the t-matrix rather
than Born approximation. This would be more accurate, but
makes calculation of the corresponding vertex corrections
to two-particle properties significantly more expensive. We
have argued that, for the calculated impurity potential values,
t-matrix and Born approximation calculations must give es-
sentially identical results.

A complete theory would also account explicitly for the
doping effect of Sr/La, Cu/Tl, and O vacancy impurities on
the electronic structure. This approach, i.e., assuming that ev-
ery impurity dopes the system, was adopted, e.g., in Ref. [58].
While appealing in its simplicitly, it does not reflect the com-
plexity of different impurities and dopants in the cuprates.
We have therefore chosen to calculate the ab initio scatter-
ing potentials directly, and have incorporated the changes
in electronic structure by adopting the ARPES-derived tight
binding models interpolated across the doping range. A direct
implementation of ab initio doping is beyond the scope of
the present theory, but it might be feasible in some future
implementation of DFT+DMFT or similar realistic theories
of electronic structure incorporating correlations.

In addition, we have performed our calculations of
superconducting-state observables on a two-dimensional lat-
tice of Cu 3dx2−y2 orbitals. We thereby miss explicit inclusion
of O and other out-of-plane ionic degrees of freedom in the
tight-binding electronic structure, except insofar as they con-
tribute to the single hybridized Cu–O band near the Fermi
level. In some cuprates, 3D effects can be important at the
level of electronic structure, particularly in tight-binding de-
scriptions of the CuO2 plane near van Hove singularities, as
shown in Ref. [59].

Finally, we note that as in previous work, we have assumed
that the pairing interaction binding electrons into a d-wave
state can be adequately described in the weak-coupling limit,
by a separable pairing interaction, the strength of which
is parameterized by an assumed Tc0(p), chosen to repro-
duce the experimental superconducting phase diagram. In a
complete theory, the weakening of the clean-limit pairing
interaction with increasing doping in the overdoped regime
should be calculated from microscopics as well. For exam-
ple, one might expect the doping and disorder to modify the
particle–hole susceptibility as one moves across the phase
diagram, thereby modifying the underlying spin-fluctuation
pairing strength [60]. Including simple models of the disorder
self-energy in such theories has already been attempted [61].
It will certainly be worthwhile to explore combining these
approaches with our microscopic, material-specific disorder
models.

B. Electronic inhomogeneity

In this paper, we have explored the predictions of a simple
theory describing a homogeneously disordered system, i.e.,
we have assumed that defects are distributed randomly and
perturb the otherwise homogeneous system only weakly. This
allows the application of a conventional disorder-averaged
“effective medium” approach, which can be considered a
simple generalization of the successful “dirty d-wave” theory

applied earlier to cuprates. In such a picture, the temperature
dependence of thermodynamic and transport properties in the
superconducting state is dominated by Bogoliubov quasiparti-
cles. Furthermore, the disappearance of superconductivity on
the overdoped side of the dome must be considered to be a
consequence of a combination of a weakening of the d-wave
pairing interaction and disorder (see, e.g., Ref. [61]).

On the other hand, there are several studies of cuprates
generally, and of LSCO in particular, which propose a very
different picture of the overdoped systems, one in which
larger-scale inhomogeneity is intrinsic to the materials, and
therefore Tc is determined not by uniform suppression of the
gap, but by the destruction of the Josephson coupling between
grains by phase fluctuations. For example, a recent study [62]
considering several measures of superconductivity on an over-
doped LSCO crystal found strong nanoscale inhomogeneity in
STM and an onset of diamagnetism many degrees above the
onset of zero resistance, consistent with a theory of granular
superconductivity by Spivak et al. [63] There is evidence from
STM on many Bi-based cuprates of substantial inhomogeneity
of local gaps and other properties of these samples [64,65].

Nevertheless, thermodynamic measurements tend to infer
much narrower spatial distributions of superconducting prop-
erties in the overdoped regions than STM, particularly in the
cleaner YBCO material [66,67] (overdoped with Ca). Even
in LSCO, sample quality varies dramatically between crystals
and thin films of various types, and there is to our knowledge
no evidence for gross inhomogeneity in the epitaxially grown
films of Ref. [3] with which we compare here. Recently,
a careful study of Ca substitution concluded that reducing
the disorder strength can dramatically extend the Tc dome
of LSCO [68], supporting the notion that the destruction of
superconducitivity depends strongly on the scattering poten-
tials of the dopants, as assumed here. From the theoretical
standpoint, while it has been proposed that highly disordered
d-wave superconductors can exhibit responses consistent with
a granular picture [58] a recent study searching for this effect
found no significant self-organization of regions of well-
defined phase [69].

It therefore seems likely that, while granular, phase-
fluctuation-dominated behavior may indeed exist in some
overdoped samples, it is not intrinsic to cuprates, but rather
due to chemical inhomogeneities that arise naturally in the
growth process of some samples of some materials. In this
case, the description of the somewhat idealized disorder-
averaged dirty d-wave theory may indeed prove adequate for
most of the overdoped phase diagram, until the falling super-
fluid density induces strong phase fluctuations [70] that may
overcome the quasiparticle responses for some observables
in samples with very small Tc. Furthermore, it seems to us
unlikely that a theory of weakly Josephson-coupled grains can
explain the superfluid density, optical conductivity, specific
heat and thermal conductivity at the same semiquantitative
level put forward here and in Refs. [5–7].

V. CONCLUSIONS

As discussed in the Introduction, we have started from the
point of view that the experimental data on the overdoped
side of the cuprate phase diagram can be explained within the
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Landau-BCS paradigm, provided the details of the disorder
present as a result of the doping process are properly ac-
counted for, with appropriate Fermi liquid renormalizations of
quasiparticle masses fixed by experiment. Within this scheme,
the dopant disorder is taken to be weak enough to apply the
Born approximation for impurity scattering. A small concen-
tration of strong, pointlike scatterers, representing in-plane
defects such as Cu vacancies, has also been included, to repro-
duce the small gapless impurity band observed at the lowest
temperatures. The impurity potentials themselves have now
been calculated from first principles, scaled only by an overall
bandwidth renormalization, yielding a tractable theory within
which any superconducting state observable can be calculated.
We have shown here that for the two cuprates that can be
easily overdoped, these simple conventional procedures pro-
duce results consistent with the “anomalous” behavior of the
superfluid density that has been observed.
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APPENDIX A: IMPURITY POTENTIALS

As summarized above, the calculation of the impurity
potential associated with a given defect requires two DFT
calculations to be carried out: one for a supercell containing
a single impurity; and a reference calculation of the corre-
sponding pure system. For these calculations we employed
the Vienna ab initio simulation package (VASP) [71] with
the generalized gradient approximation of Perdew, Burke, and
Ernzerhof [72] and a plane-wave energy cutoff of 650 eV.
For the reference systems we used the conventional orthog-
onal La4Cu2O8 and Tl4Ba4Cu2O12 cells with with structural
parameters corresponding to the Inorganic Crystal Structure
Database (ICSD) entries 41643 and 65326, respectively [73].
The k-grids were taken to be 21 × 21 × 6 and 7 × 7 × 6 for
the La4Cu2O8 normal cells and supercells, respectively. For
the Tl4Ba4Cu2O12 normal cells and supercells, the k-grids

were taken to be 12 × 12 × 2 and 4 × 4 × 2, respectively.
To derive the impurity potentials for the (La,Sr) substitution
and the O vacancy impurity potential in LSCO with the ad-
ditional hole dopings we proceeded as follows. We adjusted
the VASP parameter NELECT in such a way that the van
Hove singularity in the supercell lies at the Fermi energy.
For the La35SrCu18O72 supercell this required us to subtract
0.11 electrons per Cu from the default value of NELECT. For
the La36Cu18O71 supercell this number was 0.26 electrons
per Cu instead. This difference can be roughly understood
from the fact that a Sr dopes 1 hole, and an O vacancy
removes 2 holes: 0.11 + 1/18 ≈ 0.26 − 2/18. We note that
for these impurity potential derivations, NELECT was adjusted
both in the single impurity supercell, and the reference sys-
tem (La4Cu2O8 in this case) by the same number of holes
per Cu. Adjusting the NELECT parameter adds a constant
positive/negative background potential that essentially mim-
ics the many positively/negatively charged Sr and O vacancy
defects that are distributed throughout the sample, not the sin-
gle, isolated impurity for which the ab initio potential is being
calculated. In the single-impurity approach taken in our study,
these background corrections are the most straightforward
approximation to take into account the potentials induced
by the nonzero density of dopants and vacancies present in
sample. In addition to the van Hove hole doping pvH, we also
derived the impurity potentials of the (La,Sr) substitution and
the O vacancy in LSCO for the hole doping pvH + 7% in
which 0.07 extra holes were doped per Cu. In total 11 DFT
calculations were performed to derive the impurity potentials
of the (La,Sr) substitution and the O vacancy in LSCO for
various hole dopings. For the undoped impurity potentials we
simulated La4Cu2O8, La35SrCu18O72, and La36Cu18O71 with
the default value of NELECT. For the (La,Sr) potential at pvH

and pvH + 7% we simulated La4Cu2O8 and La35SrCu18O72

in which 0.11 and 0.18 electrons were removed from the
default value of NELECT. For the O vacancy potential at pvH

and pvH + 7% we simulated La4Cu2O8 and La35SrCu18O72

in which 0.26 and 0.33 electrons we removed from the default
value of NELECT. We emphasize again that in addition to the
explicit removal of electrons, the impurities themselves also
dope holes and electrons: a Sr dopes 1 hole, and an O vacancy
dopes 2 electrons.

We note that the impurity potential needs to be partitioned
from its super-images. To this end we use the partition-
ing scheme detailed in the supplement of Ref. [16]. The
Wannier-function-based Hamiltonian has been derived us-
ing the Wannier90 software [74]. Specifically, we projected
Cu-dx2−y2 orbitals on the bands within low-energy windows.
These low-energy windows were taken to be [−4.5, 2.5] eV
for the La4Cu2O8 normal cell and La35SrCu18O72 super-
cell; [−4.6, 2.3] eV for the La36Cu18O71 supercell; and
[−3, 2.8] eV for the Tl4Ba4Cu2O12 normal cell and the
Tl35Ba36Cu19O108 supercell. To obtain projected Wannier
functions we set num_iter = 0. Due to the large number
of orbitals in the supercells, the disentanglement procedure
became unstable. Therefore, we set dis_num_iter = 0. As
a result, the Wannier bands in some parts of k-space were
shifted downwards in energy relative to the DFT bands (see
Fig. 10). The most important consideration for the purposes of
calculating impurity potentials is that the underlying Wannier
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(a)

(b)

(c)

FIG. 10. Comparison of the VASP DFT band structure (solid
lines) with the Wannierized bands (dashed lines) used to generate
the tight-binding impurity potentials, for (a) the undoped La4Cu2O8

normal cell and (b) the La35SrCu18O72 supercell, containing one Sr
dopant. The high-symmetry points are given by: � = (0, 0, 0), X =
( 1

2 , 0, 0), M = ( 1
2 , 1

2 , 0), Z = (0, 0, 1
2 ), S = ( 1

2 , 1
2 , 1

2 ), P = ( 1
2 , 0, 1

2 ),
and Z = (0, 0, 1

2 ). For the La4Cu2O8 and La35SrCu18O72 bands
these are expressed in the reciprocal basis vectors of the orthogonal
La4Cu2O8 and La35SrCu18O72 unit cells, respectively. (c) The Wan-
nier function, displaying well-localized Cu dx2−y2/O px,y antibonding
character. We emphasize that the Wannier bands are only used in the
determination of the impurity potentials: the empirical ARPES band
structure is the basis for all other calculations.

functions have well-localized Cu dx2−y2/O px,y antibonding
character, as can be seen in Fig. 10(c). In any case, some of
the mismatch is canceled because the impurity potential is the
difference between the single impurity supercell Hamiltonian
and the reference Hamiltonian, as shown in Eq. (1).

Results for the ab initio impurity-potential calculations are
presented in Tables I–III, with numerical values of the real-
space matrix elements δHi

RR′ = V i
RδR,R′ and δt i

RR′ given for
representative choices of R and R′, in units of the DFT-derived
nearest-neighbor hopping |t |. As shown in Fig. 3, it is useful
to group together terms that are equivalent by symmetry.
Transforming to momentum space, as shown in Eq. (2), the
grouping of like terms leads to a set of form factors that enter
the matrix elements V i

k,k′ . For the site energies these are

f (k, k′) = f (q) =
∑

{equiv. R}
ei(k−k′ )·R =

∑
{equiv. R}

eiq·R, (A1)

and for the hopping modifications

f (k, k′) =
∑

{equiv. (R,R′ )}
eik·Re−ik′ ·R′

, (A2)

where in each case the phase factors are summed over the
set of equivalent lattice vectors R or pairs of lattice vector
(R, R′). By using a 2D coordinate system in which the im-
purity sits directly above (or below) the origin, we obtain
form factors that are purely real. These are listed beside their
corresponding impurity terms in Tables I–III, along with the
form factor evaluated in the limit k = k′ (i.e., q = 0), as this
is the form in which it enters the first-order self energy. In
this limit, the site-energy form factors are constants that can
be absorbed into the chemical potential. Interestingly, in the
q = 0 limit, the form factors derived from the hopping mod-
ifications take on precisely the form of the band dispersions
they modify, meaning that they can be be directly absorbed
into a renormalization of the hopping integrals. In this sense,
we have taken the first-order self energy into account from
the outset, since we base our energy dispersions on ARPES-
derived tight-binding parametrizations.

To account for the doping dependence of the ab initio
impurity potentials in LSCO, linear interpolation is used
between pvH and pvH + 7%. The overdoped regime is suf-
ficiently far removed from the undoped compounds that
interpolation does not make sense below pvH; constant extrap-
olation of the pvH values is used instead.

APPENDIX B: MOMENTUM SUMS AND THE VAN HOVE
SINGULARITY

In calculations such as those carried out here, Brillouin-
zone momentum sums are typically converted to Fermi-
surface integrals, by linearizing the dispersion ξk in the
vicinity of the Fermi surface: i.e., ξk → h̄|vF,k‖ |δk⊥. In a 2D
system of area L2,

BZ∑
k

Ak → L2

(2π )2

∫
FS
dk‖

∫
dk⊥A(k‖, k⊥) (B1)

≈ L2

h̄(2π )2

∫
FS
dk‖

∫ ∞

−∞
dξ

1

|vF,k‖ |
A(k‖, ξ ), (B2)

with the ξ integral carried out in closed form, and the remain-
ing k‖ integral expressed as a Fermi surface average. Implicit
in this conversion is that the Fermi velocity vF,k‖ not go to
zero anywhere on the Fermi surface, and that the kernel of the
integral, A(k‖, ξ ), die off fast enough that the ξ integral not
extend beyond the boundary of the irreducible Brillouin zone.

These requirements fail spectacularly in LSCO, which un-
dergoes a Lifshitz transition at p ≈ 19% when the van Hove
singularity (vHS) passes through the Fermi energy, as shown
in Fig. 11(d). For our realistic disorder model, in which the
calculated scattering rates and self-energies [e.g., in Eqs. (6)
and (7)] are highly sensitive to the density of final states, the
consequences of persisting with Fermi surface averages can
be dire. This is seen in Figs. 11(a)–11(c) for LSCO. When the
calculation is restricted to the Fermi surface, the normal-state
scattering rate 〈�N 〉FS diverges at the vHS; the required pairing
strength, parameterized by the clean-limit transition temper-
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TABLE I. Impurity parameters for the apical oxygen vacancy, VO, in LSCO. Ab initio potentials from Wannier-projected DFT are tabulated
in units of the DFT-derived nearest-neighbor hopping, |t | = 524.7 meV, at three hole doping levels: the undoped La36Cu18O71 supercell; pvH,
with the van Hove singularity tuned to the Fermi level; and pvH + 7%. Representative values of the coordinates R and R′ are given in a
coordinate system where the defect is located a distance z above the origin. For Vnear

O (z = 2.4 Å), the origin is centered on a Cu site. For
Vfar

O (z = 4.2 Å), the origin is centered on a CuO2 plaquette. Additional, symmetry-related copies are implied, and when included produce the
momentum-dependent form factors shown, with momenta in units of 1/a, the inverse lattice parameter. For the site-energy terms, the form
factors depend only on the momentum transfer q = k − k′. Form factors for the hopping modifications depend on k and k′ separately.

Representative Impurity potential
coordinates 
E/|t | × 1000Defect & Impurity Form factor Form factor

location term R/a R′/a Undoped pvH pvH+7% f (q) or f (k, k′) f (q = 0) ≡ f (k = k′)

Vnear
O V0 = VR (0,0) – −323.96 −358.68 −381.55 1 1

z = 2.4 Å V2 = VR (1,0) – −104.36 −12.90 −25.40 2[ cos(qx ) + cos(qy )] 4
site- V4 = VR (1,1) – −39.01 11.09 −13.77 4 cos(qx ) cos(qy ) 4
centered δt0 = δtR,R′ (0,0) (1,0) 8.08 14.83 16.52 2[ cos(kx ) + cos(ky ) + cos(k′

x ) 4[ cos(kx ) + cos(ky )]
+ cos(k′

y )]

δt2 = δtR,R′ (1,0) (1,1) 4.97 8.96 9.64 4( cos(kx − k′
x )[ cos(ky ) + cos(k′

y )] 8[ cos(kx ) + cos(ky )]
+ cos(ky − k′

y )[ cos(kx ) + cos(k′
x )])

δt ′
0 = δtR,R′ (0,0) (1,1) 4.36 3.20 4.84 4[ cos(kx ) cos(ky ) + cos(k′

x ) cos(k′
y )] 8 cos(kx ) cos(ky )

Vfar
O V1 = VR

(
1
2 , 1

2

)
– −52.48 −45.78 −59.18 4 cos

( qx
2

)
cos

( qy

2

)
4

z = 4.2 Å V3 = VR
(

1
2 , 3

2

)
– −13.59 −7.72 −17.31 4

[
cos

( qx
2

)
cos

( 3qy

2

)
8

plaquette- + cos
( 3qx

2

)
cos

( qy

2

)]
8

centered δt1 = δtR,R′
(

1
2 , 1

2

) (
1
2 , − 1

2

)
12.29 18.68 20.09 8

[
cos

( kx+ky

2

)
cos

(
k′

x−k′
y

2

)
8[cos(kx ) + cos(ky )]

+ cos
( kx−ky

2

)
cos

(
k′

x+k′
y

2

)]
δt3 = δtR,R′

(
1
2 , 1

2

) (
1
2 , 3

2

)
5.95 5.85 6.21 4

[
cos

(
2kx+2ky−k′

x−k′
y

2

)
cos

( kx−ky

2

)
8[ cos(kx ) + cos(ky )]

+ cos
(

2kx−2ky−k′
x+k′

y

2

)
cos

( kx+ky

2

)
+ cos

(
kx+ky−2k′

x−2k′
y

2

)
cos

(
k′

x−k′
y

2

)
+ cos

(
kx−ky−2k′

x+2k′
y

2

)
cos

(
k′

x+k′
y

2

)]
δt ′

1 = δtR,R′
(

1
2 , 1

2

) (− 1
2 , − 1

2

)
3.66 1.01 0.51 8 cos

( kx+k′
x

2

)
cos

(
ky+k′

y

2

)
8 cos(kx ) cos(ky )

ature Tc0(p), has a sharp peak; and the zero-temperature
superfluid density, ρs(T = 0), is driven to zero. None of these
effects is physical or in accord with experiment. By contrast,

when the momentum-sum method is used, 〈�N 〉FS, Tc0 and
ρs(T = 0) pass smoothly and monotonically through the vHS.
Well away from the vHS, the Fermi-surface calculations agree

FIG. 11. Comparison of Fermi-surface-average and momentum-sum methods in LSCO, in the vicinity of the van Hove singularity (vHS)
at hole doping p = 19%. (a) Average normal-state scattering rate, 〈�N 〉FS. (b) Clean-limit transition temperatures Tc0(p) required to produce
the parabolic dome of transition temperature, Tc(p). (c) Resulting zero-temperature superfluid density, ρs(T = 0). (d) One quadrant of the 2D
Brillouin zone, at the Lifshitz transition (p = 19%), schematically showing how the momentum sum (discrete points) can be implemented
using an energy cutoff of ±40 meV about the Fermi surface (solid line). The plots in panels (a–c) use the disorder parameters shown in
panel (a).
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TABLE II. Impurity parameters for the Sr dopant in LSCO. Ab-initio potentials from Wannier-projected DFT are tabulated in units of the
DFT-derived nearest-neighbor hopping, |t | = 524.7 meV, at three hole-doping levels: the undoped La35SrCu18O72 supercell; pvH, with the van
Hove singularity tuned to the Fermi level; and pvH + 7%. Representative values of the coordinates R and R′ are given in a coordinate system
where the defect is located a distance z above the origin. For Srnear (z = 1.8 Å), the origin is centered on a CuO2 plaquette. For Srfar (z = 4.8 Å),
the origin is centered on a Cu atom. Additional, symmetry-related copies are implied, and when included produce the momentum-dependent
form factors shown, with momenta in units of 1/a, the inverse lattice parameter.

Representative Impurity potential
coordinates 
E/|t | × 1000

Defect & Impurity Form factor Form factor
location term R/a R′/a Undoped pvH pvH + 7% f (q) or f (k, k′) f (q = 0) ≡ f (k = k′)

Srnear V1 = VR
(

1
2 , 1

2

)
– 97.56 70.80 69.44 4 cos

( qx
2

)
cos

( qy

2

)
4

z = 1.8 Å V3 = VR
(

1
2 , 3

2

)
– 18.28 6.99 7.73 4

[
cos

( qx
2

)
cos

( 3qy

2

) + cos
( 3qx

2

)
cos

( qy

2

)]
8

plaquette- δt1 = δtR,R′
(

1
2 , 1

2

) (
1
2 ,− 1

2

) −27.84 −29.81 −30.18 8
[

cos
( kx+ky

2

)
cos

(
k′

x−k′
y

2

)
8[cos(kx ) + cos(ky )]

centered + cos
( kx−ky

2

)
cos

(
k′

x+k′
y

2

)]
δt3 = δtR,R′

(
1
2 , 1

2

) (
1
2 , 3

2

) −18.14 −15.79 −14.21 4
[

cos
(

2kx+2ky−k′
x−k′

y

2

)
cos

( kx−ky

2

)
8[cos(kx ) + cos(ky )]

+ cos
(

2kx−2ky−k′
x+k′

y

2

)
cos

( kx+ky

2

)
+ cos

(
kx+ky−2k′

x−2k′
y

2

)
cos

(
k′

x−k′
y

2

)
+ cos

(
kx−ky−2k′

x+2k′
y

2

)
cos

(
k′

x+k′
y

2

)]
δt ′

1 = δtR,R′
(

1
2 , 1

2

) (− 1
2 , − 1

2

) −5.77 −5.78 −5.40 8 cos
( kx+k′

x
2

)
cos

(
ky+k′

y

2

)
8 cos(kx ) cos(ky )

Srfar V0 = VR (0,0) – 30.83 −9.12 −22.24 1 1
z = 4.8 Å V2 = VR (1,0) – 15.71 −4.57 −3.86 2[ cos(qx ) + cos(qy )] 4
site- V4 = VR (1,1) – 15.79 0.62 3.33 4 cos(qx ) cos(qy ) 4
centered δt0 = δtR,R′ (0,0) (1,0) −10.03 −9.81 −8.96 2[ cos(kx ) + cos(ky ) + cos(k′

x ) + cos(k′
y )] 4[ cos(kx ) + cos(ky )]

δt2 = δtR,R′ (1,0) (1,1) −7.16 −6.28 −5.47 4( cos(kx − k′
x )[ cos(ky ) + cos(k′

y )] 8[ cos(kx ) + cos(ky )]
+ cos(ky − k′

y )[ cos(kx ) + cos(k′
x )])

δt ′
0 = δtR,R′ (0,0) (1,1) −1.75 −1.31 −0.47 4[ cos(kx ) cos(ky ) + cos(k′

x ) cos(k′
y )] 8 cos(kx ) cos(ky )
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FIG. 12. The effect of Sr and apical-oxygen-vacancy concentra-
tion on the superfluid density of LSCO. Solid lines are calculated
using the doping relation from ARPES Fermi volume, nSr = 0.69p;
dashed lines are based on the conventional doping dependence, nSr =
p. nVO = 4, 6, and 8% and �u

N = 0.57 K. Experimental data from
Ref. [3].

with the momentum-sum method but, as Figs. 11(a)–11(c)
show, the anomalies associated with the vHS persist over a
surprisingly wide range, so caution is warranted.

Momentum sums are computationally more expensive than
Fermi-surface averaging. To mitigate this, after taking advan-
tage of symmetry to down-fold all sums into the irreducible
octant, an energy cutoff can be implemented to eliminate
unneeded k-points, on the basis that the kernels of the sums
fall off sufficiently rapidly with ξk. We have verified this
by testing for convergence, with the result that an energy
cutoff of 40 meV safely eliminates any cutoff dependence.
In calculations of the sort presented here, the coarse-grained
and energy-cut-off momentum sum typically consists of 4700
k-points within the irreducible octant. Figure 11(d) illustrates
the situation in LSCO, showing how the k-sum method nicely
regularizes the approach to the vHS at the (π, 0) point.
However, for completeness, the energy cutoff was removed
for the final calculations presented in the paper, which were
carried out using full-Brillouin-zone sums consisting of ap-
proximately 12000 points.

APPENDIX C: EFFECT OF VO AND SR CONCENTRATION
IN LSCO

The effect of Sr dopant and apical-oxygen-vacancy con-
centration on the zero-temperature superfluid density of
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TABLE III. Impurity parameters for Cu substituted onto the Tl site in Tl-2201. Ab initio potentials from Wannier-projected DFT are
tabulated in units of the DFT-derived nearest-neighbor hopping, |t | = 537.8 meV, for a Tl35Ba36Cu19O108 supercell. Representative values of
the coordinates R and R′ are given in a coordinate system where the defect is located a distance z above the origin. For Cunear (z = 4.7 Å),
the origin is centered on a Cu site. For Cufar (z = 6.9 Å), the origin is centered on a CuO2 plaquette. Additional, symmetry-related copies are
implied, and when included produce the momentum-dependent form factors shown, with momenta in units of 1/a, the inverse lattice parameter.

Defect & Impurity Rep. coords. Impurity potential Form factor Form factor

location term R/a R′/a 
E/|t | × 1000 f (q) or f (k, k′) f (q = 0) ≡ f (k = k′)

Cunear V0 = VR (0,0) – 155.72 1 1
z = 4.7 Å V2 = VR (1,0) – 77.50 2[ cos(qx ) + cos(qy )] 4
site- V4 = VR (1,1) – 66.97 4 cos(qx ) cos(qy ) 4
centered δt0 = δtR,R′ (0,0) (1,0) −9.15 2[ cos(kx ) + cos(ky ) + cos(k′

x ) + cos(k′
y )] 4[ cos(kx ) + cos(ky )]

δt2 = δtR,R′ (1,0) (1,1) −7.39 4( cos(kx − k′
x )[ cos(ky ) + cos(k′

y )] 8[ cos(kx ) + cos(ky )]
+ cos(ky − k′

y )[ cos(kx ) + cos(k′
x )])

δt ′
0 = δtR,R′ (0,0) (1,1) −2.88 4[ cos(kx ) cos(ky ) + cos(k′

x ) cos(k′
y )] 8 cos(kx ) cos(ky )

Cufar V1 = VR
(

1
2 , 1

2

)
– 100.50 4 cos

( qx
2

)
cos

( qy

2

)
4

z = 6.9 Å V3 = VR
(

1
2 , 3

2

)
– 37.29 4

[
cos

( qx
2

)
cos

( 3qy

2

) + cos
( 3qx

2

)
cos

( qy

2

)]
8

plaquette- δt1 = δtR,R′
(

1
2 , 1

2

) (
1
2 , − 1

2

) −6.45 8
[

cos
( kx+ky

2

)
cos

(
k′

x−k′
y

2

)
8[ cos(kx ) + cos(ky )]

centered + cos
( kx−ky

2

)
cos

(
k′

x+k′
y

2

)]
δt3 = δtR,R′

(
1
2 , 1

2

) (
1
2 , 3

2

) −2.83 4
[

cos
(

2kx+2ky−k′
x−k′

y

2

)
cos

( kx−ky

2

)
8[ cos(kx ) + cos(ky )]

+ cos
(

2kx−2ky−k′
x+k′

y

2

)
cos

( kx+ky

2

)
+ cos

(
kx+ky−2k′

x−2k′
y

2

)
cos

(
k′

x−k′
y

2

)
+ cos

(
kx−ky−2k′

x+2k′
y

2

)
cos

(
k′

x+k′
y

2

)]
δt ′

1 = δtR,R′
(

1
2 , 1

2

) (− 1
2 ,− 1

2

) −0.89 8 cos
( kx+k′

x
2

)
cos

(
ky+k′

y

2

)
8 cos(kx ) cos(ky )

FIG. 13. Zero-temperature superfluid density for LSCO, calcu-
lated by treating the near apical oxygen vacancy, V near

O , alternately
in the t-matrix and Born approximations. In the t-matrix approxi-
mation (solid lines), V near

O is modelled by an intermediate-strength
point scatterer of scattering parameter c. In the Born approximation
(dashed lines), the full extended impurity potential nVO = 4, 6, and
8%, nSr = 0.69p and �u

N = 0.57 K. Experimental data from Ref. [3].
Inset: c = cot δ for the V near

O impurity, for nVO = 6%.

LSCO is shown in Fig. 12. Two doping dependencies of the Sr
concentration are compared: one derived from ARPES Fermi
volume, nSr = 0.69p; and the conventional relation, nSr = p.
The impurity potential of the Sr dopants, which is extended in
real space and therefore inherently forward scattering, does
not have a strong pair-breaking effect, with the superfluid
density relatively insensitive to changes in Sr concentration.
Results are also shown for three different concentrations of
apical oxygen vacancy. This defect, which has a nearly point-
like impurity potential, causes significant pair breaking.

APPENDIX D: EFFECT OF INTERMEDIATE-STRENGTH
SCATTERERS

As mentioned in Sec. IV, a possible shortcoming of the
approach taken in the current paper is that we have treated
the out-of-plane dopant impurities in the Born approximation,
where the perturbation series for their self energies, Eqs. (6)
and (7), are truncated at second order. This makes the cal-
culation of vertex corrections tractable, and becomes exact
in the weak-scattering limit, VimpN0 � 1. A better approach
would be to study these impurities in the t-matrix approxima-
tion where, by summing the perturbation series to all orders,
arbitrary scattering strengths could be accurately accounted
for. This is unfortunately beyond the scope of the current
paper, due to the computational cost of implementing vertex
corrections in the full t-matrix approximation.

To test the adequacy of the Born approximation, we focus
on the strongest out-of-plane scatterer in LSCO, the near
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apical oxygen vacancy, V near
O . As can be seen in Table I, the

impurity potential for V near
O is nearly pointlike, with Vimp =

V0 � V2,V4, . . .. To good approximation this enables us to
treat the V near

O defects as point scatterers, and therefore to use
the t-matrix approximation. The contribution of V near

O to the
τ0 self energy in the point-scattering limit then takes the form

�t−matrix
0 = �

G0

c2 + G2
0

, (D1)

where � = nVO/(πN0) parameterizes the concentration of the
apical oxygen vacancies, and c = 1/(πVimpN0) is the cotan-
gent of the scattering phase shift.

To implement the t-matrix approximation for the near api-
cal oxygen vacancies, the Born term for V near

O in Eq. (6) is

replaced by Eq. (D1). Note that for point scatterers there is no
contribution to explicit gap renormalization in Eq. (7), and no
contribution to vertex corrections. Figure 13 shows the results
for zero-temperature superfluid density in LSCO. Born and
t-matrix approximations are in very close agreement over the
whole doping range, with a small deviation in the vicinity of
the van Hove doping. The doping dependence of the V near

O
scattering parameter, plotted in the inset of Fig. 13, shows the
reason for the deviation: c(p) has a small dip near p = 19%
as a result of the van-Hove enhancement of N0 at this doping.

Referring to Table II, we see that the impurity potential for
Srnear is significantly weaker than for V near

O , even taking into
account that the plaquette-centered Srnear affects its nearest
four Cu neighbors equally. We are therefore confident that
although the out-of-plane defects approach intermediate scat-
tering strength (c ∼ 1), the Born approximation remains valid.

APPENDIX E: DISORDER RENORMALIZATION OF TWO-PARTICLE PROPERTIES

Within the ladder approximation, the current vertex �(k, ωn) can be approximated by a sum of ladder diagrams and then
resolved into components γ0, γ1 and γ3 in particle–hole space [38,39]:

�(k, ωn) = vkτ0 + 1

N

∑
k′

∑
i

ni

∣∣V i
k,k′

∣∣2
v j

k′τ3G(k′, ωn)�(k′, ωn)G(k′, ωn)τ3, (E1)

γ0(k, ωn) = 1 + 1

N

∑
k′

∑
i

sk,k′ni

∣∣V i
k,k′

∣∣2 γ0(k′, ωn)
(

̃2

k′,n + ξ 2
k′ − ω̃2

k′,n

) − 2γ1(k′, ωn)
̃k′,nω̃k′,n + 2iγ3(k′, ωn)ξk′ ω̃k′,n(

̃2

k′,n + ξ 2
k′ + ω̃2

k′,n

)2 , (E2)

γ1(k, ωn) = 1

N

∑
k′

∑
i

sk,k′ni

∣∣V i
k,k′

∣∣2 −2γ0(k′, ωn)
̃k′,nω̃k′,n + γ1(k′, ωn)
(−
̃2

k′,n + ξ 2
k′ + ω̃2

k′,n

) + 2iγ3(k′, ωn)ξk′
̃k′,n(
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k′ + ω̃2

k′,n

)2 , (E3)

γ3(k, ωn) = 1

N

∑
k′

∑
i

sk,k′ni

∣∣V i
k,k′

∣∣2 2iγ0(k′, ωn)ξk′ ω̃k′,n + 2iγ1(k′, ωn)
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(
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k′,n − ξ 2
k′ + ω̃2

k′,n
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(
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k′ + ω̃2

k′,n

)2 , (E4)

where sk,k′ = v j
k′ · v j

k/|v j
k|2. When it is safe to assume a linearized spectrum ξk, the ξ integrations in Eqs. (E1) to (E4) can be

carried out, allowing the vertex functions to be recast as Fermi surface averages:

�(k, ωn) = vkτ0 + N0
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i

ni

∣∣V i
k,k′

∣∣2
v j
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〉
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, (E5)

γ0(k, ωn) = 1 + N0

〈 ∑
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ni
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̃2
k′,nγ0(k′, ωn) − 
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, (E6)

γ1(k, ωn) = −N0
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i
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sk,k′
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, (E7)

γ3(k, ωn) = 0. (E8)

[1] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J.
Zaanen, From quantum matter to high-temperature supercon-
ductivity in copper oxides, Nature 518, 179 (2015).

[2] C. Proust and L. Taillefer, The remarkable underlying ground
states of cuprate superconductors, Annu. Rev. Condens. Matter
Phys. 10, 409 (2019).
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