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Interplay between extended s-wave symmetry of the gap and spin-orbit coupling in the low electron
concentration regime of quasi-two-dimensional superconductors
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We analyze the real-space paired state with the k-dependent superconducting gap in the presence of Rashba-
type spin-orbit coupling and external magnetic field. We show that the extended s-wave pairing symmetry is the
most probable scenario to appear in the low electron concentration regime. According to our study, the van Hove
singularity induced by the spin-orbit coupling may lead to a significant enhancement of the superconducting gap,
critical temperature, and critical magnetic field. Moreover, the combined effect of the spin-orbit coupling and the
external magnetic field results in a nonzero total momentum of the Cooper pairs, which is a characteristic feature
of the so-called helical state. In such a situation, due to the C, symmetry breaking, a small d-wave and p-wave
contributions to the pairing appear, which significantly change the character of the helical state. The obtained
results are discussed in the context of the experimental data related with the unconventional superconducting
features of the transition metal oxide interfaces as well as the recently reported supercurrent diode effect.
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I. INTRODUCTION

In recent years quasi-two-dimensional superconducting
systems have attracted growing interest due to their rich
physics as well as high degree of tunability [1]. In particu-
lar, two-dimensional superconductivity has been reported in
monatomic films [2-4] as well in both LaAlO3/SrTiO3 and
LaAlO;/KTaOj3 [5-7] interfaces.

In connection to many of the mentioned systems the
extended s-wave pairing symmetry has been discussed. In
particular, as shown by us recently such symmetry of the
superconducting gap may cause the characteristic domelike
shape of T as a function of gate voltage in the LaAlO;/SrTiO3
interface in good agreement with the experimental data [8,9].
Moreover, it has been shown theoretically that in the regime
of low electronic concentrations realized in CuO monolayers
the extended s-wave symmetric gap appears with a similar
domelike behavior as a function of hole doping [10,11]. The
same gap symmetry leading to the so-called s* paired state
is also discussed in the context of monatomic FeSe [4] or the
superconducting FeAs layers of the popular iron pnictides.

Among the aforementioned group of quasi-two-
dimensional superconducting systems, particularly interesting
are the LaAlO3/SrTiO3 and LaAlO3/KTaO; interfaces which
are characterized by an electrically tunable 7. as well as
significant spin-orbit coupling (SOC) [5,6,12—15]. The latter
leads to an increase of the critical magnetic field well above
the paramagnetic limit [9,13]. At the same time, it has been
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argued that in the two-dimensional systems in the presence
of the in-plane magnetic field, the non-zero-momentum
Cooper pairing may appear, leading to the widely known
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state [16,17],
which is strengthened by the spin-orbit coupling and then
takes the form of the so-called helical state [18]. In the past
decades great efforts have been made to detect signatures
related with the FFLO phase. However, up to this day the
direct experimental evidence is lacking. One important reason
for that is the fact that most probably the FFLO state exists in
a narrow parameter regime near the critical point. Therefore, it
may be simply missed by the experimental analysis. Also, the
disorder effects in superconductors induce strong scattering
between different momenta that destroys the superconducting
pairing. However, in the transition metal oxide interfaces the
entire phase diagram can be easily scanned by tuning the
gate voltage, thus avoiding the disruptive effects of chemical
doping. Therefore, those systems seem to be good candidates
for both the appearance and detection of the FFLO state.

The research focused on the interplay between extended
s-wave superconductivity and spin-orbit coupling in quasi-
two-dimensional materials carried out here is additionally
motivated by the very recent discovery of the supercurrent
diode effect [19], for which the critical current along opposite
directions differs. As it has been argued in recent theoret-
ical papers, the observed effect can be directly related to
the non-zero-momentum pairing which appears in the heli-
cal state [20-22]. The extended s-wave pairing is a good
candidate for the description of the paired state in many of
the two-dimensional materials, some of which additionally
are characterized by a significant spin-orbit coupling. There-
fore, it is very important to theoretically analyze the interplay
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between this particular pairing symmetry and the SOC in the
context of non-zero-momentum pairing.

In this work, we apply a single-band lattice model with the
nearest-neighbor real-space pairing term in order to analyze
the general features related with the interplay between the
k-dependent gap and spin-orbit coupling in the presence of
an in-plane external magnetic field. First, we show that the
extended s-wave symmetry pairing is the most probable can-
didate to be realized in the low carrier concentration regime.
Moreover, it leads to the domelike behavior of the critical
temperature as a function of chemical potential, which is
especially interesting in the context of the superconducting
LaAlO;/SrTiOs interfaces. Moreover, as we show, the van
Hove singularity which resides close to the bottom of the
band and is induced by the spin-orbit coupling enhances
the superconducting state, leading to a clear T, peak. Fi-
nally, we analyze the non-zero-momentum pairing induced
by the Fermi wave-vector mismatch of the helical bands in
the presence of the in-plane magnetic field. As we show in
the considered system the helical state is relatively robust and
becomes stable as soon as the magnetic field is present, which
potentially increases the possibility of its detection. Moreover,
the C4 symmetry breaking resulting from the in-plane mag-
netic field induces a small d-wave and p-wave contributions
leading to a mixed parity of the resulting helical state.

II. MODEL AND METHOD

We consider the single-band model with real-space pairing
and spin-orbit coupling of the form

H = Hy + Hyc, (D

where H, is the single-particle part containing electron
hopping, Rashba-type spin-orbit coupling, and interaction be-
tween electron spin and the external magnetic field,

Ay = (e — W), éko +o Y g(k) - S(k)
k k

+usg )y B-S(k), )

k

where ¢y is the dispersion relation, p is the chemical potential,
and

Sk) =Y 050y, Ckor 3)
koo’

is the spin operator with o being the Pauli matrices and g(k)
being the vector characterizing the structure of the spin-orbit
coupling in the noncentrosymmetric system,
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oky T3k )

gk) = ( “
The last term in Eq. (2) introduces the interaction of electron
spin with the external magnetic field B = (B,, B,, B;) where
wp is the Bohr magneton. We focus on the typical situation
of a square lattice system with nonzero hopping integrals
between the nearest neighbors only. The resulting dispersion
relation reads
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FIG. 1. (a) The density of states as a function of chemical
potential for the model with & = 0. (b) The Fermi surfaces for
three selected values of the chemical potential: u = 0.5¢ (green),
w = 2.0¢ (blue), and v = 3.5¢ (red). The black solid and dashed lines
correspond to the nodal lines of the extended s-wave and d-wave
symmetries, respectively. In (c) and (d) we show the momentum-
dependent symmetry factors corresponding to the extended s-wave
and d-wave pairings, respectively.

where ¢ is the electron hopping energy taken as t = 0.1 eV.
In the following section all the results are presented in units
of t. For the sake of clarity the quasimomentum is expressed
in units of 1/a, where a is the lattice constant. In the above
equation we additionally include the on-site (atomic) energy
term, 4¢, which only shifts the resulting band so that the
bottom of the band lies at zero energy. The density of states
and Fermi surfaces for three selected values of the chemical
potential of such a model are provided in Figs. 1(a) and 1(b).

The real-space pairing term responsible for the appearance
of the superconducting phase has the following form:

Hsc = —J Z éj[aé;wéilﬁéjlay (6)
i<j, o
where we carry out the summation only over the nearest-
neighbor bonds (i < j). Alternatively, one could consider an
on-site real-space pairing scenario which has been discussed
in the context of the so-called negative U Hubbard model [23]
in which an isotropic s-wave superconducting gap is possible
(cf. Appendix A). However, such pairing symmetry is much
less likely to appear in the low carrier concentration regime as
shown in the following section.
After carrying out the Hartree-Fock-BCS approximation
for the pairing term and transformation to the reciprocal
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space with the possibility of non-zero-momentum pairing one
obtains

HSC ~ 5 Z(Aza élL(r AI—k+Qa + (AU ) e k+QaCka)

+- Z 1A%, )
i<j
where
Afg = DM IAT,. ®)

i(j)
The summation above runs over the four nearest neighbors of

the lattice site j and

<G —ik(R,—R;) / A
Af]?i‘a = —JXk:e k( ’)<C_k+Q&Cka>7 9)

where Q is the total momentum of the Cooper pairs. It should
be noted that the gap amplitude A“‘a parameter depends
on the Q vector in an implicit manner through the expecta-
tion value (¢_k4+qsCko). However, it is not modulated in real
space, in contradiction to the true real-space pairing ampli-
tude, which has the form

A% = —J (2jotin)

= —J ROy MR g5 ko)
k

= e A% (10)

Using Egs. (2) and (7) we can write down the full Hamiltonian
of our system in matrix form,

e¥ A A ~ 1
H= Zf.ﬁkak +5 D _(ekior + ekl
k

+ - ZW“ an

i<j

where we have introduced the four-component composite
operators

b= (@ 6y ekrer Eoril): (12)

and the Hamiltonian matrix is the following:

€kt €K1l 0 Ak
ﬁ o 1 €kt €k} Alté 0
k=75 *

21 0 (A kit —€kron

(A 0 —eion ki
(13)

In the above, we have introduced the following notation:
G = e+ 0SB — (14)

. B .

ey = a(go(k) — ig,(K)) + %(Bx —iBy),  (15)
ekt = a(ge(k) +igy(k)) + (B + iBy). (16)

One can derive the self-consistent equations for the super-
conducting gap in a standard manner by writing down the

gap equation (9) in the new basis which results from the
diagonalization of the matrix Hamiltonian given by Eq. (13).
It is instructive to look at the pairing term Hgc represented
in terms of the creation and annihilation operators correspond-
ing to states from the two helical bands created due to the
spin-orbit coupling. In such representation Hgc reads

A 1 ~ l A A l
Hgc = 3 Z (Al((é ]Lla‘ kiQr T (A( )) @ k4 Qi)
Kl

1 oo
+5 218571, 17

i<j
where | = & corresponds to the two helical bands with dis-
persion relations

éx = ex T alB(k)|, (18)

where the g(k) vector contains both the SOC and the external
in-plane magnetic field contributions and has the form

gk) = (&x(k), &y(k))

_ <a 2u(k) ug g

2

B8

5 B o gy(k) + By). 19)
The superconducting (SC) gap created in the helical bands can
now be expressed in terms of the original spin-resolved gap

amplitudes in the following manner:

ALy = EGLAL + G i oA): (20)
where
Gk = = (&:(k) +ig,(k)). (2D
TR (k)| ’

In Appendix B we describe in more detail how to derive
Egs. (17) and (20). From Eq. (17) one can see that the SC
gaps in the two helical bands are equal with respect to the
absolute values but have opposite signs which means that we
are dealing with a () type of pairing. Also, it should be noted
that, in the absence of the external magnetic field (B = 0 and
Q = 0), we have G*, = —Gj, and the SC gaps in the helical
bands can be rewritten in the followmg form:

AP = +Gp(AlY — A, (22)

from which one can see that the superconducting pairing in
the two helical bands results in a straightforward manner from
the spin-singlet pairing in the original spin-resolved basis.
However, the k dependence of the gap is modified by the G,
function which contains the contribution form the spin-orbit
coupling. Since Aﬁ"' is even, the overall k dependence of
Af{i) is odd, as it should be since now we have intrahelical
band pairing. After the application of the external magnetic
field, one obtains G}, # G*, and the weights with which AT
and A'" contribute to the resulting A®) are different with
respect to their absolute value.

Due to the presence of both spin-orbit coupling and the
external magnetic field apart from the spin-singlet component
one also obtains a spin-triplet contribution to the pairing in
spite of the fact that the original pairing mechanism has a
pure spin-singlet character [cf. Eq. (6)]. In such circumstances
a mixture of different pairing symmetries may appear in the
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FIG. 2. [(a)—(c)] The superconducting gap amplitude as a function of chemical potential and superconducting coupling constant J for
o = 0 and B = 0O for three different possible symmetries of the real-space paired state. The two limiting values 4 = 0 and u = 4¢ correspond
to the bottom of the band and to the half-filled situation, respectively. The two cases of extended s-wave and d-wave symmetries correspond to
the model with nearest-neighbor pairing while the s-wave symmetry is induced by the on-site pairing term (cf. Appendix A). [(d)—(f)] The gap
amplitudes as a function of chemical potential for selected value of J = 0.8¢. Note the appearance of the SC dome as a function of y in the
low carrier concentration regime only for the case of extended s-wave symmetry of the superconducting gap. In the inset of (d) we provide the
experimental result showing the domelike behavior of 7. as a function of gate voltage for the LaAlO;/SrTiO; interface taken from Ref. [14].

superconducting state. It is convenient to introduce the
following symmetry-resolved gap amplitudes:

A = (AN 4+ Al + Al + Al
— A = Al Ay - a8,
v = Al + Ay — Al - AfY
— Al = A+ Ayl + Ag/s,
Afm = (A% - AiTI,O + Aﬁ) - A@lo)/‘lv
A= AN = AL A AN A (23)

where Af{; = Aj.’i‘{), and R;; = R; — R; is the vector adjoin-
ing the two nearest-neighbor lattice sites between which the
pairing appears (expressed in the units of the lattice constant,
a). In the notation for Aﬁ‘; we have dropped the Q index for
the sake of clarity. The upper index on the left-hand side of the
equations corresponds to the spin symmetry (s for singlet, ¢ for
triplet), while the lower index corresponds to the real-space
(or equivalently reciprocal-space) symmetry of the supercon-
ducting gap (s for extended s wave, d for d wave, and p, and
py for the two possibilities of the p-wave symmetries). The
relation with the k-dependent gap amplitudes Aﬁa appearing
in Egs. (7), (20), and (22) is provided in Appendix C. In the
presence of both external magnetic field and spin-orbit cou-
pling all the above pairing amplitudes may become nonzero.
However, for B=0 and o =0 only A} or A} may have

nonzero values, which corresponds to pure extended s-wave
or d-wave pairing symmetries for which the k dependence
of the superconducting gap has the form A (k) = 4Ajy; or
Ay(k) = 4Af,ylf, respectively. The y symmetry factors are the
following:

Y = (cosky + cosky)/2,
rd = (cosk, — cosky)/2. (24)

For the sake of completeness those factors are presented in
Figs. 1(c) and 1(d) as functions of momentum. As shown in
Fig. 1(b) for both factors one can define the so-called nodal
lines in the reciprocal space for which the superconducting
gap closes down. Therefore, if the Fermi surface of our system
is at its whole extent in close proximity of the nodal lines of
a given pairing symmetry one should expect a suppression of
the superconducting phase.

III. RESULTS

Before we analyze the influence of spin-orbit coupling on
the superconducting state and the possibility of the non-zero-
momentum pairing, we calculate the phase diagram in the
(i, J) plane in the absence of the external magnetic field
and for « = 0. In Fig. 2 we provide the SC gap amplitude
for the pairing scenarios corresponding to pure extended s-
wave and pure d-wave symmetries, for which k dependence is
determined by the corresponding symmetry factors provided

184508-4



INTERPLAY BETWEEN EXTENDED S-WAVE SYMMETRY ...

PHYSICAL REVIEW B 106, 184508 (2022)

in Egs. (24). For the sake of completeness we also provide
analogous figures for the case of the on-site pairing scenario
which leads to isotropic s-wave symmetry (cf. Appendix A
for the explicit form of the paring term in such case). As one
could expect, the stronger are the coupling constants J and U
(U defines the on-site pairing strength), the larger is the gap
in all three cases. However, the region of stability of the SC
phase strongly depends on the pairing symmetry. Namely, in
the low electron concentration regime (close to the bottom of
the band) the extended s-wave symmetry dominates while for
larger values of 1 (close to the half-filled situation) the d-wave
or s-wave pairing becomes stable depending on the choice of
the particular pairing term (intersite or on-site pairing). Inter-
estingly, in the low electron concentration regime, a domelike
behavior of the extended s-wave pairing amplitude appears as
a function of chemical potential for a given value of J [cf.
Fig. 2(d)].

It should be noted that the two-dimensional superconduct-
ing system with very low electronic concentration and Fermi
energy close to the bottom of the bands is realized in the
LaAlO;/SrTiOs; interfaces, where additionally a domelike be-
havior of the critical temperature as a function of chemical
potential has been reported experimentally [12—15]. With re-
spect to these experimental findings different gap symmetries
have been discussed and various physical mechanisms lead-
ing to the domelike superconductivity have been proposed
[15,24-28]. The study presented here, based on a relatively
simple single-band model, shows that the extended s-wave
pairing symmetry is the most probable one for the low elec-
tron concentration regime, at least for the case of real-space
spin-singlet pairing. Additionally, such choice leads to the
appearance of the domelike behavior of 7. in a natural manner.
This may point to the scenario in which the domelike shape
of T, in LaAlO3;/SrTiO; interfaces as a function of carrier
concentration comes not as a result of electron-electron cor-
relation or complex multiband effects but is caused simply
by the symmetry of the gap. This would be consistent with
the experimental results shown in Refs. [29,30] according to
which the Lifshitz transition appears at lower critical carrier
concentration for the appearance of the superconducting state.
In such circumstances, it is tempting to compare the domelike
shape of the gap amplitude obtained here with the experimen-
tal result corresponding to the LaAlO;/SrTiO; interface. Such
comparison is shown in the inset of Fig. 2(d).

This last effect (domelike behavior) can be understood as
a result of the relative distance between the Fermi surfaces
(FSs) and the nodal lines of the extended s-wave symmetry.
With increasing u the SC amplitude rises rapidly at first due to
the jump of the density of states which appears at the bottom
of the band [cf. Fig. 1(a)]. Then, with further increase of
the chemical potential while the Fermi surface expands, it is
getting closer and closer to the nodal lines (cf. Fig. 1), where
the gap closes strictly due to the symmetry of the extended
s-wave pairing. The close proximity of the Fermi surface to
the nodal lines suppresses the gap at the FS and leads to the
decrease of the SC pairing amplitude with further increase of
. In between those two regimes the optimal carrier concen-
tration is located for which the maximal SC pairing amplitude
appears.
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FIG. 3. [(a), (b)] The superconducting gap as a function of both
Fermi energy and the SO coupling energy for two different values
of the real-space Cooper pairing constant J = 0.6t and J = 0.8¢,
respectively. [(c), (d)] The superconducting gap as a function of the
Fermi energy for ago = 0.25 as well as for / = 0.6¢ and J = 0.8¢,
respectively.

Next, we analyze the influence of the spin-orbit coupling
on the SC state. In Fig. 3 we show how the extended s-wave
SC gap amplitude evolves as we increase the o parameter
which determines the strength of the SOC. As one can see
for @ > 0 the minimal critical chemical potential for the
appearance of the SC state is decreased and a significant
enhancement of the SC gap appears in the regime u < 0.
Those two effects are the consequence of the modifications
of the electronic structure introduced by the SOC. Namely, as
one increases «, the bottoms of the created helical bands are
decreased below E = 0 . This causes the decrease of the lower
critical u for the appearance of the SC state. Moreover, in such
case the bottoms of the subbands are shifted towards k # 0
and a van Hove singularity is created which enhances the SC
state. Nevertheless, for a given value of «, the effect of the SC
amplitude enhancement is more visible for lower values of J
[cf. Figs. 3(c) and 3(d)]. In Fig. 4 we show explicitly that the
peak of the SC gap amplitude corresponds to the van Hove
singularity which appears in the density of states as a function
of 1. As one can see, for « = 0 when the van Hove singularity
is absent at the bottom of the band also the mentioned peak of
the gap disappears. It should be noted that the enhancement
of superconductivity induced by the van Hove singularity has
been discussed in Refs. [31,32] in the context of different
systems and/or other types of pairing symmetries than the one
analyzed here.
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FIG. 4. (a) The density of states as a function of the Fermi energy
for the four selected values of the o parameter. Note the creation of a
van Hove singularity at the bottom of the band after the inclusion of
the SOC. (b) Superconducting gap as a function of Fermi energy for
the same four values of the o parameter as in (a) and for a selected
value of J, J = 0.6¢t. Note that the van Hove singularity seen in
(a) leads to a peak in the pairing gap amplitude in (b).

For the sake of completeness, in Fig. 5 we show the results
for nonzero temperatures both for « = 0 and o # 0. As one
can see, the domelike behavior seen in Fig. 2(d) is reflected
by the critical temperature for « = 0, while for o 7% 0 a very
narrow critical temperature peak appears induced by the van
Hove singularity. Furthermore, in Fig. 6 we show similar
results but for the case of nonzero external magnetic field in
the (u, By) plane. Again, both effects seen earlier (domelike
behavior and SC peak) are also reconstructed in the chemical
potential dependencies of the critical magnetic field. However,
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FIG. 5. The superconducting gap as a function of Fermi en-
ergy and temperature for two selected values of spin-orbit coupling:
(a) « =0 and (b) @ = 0.25. Both diagrams have been obtained for
J =0.8¢.
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FIG. 6. The superconducting gap as a function of Fermi energy
and in-plane external magnetic field for two selected values of spin-
orbit coupling: (a) « = 0 and (b) @ = 0.25. Both diagrams have been
obtained for J = 0.8r.

in this particular result we have not yet taken into account the
possibility of non-zero-momentum pairing, which is done in
the following part of this section.

In Fig. 7 we show the calculated free energy in the super-
conducting state as a function of the Cooper pair momentum
for a selected value of chemical potential = 0.47 and in
the presence of external magnetic field directed towards the
x axis. As one can see for B, = 0 a free energy minimum ap-
pears for O, = Q, = 0 which means that the standard paired
state is stable with zero Cooper pair momentum. As one
increases the magnetic field to gugB, = 0.173 x 107, the
free energy minimum moves along the Q, axis and is located
at O, = 0 and Q) < 0, meaning that the stable paired state is
created with the nonzero Cooper pair momentum perpendicu-
lar to the magnetic field, which is a characteristic feature of the
helical state. The nonzero Q vector compensates the Fermi-
wave-vector mismatch which is created as a consequence
of both spin-orbit coupling and the presence of the external
magnetic field.

() AF [1075 -] (b) AF [1075-4]
0 005 01 015 —1.05-0.9-0.75-0.6-0.45
] —
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~ ~
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—0.01 0 0.01 —0.01 0 0.01
Qy [1/d] Qy [1/d]

FIG. 7. The Cooper pair momentum dependence of the free en-
ergy in the superconducting state for u = 0.4¢, « = 0.25, J = 0.8¢,
and two selected values of the in-plane magnetic field, (a) guzB, =
0.0 and (b) gupB, = 0.17 x 1073¢. Note the appearance of the free
energy minimum for Q # 0 in (b) which means that a nonzero
Cooper pair momentum takes place.
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FIG. 8. Cooper pair momentum which minimizes the free en-
ergy, as a function of the external magnetic field for J = 0.8¢,
u = 0.4z, and o = 0.25.

In Fig. 8 we show how the y-axis component of the Cooper
pair momentum, corresponding to the free energy minimum,
changes as one increases the in-plane magnetic field. It should
be noted that in the considered case the helical state is very
robust and the paired state can survive up to much larger mag-
netic fields with respect to the corresponding zero-momentum
paired state. Such a result is consistent with the theoretical
analysis of the helical state stability in the spin-orbit-coupled
two-dimensional ultracold Fermi gases [16] where, however,
an on-site pairing mechanism has been considered. This
is in contradiction to the standard Zeeman-splitting-induced
FFLO state for which the stability regime is relatively narrow
[18]. Interestingly, for the model of the intersite paired state
considered here the helical phase becomes stable as soon as
the in-plane magnetic field is present (for low B).
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It should be noted that two regions of the helical phase
appearance can be distinguished while increasing the in-plane
magnetic field (cf. Fig. 8). In the first region the absolute value
of the Cooper pair momentum increases linearly as a function
of the magnetic field. In this region the Q, dependence of the
free energy is approximately parabolic for given B, and the
extended s-wave gap amplitude very weakly depends on Q as
shown in Figs. 9(a) and 9(c). Also, very small contributions
of the d-wave and p,-wave pairing appear, which are a few
orders of magnitude smaller than the corresponding dominant
extended s-wave amplitude [cf. Figs. 9(e) and 9(g).

Beginning from the value of gugB, ~ 0.24 x 107t, the
Cooper pair momentum starts to decrease as one increases
the magnetic field. In this region, for a given B,, a sharp
minimum appears in the Q, dependence of the free energy
which additionally corresponds to the sudden drop of the ex-
tended s-wave gap amplitude as shown in Figs. 9(b) and 9(d).
This drop is related to a significant increase of the d-wave
contribution to the superconducting state as shown in Fig. 9(f).
It should be noted that in spite of the fact that the Cooper
pair momentum as a function of external magnetic field has
different character in the first two described regions, the value
of the dominant gap amplitude A which corresponds to the
free energy minimum is almost constant.

According to our calculations the physical situation does
not change when the direction of the in-plane magnetic field
is varied. This is because of the fact that we are focused
here on the low electron concentration regime for which the
corresponding Fermi surface is approximately circular and,
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FIG. 9. [(a), (b)] The free energy of the system as a function of Cooper pair momentum for selected values of external magnetic field
directed along the x axis. [(c), (d)] The extended s-wave spin-singlet amplitude of the pairing. [(e), (f)] The d-wave spin-singlet amplitude of

the pairing. [(g), (h)] The p,-wave spin-triplet pairing amplitude.
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therefore, the analyzed effects have an isotropic character with
respect to the in-plane magnetic field.

One should also note that the nonzero Cooper pair momen-
tum, Q, which is generated in the direction perpendicular to
the magnetic field, breaks time-reversal and inversion sym-
metry in the equilibrium state. This in turn can lead to a
situation in which the critical currents along and against the Q
vector are different. Such nonreciprocal superconducting fea-
tures may allow for the realization of an intrinsic supercurrent
diode effect (SDE) controlled by the magnetic field with the
use of the mentioned transition metal oxide interfaces (e.g.,
LaAlO3/SrTiO3).

IV. CONCLUSIONS

We have analyzed the general features of the real-space
intersite paired state in the presence of Rashba-type spin-
orbit coupling and external in-plane magnetic field for a
two-dimensional superconductor. According to our study, in
the low electron concentration regime the extended s-wave
gap amplitude is dominant and shows a domelike behavior
as a function of chemical potential, which is a characteristic
feature of this particular gap symmetry. After the introduction
of the spin-orbit coupling a narrow peak of the superconduct-
ing gap amplitude appears around the chemical potential value
which corresponds to the van Hove singularity created due to
the appearance of the SOC. This effect may be potentially use-
ful in the search for quasi-two-dimensional superconductors
with higher 7.’s.

As expected due to the combined result of the external
in-plane magnetic field and the spin-orbit coupling, the so-
called helical paired state emerges. In the analyzed situation,
the non-zero-momentum Cooper pairing is much more ro-
bust as a function of magnetic field than in the case of a
standard Zeeman-splitting-induced FFLO state [18]. Also, an
interesting feature of the reported state is that the non-zero-
momentum pairing appears as soon as the external magnetic
field is applied. Therefore, there is no lower critical magnetic
field for the appearance of the helical state as it was re-
ported in previous studies for different models [16,18,33,34].
This feature makes the quasi-two-dimensional superconduct-
ing systems with SOC and extended s-wave pairing promising
candidates for the experimental observation of the non-zero-
momentum pairing.

According to our analysis, an unconventional in-plane
magnetic field dependence of the Cooper pair momentum
appears in the studied systems. With this respect, two regions
can be distinguished with different behavior of the Q vector
as a function of B. In both regions the dominant extended
s-wave gap amplitude remains almost constant. However, the
Cooper pair momentum linearly increases with magnetic field
in the first region while it decreases in the second (cf. Fig. 8).
The latter effect comes as a result of the d-wave component
of the gap amplitude which becomes significant above some
particular value of B,.

Even though the model presented here is not mate-
rial specific it contains ingredients which are important in
the context of the superconducting transition metal oxide
interfaces. Therefore, our study has some interesting impli-
cations related with the mentioned systems. Namely, in the

low electron concentration regime which is realized in those
systems the extended s-wave symmetry of the gap seems to be
the most probable scenario at least within the real-space pair-
ing approach. Such pairing symmetry leads to the appearance
of the domelike behavior of 7, in a straightforward manner
without the inclusion of electron-electron interaction effects
and/or complex multiband phenomena. In such a situation
the stability of the non-zero-momentum pairing in the form
of the so-called helical state points to the transition metal
oxide interfaces (e.g., LaAlO3/SrTiO3 or LaAlO3/KTaO3) as
promising candidates for the realization of the intrinsic super-
current diode effect. Such a nonreciprocal superconducting
feature may be useful when it comes to applications in the
field of modern superconducting electronics. Furthermore, it
can also provide an experimental evidence for the appearance
of the helical state itself. Namely, the fact that the critical
currents are different in the opposite directions of a super-
conducting LAO/STO-based device can be considered an
indicator of the appearance of the nonzero Cooper pair mo-
mentum pairing, since critical currents in the direction along
and against the Q vector can be different only if Q # 0. This
concept requires further detailed analysis which is beyond the
scope of this work. We should see progress along this line
soon.
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APPENDIX A: ON-SITE REAL SPACE PAIRING

For the sake of completeness we have supplemented our
results for the case of the intersite pairing scenario (provided
in Sec. III) with those for which the superconducting state
results from an on-site pairing mechanism. In such case the
pairing term has the following form:

AU PR
HSC =-U ZniTn,-l,

i

(AD)

where U > 0 corresponds to the coupling energy leading to
the Cooper pairing in a straightforward manner.

After the application of the Hartree-Fock-BCS approxima-
tion and the transformation to the reciprocal space one obtains
the following form of the term A, o

~ U . . N
Af =) (Ael el + At ag) + E|A|2, (A2)
i
where N is the number of atomic sites and
U
_ AT AT
A=-% e e
k

The main difference with regard to the situation analyzed in
the main text is that due to the on-site character of the pairing
mechanism the superconducting gap does not depend on K,
which corresponds to the so-called s-wave pairing symmetry.
The value of the gap calculated with the use of the Hartree-
Fock-BCS approach for the case of Hamiltonian H = Hy +

(A3)
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I{VSUC is presented in Figs. 2(c) and 2(f) as a function of both U
and .

APPENDIX B: PAIRING IN THE HELICAL BANDS

Here we show how to express the gaps in helical bands in
terms of the original spin-resolved gap amplitudes. In order to
do that one first has to carry out the diagonalization procedure
of the single-particle Hamiltonian given by Eq. (2). The corre-
sponding diagonalization transformation can be expressed in
the following manner:

ar\ _ 1 [(~Gk Gy (o
(@)-a(" D) o

_ 1
18(Kk)|

where

Gk (8x(K) —igy(K)), (B2)

while &,_ and @k, are the annihilation operators in the two
helical bands corresponding to the dispersion relations given
by Eq. (18) and g,/,(k) are defined by Eq. (19). By applying
the above transformation to the pairing term given by Eq. (7)
one arrives at

y 1 X)) AT A X A ~
Hgc = z Z (Al((()) a]i[ajk+Q[ + (A{(()))* a*kJrQlakl)
kl

1 00
+5 218571, (B3)

i<j
where the gaps in the helical bands are of the form

Aty = EGLAL + G i o ALY)- (B4)
For simplicity in the above derivation we have assumed that
only intrahelical band pairing appears. This is justified by the
fact that for relatively significant spin-orbit coupling energies
the Fermi surfaces corresponding to the two helical bands are
separated, suppressing any interband pairing contributions.

APPENDIX C: SYMMETRY-RESOLVED
GAP AMPLITUDES

Here we show how the symmetry-resolved real-space gap
amplitudes defined by Eq. (24) are related with the k de-
pendence of the resulting superconducting gap. As shown in
the main text, the SC gap in reciprocal space depends on the
real-space gap amplitudes in the following manner:

ARG =D MNTRIAT,
i(j)
= A7 e+ A%, e

+ A7 M+ AJT e (C1)

In the following, we introduce the real-space symmetry-
resolved gap amplitudes

A7 = (AT + AT + AT o + AJ7)/8,
AT = (AT — ADT + A% o — AJ7))/8,
AT = (AT — A% 0)/4,
AS7 = (AF] — AFL)/4,

(C2)

which correspond to the extended s-wave, d-wave, p,-wave,
and py,-wave pairing symmetries, respectively. It should be
noted that in general the symmetry of the gap does not have to
be identical with the symmetry of the lattice or the symmetry
of the orbitals which are used to construct the single-particle
part of the model Hamiltonian.

The superconducting gap in reciprocal space given by
Eq. (C1) can by expressed in terms of the symmetry-resolved
gap parameters as follows:

AV =AY (cos(ky) + cos(ky))
+ A9 (cos(ky) — cos(ky))
+iA7 sin(ky)
+iAg:_7 sin(k,). (C3)

From the above one can see that in general we can obtain a
mixture of gap symmetries. By substituting from the above
equations into the expression for the gap amplitudes in the
helical bands given by Eq. (20) [or Eq. (22) for the B =
0 and Q = 0 case], one can determine how the real-space
gap amplitudes determine the Kk-space (extended s-wave,
d-wave, p./p,-wave) dependence of the resulting supercon-
ducting gap.

It should be noted that the spin degree of freedom also
plays a role when it comes to the resulting symmetry of the
gap since the superconducting order parameter needs to be an-
tisymmetric with respect to the interchange of particles as our
system is composed of fermions. Therefore, the spin-singlet
state (odd) of the Cooper pairs can be realized in connection
with the extended s-wave or d-wave symmetries (even) and
the spin-triplet state (even) of the Cooper pair can be realized
with the p,- or p,-wave symmetry (odd). In order to take this
into account we have introduced the symmetry-resolved gap
amplitudes which take into account both spin and real-space
degrees of freedom and are defined in the following manner:

A= ATV — AT

s _ At "
AL = AN — Al .
Al = ATV L AV

Px Px px’

o _ AN 1
APV - Apv + Apv ’

which are in fact the same as Egs. (23), but here we use the
notation provided by Egs. (C2). In the case when both B = 0
and o = 0, only spin-singlet pairing appears and only ex-
tended s-wave or d-wave symmetries are possible. However,
for the case of nonzero external magnetic field and spin-orbit
coupling a singlet-triplet mixing appears and several contri-
butions to the gap may be realized, which is reflected by
Eq. (C3).
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