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Finite-temperature study of correlations in a bilayer band insulator
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We perform the finite-temperature determinant quantum Monte Carlo simulation for the attractive Hubbard
model on the half-filled bilayer square lattice. Recent progress on optical lattice experiments lead us to investigate
various single-particle properties such as momentum distribution and double occupancies which should be easily
measured in cold-atom experiments. The pair-pair and the density-density correlations have been studied in detail
and, through finite-size scaling, we show that there is no competing charge density wave order in the bilayer
band-insulator model and that the superfluid phase is the stable phase for the interaction range |U |/t = 5–10.
We show the existence of two energy scales in the system as we increase the attractive interaction, one governing
the phase coherence and the other one corresponding to the molecule formation. In the end, we map out the
full T − U phase diagram and compare the Tc obtained through the mean-field analysis. We observe that the
maximum Tc/t (= 0.27) occurs for |U |/t = 6, which is roughly twice the reported Tc of the single-layer attractive
Hubbard model.
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I. INTRODUCTION

The half-filled attractive Hubbard model (AHM), at low
temperatures, shows the s-wave superfluidity with a BEC-
BCS crossover along with the charge density wave (or pair
density wave) [1]. In the weak-coupling regime (U << t ),
fermions of opposite spin and same momentum state form
loosely bound Cooper pairs and go to the BCS state at the
critical temperature Tc, which increases with |U |/t . As we
go towards the strong-coupling regime (U � t ), the strong
interactions between the particles lead to the formation of the
bound pairs that condense to form a BEC state at Tc, which
decreases as t2/|U |. The fermionic pairs in the BEC state can
be regarded as the hard-core bosons, and the tunneling of the
pairs is dominated by the second-order tunneling t2/|U |.

The advancement in the field of cold atoms has generated
a lot of interest in the condensed matter community due to
a control over various parameters such as tuning the inter-
action between particles by the Feshbach resonance, tuning
the hopping between lattice sites by laser intensity, and so
on. The lowest temperature that has been achieved so far in
experiments on the AHM is T ∼ 0.4t [2]. Earlier theoretical
work on half-filled AHM has shown Tc ∼ 0.13t for |U |/t = 8
[3], whereas the maximum Tc ∼ 0.17t at density n = 0.7 and
|U |/t = 4 has been reported [4,5]. The process to lower the
temperature experimentally in optical lattice systems has been
hampered by the cooling problem (entropy issues) [4,6–9].

Recent progress made in the experiments towards the re-
alization of the attractive Hubbard model has been of great
interest [2,10]. There have been some theoretical attempts
to “increase” the characteristic temperature Tc which can be
achieved experimentally [11,12]. In this work, we focus on
the bilayer attractive Hubbard model band-insulator model
discussed in Ref. [11]. The model is a bilayer square lattice
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model, as shown in Fig. 1. Both layers have been hybridized
by the coupling th. The hoppings in both layers were taken
to be opposite to each other such that the in-plane energy
dispersions in the two layers are of the opposite signs, i.e.,
εA(k) = −εB(k) ≡ ε(k). The idea is to start with a low en-
tropy state and explore the possibility of realizing a superfluid.
At half filling, for a finite th and for small values of |U |,
the system is in the normal band-insulator state. With the
increase in the on-site attractive interaction |U |, a quantum
phase transition occurs at |Uc|, ushering in a superfluid state.
Detailed analysis including Gaussian fluctuations and varia-
tional Monte Carlo (VMC) calculations establish that there
are no competing orders such as an intervening charge density
wave (CDW) and confirm that the superfluid state is stable at
T = 0 [11]. Band-insulator–superfluid transitions have been

FIG. 1. Schematic of the bilayer band insulator. Nearest-
neighbor hopping t and next-nearest-neighbor hopping t ′ in layer A
is opposite to that of layer B of the square lattice. Both layers have
been hybridized by hopping th. The right panel shows the energy
dispersion for th = 0 and th �= 0.
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studied earlier in other contexts [13,14]. The quantum Monte
Carlo studies for the attractive Hubbard model have been done
in the past for single layer [15–18] as well as bilayer [19]
square lattices. These simulations motivated us to analyze the
bilayer band-insulator model using the determinant quantum
Monte Carlo (DQMC) technique.

We use the DQMC technique [20,21] to study the equi-
librium properties of the bilayer band-insulator model with
attractive Hubbard interaction. A key point with this model is
that there is no sign problem for the attractive on-site interac-
tion. So it is possible to explore the physics of this bilayer
model at low temperatures. We have examined the nature
of the pairing correlations for our model through DQMC,
which provides an approximation-free solution of the dis-
cussed model. In the end, we perform the scaling analysis and
estimate Tc through the finite-size scaling (FSS).

II. MODEL AND COMPUTATIONAL METHOD

We start with the Hamiltonian of the bilayer square lattice
model, H = HK + HU , where

HK =
A-layer︷ ︸︸ ︷

− t
∑

<ij>,σ

(a†
iσ ajσ + H.c.) − t ′ ∑

<ii′>,σ

(a†
iσ ai′σ + H.c.)

B-layer︷ ︸︸ ︷
+ t

∑
<ij>,σ

(b†
iσ bjσ + H.c.) + t ′ ∑

<ii′>,σ

(b†
iσ bi′σ + H.c.)

−
∑
i,σ

th(i)(a†
iσ biσ + H.c.)

︸ ︷︷ ︸
A-B Layer hybridization

− μ
∑
i,σ

(a†
iσ aiσ + b†

iσ biσ ),

HU = − U
∑

i

(a†
i↑a†

i↓ai↓ai↑ + b†
i↑b†

i↓bi↓bi↑)

︸ ︷︷ ︸
Interaction Hamiltonian

, (1)

in the presence of the on-site Hubbard interaction (−U ). The
first term HK represents the hopping (kinetic energy) of the
fermions and the latter represents the interaction energy when
the two fermions occupy the same site. We choose the nearest-
neighbor hopping t = 1 to set our unit of energy. We express
all other energy scales th,U, T , and μ in terms of the energy
scale t . We fix the hybridization hopping th/t = 0.6 through-
out this work and study the properties of our model at half
filling on a bilayer square lattice with N = 2 × L2 sites with
periodic boundary conditions. Here, L represents the number
of sites in each direction of the square lattice. At half filling
(one fermion per site), due to particle-hole symmetry in our
system, μ = 0.

In the DQMC simulations, we chose the imaginary-time
interval �τ = 1/20. Following the steps of the DQMC algo-
rithm [20,21], we perform the Trotter-Suzuki decomposition
to separate the kinetic and interaction energy exponentials.
For the proposed bilayer band-insulator model, the kinetic
and the interaction exponentials will have the following
expressions:

e−�τK =
∏
σ

e−�τ
∑

αγ

∑
<ij>(c†

iασ
Kσ

ijαγ cjγ σ +H.c.)

e−�τV = e�τ
∑

α

∑
i[− Unα

i↑nα
i↓+μ(niα↑+niα↓ )]

⎫⎪⎬
⎪⎭, (2)

where (α, γ ) correspond to the layers of the bilayer system
and cα (c†

α ) is equivalent to the operators a (a†) and b (b†)
for α = 1 and 2, respectively. K is the kinetic energy matrix
whose elements are given by

Kσ
ijαγ = tijαγ − μ δij δαγ , (3)

with

tijαγ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−t if i and j are the nn for (α, γ ) = (1, 1)
−t ′ if i and j are the nnn for (α, γ ) = (1, 1)

t if i and j are the nn for (α, γ ) = (2, 2)
t ′ if i and j are the nnn for (α, γ ) = (2, 2)

−th if i and j are the nn for (α, γ ) = (1, 2) or (2,1)
0 otherwise,

(4)

where nn represents the nearest neighbors, while nnn repre-
sents the next-nearest neighbors. After applying the Hubbard-
Stratonovich transformation for the bilayer band-insulator
model, the elements of the matrix V and the chemical poten-
tial in the kinetic energy term are modified to

V σ
ijαγ = − λsi

�τ
δij δαγ ,

μ̃ = μ + |U |
2

.

(5)

Hence, at half filling, we have μ̃ = 0. We calculate various
single-particle quantities such as the momentum distribution,
kinetic energy, and double occupancy, two-particle corre-

lations such as pair-pair correlations and density-density
correlations using the DQMC simulation. For each data point
at the given value of the inverse temperature β, the interaction
|U |, and the lattice size L = 10–16, the simulations were
carried out with 1000–10 000 warm-up sweeps and 10 000–
50 000 measurement sweeps of the space-time lattice. These
measurement sweeps were divided into 20 bins and thus the
statistical average over these 20 bins has been reported here.

III. SINGLE-PARTICLE PROPERTIES

The mean-field analysis and the Gaussian fluctuation the-
ory suggest that the bilayer band-insulator model undergoes
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a second-order phase transition at some critical value of the
attractive interaction |Uc| [11]. The fermions start to form
pairs as we tune the on-site attractive interaction through
Feshbach resonance. In the strong-coupling limit (|U | � t ),
these pairs get tightly bound, forming a molecule (boson).
Thus, by tuning the interaction, we go from a band-insulating
state to a loosely bound state of Cooper pairs and then to
a tightly bound molecule-forming state, implying that there
is a smooth BCS-BEC crossover extending from a small to
a large value of the interactions. Hence, the ground state of
the system evolves continuously from a BCS state (where
fermions with opposite spins form loose pairs of plane waves
with opposite momenta) to a BEC state of bosonic molecules
(where fermions with opposite spin form tightly bound pairs)
when |U | is increased beyond |Uc|.

A. Momentum distribution

The Green’s function is a fundamental quantity in DQMC
where it is used in various updation processes. The momentum
distribution can be obtained directly from the Green’s func-
tion via Fourier transform of the equal-time Green’s function
Gijαβ = 〈ciασ c†

jβσ 〉 as

nα (q) = 1 − 1

2Nα

∑
i,j,σ

eiq·lαij〈ciασ c†
jασ 〉, (6)

where lαij = l(i, α) − l(j, α) and Nα (= L2) represents the num-
ber of sites in the αth layer.

Figure 2 shows the momentum distribution of our bi-
layer square lattice around the irreducible part of the
Brillouin zone (BZ) for various system sizes [Fig. 2(a)], at
different temperatures [Fig. 2(b)], and for different interac-
tions |U | [Figs. 2(c) and 2(d)]. At |U | = 0 and at half filling,
n1(q) [n2(q)] = 1 (0) inside and n1(q) [n2(q)] = 0 (1) outside
a square with vertices (π, 0), (0, π ), (−π, 0), and (0,−π )
within the BZ. Figure 2(a) shows that the momentum distri-
bution has a weak lattice size dependence and its resolution
increases with L. In Fig. 2(b), we show that the n(q)’s con-
verge to their respective low-temperature values as βt > W/t ,
where W (= 8.8 t ) is the bandwidth of the noninteracting
energy dispersion. We find that the smearing due to the finite-
temperature effects is very small above β t = 8.8. In Fig. 2(c),
we see a sharp Fermi surface at weak interaction |U | as the
momentum cuts across the Fermi surface at q = (π/2, π/2),
whose enlarged plot is shown in Fig. 2(d), which focuses
on the region near the Fermi-surface point (π/2, π/2). It
shows that the distribution broadens out as the interaction |U |
increases. In Fig. 3, we show a sequence of color contour plots
for the lattice size L = 16 at |U |/t = 1, 5, and 8.

B. Pair formation

The existence of the molecule formation along the BCS-
BEC crossover with the increase in the interaction strength |U |
comes from the evolution of the double occupancy (density
of on-site pairs), which can also be measured in experiments
with ultracold fermions [22]. The double occupancy D can be

(a) (b)

(c) (d)

FIG. 2. Momentum distributions. (a) The momentum distribu-
tions are shown for the interaction strengths |U |/t = 5 and the
inverse temperature βt = 10 for various system sizes. n1(q) and
n2(q) are the momentum distributions corresponding to layer A
and B, respectively. It shows weak lattice size dependence and the
resolution increases with L. (b) The n(q)’s converge to their low
temperature value as βt > W/t . Here, |U |/t = 5 and the system
size L = 16. (c) The momentum distributions for various attractive
interactions ranging from |U |/t = 1 to 8; (d) the enlarged region, cut
perpendicular to the Fermi surface at (π/2, π/2), of (c). We see a
sharp Fermi surface at weak interaction |U | as the momentum cuts
across the Fermi surface at q = (π/2, π/2) and it broadens out as
|U |/t increases.

defined as

D = 1

N

∑
iα

〈
nα

i↑nα
i↓

〉
, (7)

where the summation i runs over the number of sites for layer
α for both layers α = 1 and 2, and N (= 2L2) represents the
total number of sites.

In the noninteracting limit (|U |/t = 0), both spin-up and
spin-down particles are uncorrelated so

∑
iα〈nα

i↑nα
i↓〉/N =∑

iα〈nα
i↑〉〈nα

i↓〉/N = 1/4 at half filling. As we increase the
attractive interaction by tuning the scattering rate, the spin-up
and spin-down particles become correlated. In the strong-
coupling limit (|U |/t → ∞), the large attractive interaction
locks the fermions in bound on-site pairs and hence they
form a charge density wave where the fermion pairs occupy
alternate sites of the bilayer lattice at half filling to minimize
the energy by a virtual hopping process of the order of t2/|U |.
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FIG. 3. Color contour plot depiction of the momentum distri-
butions n1(q) and n2(q) at half filling for |U |/t = 1, 5, and 8. The
lattice size = 2 × 16 × 16 and the inverse temperature βt = 10.

In this limit, at half filling, the on-site pair density or the
double occupancy will be equal to the number of up- or
down-spin fermions which is 0.5 at half filling: since n = 1,∑

iα〈nα
i↑nα

i↓〉/N = ∑
iα〈nα

i↑〉/N = ∑
iα〈nα

i↓〉/N = 1/2.
In Fig. 4(a), we have plotted the rescaled double

occupancy,

D̃ = D − 〈
nα

i↑
〉2

〈
nα

i↑
〉 − 〈

nα
i↑

〉2 = (4 D − 1), (8)

as a function of temperature T for various interaction
strengths. As the attractive interaction increases from zero
to infinity, the rescaled double occupancy increases from 0
to 1. In the |U | → ∞ limit, all the fermions get paired up
and hence D̃ approaches the value 1. The rescaled double
occupancy reaches up to 0.8 at |U |/t = 8, which is an indi-
cation of the formation of bosonic molecules (tightly bound
pairs of fermions of opposite spins). In the high-temperature
limit (T/t � 1), independent of the interaction strength, the
double occupancy approaches the noninteracting values, i.e.,
0.25 in the half-filled case. As we decrease the temperature,
the fermions start to pair up due to the increasing effect of
the attractive interaction. Hence the double occupancy in-
creases with the decrease in temperature T . We observe a

(a) (b)

FIG. 4. (a) The evolution of the rescaled double occupancy with
the temperature T/t for various interaction strengths |U |/t . The
system size is L = 16. The black arrow marks the transition tem-
perature Tc/t = 0.17 at |U |/t = 5, estimated from the finite-size
scaling analysis. The rescaled double occupancy reaches up to 0.8
at |U |/t = 8, which is an indication of the molecule (tightly bound
pairs) formation. A local maxima has been observed as we go
from the high-temperature to the low-temperature regime at the
intermediate-temperature scale T/t ∼ 1. (b) Effective hopping: as
the interaction energy |U | increases, the effective hopping declines.
The rate of decrease of the effective hopping with the increase in
the interaction strength is the same for all βt > W/t (8.8/t ). Here we
show teff/t for L = 16 for different values of inverse temperature βt .

local maxima as we go from the high-temperature to the
low-temperature regime, implying the increase in the double
occupancy with the decrease in the temperature. We see the
local maxima at the intermediate temperature scale (T/t ∼ 1),
where the kinetic energy competes with the on-site inter-
action and destabilizes the double occupancy in the weak-
and intermediate-coupling regimes. So the double occupancy
decreases a little and saturates in the weak-coupling regime,
after reaching its ground-state value as T/t → 0. But after a
certain critical interaction strength |Uc|, we observe that as
we decrease the temperature further, the double occupancy in-
creases again after a critical temperature Tc and then saturates
to its low-temperature value. This indicates that the system
goes into a superfluid phase from the band-insulating phase at
this critical interaction strength and temperature. We estimate
these critical values through the scaling analysis discussed at
the end of this paper.

C. Kinetic energy

Another single-particle quantity of interest is the effective
hopping, defined as

teff

t
= 〈HK〉U

〈HK〉U=0
, (9)

which measures the ratio of the kinetic energy at finite |U | to
its value when there is no on-site interaction, i.e., U = 0. In
Fig. 4(b), we show the effective hopping as a function of the
interaction strength |U | for L = 16 at various temperatures.
As the on-site attractive interaction |U | increases, the effective
hopping decreases. This is due to the fact that the kinetic
energy increases from larger negative value to the lower neg-
ative value with the increase in the interaction, as shown in
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(a) (b)

FIG. 5. The evolution of the kinetic energy as a function of (a) in-
teraction strength |U |/t for various temperatures and (b) temperature
T/t for different interaction strengths. The kinetic energy (KE) in-
creases continuously with the increase in the attractive interaction,
approaching its zero-temperature value for βt > W/t (8.8/t ). The
evolution of KE with temperature T at weak couplings shows a
similar behavior as the free-fermion case, while at strong couplings,
we observe a sharp fall of the KE at low temperatures before it ap-
proaches its zero-temperature value. Here the system size is L = 16.
In (a), the vertical dashed line show the value of |Uc|/t = 5 in the
ground state, and in (b), it corresponds to Tc/t = 0.17 at |U |/t = 5.

Fig. 5(a). The rate of decrease of the effective hopping with
the increase in the interaction strength is the same for all
βt > W/t (8.8/t ), implying that the kinetic energy has reached
its low-temperature value, as seen in Fig. 5(a). In Fig. 5(b),
we show the evolution of the kinetic energy as a function
of temperature T/t for different interaction strengths for a
system of 512 sites. We see that the evolution of the kinetic
energy with temperature T at weak couplings shows a similar
behavior as the free-fermion case, while for intermediate cou-
plings, the rate of decrease in kinetic energy with the decrease
in temperature is slow as compared to the weak-coupling
behavior. In the strong-coupling limit, at low temperatures, we
see a sharp drop in the kinetic energy which then approaches
its zero-temperature value, which is due to the reason that
the kinetic energy at strong couplings is determined by the
effective hopping of the paired fermions which form a bound
state in this limit.

IV. TWO-PARTICLE CORRELATIONS

We now turn to the two-particle properties focusing on the
pair correlations in the bilayer band insulator model. We will
also discuss the density-density correlations to see the possi-
bility of formation of the charge density wave (CDW) state
at a large value of the on-site attractive interaction. We also
estimate the critical strength |Uc| and the critical temperature
Tc through the finite-size scaling analysis.

A. Pair-pair correlations

We know that the long-range order (or a quasi-long-range
order for a superfluid at finite temperature) in the pair-pair
correlation function in the Bose-Einstein condensate state sig-
nifies a phase coherence between pairs. To study this behavior,
we define the equal-time s-wave pairing Pαγ

s (i, j) for the bi-

layer model as

Pαγ
s (i, j) = 〈�s(i, α)�†

s (j, γ ) + H.c.〉, (10)

where the local pair-field operator �s(i, α), defined as

�s(i, α) = ci,α↓ci,α↑, (11)

annihilates a pair of fermions on site i of layer α of the bilayer-
square lattice. We also define the associated pair structure
factor as

Ss(q) = 1

N

∑
αγ

∑
ij

eiq·lαγ

ij Pαγ
s (i, j), (12)

where lαγ

ij = l(i, α) − l(j, γ ).
The pair structure factor diverges linearly with the sys-

tem size N when the long-range order is achieved. As the
bilayer band-insulator system undergoes a finite-temperature
Berezinski-Kosterlitz-Thouless (BKT) transition into a super-
fluid phase [11], hence for 0 < T � Tc, we expect that

Ps(l) ∼ l−η(T ), (13)

with the separation l = |i − j|, where i, j refers to sites ei-
ther from layer A or B. The critical exponent η(T ) for a
BKT transition in a homogeneous system is known to in-
crease monotonically with temperature between η(0) = 0 and
η(Tc) = 1/4 [23,24].

Thus we can obtain the finite-size scaling behavior of
the s-wave pair structure factor upon integrating Ps(l) over a
two-dimensional system of linear dimension L. Hence, Ss[≡
Ss(q = 0)] will scale as [15]

L2−η(Tc ) Ss ∼ f (L/ξ ), L � 1, T → T +
c , (14)

with ξ ∼ exp[A/(T − Tc)1/2] the correlation length of the
infinite system where A is of the order of unity. In the ther-
modynamic limit, one can recover Ss ∼ ξ 7/4.

In Fig. 6, we have shown the dependence of the pair cor-
relation function on the separation l for two different lattice
sizes L = 14 and 16. The separation l follows a trajectory
along the x axis to maximal x separation ( L

2 , 0) on a lattice
with periodic boundary conditions, and then to ( L

2 , L
2 ) before

returning to separation (0,0). We observe that there is no
pair-pair correlation when |U |/t = 1 as the system is still
in the band-insulating state. For |U |/t = 5 and 8, there is
a finite nonzero pair-pair correlation, implying the existence
of the long-range order at these interactions. We see that the
finite-size effects are modest.

To have a clearer understanding, in Fig. 7, we show
the equal-time s-wave pair structure factor Ss(q, τ = 0) for
|U |/t = 5 [Fig. 7(a)] for various temperatures (βt = 2–10) on
a 2 × 16 × 16 lattice and [Fig. 7(b)] for various system sizes
(L = 10–16) at T/t = 0.1. We see that the q = 0 mode be-
comes more and more singular in both results as we decrease
the temperature or increase the system size, which is a char-
acteristic feature of growing s-wave pairing correlations. The
dependence of the q = 0 mode on the system size indicates
that we need to understand the finite-size scaling behavior of
Ss due to the limitations on lattice size (L � 16) imposed by
the DQMC algorithm.
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FIG. 6. The dependence of the ground-state pair-pair correlation
function on the separation l for two different lattice sizes L = 14 and
L = 16, in a bilayer band-insulator model. The separation l follows
a trajectory along the x axis to maximal x separation ( L

2 , 0) on a
lattice with periodic boundary conditions, and then to ( L

2 , L
2 ) before

returning to separation (0,0). The correlation functions converge to a
nonzero value at large separations at |U |/t = 5 and 8, providing clear
evidence for the long-range order. We see that the finite-size effects
are modest.

Finite-size scaling

To understand the finite-size scaling behavior of Ss, we
obtain the low-temperature limit of the pair structure factor by
decreasing the temperature until we observe a plateau which
signals that we have reached the T = 0 value of the pair
structure factor. Figure 8(a) shows the evolution of Ss with the
inverse temperature βt for |U |/t = 5 and for different lattice
sizes. Here we see that Ss increases at low temperatures and
saturates to a value which increases with the size of the lattice.
For β � 4, pair correlations are short range, so the pair struc-
ture factor is independent of the lattice size. As we decrease
the temperature, the point at which the pair structure factor
begins to grow with the lattice size indicates the temperature
at which the correlation length ξ becomes large as compared
to the lattice size L.

(a) (b)

FIG. 7. s-wave pair structure factor Ss(q, τ = 0) at |U |/t = 5 for
(a) various temperatures (β t = 2–10) on a 2 × 16 × 16 lattice and
(b) various system sizes (L = 10–16) at T/t = 0.1. We see that the
q = 0 mode becomes more and more singular in both results as we
decrease the temperature or increase the system size.

(a) (b)

FIG. 8. (a) The evolution of the s-wave pair structure factor Ss

with the inverse temperature β for different system sizes at |U |/t =
5. Ss increases at low temperatures, saturating at a value which
increases with the size of the lattice. (b) Ground state: Finite-size
scaling of the s-wave pair structure factor for various interaction
strengths. The symbols are the DQMC results and the dashed lines
are the extrapolation performed via a linear least-squares fit for each
|U |. We observe that |Uc|/t ∼ 5.

Ground state: |Uc|. The important characteristic of the
superfluid state in our bilayer model is that the system dis-
plays long-range order in the ground state, and hence Huse’s
argument [25] of the “spin-wave scaling” is expected to
hold [18],

Ss

N
= Δ2

0 + C(U )

L
, (15)

where Δ0 is the superfluid order parameter at zero temper-
ature and C is a constant which depends on the interaction
strength |U |.

The superfluid order parameter Δ0 can also be extracted
from the equal-time s-wave pair-pair correlation function Ps(l)
for the two most distant points on a lattice, i.e., having R =
(L/2, L/2) [26], with a similar spin-wave theory correction,

Ps(R) = Δ2
0 + B(U )L. (16)

We expect that B < C since the structure factor includes the
pair correlations at short distances which markedly exceed
Δ2

0, in addition to the finite lattice effects at larger length
scales [27].

In Fig. 8(b), we perform the finite-size scaling of the
s-wave pair structure factor Ss for various interaction
strengths. We can approximate the superfluid order parameter
by the intercept along the y axis as evident from Eq. (15).
Thus we observe that the zero-temperature order parameter
is nonzero for the interaction |U |/t � 5. Hence the critical
interaction strength |Uc|/t ∼ 5.

Estimation of Tc. We can extract Tc from the pair struc-
ture factor Ss through a “phenomenological renormalization
group” analysis [28,29]. As we know, ξ = ∞ at Tc and → ∞
for all 0 < T < Tc [see Eq. (20)]. Thus, at Tc, L−7/4 Ss(L, βc)
becomes a constant, independent of the system size. Hence
all the curves for different system sizes, in the plot of the
rescaled pair structure factor L−7/4 Ss(L, β ), should intersect
at β = βc, when plotted as a function of β. In Fig. 9(a),
we show the rescaled pair structure factor L−7/4 Ss(L, β ) as
a function of the inverse temperature β for |U |/t = 5 for
different lattice sizes. We observe that for all lattice sizes, all
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(a) (b)

FIG. 9. (a) Rescaled Ss as a function of inverse temperature β at
|U |/t = 5 for different system sizes. The inset shows the enlarged
region around βt = 5–7.5. All the curves for different system sizes
intercept each other at βt ∼ 6. (b) Rescaled Ss plotted against L/ξ

at |U |/t = 5 for different system sizes. All the curves for different
system sizes collapse to a single curve at A = 0.5 and Tc/t = 0.17.

the curves intersect each other at a single point β = 6. This
leads to a conclusion that Tc/t ∼ 0.167.

In Fig. 9(b), we plot the rescaled pair structure factor versus
the universal scaling function f (L/ξ ) [see Eq. (20)], where A
and Tc are chosen such that all the data points collapse on
a single curve, regardless of the system size. For A = 0.5 and
Tc/t = 0.17 at |U |/t = 5, all data collapse onto a single curve.
Hence the estimated Tc/t = 0.17 at |U |/t = 5. Similarly, we
estimated Tc for various interaction strengths to map out the
T − U phase diagram (see Fig. 13).

B. Energy scales

In our bilayer band-insulator model, we see two differ-
ent energy scales for the attractive interaction |U |/t = 5.
One energy scale (T ∗/t ) corresponds to the formation of
molecules, while the other energy scale (Tc/t ) corresponds to
the emergence of the phase coherence between these pairs.
We can identify these two scales by comparing the evolu-
tion of the double occupancy and the s-wave structure factor
with temperature. In Fig. 10, we show the rescaled double

FIG. 10. The evolution of the s-wave pair structure factor and the
rescaled double occupancy with inverse temperature β at |U |/t = 5
and L = 16. Two different energy scales are clearly identified. Ss,
signaling the emergence of the phase coherence, saturates at βt ∼ 8,
whereas D̃, signaling the molecule formation, saturates at βt ∼ 3.

FIG. 11. The spatial variation of the density-density correlation
function Cαγ

σ,σ ′ (i, j) for different interaction strengths |U | at temper-
ature T/t = 0.1 for a system size N = 512 sites. It indicates the
formation of the spatial density wave pattern for attractive interaction
|U |/t = 8.

occupancy and the s-wave structure factor for |U |/t = 5 for
the lattice size L = 16. We recover the two energy scales
(T/t ∼ 0.125 corresponding to saturation of Ss and T ∗/t ∼
0.33 corresponding to the saturation of D̃) and observe the
formation of pairs before the emergence of phase coherence,
which is expected in the BEC regime. Finite-size scaling gives
Tc/t ∼ 0.17.

C. Density-density correlation

To study the CDW order, we define the density-density
correlation function as

Cαγ

σ,σ ′ (i, j) = 〈
nα

iσ nγ

jσ ′
〉 − 〈

nα
iσ

〉〈
nγ

jσ ′
〉
, (17)

where σ and σ ′ correspond to ↑ or ↓ spin, respectively, α and
γ correspond to layer A or B, respectively, nα

iσ corresponds
to the fermion density at site i of the αth layer, and i and
j run over sites 1 to N . For α = γ , Cα

σ,σ ′ (i, j) corresponds
to the intralayer density-density correlation, while for α �= γ ,
Cαγ

σ,σ ′ (i, j) corresponds to the interlayer density-density corre-
lation function. Similarly, we define the CDW structure factor
SCDW as

SCDW(q) = 1

N

∑
αγ

∑
σσ ′

∑
ij

eiq·lαγ

ij Cαγ

σ,σ ′ (i, j), (18)

where lαγ

ij = l(i, α) − l(j, γ ).
In Fig. 11, we show the spatial variation of the density-

density correlation function Cαγ

σ,σ ′ (i, j). We observe that the
density wave formation will start to take place for |U |/t � 8.
Thus there is no competing order in the region where the
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(a) (b)

FIG. 12. (a) The evolution of the CDW structure factor SCDW

with the attractive interaction |U |. As the attractive interaction in-
creases, the density wave structure factor increases. (b) Finite-size
scaling of the CDW structure factor for various interaction strengths.
It shows the absence of the charge density wave up to |U |/t = 10.

superfluid state exists. To confirm this, we perform the scaling
analysis.

In Fig. 12(a), we show the evolution of the CDW structure
factor SCDW with attractive interaction |U | for various temper-
atures. SCDW increases slowly in the weak-coupling regime
where the system is in a band-insulating state. As the attrac-
tive interaction increases, the density wave structure factor
increases. To investigate the existence of the charge density
wave order in the ground state of the bilayer band-insulating
model, we perform the finite-size scaling.

Finite-size scaling

Using the Huse’s argument of the spin-wave theory, we
expect that the CDW structure factor and the density-density
correlation function behave as

SCDW

N
= Δc2

0 + C(U )

L
,

C(L/2, L/2) = Δc2

0 + B(U )L,

(19)

where Δc
0 is the zero-temperature charge density wave order

parameter and C and B are constants which depend on the
interaction strength |U |.

Figure 12(b) shows the finite-size scaling of the CDW
structure factor SCDW for various interaction strengths. From
Eq. (19), we see that the intercept along the y axis gives the
square of the zero-temperature CDW order parameter Δc

0.
For the range of attractive interaction strengths (5–10), the
finite-size scaling of the CDW structure factor confirms that
the CDW phase does not exist in the bilayer band-insulator
model. Even though we observe density wave formation
for |U |/t � 8, to have a long-range CDW order, the CDW
structure factor measured on finite lattices at the critical tem-
perature T ′

c should obey

L−7/4 SCDW ∼ f (L (β − β ′
c)). (20)

Hence if we plot L−7/4SCDW as a function of the inverse
temperature β, different sizes L must cross at β = β ′

c. But we
could not see any crossing for different system sizes for the
CDW structure factor. On the contrary, this crossing has been
clearly visible for a pair-pair structure factor where long-range
superfluid order is present (Fig. 9). Hence, even for U/t = 10,
long-range CDW order is absent.

FIG. 13. T − U phase diagram. T� in the phase diagram repre-
sents the pair-breaking temperature obtained through saddle-point
analysis, while TBKT refers to the Berezinski-Kosterlitz-Thouless
transition temperature of the bilayer model presented in [11]. Square
points indicate Tc obtained from the DQMC calculations. We observe
that the Tc gets reduced from its mean-field values, as expected. Also,
the maximum value of Tc(∼ 0.27) occurs at |U |/t = 6.

V. DISCUSSION AND CONCLUSION

In summary, we have used an unbiased and exact DQMC
technique to study various single-particle and two-particle
properties of the bilayer band-insulator model. We have
shown the existence of two energy scales: one scale governs
the phase coherence and the other one corresponds to the
molecule formation (formation of tightly bound fermionic
pairs). We compare our results with the one obtained with
the mean-field and the Gaussian-fluctuation theory results
presented in [11]. The critical strength |Uc|/t ∼ 5 is slightly
higher than the saddle-point analysis (|Uc|/t = 3.2) and is
close to the VMC prediction (|Uc|/t = 4.5). Through the
finite-size scaling, we show that there is no competing CDW
order in the bilayer band-insulator model for the interaction
range |U |/t = 5–10. The saddle-point analysis suggested the
maximum critical temperature ∼0.4 at |U |/t = 5, whereas
DQMC predicted Tc/t |DQMC = 0.17, which is lower than the
saddle-point prediction at |U |/t = 5. We estimated the tran-
sition temperature for various interaction strengths and map
out the T − U phase diagram shown in Fig. 13. DQMC sim-
ulation predicts the maximum Tc/t (= 0.27) which occurs at
|U |/t ∼ 6. We find that the maximum Tc in our proposed
half-filled bilayer band insulator is twice that of the maxi-
mum Tc/t ∼ 0.13 (for |U |/t = 8) published in Ref. [3] for
the single-layer attractive Hubbard model. Thus, the stud-
ied bilayer band-insulator model has “higher” characteristic
temperature Tc, with no competing orders as compared to
earlier attempts, and is expected to be realized in cold-atom
experiments.
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