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First-order normal-to-superconductor phase transition of aluminum in magnetic field by
current-density functional theory for superconductors
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We demonstrate that the current-density functional theory for superconductors (sc-CDFT) can describe the
magnetic-field-induced first-order phase transition of aluminum from a superconducting state to a normal state.
This is accomplished by introducing a model for the magnetic-field dependence of the attractive interaction
between superconducting electrons. This model states that the surface potential well produced by a penetrating
magnetic field leads to the magnetic-field dependence of the attractive interaction. Specifically, the electron
density near the surface increases with the magnetic field owing to the surface potential well, which causes a
reduction in the attractive interaction because of the screening effect. We also develop a calculation scheme to
solve the gap equation of the sc-CDFT by considering the magnetic-field dependence of the attractive interaction.
The calculation results for the magnetic-field dependence of the superconducting gap are in good agreement with
the experimental results of the first-order phase transition.
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I. INTRODUCTION

Density functional theory for superconductors (sc-DFT)
is widely used to predict the thermal equilibrium properties
of superconductors [1–31]. The sc-DFT has been extended
for applications in superconductors that are immersed in a
magnetic field [32–39]. The current-density functional the-
ory for superconductors immersed in a magnetic field was
developed by Kohn et al. [32], in which they identified the
possibility of quantitatively describing the Meissner effect
in conjunction with Maxwell’s equations. We have recently
developed the current-density functional theory for super-
conductors immersed in a magnetic field (sc-CDFT) [33,37–
39] based on the extended constrained-search theory [40–44].
In the sc-CDFT, the electron density, transverse component
of the paramagnetic current density, spin-current density,
superconducting order parameter (OPSS), and its complex
conjugate are chosen as the basic variables [37–41]. Thermal
equilibrium values of basic variables can be reproduced us-
ing the solutions of the Bogoliubov–de Gennes–Kohn-Sham
(BdG-KS) equation. Using the reproduced basic variables,
we can calculate the charge density and current density. The
scalar and vector potentials inside a superconductor can be
obtained by substituting the obtained charge and current den-
sities into Maxwell’s equations and solving them. Substituting
the obtained scalar and vector potentials into the BdG-KS
equation, we obtain the charge density and current density
again. The BdG-KS and Maxwell equations are solved simul-
taneously by continuing the above process until they become
self-consistent [32,33,37–39]. Thus, it is possible not only to
obtain the charge, current density, and OPSS distributions in
superconductors but also to determine the scalar and vector
potentials. In this way, the Meissner effect can be described
by the sc-CDFT [32,33,37–39].

To solve the BdG-KS equation of the sc-CDFT, we have
proposed an approximation method [37,38] in which the so-
lutions of the BdG-KS equation are supposed to have the
same spatial dependence as the single-particle wave functions
of the normal state [45]. By using this approximation, the
problem of solving the BdG-KS equation is reduced to the
problem of finding the eigenvalues and eigenvectors of a
2 × 2 matrix [37,38]. Furthermore, the approximate form of
the exchange-correlation energy functional of the sc-CDFT
was developed by applying a mean field approximation to the
attractive interaction component of the exchange-correlation
energy functional [37–39]. Using the approximate form, the
problem of finding the eigenvalues and eigenvectors of a
2 × 2 matrix is further reduced to solving the gap equation
for superconductors immersed in a magnetic field [38,39].
Thus, the problem of solving the BdG-KS and Maxwell
equations simultaneously is reduced to solving the gap equa-
tion of the sc-CDFT and Maxwell’s equations simultaneously
[38,39].

Furthermore, to perform actual calculations using the
sc-DFT, we have introduced an assumption that the magnetic-
field distribution obtained using the London theory [46]
corresponds to that obtained by solving the BdG-KS and
Maxwell equations simultaneously. Under this assumption,
we have developed a calculation scheme in which the su-
perconducting gap and attractive interaction are treated as
variables that are determined by solving the gap equation of
the sc-CDFT in conjunction with the energy balance equation
[39]. The energy balance equation indicates that the super-
conducting gap in a magnetic field corresponds to the energy
gain of superconducting-state electrons against normal-state
electrons and is equal to the energy gain at zero magnetic
field minus the potential energy of diamagnetic magnetization
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[38,39]. It is found that the attractive interaction decreases
as the magnetic field increases, leading to a decrease in the
superconducting gap. Although the superconducting gap ex-
hibits a first-order transition with respect to magnetic field
and temperature [47,48], a previous scheme [39] could not de-
scribe the first-order phase transition experimentally observed
in aluminum immersed in a magnetic field [47,48]. The reason
for this discrepancy is that the attractive interaction obtained
by solving the gap equation of the sc-CDFT in conjunction
with the energy balance equation may be unrealistic [39].

In this paper, to describe the first-order transition ob-
served in aluminum [47,48], we propose a model for the
magnetic-field dependence of the attractive interaction and
develop a calculation scheme, considering the magnetic field
dependence. The present calculation scheme, which includes
a mechanism for the reduction in the attractive interaction,
can successfully describe the first-order transition observed in
aluminum immersed in a magnetic field.

The remainder of this paper is organized as follows. In
Sec. II A, an outline of the sc-CDFT is presented. In Sec. II B,

we describe the magnetic field dependence of the attractive
interaction in the model. The calculation scheme is presented
in Sec. II C. In Sec. III, we present the calculation results and
discuss how the first-order phase transition can be described
using the present scheme. Finally, the conclusions are pre-
sented in Sec. IV.

II. CALCULATION SCHEME

A. sc-CDFT and its application to aluminum immersed in a
magnetic field

In the sc-CDFT, the electron density, transverse component
of the paramagnetic current density, spin current density, and
OPSS and its complex conjugate are chosen as the basic
variables [38,39]. The basic variables for the equilibrium state
are calculated using the solution of the BdG-KS equation.
The BdG-KS equation of the sc-CDFT is described as follows
[38,39]:

(
hr

s − μ
)
uk (rζ ) +

∫
{Ds(rζ , r′ζ ′) − Ds(r′ζ ′, rζ )}v∗

k (r′ζ ′)dr′dζ ′ = Ekuk (rζ )

−(
hr

s − μ
)
vk (rζ ) +

∫
{Ds(rζ , r′ζ ′) − Ds(r′ζ ′, rζ )}u∗

k (r′ζ ′)dr′dζ ′ = Ekvk (rζ ), (1)

where hr
s denotes the single-particle Hamiltonian described as

follows:

hr
s = {p + eAs(r)}2

2m
+ vs(r) + g

μB

h̄
ŝζ

op · ∇ × As(r). (2)

In Eqs. (1) and (2), vs(r), As(r), Ds(rζ , r′ζ ′), and D∗
s (rζ , r′ζ ′)

are the effective potentials that are determined so that the
solutions of the BdG-KS equation, uk(rζ ) and vk(rζ ), repro-
duce basic variables for the equilibrium state [38,39]. Specific
expressions for effective potentials include the exchange-
correlation energy functional of the sc-CDFT [38,39]. This
functional contains both the exchange-correlation effect
of the electron-electron Coulomb interaction and attrac-
tive interaction between superconducting electrons. For the
exchange-correlation energy functional, we have developed
an approximate form using a mean field approximation
[38,39].

In this paper, the sc-CDFT is applied to an aluminum plate
immersed in a magnetic field parallel to the z axis and is
denoted as (0, 0, B). Figure 1(a) shows a schematic of the
system. The thickness of the aluminum plate is Lx and expands
in the y and z directions. The dimensions of the system in the
y and z directions are denoted as Ly and Lz, respectively. A
periodic boundary condition is imposed on the single-particle
wave functions of the normal state with periods of Ly and Lz

in the y and z directions, respectively. For simplicity, a homo-
geneous electron gas with rs = 2.07 is considered, where a
value of 2.07 for rs corresponds to the density of conduction
electrons in aluminum [49].

Similar to previous works [38,39], we adopt the approx-
imation method proposed by de Gennes [45] to solve the

BdG-KS equation. Namely, uk(rζ ) and vk(rζ ) are described
by the multiplication of the single-particle wave functions of
the normal state, wkσ (r)χσ (ζ ), and constant coefficients; thus
we obtain the following expression:

uk(rζ ) = ūkwk↓(r)χ↓(ζ ),
(3)

vk(rζ ) = v̄kwk↑(r)χ↑(ζ ),

where ūk and v̄k denote constant coefficients, and the normal
state wkσ (r)χσ (ζ ) obeys the following equation:(

hr
s − μ

)
wkσ (r)χσ (ζ ) = ξkσwkσ (r)χσ (ζ ). (4)

As in previous works [38,39], we suppose that As(r), which
should be determined by solving the BdG equation in con-
junction with Maxwell’s equations [32,33,37–39], is the same
as the profile obtained using the London theory [46]. Par-
ticularly, As(r) is supposed to be given by the following
expression:

As(r) = (0, λB̄ sinh(xλ), 0) (5)

with B̄ = B/cosh(Lx/2λ) [38,39]. Using Eq. (5) and vs(r) ≈
0, hr

s can be rewritten as follows:

hr
s = p2

2m
+ eB̄λ

m
sinh

( x

λ

)
py + e2B̄2λ2

2m
sinh2

( x

λ

)

+ eh̄B̄

2m
σ̄ cosh

( x

λ

)
, (6)

where σ̄ is equal to 1 or −1 for a spin-up or spin-down state,
respectively. Because [hr

s, py] = [hr
s, pz] = [py, pz] = 0, the

eigenfunction of hr
s is described as follows [39]:

wkσ (r)χσ (ζ ) = ϕkσ (x)ei(kyy+kzz)χσ (ζ ). (7)
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(a)

(b)

Aluminum

FIG. 1. (a) Schematic diagram of the system under considera-
tion. (b) Profiles of the surface potential wells with ky = ±kF for
several cases of B (B = 1, 20, 40, 60, 70, and 80 G). The value of λ

is fixed at 50 (nm) while calculating these profiles.

Substituting Eq. (7) into Eq. (4), we obtain the following
equation for ϕkσ (x):{

− h̄2

2m

d2

dx2
+ Vσ,ky (x) − μ

}
ϕkσ (x)

=
{
ξkσ − h̄2

2m

(
k2

y + k2
z

)}
ϕkσ (x), (8)

where

Vσ,ky (x) = eh̄B̄kyλ

m
sinh(x/λ) + eh̄B̄

2m
σ̄ cosh(x/λ)

+ e2B̄2λ2

2m
sinh2(x/λ). (9)

Figure 1(b) shows a surface potential well Vσ,ky (x) formed
by an effective vector potential As(r). The leading term of
Eq. (9) is the first one that depends on ky, B, and λ [39].
Equation (9) indicates that electrons with positive ky tend to
accumulate on the left-hand side of the plate and vice versa for
electrons with negative ky [see Fig. 1(b)], which would cause
the Meissner effect [39]. It can also be observed in Fig. 1(b)
and Eq. (9) that the depth of the surface potential well in-
creases with increasing B. In other words, the electron density
near the surface increases with increasing B. This implies that
the attractive interaction is reduced near the surface owing to
the screening effect. In the next subsection, we discuss the
magnetic-field dependence of the attractive interaction caused
by the surface potential well.

As mentioned in Sec. I, if the approximation method pro-
posed by de Gennes [45] is adopted, the BdG equation can be
solved by solving the gap equation of the sc-CDFT. The gap
equation is as follows [37–39]:

1 = V0(B)DB(εF )

×
∫ h̄ωD

0

tanh
{

β

2

(√
ξ 2 + |�0(B, T )|2 − �ε(B)

2

)}
√

ξ 2 + |�0(B, T )|2
dξ,

(10)

where, �0(B, T ), V0(B), DB(εF ), �ε(B), and ωD denote the
superconducting gap, attractive interaction between supercon-
ducting electrons, density of states for normal states at the
Fermi energy, average energy splitting between the up and
down spin states, and Debye frequency, respectively.

We have developed a practical scheme in which the gap
equation is solved in conjunction with the energy balance
equation [38,39]. The energy balance equation is as follows:

2n(2)
max(B, T )�0(B, T ) = 2n(2)

max(0, T )�0(0, T )

− B2

2μ0

{
1 − 2λ

Lx
tanh

( Lx

2λ

)}
, (11)

where 2n(2)
max(B, T ) and  denote the total number of super-

conducting electrons and volume of the system ( = LxLyLz),
respectively. The value of 2n(2)

max(B, T ) can be calculated from
the OPSS and is given as follows [37–39]:

2n(2)
max(B, T ) ≈ DB(εF )

4

∫ h̄ωD

0

|�0(B, T )|2
ξ 2 + |�0(B, T )|2 tanh2

{
β

2

(√
ξ 2 + |�0(B, T )|2 − �ε(B)

2

)}
dξ . (12)

Equation (11) describes the relationship between the energy
gains of the superconducting state in the zero and nonzero
magnetic field cases [38,39]. Equations (10) and (11) are
utilized in the actual calculations, the specific procedure of
which is explained in Sec. II C.

B. Model for the attractive interaction in a magnetic field

In this subsection, we describe a model for the magnetic-
field dependence of attractive interaction V0(B). Assuming
that the attractive interaction is approximately independent
of the wave number because of the strong screening effect,
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FIG. 2. Schematic diagram of the model for the magnetic-field
dependence of the attractive interaction.

the magnitude of the attractive interaction at zero magnetic
field, V0(0), is inversely proportional to the fourth power
of the screening wave number α and volume . Because
the screening wave number α is given as the ratio of the
plasma frequency and Fermi velocity [50], V0(0) depends
on the density of the conduction electrons. Suppose that in
the absence of a magnetic field the conduction electrons are
uniformly distributed with the density of ncond. In this case,
V0(0) is inversely proportional to n3/2

cond and the volume . If
the proportionality constant is denoted by U , then V0(0) can
be rewritten as follows:

V0(0) = U

 n3/2
cond

, (13)

where U is assumed to be independent of B.
In the case of B �= 0, bound states are formed near the

surface because of the surface potential well. The number
of bound states is denoted by 2Nbound(B) on both sides of
the surface. A simple model is introduced to describe the
magnetic-field dependence of the attractive interaction. Fig-
ure 2 shows the schematic of the model. The width of the
surface potential well is approximately assumed to be λ. In

addition, bound electrons are assumed to be uniformly dis-
tributed in the surface potential well. If electrons other than
bound ones are distributed uniformly in the system, the total
number of electrons in the surface potential well is given
by 2Nbound(B)(1 − 2λ

Lx
) + 2λLyLzncond. Therefore, the approx-

imate electron density in the surface potential well is given by
the following equation:

nwell(B) =
{

ncond − 2Nbound(B)

LxLyLz

}
+ Nbound(B)

λLyLz
. (14)

The density nwell(B) contributes to the screening of the at-
tractive interaction in the region of the surface potential well.
Using Eq. (13), the attractive interaction for superconducting
electrons in the surface potential well region V0(B)well is ex-
pressed as follows:

V0(B)well = U
nwell(B)−2/3

λLyLz
= V0(0)

Lx

λ

{
ncond

nwell(B)

}2/3

. (15)

On the other hand, the number of electrons spread over the
entire region is given by ncondLxLyLz−2Nbound(B). Therefore,
the electron density in the bulk region is described as follows:

nbulk (B) = ncond − 2Nbound(B)

LxLyLz
. (16)

Thus, the attractive interaction for superconducting electrons
in the bulk region is described as follows:

V0(B)bulk=U
nbulk (B)−2/3

(Lx − 2λ)LyLz
= V0(0)

Lx

Lx − 2λ

{
ncond

nbulk (B)

}2/3

,

(17)
where Eq. (13) is used.

As mentioned earlier, the attraction interaction is differ-
ent between the superconducting electrons near the surface
and those in the bulk region. This is because the surface
potential wells produce different electron densities near the
surface and in the bulk, which in turn produces different
screening effects. If the number of superconducting electrons
in the surface potential well region is denoted by Ns(B, T )
on each side, the attractive interaction for 2Ns(B, T ) super-
conducting electrons is described by Eq. (15), whereas for
2n(2)

max(B, T ) − 2Ns(B, T ) superconducting electrons, the at-
tractive interaction is described by Eq. (17). Because the
attractive interaction depends on the position, the following
average attractive interaction is introduced as a model for the
magnetic-field dependence of the attractive interaction:

V0(B) = V0(B)well
2Ns(B, T )

2n(2)
max(B, T )

+ V0(B)bulk

(
2n(2)

max(B, T ) − 2Ns(B, T )

2n(2)
max(B, T )

)

= V0(0)

[{
ncond

nwell(B)

}2/3 Lx

λ

Ns(B, T )

n(2)
max(B, T )

+
{

ncond

nbulk (B)

}2/3 Lx

Lx − 2λ

{
1 − Ns(B, T )

n(2)
max(B, T )

}]
. (18)

This model is used in solving the gap Eq. (10).
To solve the gap Eq. (10) using the attractive interaction

of Eq. (18), we require the value of Ns(B, T ). Assuming that
superconducting electrons near the surface are distributed uni-
formly in the width of λ, the density of the superconducting

electrons ns(B, T ) is described as follows:

ns(B, T ) = Ns(B, T )

λLyLz
. (19)
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FIG. 3. Schematic of the calculation procedure.

If λ is given as the London penetration depth, then we have
the following expression:

Ns(B, T ) = mLyLz

μ0e2λ
. (20)

In actual calculations, we used Eq. (20) to obtain the value of
Ns(B, T ). The calculation procedure is discussed in the next
subsection.

C. Calculation procedure

The calculation procedure is illustrated in Fig. 3. First, we
set the values of B, T , and λ [steps (i) and (ii)]. In step (iii),
Ns(B, T ) is calculated using Eq. (20). Then, in step (iv), we
provide a trial value of 2n(2)

max(B, T ) that appears in Eq. (18).
In step (v), we solve Eq. (8) to obtain DB(εF ), �ε(B), and
Nbound(B). To solve Eq. (8), we use the perturbation theory,
where Vσ,ky (x) is treated as a perturbation potential. Specif-
ically, the eigenvalues in Eq. (8) are calculated using the
second-order perturbation theory. Then, in step (vi), nwell(B)
and nbulk (B) are calculated using Eqs. (14) and (16), respec-
tively. In step (vii), V0(B) is calculated using Eq. (18). In
steps (viii) and (ix), we obtain �0(B, T ) and 2n(2)

max(B, T ) by
solving the gap Eq. (10). In step (x), we check whether the
2n(2)

max(B, T ) obtained is consistent with the trial value pro-
vided in step (iv). Steps (iv)–(x) are repeated until consistency
between the trial and the obtained values of 2n(2)

max(B, T ) is
achieved. After obtaining a consistent value for 2n(2)

max(B, T ),
we check whether Eq. (11) is satisfied by using the values
of 2n(2)

max(B, T ) and �0(B, T ). Steps (ii)–(xi) are repeated until

FIG. 4. Magnetic-field and temperature dependencies of the su-
perconducting gap.

Eq. (11) is satisfied. Thus, we obtain the values of λ, Ns(B, T ),
and �0(B, T ) for B and T , respectively.

The input parameters of the present calculations are rs

and V0(0) for aluminum. Since rs and V0(0) correspond to
the density of conduction electrons and magnitude of the
attractive interaction at zero magnetic field, respectively, they
can be given appropriately from Refs. [38,49]. Specific values
are 2.14 for rs and 0.166 for V0(0)Ñ (0), where Ñ (0) denotes
the density of states at the Fermi energy in the case of zero
magnetic field that can be calculated from rs [38,49]. It should
be noted that these parameters are independent of the mag-
netic field.

III. RESULTS AND DISCUSSION

Figure 4 shows the magnetic-field and temperature de-
pendencies of the superconducting gap. The superconducting
gap decreases abruptly from a finite value to zero as T or B
approaches the transition temperature or the critical magnetic
field. This is due to the fact that there is no solution that simul-
taneously satisfies Eqs. (10), (11), and (20) over the transition
temperature or the critical magnetic field. This indicates that
no superconducting state exists over the transition temperature
or the critical magnetic field. Thus, the reproduction of the
first-order phase transition observed experimentally [47,48]
is reproduced using the present scheme. Figure 5 shows the
magnetic-field dependence of the superconducting gap with
the experimental results [48]. The calculated results well cap-
ture the characteristics of the experimental results.

A key point in describing the first-order phase transition is
that the magnetic-field dependence of the attractive interaction
is considered. If the mechanism of how the attractive inter-
action changes with a magnetic field is not considered, then
the superconducting gap decreases smoothly and approaches
zero with increasing T or B [39]. On the other hand, because
the magnetic-field dependence of the attractive interaction
is considered, the first-order phase transition is successfully
reproduced, as shown in Figs. 4 and 5.
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FIG. 5. Magnetic-field dependence of the superconducting gap
with experimental results [49].

Next, let us discuss the magnetic-field dependence of
V0(B). Figure 6 shows the magnetic-field dependence of
V0(B). It is found from Fig. 6 that V0(B) gradually decreases
with increasing B, which causes the decrease in �0(B, T ), as
shown in Figs. 4 and 5. Because �0(B, T ), Ns(B, T ), and λ

do not satisfy Eqs. (10), (11), and (20) simultaneously, as
mentioned earlier, there are no calculated results for the attrac-
tive interaction in the high magnetic fields above the critical
magnetic field. This is discussed later in this paper. Figure 7
shows the magnetic-field dependence of Ns(B, T )/n(2)

max(B, T ).
This ratio represents the fraction of superconducting elec-
trons near the surface to the total superconducting electrons.
In other words, the ratio Ns(B, T )/n(2)

max(B, T ) indicates the
fraction of superconducting electrons that are subjected to
the attractive interaction weakened by the screening effect
[V0(B)well]. The ratio Ns(B, T )/n(2)

max(B, T ) increases with B,

FIG. 6. Magnetic-field dependence of the attractive interaction
V0(B).

FIG. 7. Magnetic-field dependence of Ns(B, T )/n(2)
max(B, T ). The

ratio Ns(B, T )/n(2)
max(B, T ) indicates the fraction of superconducting

electrons that are subjected to the attractive interaction weakened by
the screening effect.

as shown in Fig. 7. This indicates that although the total num-
ber of superconducting electrons 2n(2)

max(B, T ) in the sample
decreases with B, as shown in Fig. 8, the superconducting
electrons tend to gather near the surface. Owing to the increase
in Ns(B, T )/n(2)

max(B, T ), V0(B) decreases with B, as shown in
Fig. 6. It should be noted that the ratio Ns(B, T )/n(2)

max(B, T )
also represents the fraction of superconducting electrons that
contribute to the antimagnetic current of the Meissner effect.
It is found from Fig. 7 that the fraction of superconducting
electrons contributing to the diamagnetic current increases
with B.

FIG. 8. Magnetic-field dependence of the total number of super-
conducting electrons 2n(2)

max(B, T ).
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FIG. 9. Magnetic-field dependencies of λ and Ns(B, T ).

Figure 9 shows the magnetic-field dependence of λ and
Ns(B, T ). In the low- and medium-magnetic-field regions, λ

decreases with increasing B. Because Ns(B, T ) is inversely
proportional to λ, as shown in Eq. (20), Ns(B, T ) increases
with B. Therefore, the fraction of superconducting electrons
that are subjected to the attractive interaction weakened by
the screening effect increases with B, as shown in Fig. 7.
Thus, the decrease in λ is consistent with the increase in
Ns(B, T )/n(2)

max(B, T ) and decrease in V0(B). Conversely, an
increase in λ leads to a decrease in Ns(B, T ), which may cause
an increase in V0(B) because the number of superconducting
electrons subjected to weak attractive interactions decreases.
However, although λ increases with increasing B in the high
magnetic-field region at low temperatures, as shown in Fig. 9,
V0(B) decrease with increasing B, as shown in Fig. 6. This
phenomenon can be explained as follows. The depth and
width of the surface potential well increases with λ, leading
to an increase in the electron density near the surface. Owing
to the larger screening effect, V0(B) eventually decreases with
B, as shown in Fig. 6. Thus, an increase in λ has opposing
effects on V0(B).

If B would further increase above the critical magnetic
field, λ would increase. As λ increases, the number of super-
conducting electrons subjected to weak attractive interactions
decreases, that is, Ns(B, T ) decreases. This, in turn, prevents
the reduction of the attractive interaction. Therefore, even
if λ increases, which reduces the attractive interaction, the
above-mentioned opposing effects do not cause a reduction
in V0(B) at a high magnetic field above the critical magnetic

field. Thus, V0(B) could not be reduced at a high magnetic
field above the critical magnetic field; therefore, the solution
of the simultaneous equations cannot be determined, that is,
the superconducting state does not exist. Consequently, the
superconducting gap disappears abruptly at the critical mag-
netic field, as shown in Figs. 4 and 5.

At the end of this section, we briefly comment on the phys-
ical accuracy of the calculations performed and the sensitivity
of the present method to the parameters. As mentioned above,
comparing the present results (Figs. 4 and 5) with the corre-
sponding results of the previous work [39], it is found that the
magnetic-field dependence of the attractive interaction, i.e.,
the magnetic-field dependence of the screening effect of the
attractive interaction, is a key point for describing the first-
order phase transition. More precisely, the number of bound
states [Nbound(B)] that are formed in the surface potential well
contributes sensitively to the first-order phase transition. The
input parameters used in the present calculations are rs and
V0(0) for aluminum. As mentioned in Sec. II C, these parame-
ters do not depend on the magnetic field, and are not adjusted
to reach an agreement with experiments. The fact that the
present calculations agree well with the experiments without
the use of adjustable parameters (Fig. 5) suggests the physical
accuracy and validity of performed calculations.

IV. CONCLUSION

We have developed a model for the magnetic-field depen-
dence of the attractive interaction between superconducting
electrons. The proposed model states that the surface potential
well produced by a penetrating magnetic field causes a high
electronic density region, which causes the magnetic-field de-
pendence of the attractive interaction. The depth of the surface
potential well increases with increasing magnetic field; thus,
the attractive interaction decreases owing to the screening
effect caused by the increase in the electronic density. We
have also developed a calculation scheme to solve the gap
equation of the sc-CDFT with considering the proposed model
for the magnetic-field dependence of the attractive interaction.
Specifically, the gap equation of the sc-CDFT is solved in
combination with the energy balance and London penetration
depth equations. It is shown that the simultaneous solution of
these three equations does not exist at high magnetic fields
above the critical magnetic field because of the magnetic field
dependence of the attractive interaction. Thus, the first-order
phase transition observed in aluminum could be reproduced
using the sc-CDFT with the proposed model for the magnetic-
field dependence of the attractive interaction.
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91, 165142 (2015).

[18] F. Essenberger, A. Sanna, P. Buczek, A. Ernst, L. Sandratskii,
and E. K. U. Gross, Phys. Rev. B 94, 014503 (2016).

[19] J. A. Flores-Livas, A. Sanna, and E. K. U. Gross, Eur. Phys. J.
B 89, 63 (2016).

[20] M. Monni, F. Bernardini, A. Sanna, G. Profeta, and S.
Massidda, Phys. Rev. B 95, 064516 (2017).

[21] J. A. Flores-Livas, A. Sanna, A. P. Drozdov, L. Boeri, G.
Profeta, M. Eremets, and S. Goedecker, Phys. Rev. Mater. 1,
024802 (2017).

[22] K. Higuchi, E. Miki, and M. Higuchi, J. Phys. Soc. Jpn. 86,
064704 (2017).

[23] A. Sanna, A. Davydov, J. K. Dewhurst, S. Sharma, and J. A.
Flores-Livas, Eur. Phys. J. B 91, 177 (2018).

[24] M. Lüders, P. Cudazzo, G. Profeta, A. Continenza, S. Massidda,
A. Sanna, and E. K. U. Gross, J. Phys.: Condens. Matter 31,
334001 (2019).

[25] G. Marini, P. Barone, A. Sanna, C. Tresca, L. Benfatto, and G.
Profeta, Phys. Rev. Mater. 3, 114803 (2019).

[26] C. Pellegrini, H. Glawe, and A. Sanna, Phys. Rev. Mater. 3,
064804 (2019).

[27] K. Higuchi and M. Higuchi, JPS Conf. 30, 011066 (2020).
[28] M. Kawamura, Y. Hizume, and T. Ozaki, Phys. Rev. B 101,

134511 (2020).
[29] T. Nomoto, M. Kawamura, T. Koretsune, R. Arita, T. Machida,

T. Hanaguri, M. Kriener, Y. Taguchi, and Y. Tokura, Phys. Rev.
B 101, 014505 (2020).

[30] A. Davydov, A. Sanna, C. Pellegrini, J. K. Dewhurst, S.
Sharma, and E. K. U. Gross, Phys. Rev. B 102, 214508 (2020).

[31] K. Higuchi and M. Higuchi, J. Phys. Commun. 5, 095003
(2021).

[32] W. Kohn, E. K. U. Gross, and L. N. Oliveira, J. Phys. (Paris) 50,
2601 (1989).

[33] K. Higuchi, K. Koide, T. Imanishi, and M. Higuchi, Int. J.
Quantum Chem. 113, 709 (2013).

[34] A. Linscheid, A. Sanna, A. Floris, and E. K. U. Gross, Phys.
Rev. Lett. 115, 097002 (2015).

[35] A. Linscheid, A. Sanna, F. Essenberger, and E. K. U. Gross,
Phys. Rev. B 92, 024505 (2015).

[36] A. Linscheid, A. Sanna, and E. K. U. Gross, Phys. Rev. B 92,
024506 (2015).

[37] K. Higuchi, H. Niwa, and M. Higuchi, J. Phys. Soc. Jpn. 86,
104705 (2017).

[38] K. Higuchi, N. Matsumoto, Y. Kamijo, and M. Higuchi, Phys.
Rev. B 102, 014515 (2020).

[39] K. Higuchi, N. Matsumoto, Y. Kamijo, and M. Higuchi,
J. Phys.: Condens. Matter 33, 435602 (2021).

[40] M. Higuchi and K. Higuchi, Phys. Rev. B 69, 035113 (2004).
[41] K. Higuchi and M. Higuchi, Phys. Rev. A 79, 022113 (2009).
[42] M. Higuchi and K. Higuchi, Phys. Rev. A 81, 042505 (2010).
[43] K. Higuchi and M. Higuchi, Phys. Rev. B 82, 155135 (2010).
[44] M. Higuchi and K. Higuchi, Comput. Theor. Chem. 1003, 91

(2013).
[45] P. G. De Gennes, Superconductivity of Metals and Alloys (Ben-

jamin, New York, 1966).
[46] F. London and H. London, Proc. R. Soc. A 149, 71 (1935).
[47] D. H. Douglass Jr, Phys. Rev. Lett. 7, 14 (1961).
[48] R. Meservey and D. H. Douglass Jr, Phys. Rev. 135, A24

(1964).
[49] M. P. Marder, Condensed Matter Physics (Wiley, New York,

2000), Chap. 6.
[50] S. Raimes, Many-Electron Theory (North-Holland, London,

1972).

184504-8

https://doi.org/10.1103/PhysRevB.72.024546
https://doi.org/10.1103/PhysRevLett.86.2984
https://doi.org/10.1103/PhysRevLett.94.037004
https://doi.org/10.1103/PhysRevLett.96.047003
https://doi.org/10.1103/PhysRevB.73.144512
https://doi.org/10.1103/PhysRevB.75.054508
https://doi.org/10.1103/PhysRevB.75.020511
https://doi.org/10.1103/PhysRevB.78.205426
https://doi.org/10.1103/PhysRevB.81.134506
https://doi.org/10.1103/PhysRevB.79.104503
https://doi.org/10.1103/PhysRevB.81.115446
https://doi.org/10.1103/PhysRevB.86.054513
https://doi.org/10.1103/PhysRevB.88.014514
https://doi.org/10.1103/PhysRevB.90.214504
https://doi.org/10.1103/PhysRevB.91.165142
https://doi.org/10.1103/PhysRevB.94.014503
https://doi.org/10.1140/epjb/e2016-70020-0
https://doi.org/10.1103/PhysRevB.95.064516
https://doi.org/10.1103/PhysRevMaterials.1.024802
https://doi.org/10.7566/JPSJ.86.064704
https://doi.org/10.1140/epjb/e2018-90168-7
https://doi.org/10.1088/1361-648X/ab20b0
https://doi.org/10.1103/PhysRevMaterials.3.114803
https://doi.org/10.1103/PhysRevMaterials.3.064804
https://doi.org/10.7566/JPSCP.30.011006
https://doi.org/10.1103/PhysRevB.101.134511
https://doi.org/10.1103/PhysRevB.101.014505
https://doi.org/10.1103/PhysRevB.102.214508
https://doi.org/10.1088/2399-6528/ac1e40
https://doi.org/10.1051/jphys:0198900500180260100
https://doi.org/10.1002/qua.24054
https://doi.org/10.1103/PhysRevLett.115.097002
https://doi.org/10.1103/PhysRevB.92.024505
https://doi.org/10.1103/PhysRevB.92.024506
https://doi.org/10.7566/JPSJ.86.104705
https://doi.org/10.1103/PhysRevB.102.014515
https://doi.org/10.1088/1361-648X/ac1967
https://doi.org/10.1103/PhysRevB.69.035113
https://doi.org/10.1103/PhysRevA.79.022113
https://doi.org/10.1103/PhysRevA.81.042505
https://doi.org/10.1103/PhysRevB.82.155135
https://doi.org/10.1016/j.comptc.2012.09.015
https://doi.org/10.1098/rspa.1935.0048
https://doi.org/10.1103/PhysRevLett.7.14
https://doi.org/10.1103/PhysRev.135.A24

