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Green’s function method for the two-dimensional frustrated spin- 1
2 Heisenberg magnetic lattice
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The magnon Hedin’s equations are derived via the Schwinger functional derivative technique, and the resulting
self-consistent Green’s function (GF) method is used to calculate ground state spin patterns and magnetic
structure factors for two-dimensional magnetic systems with frustrated spin- 1

2 Heisenberg exchange coupling.
Compared with random phase approximation treatments, the inclusion of a self-energy correction improves
the accuracy in the case of scalar product interactions, as shown by comparisons between our method and exact
benchmarks in homogeneous and inhomogeneous finite systems. We also find that, for cross-product interactions
(e.g., antisymmetric exchange), the method does not perform equally well, and an inclusion of higher corrections
is in order. Aside from indications for future work, our results clearly indicate that the GF method in the form
proposed here already shows potential advantages in the description of systems with a large number of atoms as
well as long-range interactions.
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I. INTRODUCTION

Due to the steady improvement of material fabrication
procedures and high-resolution spin-resolved experimental
techniques, in the past few decades, the list of magnetic
phenomena and materials with complex magnetic order has
grown at fast pace. Notable entries are, for example, mag-
netoresistance materials [1,2], helical magnets [3–6], and
spin liquid systems [7,8], where interest from fundamental
research in magnetic behavior merges with aims of techno-
logical exploitation in electronic devices.

An often distinctive trait of these systems is the occurrence
of competing magnetic phases, which can change into each
other upon a slight change of experimental conditions and
sometimes even exhibit re-entrant behavior. This is, for ex-
ample, what happens in TlCuCl3 [9], where magnetic order
can be tuned by applied pressure, or in the cubic chiral mag-
net MnSi1−xGex [10], in which the spin texture is changed
between skyrmion lattice and hedgehog lattice on Ge/Si
substitution.

A key element in determining the variety of complex mag-
netic behaviors is magnetic frustration, which originates from
different and competing magnetic couplings (e.g., spinel cubic
materials, like CoAl2O4 [11,12] and LiYbO2 [13]) or from
specific spin lattice geometries, in which a given coupling can-
not favor one among antagonistic magnetic configurations in
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a loop around a lattice plaquette [14] (as, e.g., for pyrochlore-
lattice compounds [15]).

The notion of spin frustration is of quite general occur-
rence in magnetism [7,16–19]: indeed, it is highly relevant
also for classical degrees of freedom (as, e.g., in Ising and
Potts models) when, in the large-S limit, a classical treatment
becomes appropriate. However, a quantum description is al-
ways in order for systems with spins S < 1, where strong
quantum fluctuations are present. In this case, a customary
way to describe frustration is via the quantum Heisenberg
model (QHM), in which spins S localized at the nodes
of a graph interact via (possibly long ranged) exchange
interactions.

The QHM is a popular and flexible conceptual template
that can include, among others, three-spin couplings [20],
multipolar interactions [21], chiral spin-interactions [22], and
quadratic anisotropy terms [23,24]. Importantly, the QHM is
not only useful for its high pedagogical value: with a suit-
able choice of the model parameters (extracted, for example,
by first-principles calculations [25–27]), it is often possible
to obtain an accurate description of phase diagrams of real
materials [24].

The QHM is also a paradigmatic test ground for theoret-
ical methods, and extensive literature exists on the subject
(see, e.g., Ref. [28]). However, despite a vast theoretical
effort spanning almost a century, exact solutions are analyt-
ically known only in some specific cases: one-dimensional
(1D) chains with only nearest-neighbor (NN) interactions
[29], where the Bethe ansatz can be used; a square lattice
with antiferromagnetic (AFM) NN interaction and diagonal
dimerlike bond (the Shastry-Sutherland model) [30]; spin- 1

2
systems on honeycomb lattices which can be reduced to free
fermions within topological gauge theory (the Kitaev model)
[31]. For more complicated flavors of the QHM, approxima-
tions become necessary (as, for example, in mean-field level
approaches like spin-wave and bosonic methods [32]).
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Exact solutions to the QHM can also be obtained numer-
ically, for example, via exact diagonalization (ED) [33,34]
(applicable for any dimensionality but limited to very small
samples), via quantum Monte Carlo (QMC) methods (based
on stochastic algorithms) [28,35–38], and the density matrix
renormalization group (DMRG) [39,40] (originally devised
for 1D systems [39] but recently employed also for higher di-
mensions [41–44]). Fairly large samples can be treated within
QMC and DMRG, which are useful to perform benchmark
tests.

Both QMC and DMRG play a central role in our un-
derstanding of large but finite-sized clusters and periodic
bulk systems with finite/short-range interactions; however,
the case of long-range coupling, e.g., dipole interactions, is
difficult to address with these approaches since the range of
the interaction can be significantly longer than the size of
cluster units computationally viable.

A way to overcome this issue is provided by the Green’s
function (GF) technique. Tyablikov [45] and Kondo and Ya-
maji [46] developed different decoupling methods within the
random phase approximation (RPA) to solve the hierarchy
problem in the equation of motion of GF. Similar decoupling
methods have been used to study 1D and two-dimensional
(2D) S = 1

2 ferromagnets [47,48].
The GF technique can be applied with relatively low com-

putational load to first-principles treatments of systems with
effective spin-dependent interactions [49]. In addition, the
Schwinger functional derivative technique for GF, which goes
beyond the RPA decoupling, has been used to calculate the
spin-wave spectra [50]. Furthermore, applications of the GF
technique are not restricted to cluster models [51], which
makes this technique a good candidate in the study of strongly
coherent behavior and the magnetic structure factor of real
materials and to address the case of long-range coupling.

II. PLAN OF THIS PAPER

Motivated by these considerations, in this paper, we intro-
duce an approach to solve a finite S = 1

2 2D frustrated J1 − J2

QHM within the GF scheme. Our formulation is general
and in principle exact, but as usual, an approximate scheme
for vertex corrections beyond the RPA needs to be intro-
duced. Since the magnetic structure factor is closely related to
response functions, it is natural to adopt the Schwinger func-
tional derivative technique when deriving the equations for the
many-body correlation vertex, which then opens the way to
systematically include corrections beyond the RPA.

The main outcomes of this paper are (i) derivation of the
magnon Hedin’s equations for the QHM, which are solved
self-consistently within a scheme beyond the RPA; (ii) in-
clusion of impurities; (iii) calculations of the spin-correlation
functions and the magnetic structure factor for a cluster
system using the developed GF method; and (iv) compar-
isons against exact numerical benchmarks, which show that
our approach provides fairly good accuracy with relatively
low computational cost. Most importantly, and more in gen-
eral, our results suggest that our method offers a practical,
computationally advantageous route to investigate long-range
interactions in the QHM.

The plan of the paper is as follows: in Sec. III, we introduce
the system and the corresponding Hamiltonian and derive
the magnon Hedin’s equations via the Schwinger functional
derivative technique in Sec. III A. In Sec. III B, we solve
the equations in momentum space self-consistently for 2D
lattices. Results and their discussion are presented in Sec. IV.
Finally, in Sec. V, we provide some conclusive remarks and
an outlook.

III. THEORY

The Schwinger functional derivative technique is used here
to relate the high-order GF to the response of the lower-order
one with respect to a probing field. The vertex equation of
GF is derived and is solved self-consistently. The procedure
presented here provides a formal justification of Tyablikov’s
[45] decoupling while at the same time producing improved
results. We consider the isotropic QHM Hamiltonian:

H = −J1

∑
<i j>

Ŝi · Ŝ j − J2

∑
�i j�

Ŝi · Ŝ j −
∑

i

Bi · Ŝi, (1)

where Ŝi is the (vector) spin operator associated with a 3-
component spin at site i, Bi is the external magnetic field at
site i, and < i j > (� i j �) denote, respectively, NN and next
NN (NNN) sites, with coupling constants J1 (J2).

The double-time GF is defined as

iGαδ
mn(t1, t2) ≡ 〈

T
[
Ŝα

m(t1)Ŝδ
n(t2)

]〉
, (2)

where T is the usual time-ordering operator and 〈 〉 denotes
a ground state average at zero temperature. The Greek letter
superscripts refer to the spin components x, y, z, while mn are
site indexes, and for the time variables, we henceforth use
a simplified notation ti → i. With the spin ladder operators
defined as Ŝ± = Ŝx ± iŜy, the number of spin components can
also be enlarged, i.e., α, δ ∈ {x, y, z} or, equivalently, α, δ ∈
{+,−, z}. When t1 − t2 is an infinitesimal positive difference,
GF provides the ground state correlation function, i.e.,

iGαδ
mn(1+, 1) = 〈

Ŝα
mŜδ

n

〉
. (3)

The property of the propagator from one space-time point to
another is fully expressed with the components representing
spin combinations {xx, xy, xz, · · · , zz}, which can be written
in matrix form or, equivalently, with the independent compo-
nents {+−, zz}. For example, the equation of motion (eom)
for G+−

mn is

i∂t1 G+−
mn (1, 2)

= −2i
∑
ĩ 	=m

Jmĩ

[
G(3)z+−

mĩn
(1, 1, 2) − G(3)z+−

ĩmn
(1, 1, 2)

]

+ Bz
m(1)G+−

mn (1, 2) + 2δ(1 − 2)δmn〈Ŝz
m(1)〉, (4)

where

G(3)αβδ

mĩn
(1, 1, 2) ≡ 〈

T
[
Ŝα

m(1)Ŝβ

ĩ
(1)Ŝδ

n(2)
]〉

(5)

is a higher-order GF composed of three field operators, and ĩ
labels the sites with nonzero exchange coupling to site m. For
our system, Jmĩ = J1 (J2) when ĩ is the NN (NNN) site of m.
Additional details can be found in the Supplemental Material
(SM) [52].
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Tyablikov’s [45] method approximates the higher-order GF
with

G(3)αβδ

mĩn
(1, 1, 2) 
 〈Ŝα

m〉〈T [
Ŝβ

ĩ
(1)Ŝδ

n(2)
]〉

+〈
Ŝβ

ĩ

〉〈
T

[
Ŝα

m(1)Ŝδ
n(2)

]〉
, (6)

which works well with pure ferromagnetic (FM) or AFM
systems. However, for frustrated systems, the simple factor-
ization in Eq. (6) leads to discrepancies. In the following,
the functional derivative method is used to derive the self-
consistent equation for GF, giving a rigorous justification of
Tyablikov’s [45] approximation and extending the formula-
tion to improve over it.

A. Schwinger derivative technique

In the interaction picture,

iGαδ
mn(1, 2) ≡ 〈�|T [

Û Ŝα
m(1)Ŝδ

n(2)
]|�〉

〈�|Û |�〉 , (7)

where a local probing field B is contained in the evolution
operator:

Û = T exp

[
−i

∫ ∞

−∞
d1

∑
i

B̂i(1) · Si(1)

]
. (8)

The higher-order GF can be related to the response of GF to
the component of the local probing field:

i
δGαδ

mn(1, 2)

δBβ

l (3)
= iG(3)βαδ

lmn (3, 1, 2) − Gαδ
mn(1, 2)〈Ŝβ

l (3)〉. (9)

A self-energy can now be defined, making use of the eom
and the functional derivative. Considering for concreteness the
case Gmn ≡ G+−

mn ,

∑
i

∫
d3�mi(1, 3)Gin(3, 2)

≡ 2i
∑

ĩ

Jmĩ

[
δGmn(1, 2)

δBz
ĩ
(1)

− δGĩn(1, 2)

δBz
m(1)

]
. (10)

A Hartree-like potential and an exchange-like potential can
also be defined:

V H
m (1) =

∑
ĩ

Jĩm〈Ŝz
m(1)〉, (11)

V F
mĩ(1) = Jĩm〈Ŝz

m(1)〉, (12)

leading to a Dyson eom in terms of the self-energy:

[
i∂t1 − V H

m (1) − Bz
m(1)

]
Gmn(1, 2) −

∑
ĩ 	=m

V F
mĩGĩn(1, 2) −

∑
i

∫
d3�mi(1, 3)Gin(3, 2) = 2δ(1 − 2)δmn〈Ŝz

m(1)〉. (13)

Using the identity δG
δB G−1 + G δG−1

δB = 0, the self-energy can be recast as

�mn(1, 2) = −i
∑
ĩ 	=m,l

Jmĩ

∫
d3

{
Gml (1, 3)

δG−1
ln (3, 2)

δBz
ĩ
(1)

− Gĩl (1, 3)
δG−1

ln (3, 2)

δBz
m(1)

}
. (14)

To solve for the response of G with respect to B, we take the functional derivative of Eq. (4) and neglect the second derivative
term δ2G/δB2, thus obtaining

i∂1
δGmn(1, 2)

δBz
l (3)

= Gmn(1, 2)δ(1 − 3)δml +
∑
ĩ 	=m

Jmĩ

{
δ
〈
Ŝz

ĩ
(1)

〉
δBz

l (3)
Gmn(1, 2) + 〈

Ŝz
ĩ
(1)

〉δGmn(1, 2)

δBz
l (2)

− δ
〈
Ŝz

m(1)
〉

δBz
l (3)

Gĩn(1, 2) − 〈
Ŝz

m(1)
〉δGĩn(1, 2)

δBz
l (2)

}
+ 2

δ
〈
Ŝz

m(1)
〉

δBz
l (3)

δmnδ(1 − 2). (15)

To solve for the response function Rml (1, 2) = δ〈Sz
m (1)〉

δBz
l (2) , we look at the eom for 〈Ŝz

m(1)〉:

∂1
δ〈Ŝz

m(1)〉
δBz

l (2)
= i

∑
ĩ 	=m

Jmĩ
δ

δBz
l (2)

〈Ŝ+
i (1)Ŝ−

m (1)〉 =
∑

ĩ 	=m,pq

Jmĩ

∫
d3d4Gĩp(1+, 3)

δG−1
pq (3, 4)

δBz
l (2)

Gqm(4, 1). (16)

Starting with G computed at the mean-field level, the set of Eqs. (11)–(16) can be solved self-consistently. Then using Eq. (3),
the observables as ground state expectation values and correlation functions can be computed from the equal-time GF. More
details about the derivative technique can be found in the SM [52].

B. Solving the equations in momentum space

The magnon Hedin’s equations in the last section were expressed in real space. Considering the time translational and spatial
symmetries of the system, a Fourier transform provides GF in momentum-frequency space:

Gmn(1, 2) ≡ Gmn(t1, t2)

=
∫

dω

∫
dkG(k, ω) exp[ik · (rm − rn)] exp[−iω(t1 − t2)]. (17)
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FIG. 1. Comparison between random phase approximation (RPA; left panel), exact diagonalization (ED; middle panel), and Green’s
function (GF; right panel) results for a 5 × 5 lattice with open boundary conditions. The results are for the Sz

total = 17
2 subspace, with

ferromagnetic (FM) exchange parameters: J1 = 1, J2 = −0.5. The color coding in the vertical bar applies to all panels.

The vertex function is now defined as

	p,q,l (1, 2, 3) ≡ δG−1
pq (1, 2)

δBz
l (3)

, (18)

which can be written in momentum-frequency space accordingly:

	p,q,l (1, 2, 3) ≡ 	p,q,l (t1, t2, t3)

=
∫

dkdk′dωdω′ exp[ik · (rp − rq)] exp[ik′ · (rp − rl )] exp[−iω(t1 − t2)] exp[−iω′(t1 − t3)]	(k, k′; ω,ω′).

(19)

In the (k, ω) space, our equations read

[ω − V HF − Bz]G(k, ω) = �(k, ω)G(k, ω) + 〈Sz〉, (20)

ωR(k, ω) = J (k)
∫

dk′dω′G(k + k′; ω + ω′)	(k, k′; ω,ω′)G(k′, ω′). (21)

Here, V HF = V H + V F, and V H,V F, and 〈Sz〉 are the Fourier transforms of their corresponding real space-time values.

IV. RESULTS AND DISCUSSIONS

In this section, the approach introduced in Sec. III is ap-
plied to 2D Heisenberg systems with square and hexagonal
lattices and different types of exchange coupling. To assess
the performance of the method, the GF results are compared
with numerical benchmarks from the ED method.

A. The case of a 2D square-lattice cluster

The system we consider is a 5 × 5 lattice with open bound-
ary conditions. We discuss both FM and AFM magnetic
regimes in a few selected subspaces with total spin projec-
tion Sz

total. Compared with either the FM limit (25 ↑, 0 ↓)
or the AFM one (13 ↑, 12 ↓), an intermediate value of Sz

total
shows most clearly the competition of NN and NNN exchange
couplings. Thus, it is convenient to start the discussion with
the subspace Sz

total = 17
2 (21↑, 4↓). We use the parameters

J1 = 1, J2 = −0.5. The results are shown in Fig. 1, where we
compare RPA, ED, and GF results. The color palette is used to
represent the expectation value of the z-component spin 〈Sz

m〉,
and the numbers show the z-z spin correlation between lattice
points 〈Sz

mSz
n〉.

Compared with the RPA decoupling method, the inclusion
of the self-energy in the GF method gives higher accuracy for
both 〈Sz

m〉 and 〈Sz
mSz

m̄〉, as shown by the improved locations
of the poles of GF. The reason behind the improvement is
that the direct response δG/δB, which is either treated as a
constant (possibly with value 0) in the RPA method, gives a
nonzero dynamical contribution to the self-energy. Therefore,
the approximation used in the derivation of self-consistent
equations in Sec. III A is the key step forward compared
with the bare decoupling. Including higher-order responses
δnG/δBn can in principle improve the accuracy but at the cost
of increased converging difficulties and heavier computational
burden.

Our self-energy GF shows good accuracy also for J1 =
−1, J2 = 0.5, Sz

total = 17
2 . Such parameters lead to pure AFM

interaction (i.e., no frustration) on the square lattice. In the
Sz

total = 17
2 subspace, where most of the configurations are spin

up, the ground state due to the AFM couplings is relatively ho-
mogeneous. This is detailed in Fig. 2, where −0.45 � 〈Sz

m〉 �
−0.27 and 〈Sz

mSz
n〉 > 0 for all lattice sites.

With the same couplings but for the Sz
total = 1

2 subspace,
the GF method describes well the Néel-type ground state: the
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FIG. 2. 〈Sz
m〉 (denoted by color) and 〈Sz

mSz
n〉 (denoted by numbers)

for a 5 × 5 square lattice system with open boundary conditions. The
color coding in the vertical bar applies to all cases, and results in each
panel fulfill the C4v square symmetry. Bottom panel: antiferromag-
netic (AFM), Sz

total = 17
2 . Middle panel: AFM, Sz

total = 1
2 . Top panel:

ferromagnetic (FM), Sz
total = 1

2 . The AFM coupling parameters are
J1 = −1, J2 = 0.5, and the FM ones are J1 = 1, J2 = −0.5.

distribution of 〈Sz
m〉 is bipartite; sites on the same/different

sublattices are positively/negatively correlated.
Remaining in the Sz

total = 1
2 subspace but this time with

J1 = 1, J2 = −0.5, we observe that the GF ground state
has a small total spin value: the magnitudes of 〈Sz

m〉 are
close to zero; NN sites are weakly correlated compared with
Sz

total = 1
2 , J1 = −1, J2 = 0.5. This behavior is reminiscent of

what occurs for systems with an even number of sites, where
Lieb’s theorem states that Stotal = 0 in the ground state. For the
three scenarios discussed above, the ground states are either
relatively homogeneous (the signs of the exchange couplings
and the net value of Sz

total in the given subspace are chosen so
that they impose conflicting constraints on the spin alignment)
or bipartite. This suggests that, for these cases, quantum fluc-
tuations introduced by higher-order response terms play only
a small role in the determination of GF.

Additional perspective on the method performance can be
gained from the static spin structure factor, defined as

S(q) = 1

N2

∑
mn

〈
Sz

mSz
n

〉
exp[iq · (Rm − Rn)], (22)

FIG. 3. Static structure factor S(q) (q ∈ [0, 2π ] × [0, 2π ]) of a
5 × 5 square lattice with periodic boundary conditions and J1 = 1,

J2 = −0.5. Left: Sz
total = 17

2 . Right: Sz
total = 1

2 . The high-symmetry
points in the first Brillouin zone are labeled by � ≡ (0, 0) and
M ≡ (0, π ), (π, 0).

for a 5 × 5 lattice with periodic boundary condition. Because
we are considering a square (i.e., bipartite) lattice, a Néel-like
order is not compatible with a cluster with an odd number of
atoms and periodic boundary conditions. Thus, we consider
a 5 × 5 (4 × 4) cluster for FM (AFM) NN exchange. The GF
results for S(q) for a 5 × 5 FM cluster are shown in Fig. 3. The
structure factor is strongly peaked at the � point for Sz

total = 17
2

and relatively weakly peaked at M points for Sz
total = 1

2 , which
agrees with previous results in the literature [53].

The displayed GF results are in very good agreement with
the ED ones, and the differences between the two treatments
are indistinguishable on the scale of the figure. Similar consid-
erations apply to the agreement between GF and ED methods
for a 4 × 4 cluster (not shown). We conclude this section by
noting that the GF method in the frequency domain can also
give direct access to the dynamical structure factor S(q, ω).
However, to benchmark the GF-based S(q, ω) against exact
ED results for the cluster sizes as discussed here, it may be
necessary to employ the full ED Krylov subspace recursive
techniques (beyond ground state ED). Computational devel-
opment in this direction is under way.

B. Single- and double-impurity configurations

In realistic cases, one is often faced with the problem of
having impurities in the system under investigation. Impurity
atoms can be included by introducing an additional term in the
Hamiltonian:

Himp = −
∑

i j

�Ji j Ŝi · Ŝ j . (23)

where either i or j denotes the impurity site(s). In the follow-
ing, we specialize to the cases of single and double impurities
in a 19-site hexagonal lattice and choose to work in the
subspace Sz

total = 9
2 which, as for the square lattice, nicely

illustrate the interplay of FM and AFM couplings. In the no-
impurity case, the coupling parameters are J1 = 1, J2 = −0.5;
in the presence of impurities, we have the additional coupling
strengths �Ji j,NN = 0.5J1,�Ji j,NNN = 0.5J2. The GF result
is shown in Fig. 4. It is convenient for the discussion to
organize the lattice sites in shells, where sites in a given shell
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FIG. 4. 〈Sz
m〉 (denoted by color) and 〈Sz

mSz
n〉 (denoted by num-

bers) in an open-boundary 19-site hexagonal lattice system with
and without impurity. The nonimpurity coupling parameters are
J1 = 1, J2 = −0.5. The additional impurity coupling strengths are
�JNN = 0.5J1, �JNNN = 0.5J2. Sz

total = 9
2 (14 ↑ 5 ↓). The top panel

illustrates different shells of atoms (see main text). The color coding
in the horizontal bar applies to all cases. (a) No impurity case. (b)–(f)
The circles with a black outline are impurity sites.

are equally distant from the central site, and different shells
correspond to different distances (Fig. 4).

For the nonimpurity case [Fig. 4(a)] and because of the FM
NN couplings and the C6v lattice symmetry, the central spin

assumes the spin-down ↓ configuration. With 〈Sz
m〉 < 0 and

〈Sz
mSz

n〉 > 0 at all sites, we then conclude that the nonimpurity
system is dominated by FM interactions.

Inserting one impurity in the system amplifies both NN and
NNN couplings. Locating the impurity at the center [Fig. 4(b)]
effectively increases the FM strength around the impurity,
which can be seen from the increased correlation between
the impurity site and its NN. When the impurity moves away
from the cluster center, the C6v symmetry is broken. If the
impurity is in shell 1 [Fig. 4(c)], the number of its FM NN
sites remains 6, while the number of its AFM NNN sites
decreases. Accordingly, the couplings between the impurity
and its NN are FM dominated, and thus, the spins maintain
the ↓ configuration. However, when the impurity atom moves
to the boundary of the lattice [Figs. 4(d) and 4(e)], the value
of spin-z projection at the impurity 〈Sz

I 〉 is close to zero.
This change of 〈Sz

I 〉 when moving from the center toward the
cluster boundary (where the number of NN and NNN sites
is smaller) can be ascribed to the change in the number of
neighbors, i.e., the finite-sized effect and the geometry of the
cluster play important roles. Finally, we also show results for
one geometry with two impurities, where the latter are both
located in shell 1 and NN to each other [Fig. 4(f)]. In this case,
the impurities and their NN spins are strongly FM coupled and
form a small FM subcluster.

The results presented in Fig. 4, which were obtained with
our GF technique, compare very well with ED calculations
(not shown, differences of 〈Sz

m〉 between ED and GF are in-
distinguishable on the color scale of the figure). Furthermore,
the trends for other Sz

total subspaces are very similar, with the
same level of agreement between GF and ED schemes.

As an overall remark to this section, the GF approach
appears to be able to capture all the effects due to the J1 − J2

competition, also in the presence of significant finite-sized
effects. However, it should also be noted that the type of spin-
spin interactions considered in this paper so far are symmetric
in nature (i.e., expressed in terms of scalar products between
spins). In many materials, the spin-orbit interaction can me-
diate antisymmetric exchange couplings among spins. This
more challenging situation is addressed in the next section.

C. Including Dzyaloshinskii-Moriya interactions

The Dzyaloshinskii-Moriya interaction (DMI), also re-
ferred to as antisymmetric exchange [54,55], results from the
interplay of spin-orbit and super-exchange interactions. The
DMI can be written as

HDM = D
∑
<i j>

ei j · (Ŝi × Ŝ j ), (24)

where ei j = (r j − ri )/|r j − ri| is the unit vector pointing
from site i to site j. The DMI favors chiral canting of the spins
and is thus responsible for the emergence of complex spin
patterns, for example, magnetic skyrmions. Here, we wish to
see how the GF method performs when DMI is present. To
this end, we consider a system described by the Hamiltonian
of Eq. (1) to which the term HDM of Eq. (24) is added. In the
presence of DMI, a diagonalization partitioned in subspaces
with definite Sz

total is not possible, and thus, we consider a
rather small (3 × 3) isolated cluster subject to an external field
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TABLE I. Comparison between ED and GF on a 3 × 3 cluster.
a refers to the bottom-left site, b refers to the left-middle site, and
c refers to the center site. The lattice symmetry requires that 〈Sx

c 〉 =
〈Sy

c〉 = 0, so neither of them is listed in the table.

〈Sx
a〉 〈Sy

a〉 〈Sz
a〉 〈Sx

b〉 〈Sy
b〉 〈Sz

b〉 〈Sz
c〉

ED 0.05 −0.05 0 0 −0.13 0.05 0.27
GF 0.12 −0.12 0.04 0 −0.23 0.14 0.34

(0, 0, B), with FM parameters J1 = 1, J2 = 0, B = 0.1. The
value chosen for the DMI is D = 4, which for the cluster con-
sidered provides noticeable canting of the spins. On inclusion
of the DMI, there is a significant discrepancy between GF and
ED spin patterns (as is shown in Table I, our GF approach
fails to capture that the spins on the corner site of the cluster
are completely in plane), indicating that, at least for this small
system, a large vertex correction beyond the RPA is needed
(this cannot be easily provided by a low-order self-energy as
the one considered in Sec. III). To investigate the source of
such a discrepancy, we consider the imaginary part of G+−

12 .
In Fig. 5, we show the results for Im G+−

12 , obtained both via
our self-energy treatment and by applying spin operators on
the ED ground state.

The GF and ED curves show similar generic trends, but
for more detailed features, the two treatments are clearly at
variance, with some specific structures differing both in po-
sition and strength. The locations of poles of ImG from ED
are overall more compactly distributed, especially at positive
frequencies. This discrepancy, also observed for other GF
components (and for the real part of the GF as well) when
DMI is present, is likely to be a general shortcoming of the
GF approach within the linear response approximation and
indicates the need to include the nonlinear response. The
quality of the GF solution in the presence of DMI is consider-
ably better when we place the 3 × 3 quantum spin cluster as
the center block of a 9 × 9 lattice, and the remaining lattice
points are occupied by mutually interacting classical spins
with magnitude |�S| = 1

2 that also interact with the quantum
spins. Mixed quantum-classical systems can be useful to gain
insight in large systems when the spin pattern develops over
several lattice distances, and a quantum treatment of all spins

FIG. 5. Imaginary part of the G+−
12 component of the Green’s

function in the frequency domain.

FIG. 6. Quantum spins (shaded region) in the background of
classical spins. The arrow represents the spin projection in the xy
plane, the color represents the Sz for classical spins and 〈Sz〉 for
quantum spins. The coupling parameters are the same as in the 3 × 3
pure quantum case.

is computationally not viable (as, for example, in the case of
magnetic skyrmions [56]). For our 9 × 9 system, we use a
mixed quantum-classical self-consistent description where the
quantum spins on the cluster border interact with the neigh-
boring classical spins according to −∑

qc JqcŜq · �Sc. For a
suitable choice of the J1, J2, D, and B parameters, a skyrmion-
like ground state is expected to occur in the system. Here,
we do not perform an extensive parameter search to establish
the skyrmion regime. Rather, and for sake of comparison, the
coupling parameters used are the same as in the isolated 3 × 3
quantum-spin cluster, and the results thus obtained are shown
in Fig. 6. Within the figure resolution, the results from the self-
energy approach and ED are not distinguishable. Furthermore,
they differ from those of the isolated cluster. From the figure,
no skyrmion-like pattern is easily discernible; however, an
interesting qualitative aspect is that the ED and GF solutions
compare well, due to the action of the forcing field due to the
classical spins.

Naturally, there is at this point no way to say for certain if
the similar ED and GF solutions describe well the full quan-
tum exact solution for the 9 × 9 cluster. However, as an overall
and final remark to the results of this section, we note that,
unlike the Heisenberg exchange coupling, the DMI involves
the cross-product of the spin operators. Such a difference in
structure and symmetry of the Hamiltonian leads to a very
different structure of the magnon Hedin’s equations. In the
derivation in Sec. III A, the higher-order response of GF is
approximated with zero. The approach shows a good result
for scalar-product exchange couplings but probably requires
more considerations for interactions involving cross-product
couplings.

V. CONCLUSIONS AND OUTLOOK

Remarkable progress has been made in understanding
magnetism in condensed matter from a microscopic perspec-
tive. However, as of today, describing complex magnetic
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configurations in real materials largely remains an open prob-
lem. This is because long-ranged magnetic patterns emerge
from a delicate balance of several factors: among the most
important are electronic correlations, electron-phonon inter-
actions, crystal field effects, spin-orbit interactions, disorder,
and impurities. Additionally, the number of atoms involved in
the periodic unit (for commensurate order) of such magnetic
textures can often be quite large (and unlimited for incommen-
surate order) which currently makes accurate first-principles
descriptions challenging if not prohibitive.

An often adopted strategy is to turn to spin model
Hamiltonians, with parameters extracted for first-principles
calculations. This considerably simplifies the problem but
without necessarily making it easily solvable. A case in point
is provided by the QHM, the model in focus in this paper:
Exact numerical methods like ED, DMRG, or Monte Carlo
can be applied for not too large samples, and highly valuable
information can be extracted for FM, AFM, and ferrimagnetic
orders.

However, for many atoms/spins in the magnetic pattern,
a significant increase in size is needed, (as, e.g., for dipolar
interactions or when antisymmetric exchange couplings are
present); here, using spatial/spin symmetries, the computa-
tional difficulty can be mildly reduced but not eliminated.
As a concrete example, for magnetic skyrmions, it is the
antisymmetric exchange that leads to the specific spin texture.
For this type of exchange coupling, the total spin-z operator
does not commute with the Hamiltonian, and configura-
tions with different spin-z are mixed. Furthermore, skyrmion
spin textures extend over several lattice distances, and di-
rect exact numerical methods become inadequate at these
sizes.

The alternative considered in this paper is the GF formal-
ism that, even for considerable lattice/cluster sizes, remains
quite affordable from the computational point of view. In this
paper, we have derived the magnon Hedin’s equations via
the Schwinger functional derivative technique and applied the
GF method to solve the Heisenberg model on 2D lattices,
comparing the results with ED benchmarks. Our approach
works well within the linear response regime. Higher-order

approximations could also be considered, but this will
increase the computational time and introduce additional hur-
dles in the convergence to self-consistency.

Concerning the numerical results, on the one hand, for
a J1 − J2 model on square and hexagonal lattices, the GF
scheme beyond the RPA gives reasonable accuracy with rel-
atively low computational costs (in our comparisons, the
limiting factor for the size of the clusters was in fact the ED
treatment). The considerations apply to both ground state spin
patterns and to magnetic structure factor results. Furthermore,
the same level of agreement was found for inhomogeneous
clusters in the few-impurity limit.

On the other hand, a preliminary attempt to apply the
GF scheme to systems with an antisymmetric exchange in-
teraction was not equally satisfactory. Our results suggest
that a cross-product spin coupling may require a better ap-
proximate prescription than the neglect of the high-order
response of GF to the probing field. Possible procedures
for improvements in this direction are currently being
explored.

Finally, based on the outcomes of this paper, we expect that
the current approach (and the inherent approximation scheme
used here) will work for long-range scalar product (e.g.,
magnetic-dipole) interactions. Preliminary tests also show that
several hundreds of sites/spins are within reach of the method,
and thus, we expect that the method could be successfully
employed for systems of higher dimensionality. As another
follow up of this paper, we plan to investigate systems with
magnetic dipole interactions and compare the GF results with
experimental values. Quite naturally, the long-term goal is
to improve the GF scheme in a way that it would become
possible to accurately calculate the magnetic structure factor
of real materials.
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