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We discuss the spin- 1
2 J1–J2 model on the triangular lattice using recently proposed bond-operator theory

(BOT). In agreement with previous discussions of this system, we obtain four phases upon J2 increasing: the
phase with 120◦ ordering of three sublattices, the spin-liquid phase, the state with the collinear stripe order, and
the spiral phase. The 120◦ and the stripe phases are discussed in detail. All calculated static characteristics of
the model are in good agreement with previous numerical findings. In the 120◦ phase, we observe the evolution
of the quasiparticles’ spectra and dynamical structure factors (DSFs) upon approaching the spin-liquid phase.
Some of the considered elementary excitations were introduced first in our recent study of this system at J2 = 0
using the BOT. In the stripe phase, we observe that the doubly degenerate magnon spectrum known from the
spin-wave theory (SWT) is split by quantum fluctuations, which are taken into account more accurately in the
BOT. As compared with other known findings of the SWT in the stripe state, we observe additional spin-1 and
spin-0 quasiparticles which give visible anomalies in the transverse and longitudinal DSFs. We obtain also a
special spin-0 quasiparticle named the singlon that produces a peak only in the four-spin correlator and which is
invisible in the longitudinal DSF. We show that the singlon spectrum lies below energies of all spin-0 and spin-1
excitations in some parts of the Brillouin zone. The singlon spectrum at zero momentum can be probed by the
Raman scattering.
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I. INTRODUCTION

The spin- 1
2 Heisenberg antiferromagnet on the triangular

lattice has attracted much attention since the paper by Ander-
son [1] highlighting the role of frustration in the stabilization
of quantum spin-liquid phases (SLPs) in systems on lattices
with spatial dimensions greater than one. The most subse-
quent analytical and numerical works show that the 120◦
magnetically ordered state with three sublattices is stable in
this model [2–4]. However, this system is not far from a SLP,
which can be stabilized by introducing to the Hamiltonian

H =
∑
〈i, j〉

SiS j + J2

∑
〈〈i, j〉〉

SiS j, (1)

a small next-nearest-neighbor exchange coupling J2 > 0,
where the first term describes the nearest-neighbor spin in-
teraction in which we put J1 = 1. It was found [5–13] that
the J1–J2 model shows four phases presented schematically
in Fig. 1(a), where the SLP arising at 0.07 � J2 � 0.15 is
sandwiched between phases with 120◦ and stripe collinear
magnetic orders and an incommensurate spiral ordering is
stabilized at J2 > 1. The nature of the SLP is debated now:
numerical evidences are reported for gapped [12,13] and gap-
less [6,7] spin liquids.

Dynamical properties of the 120◦ ordered state has at-
tracted great interest recently because it turned out that
standard analytical approaches failed to describe even qual-
itatively the short-wavelength spin dynamics in model (1) at
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J2 = 0. In particular, neutron scattering experiments [14–16]
carried out in Ba3CoSb2O9, which is described well by Eq. (1)
with small easy-plane anisotropy and J2 = 0, show at least
four peaks at the M point [see Fig. 1(b)] of the Brillouin
zone (BZ). In contrast, the spin-wave theory (SWT) predicts
only two magnon peaks at M and a high-energy contin-
uum of excitations [17–19]. These experimentally observed
anomalies are reproduced quantitatively numerically using the
tensor network renormalization group method [20]. Recent
application of the Schwinger boson approach to this problem
reproduces qualitatively high-energy peculiarities in the ex-
perimental data [21].

We recently attacked the problem of the short-wavelength
spin dynamics in model (1) at J2 = 0 using the bond-operator
technique (BOT) proposed in Ref. [22], which is discussed
briefly in Sec. II. [23] We obtained that quantum fluctuations
considerably change the properties of the three conventional
magnon modes predicted by the SWT [23]. In particular, we
found that, in agreement with the experiment in Ba3CoSb2O9,
quantum fluctuations lift the degeneracy between two magnon
modes at the M point predicted by the SWT. Besides, we
observed novel high-energy collective excitations built from
high-energy excitations of the magnetic unit cell (contain-
ing three spins) and another novel high-energy quasiparticle
which has no counterpart not only in the SWT but also in
the harmonic approximation of the BOT. All observed ele-
mentary excitations produce visible anomalies in dynamical
spin correlators and describe the experimental data obtained
in Ba3CoSb2O9 [23].

In the present study, we continue our consideration of
triangular-lattice antiferromagnets by the BOT and trace the
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(a)

(b)

FIG. 1. (a) Phases of J1–J2 model (1) on the triangular lattice: three-sublattice state with 120◦ magnetic ordering (120◦), spin-liquid phase
(SLP), two-sublattice collinear stripe phase (stripe), and the state with an incommensurate spiral ordering (spiral). Sites are distinguished by
color belonging to different magnetic sublattices in the 120◦ and in the stripe phases. Translation vectors are shown of the crystal (a1,2), of the
magnetic lattice in the 120◦ state (e1,2), and of the magnetic lattice in the stripe phase with the extended unit cell considered within the BOT
(u1,2). It was found before that Jc1

2 ≈ 0.07, Jc2
2 ≈ 0.15, and Jc3

2 ≈ 1 [5–13]. (b) Translation vectors b1,2, f1,2, and g1,2 are depicted of reciprocal
lattices corresponding to a1,2, e1,2, and u1,2, respectively. Blue hexagon is the crystal Brillouin zone. Red hexagon is the magnetic Brillouin
zone for the 120◦ state. Some high-symmetry points in the crystal Brillouin zone are shown. Dashed lines indicate high-symmetry directions
which are important for the present consideration.

spectra evolution in the J1–J2 model upon variation of J2 > 0
in the 120◦ and stripe-ordered phases. We discuss static prop-
erties in Sec. III and show that the staggered magnetization
obtained using the BOT follows quite accurately previous
numerical findings with the interval of the nonmagnetic phase
stability being 0.1 < J2 < 0.16. We discuss the dynamical
properties of model (1) in Sec. IV. In the 120◦ phase, we
demonstrate that the continuum of excitations moves closer
to the lowest magnon mode upon J2 increasing in agreement
with previous numerical findings [6]. The remaining two con-
ventional magnon modes acquire noticeable damping on the
way to the SLP while some other modes found in Ref. [23] re-
main well defined and produce visible high-energy anomalies
in the dynamical structure factor (DSF).

In the collinear stripe phase, which has been much less
studied before, we find that quantum fluctuations split the
magnon spectrum that is doubly degenerate according to the
semi-classical SWT. The value of this splitting is notice-
able for short-wavelength magnons. We find also low-lying
well-defined spin-0 excitations producing visible anomalies in
the longitudinal DSF, which can be observed experimentally.
The spectra of these spin-0 excitations become closer to the
magnon spectra on the way to the SLP. Besides, we find a
special spin-0 elementary excitation which is seen in the har-
monic approximation of the BOT as a singlet spin state of the
magnetic unit cell propagating along the lattice. We call this
quasiparticle a “singlon” in Ref. [22]. Such an excitation is in-
visible for neutrons. It appears also in the square-lattice spin- 1

2
Heisenberg antiferromagnet and produces a broad anomaly
(known in the literature as “two-magnon peak”) in the Ra-
man spectra in the B1g geometry, which was observed, e.g.,
in layered cuprates. Section V contains a summary and our
conclusion.

II. BOND OPERATOR TECHNIQUE FOR J1–J2 MODEL
ON THE TRIANGULAR LATTICE

In the present study we use the bond-operator technique
proposed and discussed in detail in Ref. [22]. The main idea
of this approach is to take into account all spin degrees of
freedom in the magnetic unit cell containing several spins 1/2
by building a bosonic spin representation reproducing the spin
commutation algebra. A general scheme of construction of
such representation for an arbitrary number of spins in the
unit cell is described in detail in Ref. [22]. We consider now
briefly the main steps of this procedure by the example of
three spins in the unit cell which is relevant for the 120◦ phase
(see Fig. 1). First, we introduce seven Bose operators in each
unit cell which act on eight basis functions of three spins |0〉
and |ei〉 (i = 1, . . . , 7) according to the rule

a†
i |0〉 = |ei〉, i = 1, . . . , 7, (2)

where |0〉 is a selected state playing the role of the vacuum.
Then, we build the bosonic representation of spins in the
unit cell as it is described in Ref. [22], which turns out to
be quite bulky so that we do not present it here. The code
in the MATHEMATICA software which generates this represen-
tation is presented in the Supplemental Material [24]. There
is a formal artificial parameter n in this representation that

appears in operator
√

n − ∑7
i=1 a†

i ai by which linear in Bose

operators terms are multiplied (cf. the term
√

2S − a†
i ai in the

Holstein-Primakoff representation). It prevents the mixing of
states containing more than n bosons and states with no more
than n bosons (then the physical results of the BOT correspond
to n = 1). Besides, all constant terms in our representation
of spin components are proportional to n whereas bilinear in
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FIG. 2. Diagrams giving corrections of the first-order in 1/n to
(a) the ground-state energy and the staggered magnetization and (b),
(c) to self-energy parts.

Bose operators terms do not depend on n and have the form
a†

i a j . We introduce also separate representations via operators
(2) for terms SiS j in the Hamiltonian in which i and j belong
to the same unit cell. Constant terms in these representations
are proportional to n2 and terms of the form a†

i a j are pro-
portional to n [22]. Thus, we obtain a close analog of the
conventional Holstein-Primakoff spin transformation which
reproduces the commutation algebra of all spin operators in
the unit cell for all n > 0 and in which n is the counterpart
of the spin value S. In analogy with the SWT, expressions
for observables are found in the BOT using the conventional
diagrammatic technique as series in 1/n. This is because
terms in the Bose-analog of the spin Hamiltonian containing
products of i Bose operators are proportional to n2−i/2 (in the
SWT, such terms are proportional to S2−i/2). For instance, to
find the ground-state energy, the staggered magnetization, and
self-energy parts in the first order in 1/n one has to calculate
diagrams shown in Fig. 2 (as in the SWT in the first order
in 1/S).

Our previous applications of the BOT to two-dimensional
spin- 1

2 models which were well studied before by other nu-
merical and analytical methods show that first 1/n terms in
most cases give the main corrections to renormalization of ob-
servables if the system is not very close to a quantum critical
point (similarly, first 1/S corrections in the SWT frequently
make the main quantum renormalization of observable quan-
tities even at S = 1/2, Ref. [25]) [22,26]. Importantly, because
the spin commutation algebra is reproduced in our method at
any n > 0, the proper number of Goldstone excitations arises
in ordered phases in any order in 1/n (unlike the vast majority
of other versions of the BOT proposed so far [22]). Although
the BOT is technically very similar to the SWT, the main
disadvantage of this technique is that it is very bulky (e.g., the
part of the Hamiltonian bilinear in Bose operators contains
more than 100 terms) and it requires a time-consuming nu-
merical calculation of diagrams. That is why there is a limited
number of points on some plots below found in the first order
in 1/n.

The construction of the four-spin variant of the BOT is
discussed in detail in Ref. [22], where the spin representa-
tion is presented explicitly. The code in the MATHEMATICA

software which generates this representation together with the
bilinear part of the Hamiltonian is presented in the Supple-
mental Material [27]. We use below the three-spin and the
four-spin variants of the BOT for consideration of the 120◦
and the stripe phases, respectively. Then, we use the unit
cell in the consideration of the stripe phase which is two
times as large as the magnetic unit cell. The extension of

the unit cell is very useful in the BOT because it allows to
consider numerous interesting excitations which can arise in
standard approaches as bound states of conventional quasipar-
ticles (magnons or triplons) [22]. Consideration of the bound
states require analysis of some infinite series of diagrams in
common methods. In contrast, there are separate bosons in
the BOT describing some of them that allows, in particular,
to find their spectra as series in 1/n by calculating the same
diagrams as for the common quasiparticles [e.g., the diagrams
shown in Figs. 2(b) and 2(c) in the first order in 1/n]. As it is
discussed in more detail in Ref. [22], the version of the BOT
with two-site unit cell contains three bosons describing in the
ordered phase two spin-1 excitations (conventional magnons)
and one spin-0 quasiparticle (the Higgs mode). In contrast, the
four-site version of the BOT contains 15 bosons describing
(along with conventional magnons and the Higgs mode), in
particular, the “singlon” whose energy is lower than energies
of all quasiparticles in some parts of the BZ (see below) and
who can be probed by the Raman scattering. The price to pay
for the increasing of the quasiparticles zoo is the bulky theory.

We take into account below the diagrams shown in
Figs. 2(b) and 2(c) to find all self-energy parts �(ω, k) in
the first order in 1/n. We use the (bare) Green’s functions of
the harmonic approximation in these calculations. The spectra
of elementary excitations are obtained in two ways below.
First, by expanding the Green’s functions denominators near
a bare spectrum up to the first order in 1/n and putting ω

equal to the bare spectrum in self-energy parts. This is the
usual way of finding spectra in the first order in the expan-
sion parameter (1/n in this case). In particular, the spectra
of all Goldstone quasiparticles calculated in this way remain
gapless as it is noted above. Second, we find zeros of the
Green’s functions denominators by taking into account the
ω-dependence of self-energy parts (a self-consistent scheme).
The results obtained in these two schemes are different.
The difference is usually small for low-energy quasiparti-
cles, whereas the difference can be large for the high-energy
short-wavelength elementary excitations [22,23,28]. The self-
consistent scheme is usually applied in various theoretical
considerations when first-order corrections renormalize bare
spectra considerably (see, e.g., Ref. [19]). The self-consistent
scheme can even change qualitatively the physical picture by
revealing new poles of the Green’s functions. Such results
should be treated with caution and should be corroborated by
numerical and/or experimental data. However, our previous
applications of the BOT to other systems show that the self-
consistent scheme give results in the high-energy sector which
are in a good agreement with numerical and experimental
findings [22,23,28]. In particular, in agreement with previous
numerical findings, we demonstrate using the BOT that in-
stead of the one magnon peak predicted by the linear SWT
numerous high-energy anomalies arise in dynamical structure
factors (DSFs) in Heisenberg antiferromagnet in strong mag-
netic field below its saturation value [28].

DSFs presented below are also obtained by taking
into account the ω-dependence of self-energy parts (as in
Refs. [23,28]). We discuss below anomalies in DSFs cor-
responding to zeros of the Green’s functions denominators,
which are found using the self-consistent scheme and indi-
cated in the insets of the corresponding plots.
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(a) (b)

FIG. 3. (a) Staggered magnetization per site M and (b) the ground-state energy per spin E obtained in the first order in 1/S (SWT), using
the variational Monte Carlo (VMC) [5,7], the series expansion [8], and the bond-operator technique (BOT) in the first order in 1/n (present
study). Results for E found using the coupled cluster method [9] are indistinguishable from the series expansion results.

III. STATIC PROPERTIES

Graphics are shown in Fig. 3 of the staggered magneti-
zation per site M and the ground-state energy per spin E
obtained in the first order in 1/n as it is explained in detail
in Refs. [22,23]. It is seen that our results for M are very close
to previous numerical findings and they give for the region of
the SLP stability

0.1 < J2 < 0.16, (3)

in agreement with many previous results [6,7,12,13]. It is also
seen from Fig. 3(b) that the BOT overestimates the ground-
state energy by 2–6% in the considered model.

IV. DYNAMICAL PROPERTIES

A. 120◦ phase

We calculate in this section the dynamical spin susceptibil-
ity

χ (k, ω) = i
∫ ∞

0
dteiωt 〈[Sk(t ), S−k(0)]〉, (4)

and the dynamical structure factor (DSF)

S (k, ω) = 1

π
Imχ (k, ω). (5)

In the 120◦ phase, Sk are built on spin operators 1, 2, and 3 in
the magnetic unit cell [see Fig. 1(a)] as follows:

Sk = 1√
3

(
S1k + S2ke−i(k1+k2 )/3 + S3ke−i(2k2−k1 )/3

)
, (6)

where k = k1f1 + k2f2, and f1,2 are depicted in Fig. 1(b).
The spectra of all elementary excitations are shown in

Fig. 4 obtained in the harmonic approximation of the BOT at
J2 = 0 and J2 = 0.07. Spectra at J2 = 0 are discussed in detail

in Ref. [23]. All elementary excitations produce anomalies in
DSF (5). Then, we call three Goldstone excitations (which
are known, e.g., from the SWT) “low-energy magnons” and
the rest four “optical” branches are named “high-energy
magnons.” By comparing the results in Fig. 4 obtained in
the BOT and in the linear SWT, one notes that quantum
fluctuations strongly modify and move down the spectra of
low-energy magnons. The most striking difference between
predictions of these approaches is that quantum fluctuations
(which are taken into account in the BOT more accurately)
remove the degeneracy between two magnon branches pre-
dicted by the semi-classical SWT along �M and dashed lines
shown in Fig. 1(b). We show in Ref. [23] that this our finding
is in a quantitative agreement with the experimental data in
Ba3CoSb2O9. It is also seen from Fig. 4 that all spectra in the
BOT move down upon J2 increasing.

Corrections to self-energy parts of the first order in 1/n
renormalize quasiparticles energies, lead to a finite damping
of some of them, give rise an incoherent background in DSFs,
and can produce novel poles in the Green’s functions which
have no counterparts neither in the SWT nor in the harmonic
approximation of the BOT. An anomaly produced by such a
novel pole is clearly seen in the DSF at M point near ω ≈ 1.1
[see Fig. 5(a)]. Although the imaginary part of this pole is
quite large at J2 = 0, it can be reduced to zero by introducing
to the model a small easy-plane anisotropy [23]. As a result,
the novel quasiparticle corresponding to this pole becomes
well defined and produces an anomaly in the DSF which, as
we propose in Ref. [23], is observed in neutron experiments
in Ba3CoSb2O9. It is also seen in Figs. 5(a) and 5(b) that
high-energy magnons produce high-energy anomalies in the
DSF, which is also observed experimentally in Ba3CoSb2O9

(see Ref. [23]).
Figures 5(c) and 5(d) illustrate the evolution of the DSF at

M and Y points upon J2 increasing [cf. Figs. 5(a), 5(b) and
5(c), 5(d)]. All magnon poles move to lower energies and the
imaginary parts of almost all of them increase. Some magnons
become badly defined and anomalies from them are washed
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(a) (b)

FIG. 4. Spectra of elementary excitations corresponding to poles of dynamical spin susceptibility (4) obtained in the 120◦ phase at (a) J2 =
0 and (b) J2 = 0.07 in the linear spin-wave theory (LSWT) and within the harmonic approximation of the BOT. The contour passes through
high-symmetry points of the Brillouin zone shown in Fig. 1(b).

out (we do not indicate poles in Fig. 5 whose imaginary parts
exceed one third of their real parts). The high-energy anomaly
produced by high-energy magnons remains as J2 rises. The
damping of the novel quasiparticle increases quickly at M as
J2 rises from zero. Then, it is difficult to trace its evolution.
However, we can identify a novel pole of the dynamical spin
susceptibility (4) at ω ≈ 2.07 and J2 = 0.07, which is shown
in Fig. 5(c). The lower edge of the incoherent background
moves down upon J2 increasing and it is marked by a small
anomaly in DSFs (at ω ≈ 0.45 and ω ≈ 0.7 for M and Y
points, respectively). It is shown numerically in Ref. [6] that
this continuum of excitations merges with the lower magnon
branch at the quantum critical point (QCP), where it is better
represented as a two-spinon continuum. In agreement with
both SWT [10,11] and previous numerical findings [6], we
obtain that magnon spectrum becomes soft at the M point at
the QCP.

Our results shown in Figs. 5(c) and 5(d) are in overall
agreement with the neutron data observed in KYbSe2 that is
believed to be described by model (1) with J2 ≈ 0.05 and J1 ≈
0.56 meV [30]. In particular, a broad continuum is seen in the
experimental data at the M point which starts at ≈0.2 meV ≈
0.36J1 with a small peak and extends up to ≈1.4 meV ≈ 2.5J1

(see Figs. 5 and S4 in Ref. [30]). There is also a broad anomaly
at ≈0.8 meV ≈ 1.4J1 at M which probably stems from the
high-energy broad peak observed experimentally [14–16] and
numerically [20] in Ba3CoSb2O9 at ω ≈ 1.9 and J2 = 0. Our
calculations show that the weak low-energy anomaly arises at
M at ω ≈ 0.36 when J2 ≈ 0.035. We propose that the broad
anomaly seen in KYbSe2 at ≈0.8 meV is produced by the
high-energy magnons, which produce also the high-energy
broad peak in Ba3CoSb2O9 (see Ref. [23] for extra detail). The
position of this anomaly is overestimated in the first order of
the BOT by ≈30% both in Ba3CoSb2O9 and KYbSe2. A less
intense continuum is also seen in KYbSe2 at Y point within
approximately the same energy interval as at M that is in an
overall agreement with Fig. 5(d). Our results are also in a
qualitative agreement with those obtained by the Schwinger
boson approach in Ref. [30].

B. Stripe phase

As soon as the longitudinal and the transverse channels
are separated in the collinear stripe phase, it is reasonable to
introduce the following dynamical spin susceptibilities:

χαβ (k, ω) = i
∫ ∞

0
dteiωt

〈[
Sα

k (t ), Sβ

−k(0)
]〉
, (7)

χ‖(k, ω) = χzz(k, ω), (8)

χ⊥(k, ω) = χxx(k, ω) + χyy(k, ω), (9)

and consider longitudinal and transverse DSFs

S‖(k, ω) = 1

π
Imχ‖(k, ω), (10)

S⊥(k, ω) = 1

π
Imχ⊥(k, ω), (11)

where the z axis is directed along staggered magnetizations

Sk = 1
2 (S1k + S2ke−ik2/2 + S3ke−i(k1+k2 )/2 + S4ke−ik2/2)

(12)
are built on spin operators 1–4 in the extended unit cell [see
Fig. 1(a)], k = k1g1 + k2g2, and g1,2 are depicted in Fig. 1(b).

In the leading order in 1/n, susceptibilities (8) and (9)
are linear combinations of Green’s functions of bosons [22].
Then, DSFs (10) and (11) have the structure in the harmonic
approximation of the BOT

S (ha)(k, ω) =
∑

i

Wikδ
(
ω − ε

(0)
ik

)
, (13)

where i enumerates spectra branches, ε
(0)
ik are bare quasiparti-

cles spectra, and Wik are their spectral weights. Elementary
excitations corresponding to poles of spin susceptibilities
(8) and (9) carry spins 0 and 1, respectively. Their spectra
found in the harmonic approximation of the BOT are shown
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(a) (b)

(c) (d)

FIG. 5. DSF at points M and Y of the BZ [see Fig. 1(b)]. DSF obtained within the first order in 1/n has been convoluted with the energy
resolution of 0.03. Magnon energies are also indicated in panels (a), (b), which were obtained in Ref. [29] using the series expansion technique.
Anomalies in the DSF are produced by poles of spin correlator (4) indicated in insets by colors corresponding to excitation branches shown in
Fig. 4. Real parts of these poles are marked by vertical dashed lines of respective colors. Imaginary parts of poles correspond to quasiparticles
damping. Poles are not shown whose imaginary parts exceed one-third of their real parts. Pole ω4 in panels (a), (c) has no counterpart either in
the spin-wave theory nor in the harmonic approximation of the BOT.

in Figs. 6(a) and 6(b), correspondingly, and their spectral
weights are presented in Figs. 6(c) and 6(d). It is interesting to
compare these results with findings of the linear SWT which
are also presented in Figs. 6(a) and 6(c).

It is well known that there is a doubly degenerate magnon
spectrum in the two-sublattice stripe phase within the SWT
which is zero at � and M points (notice that the �M line is
perpendicular to ferromagnetic chains, see Fig. 1) [10,11].
The classical spectrum is also zero at M ′ point due to an
accidental degeneracy of the ground state [11]. However, first
1/S corrections produce a gap at M ′ point via the order-by-
disorder mechanism [11].

As is seen from Fig. 6(a), there are six low-energy spin-1
excitations in the BOT two of which have zero energy at
� and M points. However it is seen from Fig. 6(c) that in
the largest part of the BZ only two of these spin-1 modes
have predominant spectral weights in χ⊥(k, ω) whose spectra

follow the doubly degenerate magnon spectrum in the linear
SWT (except for the close neighborhood of M ′ point, where
a portion of quantum fluctuations taken into account in the
harmonic approximation of the BOT leads to gaps in two
spin-1 modes having finite spectral weight at M ′). It should be
stressed that these two spin-1 modes are split in the BOT that
is the effect of quantum fluctuations more accurately taken
into account in our approach than in the SWT, where the
magnon spectrum remains degenerate even in the first order
in 1/S [10,11]. Similar magnon modes splitting by quan-
tum fluctuations is observed above in the 120◦ phase. Notice
that the BOT does not tend to split all degenerate branches:
spin-1 modes remain doubly degenerate in the similar two-
sublattice collinear phase of the Heisenberg antiferromagnet
on the square lattice considered by the four-spin version of
the BOT in our previous papers [22,26]. It is shown below
that this splitting vanishes at J2 = 1, where the transition to
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(a) (b)

(c) (d)

FIG. 6. Spectra of elementary excitations arising in (a) transverse channel (the sector with the projection of the total spin Sz = 1) and
(b) longitudinal channel (the sector with Sz = 0), which are obtained in the stripe phase at J2 = 0.4 in the linear spin-wave theory (LSWT)
and within the harmonic approximation of the BOT. All spin-0 and spin-1 quasiparticles correspond to poles of dynamical spin susceptibilities
(8) and (9), respectively, with the exception of the spin-0 elementary excitation named “singlon” in panel (b), which corresponds to a pole of
four-spin correlator (14). Spectral weights Wk of all quasiparticles are presented in panels (c,d) by colors corresponding to panels (a), (b). Wk

are coefficients before corresponding delta-functions in Eqs. (10) and (11) [see Eq. (13)].

the spiral phase takes place and that first corrections in 1/n
enhance the difference in the stripe state between branches
shown in Fig. 6(a) in dashed and solid lines of the same
color.

It is also seen from Figs. 6(a) and 6(c) that the translation
symmetry is restored in the four-spin version of the BOT
which uses the artificially enlarged unit cell: despite energies
of each quasiparticle are equal at equivalent points of the
reciprocal space built on vectors g1,2 [see Fig. 1(b)], spectral
weights differ at such points if they are not equivalent in the
scheme with two spins in the unit cell [in the later case the
reciprocal space is built on vectors b2 and (b1 + b2)/2]. For
instance, one concludes from Fig. 6(c) that two pink and two
red branches have predominant spectral weights at points Y
and X ′, respectively (although Y and X ′ are equivalent in the
scheme with the four-site unit cell).

Branches of two high-energy spin-1 excitations shown in
brown in Fig. 6(a) can arise in the SWT as bound states of
three magnons. Although their spectral weights are small in

the harmonic approximation of the BOT [see Fig. 6(c)], they
produce visible anomalies in DSFs in the first order in 1/n as
it is demonstrated below.

The spectra of spin-1 excitations found at J2 = 0.4 in the
first order in 1/n are shown in Fig. 7(a). It is seen that
spectra of two branches having the largest spectral weights are
close to the magnon energies found in Ref. [8] by the series
expansion. Two high-energy branches presented in Fig. 6(a)
acquire very large damping in the first order in 1/n and they
are not presented in Fig. 7(a). However, at some part of the
BZ, these two quasiparticles have well-defined spectra found
in the self-consistent scheme discussed above.

Figure 8 illustrates this our finding, where DSFs are pre-
sented obtained in the first order in 1/n at points Y , X ′, K , P,
and M ′ and poles are shown in insets which correspond to con-
sidered quasiparticles and which are found self-consistently.
Notice that energies of four low-energy spin-1 excitations
found self-consistently differ little from spectra in the first or-
der in 1/n [cf. Fig. 7(a) and insets in Figs. 8(b), 8(d), 8(f), 8(h),
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(a) (b)

FIG. 7. (a) Spectra of low-energy spin-1 quasiparticles found in the first order in 1/n (BOT). Corresponding spectra in the harmonic
approximation are shown in Fig. 6(a). Two high-energy branches presented in Fig. 6(a) acquire very large damping in the first order in 1/n
and they are not shown here. Series expansion data are taken from Ref. [8]. (b) Spectrum of spin-0 excitation named “singlon” and discussed
in the text which was found self-consistently in the first order in 1/n at J2 = 0.2 and 0.4. Inset shows DSF 1

π
Imχs(k, ω) at J2 = 0.4 built on

four-spin susceptibility (14) at �, M, and M ′ points and convoluted with the energy resolution of 0.03. Another inset presents the singlet state
of the four-spin unit cell created by the Bose operator describing the singlon in the harmonic approximation of the BOT.

and 8(j)]. Interestingly, two high-energy spin-1 elementary
excitations (shown in brown) produce pronounced anomalies
at Y and P. The large difference between their spectra found
in the first order in 1/n and self-consistently may also indicate
the need to go beyond the first order in 1/n to find their spectra
accurately.

Notice also that 1/n corrections increase the splitting be-
tween branches shown in Fig. 6(a) by the same color [see
Fig. 7(a) and insets in Fig. 8]. Moreover, the renormalization
of spectral weights of the split bands by 1/n corrections is
very different so that quasiparticles from branches of the same
color can appear separately in DSFs (see Fig. 8). It is also
seen from Fig. 8 that quasiparticles from branches of different
colors which appear simultaneously in DSFs in the first order
in 1/n have substantially different spectral weights. That is
why we cannot state that all four low-energy excitations can
appear simultaneously at some points of the BZ. We point out
also a very different physical picture at Y and X ′ points [see
Figs. 8(a)–8(d)], which are equivalent in the scheme with the
four-spin unit cell.

There are three low-energy spin-0 excitations in the lon-
gitudinal channel whose spectra obtained in the harmonic
approximation of the BOT are shown in Fig. 6(b). To the
best of our knowledge, these quasiparticles have not been
discussed yet in the stripe phase by other approaches. It is seen
from Fig. 6 that their spectral weights are quite comparable
with those of spin-1 quasiparticles except for the vicinity of
M point and their energies are close to the high-energy parts
of magnon spectra. Renormalization of their spectra by first
1/n corrections are large as in the case of two high-energy
spin-1 excitations discussed above. Then, we present here
only the longitudinal DSF for five points in the BZ at J2 = 0.2
and J2 = 0.4 (see Fig. 8). It is seen from Fig. 8 that spectra
of almost all spin-0 excitations found self-consistently have

very small damping. Besides, spectral weights of anomalies
in the longitudinal DSF originating from spin-0 quasiparticles
rise upon approaching the SLP near which they are com-
parable with spectral weights of peaks produced by spin-1
quasiparticles in the transverse DSF. Energies of low-energy
spin-0 excitations are close to energies of low-energy spin-1
quasiparticles near the QCP. Possibly, some spin-0 and spin-
1 quasiparticles introduced here merge at the QCP forming
triplon excitations.

There is a special spin-0 quasiparticle corresponding to a
pole not in χ‖(k, ω) but in the four-spin correlator

χs(k, ω) = i
∫ ∞

0
dteiωt 〈[Ak(t ),A†

−k(0)]〉,

A j = S1 jS3 j − S2 jS4 j, (14)

where Sp j is the pth spin in the jth unit cell. In our previous
consideration of the similar two-sublattice collinear phase in
the Heisenberg antiferromagnet on the square lattice [22], we
call this elementary excitation “singlon” because the Bose op-
erator describing it creates a singlet spin state of the four-spin
unit cell in the harmonic approximation of the BOT [see inset
in Fig. 7(b)]. We show in Ref. [22] that the singlon produces a
broad peak in the Raman intensity in the B1g geometry, which
was observed, in particular, in layered cuprates. The spectrum
of singlon is dispersionless in the harmonic approximation
[see Fig. 6(b)], but first 1/n corrections lead to the dispersion
as it is seen from Fig. 7(b). Notice that there is no damping
in the singlon spectrum found self-consistently and shown
in Fig. 7(b). Interestingly, the singlon spectrum lies below
energies of all spin-0 and spin-1 excitations in some parts
of the BZ. The DSF built on four-spin susceptibility (14) is
shown in the inset of Fig. 7(b) at �, M, and M ′ points.

184415-8



DYNAMICS OF SPIN- 1
2 J1–J2 MODEL … PHYSICAL REVIEW B 106, 184415 (2022)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIG. 8. Same as Fig. 5 but for the transverse S⊥(k, ω) (11) and the longitudinal S‖(k, ω) (10) DSFs at points Y , X ′, K , P, and M ′ of the BZ
[see Fig. 1(b)] in the stripe phase at J2 = 0.2 and J2 = 0.4. DSFs obtained within the first order in 1/n have been convoluted with the energy
resolution of 0.01.
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(a) (b)

(c) (d)

FIG. 9. Same as Fig. 6 but for J2 = 1.

It is known that KCeS2 is described by model (1) in the
stripe state. However, an experimental test of our predictions
is impossible because neutron data obtained only on powder
samples are available now [31].

C. Transition to the spiral phase

Within the harmonic approximation of the BOT, the transi-
tion to the spiral order occurs at J2 = 1 as in the LSWT (see
Ref. [11]). Within both approaches, the velocity of the Gold-
stone magnon vanishes in the direction perpendicular to the
ferromagnetic chains at J2 = 1. As it is seen from Fig. 9(a),
there are three doubly degenerate spin-1 modes in the BOT
at J2 = 1 which are split at J2 < 1 [cf. Figs. 6(a) and 9(a)].
Figure 9(b) shows that energies of all spin-0 quasiparticles
move up upon approaching the transition to the spiral phase.

Further consideration of the spiral phase with the incom-
mensurate magnetic order is not simple within the BOT and it
is out of the scope of the present paper.

V. SUMMARY AND CONCLUSION

To conclude, we discuss dynamics of spin- 1
2 J1–J2 model

(1) on the triangular lattice using the bond-operator theory

(BOT) proposed in Refs. [22,23]. We calculate spectra of el-
ementary excitations and dynamical structure factors (DSFs)
in the first order in 1/n in the 120◦ and in the stripe ordered
states [see Fig. 1(a)]. All calculated static characteristics of
the model are in good agreement with previous numerical
findings (see Fig. 3). The domain of stability of the spin-liquid
phase (SLP) (3) is also in a good agreement with previous
numerical results.

In the 120◦ phase, we observe the evolution of quasipar-
ticles spectra and DSF (5) upon approaching the SLP (see
Fig. 5). We demonstrate strong modification by quantum
fluctuations of conventional magnons which is not captured
by the semi-classical spin-wave theory (SWT). Other con-
sidered elementary excitations were introduced first in our
previous paper [23] devoted to model (1) at J2 = 0. All ob-
tained quasiparticles produce visible anomalies in the DSF.
We demonstrate that the continuum of excitations moves
closer to the lowest well-defined magnon mode upon J2

increasing in agreement with previous numerical findings
[6]. The remaining two conventional magnon modes ac-
quire noticeable damping on the way to the SLP while
some other high-energy modes found in Ref. [23] remain
well defined and produce visible anomalies in the DSF. Our

184415-10



DYNAMICS OF SPIN- 1
2 J1–J2 MODEL … PHYSICAL REVIEW B 106, 184415 (2022)

results are in overall agreement with neutron data obtained in
KYbSe2.

In the stripe phase, we observe that the doubly degenerate
magnon spectrum known from the SWT is split by quantum
fluctuations which are taken into account more accurately
in the BOT. This splitting vanishes at the transition point to
the spiral phase (at J2 = 1). Similar splitting of two magnon
branches is observed by the BOT in the 120◦ phase that is
in quantitative agreement with the experimental data obtained
in Ba3CoSb2O9 [23]. As compared with other known results
of the SWT, we observe additional spin-0 and spin-1 quasi-
particles, which give visible anomalies in the longitudinal and
transverse DSFs (see Fig. 8) and which would appear in the
SWT as bound states of two and three magnons, respectively.
The energies of lowest spin-0 quasiparticles become closer
to energies of lower spin-1 excitations upon approaching the
SLP. Spectral weights of peaks produced by well-defined

spin-0 excitations are also increased on the way to the SLP
(see Fig. 8). We observe also a special well-defined spin-0
quasiparticle named singlon that produces a peak only in four-
spin correlator (14). The singlon is invisible in the longitudinal
DSF but its spectrum at zero momentum can be probed by
the Raman scattering. We find that the singlon spectrum lies
below spectra of all spin-0 and spin-1 excitations in some parts
of the Brillouin zone [see Fig. 7(b)].

We hope that our results will stimulate further theoretical
and experimental activity in this field.
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