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Scattering by circularly symmetric structured optical fields in stratified media
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Structured optical fields (SOFs) with spatially inhomogeneous phase, amplitude, or polarization can excite
substantially different optical responses in nanoscale scattering particles. Inhibition of low-order multipolar
resonances, excitation of dark modes and anapoles, and spin and orbital angular momenta dichroism have been
demonstrated, broadening the scope of nanoscale manipulations of optical resonances by using these engineered
external SOFs. However, studying scattering effects illuminated by SOFs is more complicated than conventional
plane wave illuminations, and the difficulty increases for scattering particles on a substrate. In this paper, we
present explicit expressions of SOFs propagating through stratified media, or multilayered systems, and provide
their beam-shape coefficients. Specifically, simple analytic expressions are provided for circularly symmetric
Bessel beams passing through an interface. Then, scattering calculations for a dielectric sphere on a substrate
illuminated by an evanescent optical vortex are performed via the T-matrix method, which yields accurate and
efficient results as compared with finite element analysis. This paper will find practical applications in modeling
SOFs for realistic configurations of scattering of particles on a substrate at nonplanar nonparaxial external light
source illuminations.
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I. INTRODUCTION

Subwavelength resonant particles are powerful tools for
manipulating light-matter interactions. By engineering the
shape and material of the particles and their arrangements,
many intriguing optical effects have been conceived in-
cluding artificial optical magnetism, nonradiating anapoles,
directional scattering [1], and electromagnetic chirality [2].
Due to the subwavelength size of the scattering particles,
the underlying physics of the optical phenomena are often
interpreted as pointlike multipole sources. In this frame-
work, exotic optical phenomena are often relevant to the
excitation and radiation of higher-order multipoles and their
interferences, which have been achieved by structured parti-
cles with peculiar morphologies typically under plane wave
illuminations.

Recent achievements in the generation and control of
structured lights [3] using spatial light modulators, digi-
tal micromirror devices, and metasurfaces would extend the
light-matter interactions in metaphotonics. Some widely stud-
ied structured optical fields (SOFs) include tightly focused
optical beams with localized hotspots and strong longitudinal
polarization component [4], optical vortex beams with helical
phase fronts and singularity of phase and amplitude [5], and
cylindrical vector beams with rotating polarization states [6].
Such SOFs with spatially inhomogeneous amplitude, phase,
or polarization states provide diverse optical effects arising
from engineered multipole excitations. For instance, SOFs
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with well-defined spin and orbital angular momenta can excite
dark modes [7,8] and anapoles [9] that cannot be probed
using ordinary plane waves due to the selection rule [10].
Also, the inhibition of low-order multipoles and the selective
excitation of higher-order multipoles [11,12] and the angular
momentum dichroisms [13,14] have been exploited. Simi-
larly, cylindrical vector beams have demonstrated excitations
of toroidal dipoles [15], anapoles [16–18], quasibound states
[19], as well as selective excitation of multipole resonances
[20]. In addition, evanescent fields with extraordinary spin
and momenta [21] may offer unconventional optomechanical
manipulations. For these potentials, light-matter interac-
tions between SOFs and structured particles are actively
researched.

To study these problems, accurate descriptions of SOFs, as
well as the particles, are required, and the T-matrix method
based on a multipole framework can be an accurate and ef-
ficient approach for scattering problems. First, to accurately
describe nonparaxial optical fields, vector angular spectrum
representation is widely utilized, which remodels the optical
field as a sum of partial plane waves [22]. The resulting optical
fields exactly satisfy Maxwell’s equations and therefore can
be multipole decomposed for scattering problems [23–26].
Recently, expressions of Bessel beams [27,28] and their mul-
tipole expansions [29] were reported.

In this paper, we provide explicit expressions of circularly
symmetric SOFs in stratified media. The optical fields are
exact Maxwellian fields modeled using the vector angular
spectrum representation, and the expression of their multipole
expansions is provided for scattering problems. Scattering
calculations for a dielectric sphere illuminated by an evanes-
cent optical vortex are demonstrated, and compared against
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finite element analysis. Superior numerical efficiency of the
semianalytic T-matrix method is confirmed, which can be
applied to parametric studies and optimization problems. Far-
field calculations are also demonstrated for the scattering of a
particle on a substrate. This paper demonstrates the T-matrix
method as a promising tool for studying fundamental physics
and solving engineering problems for scattering in stratified
media.

II. CIRCULARLY SYMMETRIC OPTICAL FIELDS

First, we discuss the formulation of SOFs in free space.
Paraxial beam models, such as paraxial Laguerre-Gaussian
beams [30], have widely been used to approximate SOFs, but
the error due to the paraxial approximation can be large for
strongly nonparaxial optical fields, such as tightly focused
beams. This paraxial error is especially large near the focal
point, which is usually the region of interest. Formulation
of exact optical fields is crucial for scattered field calcula-
tion, because the paraxial error can be captured in scattered
fields, causing erroneous results. Exact Maxwellian SOFs are
modeled using the vector angular spectrum representation that
expresses the optical fields as a sum of partial plane waves as
[22] E(r) = E0

∫
R2 d2k‖g(k‖)e(k‖)eik·r, where the integration

is performed over k space as d2k‖ = dkxdky, g(k‖) is the
angular spectrum or the weight of partial plane waves, and
e(k‖) is the complex unit polarization vector of partial plane

waves. By noting that kx = k sin α cos β, ky = k sin α sin β,
and dkxdky = k2 cos α sin αdαdβ, the optical fields can be
evaluated as

E(r) = E0

∫
dα sin αw(α)eikzz

∫ 2π

0
dβeilβeik‖·r

×
∑

q=p,s

Aq(β )eq(α, β ). (1)

Here, circularly symmetric SOFs with their beam weights of
the form w(α, β ) = w(α)eilβ are considered, where l is the
topological charge of the SOFs. The polarization modes are
split into p and s modes, or TM and TE modes with respect to
the multilayers. The unit polarization vectors are ep(α, β ) =
[cos α cos β, cos α sin β,− sin α]T and es(α, β ) = [− sin β,

cos β, 0]T . The polarization weights Ap(β ) = px cos β +
py sin β and As(β ) = −px sin β + py cos β are considered,
where px and py denote the polarization states in the parax-
ial limit. Under this definition, circularly polarized states
with (px, py) = (1,±i)/

√
2 can also be considered. Note

that Apep + Ases is the complex polarization vector found in
the Debye-Wolf vector diffraction theory, so the expressions
given in this paper can easily be extended to the optical fields
modeled by the Debye-Wolf theory with an appropriate choice
of w(α).

Equation (1) can be simplified by eliminating the integra-
tion with respect to β as

E(r) = E0

∫
dα sin αw(α)eikzz

∑
q=p,s

ẽq(α), (2)

where the partial cylindrical waves ẽq(α) = ∫ 2π

0 dβeilβeiσ cos (β−φ)Aq(β )eq(α, β ) are evaluated as

ẽp(α) = π il eilφ

⎡
⎢⎣

cos α[pxJl (σ ) − p+e2iφJl+2(σ ) − p−e−2iφJl−2(σ )]

cos α[pyJl (σ ) + ip+e2iφJl+2(σ ) − ip−e−2iφJl−2(σ )]

−2i sin α[p+eiφJl+1(σ ) − p−e−iφJl−1(σ )]

⎤
⎥⎦,

ẽs(α) = π il eilφ

⎡
⎣ pxJl (σ ) + p+e2iφJl+2(σ ) + p−e−2iφJl−2(σ )

pyJl (σ ) − ip+e2iφJl+2(σ ) + ip−e−2iφJl−2(σ )
0

⎤
⎦.

(3)

Here, the integral identities of Bessel functions∫ 2π

0 einβeix cos βdβ = 2π inJn(x) and k‖ · r = σ cos (β − φ)
were used; σ = kρ sin α, r = (ρ, φ, z) in the cylindrical
coordinate system, and p± = (px ∓ ipy)/2. Note that the
addition of these two results has the same functional form as
the circularly symmetric SOFs in free space [26–28]. Partial
cylindrical waves of cylindrical vector beams are provided in
Appendix A.

The SOFs discussed in this paper are Maxwellian, and
therefore can be exactly multipole decomposed. The mul-
tipole coefficients of SOFs, or the beam-shape coefficients
(BSCs), are necessary for further scattering calculations.
SOFs in free space and their BSCs have widely been stud-
ied including tightly focused laser beams [22,23], circularly
symmetric Bessel beams [27–29], and cylindrical vector
beams [26]. Refer to Appendix B for details on multipole
expansion.

III. STRUCTURED OPTICAL FIELDS IN
STRATIFIED MEDIA

Now, we discuss SOFs in stratified media, which can
describe many realistic scattering configurations including
particles on a substrate, on a spacer, and inside a finite layer.
Because we consider optical fields as a sum of partial plane
waves, SOFs in stratified media can be formulated by consid-
ering the propagation of each partial plane wave comprising
the SOFs. The plane wave propagation in stratified media
has been treated using the transfer matrix formulation. Then,
SOFs in a layer can be expressed as

E(r) = E0

∫
dα sin αw(α)

∫ 2π

0
dβeilβeik‖·r

×
∑

q=p,s

[
ciqeqeikizz′ + c(−)

iq e(−)
q e−ikizz′]

, (4)
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where kiz = nik0 cos αi, z′ = z − zi, zi is the reference z co-
ordinate of the layer, the subscript i denotes the layer index,
and the superscript (−) denotes backward propagating or re-
flected waves. The mode amplitudes ciq are obtained from the
transfer matrix calculations using the incident amplitudes Aq

introduced in the previous section.
Noting that the plane wave propagation in the stratified

media depends on the inclination angle α with respect to the
layers and polarization modes p and s and is independent
of β, the mode amplitudes can be expressed as ciq(α, β ) =
c̃iq(α)Aq(β ), where c̃iq is obtained using the unit incident
amplitude. By performing analytic integration with respect to
β as the previous section, the optical fields can be expressed in
simple forms using the partial cylindrical waves. Then, SOFs
in a layer are expressed as

E(r) = E0

∫
dα sin αw(α)

×
∑

q=p,s

[
c̃iqẽq(αi )e

ikizz′ + c̃(−)
iq ẽ(−)

q (αi)e
−ikizz′]

, (5)

where the backward propagating partial cylindrical waves are
ẽ(−)

p = [(ẽp)x, (ẽp)y,−(ẽp)z]T and ẽ(−)
s = ẽs. Note that this

simplification is only applicable for normally incident circu-
larly symmetric SOFs.

We provide simple demonstrations of SOFs propagat-
ing through stratified media using Laguerre-Gaussian beams
[Figs. 1(a) and 1(b)]. A Laguerre-Gaussian beam has its

beam weight w(α) = k2w2
0

4π
LGhl (

kw0
2 sin α), where LGhl (x) =

(
√

2x)|l|L|l|
h (2x2)e−x2

, w0 is the beam waist radius, Ll
h(x) is

the associated Laguerre polynomial, and the subscript h is the
radial index related to the number of radial fringes, and we
only consider the h = 0 case without any radial fringes. As
an example, we consider the propagation of SOFs through a
Fabry-Pérot resonator [Figs. 1(a) and 1(b)]. At the Fabry-Pérot
resonant condition, total transmission is expected for plane
waves or collimated beams [Fig. 1(a)], but focused beams
exhibit nonunity transmission [31], because tightly focused
SOFs including obliquely propagating partial plane waves re-
flect. This reflection is pronounced by the interference patterns
in the substrate side [Fig. 1(b)]. This nonunity transmission of
the focused beam can also be observed in its transmittance
spectra [Fig. 1(c)], which is obtained by numerically integrat-
ing the Poynting vector in the superstrate.

Because the optical fields in a layer is a superposition of
forward and backward propagating waves, their BSCs can be
obtained as a slightly more complex form compared to the
free space case with only forward propagating waves. BSCs
of SOFs in a layer [Eq. (5)] are obtained as

[
ae

nm
am

nm

]
= −8π2γnmil+n−m+1ei(l−m)φp

∫
dα sin αw(α)

×
{

p+eiφpJl−m+1(σp)

[
eikizz′

p[c̃isπnm(αi ) + c̃ipτnm(αi)] + (−1)n+me−ikizz′
p[c̃(−)

is πnm(αi ) + c̃(−)
ip τnm(αi )]

eikizz′
p[c̃isτnm(αi ) + c̃ipπnm(αi)] − (−1)n+me−ikizz′

p[c̃(−)
is τnm(αi ) + c̃(−)

ip πnm(αi )]

]

+ p−e−iφpJl−m−1(σp)

[
eikizz′

p[c̃isπnm(αi ) − c̃ipτnm(αi )] + (−1)n+me−ikizz′
p[c̃(−)

is πnm(αi ) − c̃(−)
ip τnm(αi )]

eikizz′
p[c̃isτnm(αi ) − c̃ipπnm(αi )] − (−1)n+me−ikizz′

p[c̃(−)
is τnm(αi) − c̃(−)

ip πnm(αi )]

]}
, (6)

where γnm =
√

(2n+1)(n−m)!
4πn(n+1)(n+m)! , πnm(α) = m

sin α
Pm

n (cos α), τnm(α) = d
dα

Pm
n (cos α), Pm

n (x) is the associated Legendre polynomial,

σp = ρpk1 sin α1, and z′
p = zp − zi. The particle is located at an arbitrary position inside the layer rp = (ρp, φp, zp) in the

cylindrical coordinate system assuming that the beam center is at the origin.

IV. STRUCTURED OPTICAL FIELDS PASSING THROUGH AN INTERFACE

We further consider a simpler configuration of a SOF passing through a single interface divided by two infinite half spaces,
where incident and reflected waves exist in the substrate (z < 0), and only forward propagating waves exist in the superstrate
(z > 0). In this configuration, each partial plane wave comprising the SOF experiences Fresnel refraction, so the mode amplitude
coefficients are given by the Fresnel coefficients. The incident, reflected, and transmitted fields are obtained as

Einc(r) = E0

∫
dα sin αw(α)[ẽp(α1) + ẽs(α1)]eik1zz,

Eref (r) = E0

∫
dα sin αw(α)

[
rpẽ(−)

p (α1) + rsẽ(−)
s (α1)

]
e−ik1zz,

Etra (r) = E0

∫
dα sin αw(α)[tpẽp(α2) + tsẽs(α2)]eik2zz. (7)

The Fresnel coefficients are given as tp = 2n1 cos α1
n1 cos α2+n2 cos α1

, rp = n1 cos α2−n2 cos α1
n1 cos α2+n2 cos α1

, ts = 2n1 cos α1
n1 cos α1+n2 cos α2

, and rs = n1 cos α1−n2 cos α2
n1 cos α1+n2 cos α2

,
where n1 and n2 are the refractive indices of substrate and superstrate, respectively. α1 = α is the incident angle in the substrate,
and the refracted angle in the superstrate α2 is obtained from Snell’s law n1 sin α1 = n2 sin α2. This single interface case will find
many useful applications, because this configuration is often encountered in scattering of particles on substrate or metasurfaces.
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FIG. 1. Gaussian beams passing through a Fabry-Pérot resonator,
inserted from left to right. (a), (b) The near-field distributions
of (a) collimated (w0 = 6λ0) and (b) focused (w0 = λ0) Gaussian
beams at λ0 = 0.5 μm ≈ 600 THz. (c) Transmittance spectra of the
collimated (black) and focused (blue) Gaussian beams and plane
wave (red). The refractive index of glass substrate is 1.43, and the
interfaces are illustrated by black solid lines. Scale bar: 1 μm = 2λ0.

For further simplicity, we consider a circularly sym-
metric Bessel beam with its weight given as w(α, β ) =

1
π (1+cos α)

δ(α−α0 )
sin α

eilβ , where the delta function eliminates the
integration with respect to α, and α0 is the inclination angle
of the Bessel beam. In other words, a Bessel beam consists
of partial plane waves propagating in a cone angled at α0.
The incident, reflected, and transmitted electric fields of a
circularly symmetric Bessel beam are obtained as

Einc(r) = E0

π (1 + cos α0)
[ẽp(α1) + ẽs(α1)]eik1zz,

Eref (r) = E0

π (1 + cos α0)

[
rpẽ(−)

p (α1) + rsẽ(−)
s (α1)

]
e−ik1zz,

Etra (r) = E0

π (1 + cos α0)
[tpẽp(α2) + tsẽs(α2)]eik2zz. (8)

This simple analytic expression can describe various kinds of
SOFs, which we briefly demonstrate below. First, optical vor-
tices with inhomogeneous phase distribution and well-defined
topological charge l can be described [Fig. 2(a)]. Optical vor-

FIG. 2. Structured Bessel beams passing through an interface.
Left panels show the xOz plane and right panels show the xy plane at
z = 100 nm. (a) Vortex Bessel beam with (px, py ) = (1, 0), l = 1,
and a0 = 20◦. The inset shows the phase of Ex . (b) Cylindrical
vector Bessel beam with (pρ, pφ ) = (1, 1), l = 0, and a0 = 20◦.
(c) Evanescent Bessel beam with (px, py ) = (1, 0), l = 0, and a0 =
45◦. (d) Evanescent vortex Bessel beam with (px, py ) = (1, i)/

√
2,

l = 1, and a0 = 45◦. Red and green arrows illustrate electric field
vectors with π/2 phase difference. Scale bar: 1 μm = λ0.

tices have rotating phase distribution around their beam axis.
Due to its phase singularity at the beam center, the amplitude
of the transverse part of the fields becomes zero and the
characteristic doughnut-shaped beam is formed. Cylindrical
vector beams with inhomogeneous polarization distribution
can also be implemented [Fig. 2(b)]. Cylindrical vector beams
have rotating polarization distribution around their beam axis,
and special cases include radially and azimuthally polarized
beams.

Compared to free space propagation, SOFs passing
through an interface can consider evanescent fields, which
arise when waves propagate from a layer with a higher re-
fractive index to a layer with a lower one at an incident
angle exceeding the critical angle. For instance, an evanes-
cent Bessel beam consisting of partial plane waves with the
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FIG. 3. Benchmark of scattering of a sphere on substrate illuminated by an evanescent optical vortex. (a) Schematic illustration of the
scattering configuration. (b) Multipole-decomposed scattering cross sections calculated semianalytically and numerically with finite element
analysis. (c), (d) Near fields calculated at λ0 = 350 nm (c) semianalytically and (d) numerically with FEM. The incident SOF is an evanescent
vortex Bessel beam with l = 1, α0 = 45◦, and polarization state (px, py ) = (1, i)/

√
2; the sphere has refractive index 3.5, positioned at rp =

(80 nm, 50 nm, 100 nm).

inclination angle exceeding the critical angle can be described
[Fig. 2(c)]. An exponential decrease in field intensity can be
observed in the superstrate. Interestingly, the field amplitude
maximum does not occur at the beam center. In fact, the
electric field distribution in the xy plane resembles that of
a dipole with two poles. Finally, a complicated SOF of an
evanescent optical vortex can be described [Fig. 2(d)]. An
evanescent optical vortex can trap particles and make them
revolve around the beam axis [32].

BSCs of circularly symmetric Bessel beams in the super-
strate [Eq. (9)] are obtained as[

ae
nm

am
nm

]
= − 8πγnm

1+cos α0
il+n−m+1ei(l−m)φpeik2zzp

×
{

p+eiφpJl−m+1(σp)

[
tsπnm(α2) + tpτnm(α2)
tsτnm(α2) + tpπnm(α2)

]

+ p−e−iφpJl−m−1(σp)

[
tsπnm(α2) − tpτnm(α2)
tsτnm(α2) − tpπnm(α2)

]}
.

(9)

BSCs in the substrate can be easily obtained by examin-
ing Eq. (6). The presented expressions of SOFs [Eq. (8)]

and their BSCs [Eq. (9)] have simple analytic forms, which
will make them useful for studying scattering of parti-
cles near a substrate, which we further discuss in the next
section.

V. SCATTERING BY STRUCTURED OPTICAL FIELDS

Here, scattering calculations are performed for a dielectric
sphere on a substrate illuminated by structured Bessel beams.
For benchmark purposes, a semianalytic calculation based
on the T-matrix method is compared against fully numerical
calculation based on finite element analysis. For the T-matrix
method, the substrate-mediate coupling should be considered
even for a single particle scattering problem. The direct scat-
tering from a particle reflects from the interface, and this
reflection acts as a secondary excitation field for the parti-
cle. This process involves the evaluation of Sommerfeld-type
integrals, which is the main technical difficulty of scattering
in stratified media. Refer to Refs. [33–35] for detailed calcu-
lation methods. For the finite element analysis, the scattered
fields are numerically calculated using the background fields
given by Eq. (8). The Maxwellian background fields are read-
ily implemented in finite element analysis solvers. Note that
scattered field calculation without any structures should result
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FIG. 4. Parametric studies on scattering of a dielectric sphere
on a substrate illuminated by a circularly symmetric Bessel beam.
(a) Schematic illustration of the scattering configuration. (b) Mul-
tipole strength depending on the gap distance g. The particle is at
rp = (80 nm, 50 nm, g + R). (c) Multipole strength depending on the
offset distance �x. The particle is at rp = (�x, 0, 100 nm). (d) Mul-
tipole strength depending on the inclination angle α0. The particle is
at rp = (80 nm, 50 nm, 100 nm). The inclination angle α0 is 45◦ for
(b) and (c); the polarization state is (px, py ) = (1, i)/

√
2.

in no scattered fields; this property can be used to confirm
if the background fields satisfy Maxwell’s equations. The
excited multipoles are computed from the localized induced
current densities [36,37]. The semianalytic scattering calcu-
lations were performed using MATLAB R2021b, and the finite
element analysis was performed using COMSOL MULTIPHYSICS

6.0.
First, we examine multipole-decomposed scattering of a

dielectric sphere on a substrate illuminated by an evanescent
vortex Bessel beam, where the sphere is positioned off axis for
benchmark purposes (Fig. 3). The semianalytically calculated
results (solid lines) and numerically calculated results (dots)
show excellent agreement [Fig. 3(b)]. Here, the semianalytical
calculation took around 0.33 s and the finite element analysis
took around 64 s using a desktop with its CPU AMD Ryzen
3900X. This factor 200 speedup shows that parametric studies
or optimizations can be performed. We further compare the
near fields calculated semianalytically [Fig. 3(c)] and numer-
ically [Fig. 3(d)]. The near fields consist of background and
scattered fields. The scattered fields in the superstrate consist
of direct radiation from the scattering particle and reflection
from the interface, and the scattered fields in the substrate
are described by the refracted fields from the interface. The
near fields calculated semianalytically and numerically show
excellent agreement.

The numerical efficiency of the T-matrix method allows
us to run parametric studies. To demonstrate this capability,
scattering calculations were performed for a dielectric sphere
at different positions with respect to the SOF [Fig. 4(a)].
First, we analyze the scattering as the sphere moves away
from the substrate [Fig. 4(b)]. The sphere is located at rp =
(80 nm, 50 nm, g + R), where g is the gap distance between
the substrate and the sphere, and R = 90 nm is the sphere
radius. As expected from the evanescent SOF, scattering

FIG. 5. (a) Schematic illustration of the far-field scattering
configuration. (b)–(d) Far-field radiation patterns at wavelengths
(b) 450 nm, (c) 500 nm, and (d) 650 nm. The radial part of power
flow normalized by the sphere circular area r̂ · 1

2 Re(E × H)/(πR2)
is plotted at r = 1 m.

weakens as the sphere moves away from the substrate. We
also analyze the scattering as the sphere moves away from
the beam center [Fig. 4(c)]. The sphere is located at rp =
(�x, 0, 100 nm), where �x is the offset distance from the
beam center to the sphere center. When the beam center �x =
0, dipolar resonances are inhibited and only higher-order mul-
tipole resonances are observed. As the sphere moves away
from the center, the inhibited dipole resonances at wavelength
500–700 nm become stronger. The dipole resonance is strong
at offset distance 200–300 nm, where the doughnut-shaped
beam has maximum intensity [Fig. 3(d)]. Finally, we analyze
the scattering as the Bessel beam inclination angle changes
[Fig. 4(d)]. Interestingly, the scattering becomes strong near
the critical angle θc = arcsin (n2/n1) ≈ 44.37◦.

A potentially useful application of the T-matrix method for
scattering calculations involving stratified media is far-field
calculation. Far-field scattering analysis in homogeneous me-
dia has widely been performed using the Stratton-Chu formula
[38], but the far-field calculation in stratified media requires
more complicated steps [39]. On the other hand, the T-matrix
method allows efficient evaluation of far-field radiation using
the stationary phase approximation [40], which assumes that
the wave vector parallel to the propagation direction should
be dominant in the far fields. Interestingly, strong emission is
observed at the critical angle θ = π − θc ≈ 135.6◦ (Fig. 5).
This phenomenon has been reported from the radiation of
electric dipole or multipole sources near substrate [41,42]. In
addition, transmission at an anticritical angle [43] is observed
at π/2 < θ < π − θc, where propagating plane waves cannot
access (Fig. 5). The evanescent part of scattering contributes
to this transmission at anticritical angles. This example illus-
trates that the existence of substrate can strongly modify the
emission and scattering properties.

VI. CONCLUSIONS

In this paper, we provide formulations of circularly sym-
metric SOFs propagating through stratified media [Eq. (5)]
and their BSCs [Eq. (6)]. Specifically, the simplest case
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of SOFs propagating through a single interface is analyzed
[Eq. (7)], which results in a simple analytic expression for
Bessel beams [Eq. (8)] and their BSCs [Eq. (9)]. These exact
expressions on SOFs propagating through stratified media will
provide more accurate results for many realistic scattering
configurations encountered in experiments that include sub-
strate, spacer, or finite encapsulation layer. Also, various SOFs
can be described including vortex beams, cylindrical vector
beams, and evanescent beams that provide many distinct scat-
tering configurations. In addition, the numerical efficiency
of T-matrix method is discussed, which significantly extends
the applications into optimization and design problems. Espe-
cially, this approach can rigorously treat scattering problems
involving a large number of particles [44], which could not be
considered using conventional numerical tools. Recently, this
multipole-based approach has been used to treat random dis-
ordered metasurfaces [45] and multiscale problems involving
molecules [46].

In addition, more diverse optical effects could be investi-
gated by incorporating stratified media, because the effective
polarizability of scattering particles can be modified near
the substrate or stratified media. For instance, quasiguided
mode resonances depend sensitively on the substrate, and the
symmetry of particles could be broken by the existence of
substrates. Also, optical coupling between resonant modes
of scatterers and layers could be studied for scatterers on
plasmonic or polaritonic films.
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APPENDIX A: CYLINDRICAL VECTOR BEAMS

Cylindrical vector beams can be considered by exchang-
ing (px, py) with pρ (cos β, sin β ) + pφ (− sin β, cos β ) that
results in Ap = pρ and As = pφ , where pρ and pφ correspond
to the radial and azimuthal polarizations, respectively. Follow-
ing the same procedure above, the partial cylindrical waves for
cylindrical vector beams are obtained as

ẽp(α) = pρπ il eilφ

⎡
⎢⎣

cos α[ieiφJl+1(σ ) − ie−iφJl−1(σ )]

cos α[eiφJl+1(σ ) + e−iφJl−1(σ )]

−2 sin αJl (σ )

⎤
⎥⎦,

ẽs(α) = pφπ il eilφ

⎡
⎢⎣

eiφJl+1(σ ) + e−iφJl−1(σ )

ieiφJl+1(σ ) − ie−iφJl−1(σ )

0

⎤
⎥⎦. (A1)

Here, the radially and azimuthally polarized modes corre-
spond to p and s polarized modes, respectively.

APPENDIX B: SPHERICAL VECTOR WAVE FUNCTIONS
AND MULTIPOLE EXPANSION

Electromagnetic fields satisfying Maxwell’s equations in
a homogeneous media can be decomposed in terms of the
regular spherical vector wave functions as

E(r) =
∞∑

n=1

n∑
m=−n

[
ae

nmN(1)
nm(r) + am

nmM(1)
nm(r)

]
, (B1)

where ae
nm and am

nm are the electric and magnetic parts of
multipole coefficients, respectively, and N(1)

nm and M(1)
nm are the

electric and magnetic parts of spherical vector wave functions.
The expressions of the basis vary by the literature, and our
choice is

M(1)
nm(r) = iγnm jn(kr)[iπnm(θ )θ̂ − τnm(θ )φ̂]eimφ,

N(1)
nm(r) = 1

k
∇ × M(1)

nm(r),
(B2)

where jn(x) is the spherical Bessel function of the first kind.
The multipole coefficients can be obtained as [47][

ae
nm

am
nm

]
jn(kr) = − ik

E0
√

n(n + 1)

∫
Y ∗

nm(r̂)

[
r · E

iηr · H

]
d�,

(B3)
where Ynm(θ, φ) is the spherical harmonics.

APPENDIX C: DERIVATION OF EQ. (6)

Equation (6), or BSCs of Eq. (5), can be evaluated by in-
serting the cylindrical waves [Eq. (5)] into Eq. (B3) following
the procedure in Ref. [29]. Here, we provide an alternative
approach that decomposes plane waves [Eq. (4)]. We start
from plane wave propagation in a stratified media expressed
as

E(r) = E0eik‖·r
∑

q=p,s

[
ciqeqeikizz′ + c(−)

iq e(−)
q e−ikizz′]

, (C1)

the BSCs of which are evaluated as[
ae

nm
am

nm

]
= −4πγnmine−imβeik‖·rp

×
{[

cip

[
τnm(αi )
πnm(αi )

]
+ cis

[−iπnm(αi )
−iτnm(αi)

]]
eikizz′

p

+ (−1)n+m

[
c(−)

ip

[
τnm(αi )

−πnm(αi )

]

+ c(−)
is

[−iπnm(αi )
iτnm(αi )

]]
e−ikizz′

p

}
. (C2)

This expression shares the same functional form with the
transformation coefficients of spherical wave expansion of
plane waves, and the sign changes of backward propagating
waves come from the parity of spherical harmonics. BSCs of
Eq. (4) in two-dimensional integral form can be easily ob-

184414-7



MUN, KIM, MOON, AND RHO PHYSICAL REVIEW B 106, 184414 (2022)

tained by referring to Eq. (C2), from which the simplification
with respect to β can be performed by noting that ciq = c̃iqAq,

Ap(β ) = eiβ p+ + e−iβ p−, and As(β ) = ieiβ p+ − ie−iβ p−, re-
sulting in Eq. (6).
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S. Fan, and J. Vučković, Low-overhead distribution strategy
for simulation and optimization of large-area metasurfaces, npj
Comput. Mater. 8, 78 (2022).

[45] A. Rahimzadegan, D. Arslan, R. N. S. Suryadharma, S.
Fasold, M. Falkner, T. Pertsch, I. Staude, and C. Rockstuhl,
Disorder-Induced Phase Transitions in the Transmission
of Dielectric Metasurfaces, Phys. Rev. Lett. 122, 015702
(2019).
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