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Constructing quantum many-body scar Hamiltonians from Floquet automata
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We provide a systematic approach for constructing approximate quantum many-body scars (QMBS) starting
from two-layer Floquet automaton circuits that exhibit trivial many-body revivals. We do so by applying
successively more restrictions that force local gates of the automaton circuit to commute concomitantly more
accurately when acting on select scar states. With these rules in place, an effective local, Floquet Hamiltonian is
seen to capture dynamics of the automaton over a long prethermal window. We provide numerical evidence for
such a picture and use our construction to derive several QMBS models, including the celebrated PXP model.
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I. INTRODUCTION

Understanding how thermalization arises from unitary
evolution remains a fundamental challenge in the study of
nonequilibrium quantum dynamics. The Eigenstate Thermal-
ization Hypothesis (ETH) [1,2] postulates that eigenstates
of many-body quantum systems themselves encode thermal
correlations when viewed by a local observer. Although ETH
has been numerically verified in a wide variety of quantum
systems [3–5], several important exceptions are known that
challenge its associated dogma. The most prominent of these
are integrable systems which occur in models with fine-tuned
parameters [6], and many-body localized systems [7–10]
where more robust local integrals of motion [11] emerge due
to strong disorder. These systems exhibit a lack of level repul-
sion at all energies and a hallmark of nonergodicity, and have
certain persistent quantum correlations [12–14].

More recently, an experiment in a chain of Rydberg atoms
found dramatic revivals in many-body quantum correlations
after apparent relaxation, only when the system is initial-
ized in specific states [15]. It is now understood that certain
quantum systems can break ergodicity weakly [16], by only
violating the ETH over a subextensive number of eigenstates.
These systems have been dubbed quantum many-body scars
(QMBS) [17], generalizing the phenomenon well known in
the single-particle setting [18]. Since the initial findings, low-
entanglement eigenstates in the middle of the spectrum have
been discovered in well-known models [19,20] and a number
of theoretical proposals for constructing new QMBS Hamilto-
nians have been put forth, with the aid of spectrum generating
algebras [21–24], projective constructions [25], matrix prod-
uct state representations [26], among others; see Ref. [27] for
a more exhaustive list of references.

Crucially, these proposals yield Hamiltonians where the
scar eigenstates are known exactly. These scar eigenstates
appear in group of degenerate eigenstates called towers, where
adjacent towers are separated in energy by the same amount
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�E . Low-entanglement states can generally be constructed
from these scar eigenstates and are seen to exhibit perfect
revivals in correlations with a period T ∼ 1/�E indefinitely.
This is in contrast to the experimentally motivated PXP
model [16,17,28] which hosts approximate scar eigenstates
and in which many body revivals decay over a long but finite
duration. The corresponding scar towers are only approxi-
mately equidistant in energy, implying that low-entanglement
states obtained from a superposition of scarred eigenstates
do not show perfectly regular revivals due to slow dephas-
ing. Although weak perturbations may be added to exact
QMBSs to obtain such a decay of revivals, it remains a
challenge to explain the existence of QMBS Hamiltonians
such as the PXP model that have no small parameter, as
well as uncover what sets the timescale for the decay of
quantum revivals.

In this work, we illustrate general principles to derive (both
exact and approximate) QMBS Hamiltonians without any
small parameters, starting from Floquet automaton (unitary)
circuits, and show how a timescale for the decay of revivals
naturally emerges in this setting. Automatons have a long and
rich history of study, arising from their intriguing dynamical
properties in both the classical [29] and quantum settings
[30–33], and are often associated with systems with state
space [34–36] or kinetic constraints [37–40].

The Floquet automata considered in this work are unitary
circuits that effect permutations of computational basis states
on a chain of qubits (although more general automata can
be adopted). For the automata considered, the Hilbert space
is naturally fragmented into disjoint subspaces of computa-
tional basis states which are cycled through with successive
applications of the automaton circuit. Thus, all computational
basis states revive at fixed (but different) time intervals. It is
natural to ask if these automata, which can be described as
simple unitary circuits in the quantum setting, can be used to
construct QMBS Hamiltonians which show similar revivals.
We find that the answer is yes, and the principles uncovered
can be used, for instance, to derive the PXP model, reveal
timescales that govern the relaxation, and obtain new QMBS
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FIG. 1. (a) A quantum cellular automaton (Floquet unitary UF )
that converts one Néel state to another; (b, d) local commutation
rules of Type I and II, respectively, enforced on the orbit subspace;
(c) global rules.

models that show revivals for arbitrarily chosen computational
basis states.

For concreteness, we focus on automata with a two-layer
brickwork circuit, illustrated in Fig. 1(a), which is composed
of the elementary gate U0 and whose Floquet unitary is
given by UF = e−iAe−iB, where A, B are local Hamiltonians
related by translation. Here A can be thought to be a sum
of local, spatially disjoint Hamiltonians Aj ≡ i logU0, j (to be
made more precise later). A naive application of the Baker-
Campbell-Hausdorff (BCH) formula to obtain a Hamiltonian
from UF is bound to fail as higher order BCH terms blow up in
amplitude quickly while growing more nonlocal. Instead, we
ask when the local Hamiltonian, Heff = A + B, can reproduce
dynamics generated by UF on a subspace of chosen “orbit”
states, by virtue of forcing higher-order BCH terms to re-
main small (or ideally vanish) in this subspace. In particular,
defining Cn(A, B) as the nth order term in the expansion, we
formulate rules that strongly suppress ||Cn(A, B)Po||, where
Po is the projector onto the orbit subspace. Note that this
bounds both ||PoCnPo||, which governs the corrections to the
dynamics within the subspace of chosen orbit states, and
||(1 − Po)CnPo||, which governs the leakage from the orbit
states into “generic” states. In fact, forcing all CnPo terms to
vanish identically ensures that the Hamiltonian Heff = A + B
admits certain eigenstates that are eigenstates of both A and
B separately [41]:—it is these select eigenstates, which if
small in number, and possessing low entanglement, become
the scarred eigenstates of the Hamiltonian Heff. The latter is
naturally the case if A is composed of a set of spatially disjoint
local Hamiltonians, for instance, as we assume. In fact, to
derive QMBS Hamiltonians, a natural starting point may be to
consider Hamiltonians H = A + B and devise rules such that
A, B have a finite set of common, low-entanglement eigen-
states. Importantly, the connection to an underlying automaton
further guarantees that eiAn = 1 for some integer n, and forces
the eigenvalues of A (and similarly B) to be equidistant in
energy, another crucial property of QMBSs which leads to
observable many body revivals. (In a separate work, it will
be shown that all midspectrum excited states of the spin-1
AKLT model can be found by finding common eigenstates
of appropriate partitions [19].)

Beyond providing us with some principles to construct new
QMBS Hamiltonians, the reference to automata also sheds

light on the possible mechanism of decay of revivals in im-
perfect QMBSs. Two putative timescales emerge. First, the
terms of the BCH expansion neglected in Heff give rise to
leakage from ideal transition between orbit states as predicted
by the automaton circuit; the corresponding timescale τl is
governed by the inverse of ||(1 − Po)CnPo|| (for some finite
n), and second, a prethermal timescale τp ∼ en0 emerges that
justifies the truncation of Heff to finite order—although the
rules are designed to suppress BCH terms on orbit states,
they eventually begin to grow at some higher order n0. We
find evidence of such phenomenology in the PXP model.
In particular, there is an associated Floquet automaton [33]
which yields the PXP Hamiltonian upon truncation of the
BCH series. We find that BCH terms initially decrease with
increasing order n, characteristic of the amplitude of terms
in the Floquet-Magnus (FM) expansion [42] in the high fre-
quency limit, with a period T < 1. This behavior is suggestive
of a prethermalization [43–46] window τp ∼ e1/T wherein a
truncated Hamiltonian can be justified. The parameter T is
an emergent timescale that comes from the suppression of
commutators in our case and is not intrinsic to the two two-
layer automaton which has a unit drive period. Next, we also
find that adding higher order BCH terms to the PXP model
improves revivals, up to the order above which the BCH
series starts diverging again. Furthermore, these additional
BCH terms correspond well with terms other authors have
found using symmetry arguments in helping improve revivals
in the PXP model [23,47]. In this setup the amplitude of
these terms is fixed by the BCH expansion and not numerical
optimization.

This manuscript is organized as follows. In Sec. II we detail
the two-layer automata circuits we consider, with UF = UAUB,
discuss the fragmentation of the Hilbert space into sets of
orbits, and the Floquet eigenstates of this system. We then dis-
cuss how we define the local Hamiltonians A, and B from such
automata. Section III describes how we obtain a set of rules
that can be used to generate scarred eigenstates in the effective
Hamiltonian Heff = A + B and in particular embed certain
(arbitrarily chosen) computational basis states in this scarred
subspace. Section IV then describes a series of new models
QMBS-A,B,C that we arrive at, using the methodology pro-
posed, along with the PXP model. In Sec. V we first provide
evidence that the models show scar phenomenology and are
nonintegrable. The models QMBS-A,B,C exhibit successively
stronger revivals (with QMBS-C exhibiting perfect revivals),
in accordance with the fact that higher order BCH terms are
more strongly suppressed in each successive model as per our
construction. In Sec. VI we discuss the amplitude of terms
in the BCH expansion which connects the automaton to the
Hamiltonian—for the PXP model, we find the amplitude of
these terms show similar nonmonotonic behavior expected in
systems driven at high frequencies, indicating the possibility
of a prethermalization window; adding more BCH terms to
the PXP model also appears to improve revival strength and
regularity. The evidence for such behavior is, however, limited
in the other models we study. We end with Sec. VII where
we discuss some questions that are raised by this approach
and which need further analysis besides summarizing our
findings.
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FIG. 2. Example of a permutation gate U0 acting on four adjacent
qubits.

II. UNDERLYING CELLULAR AUTOMATON
AND ASSOCIATED HAMILTONIAN

A. Physical setting

The quantum cellular automata considered in this work can
be represented by a unitary circuit composed of two layers
acting on a one-dimensional chain of L qubits with periodic
boundary conditions. The two layers combined are denoted
by UF , as shown in Fig. 1(a). Each layer is composed of local
unitary gates U0 that permute the computational basis states
of the Hilbert space on which they act locally (the gates are
chosen to have support on four qubits in this work) as well
as multiplying them by a phase phq; see Fig. 2. Furthermore
it is assumed that there exists an integer n such that U n

0 = 1
which follows naturally from the permutation structure of the
unitary U0 provided the phases accrued also satisfy certain
conditions; see Sec. II B. As mentioned in the introduction,
having U n

0, j = 1, with n finite is key to obtaining a scar sub-
space with equidistant eigenvalues embedded in an otherwise
thermalizing spectrum. In the case of the U0 considered in this
work, UF itself is a permutation of the set of computational
basis states that spawn the entire Hilbert space. This implies
that UF can be decomposed into a set of disjoint cycles con-
taining successive computational basis states obtained upon
successive application of UF to a given state; see Fig. 3. This
fact can be used to solve exactly for the Floquet eigenstates of
UF , as discussed in Sec. II B.

The first layer of the circuit can be described as the expo-
nential of a Hamiltonian B such that e−iB yields the first layer

FIG. 3. Example of a cycle of length 4 produced by the quantum
cellular automaton UF .

of the circuit. Similarly, the second layer is associated with a
Hamiltonian A; see Fig. 1(a). The exact definition of A and B
is given in Sec. II C.

The sites on which the automata acts are labeled with the
index j ∈ {1, 2, 3, 4, . . . , L}. The local unitary gate U0, j is
defined to act on the sites { j, j + 1, j + 2, j + 3}. With this
notation, the unitaries corresponding to the first and second
layers are

e−iB =
L/4∏
j=1

U0,4 j−1, e−iA =
L/4∏
j=1

U0,4 j−3; (1)

see Fig. 1(a).

B. Eigenstates and eigenvalues of UF

The eigenstates of UF can be obtained from the cycles
that the computational basis states undergo upon evolution
by UF . Indeed, suppose that UF produces a cycle of length
l given by the sequence of computational basis states |q〉 →
|σ (q)〉 → |σ 2(q)〉 · · · |σ l−1(q)〉 → |q〉 where |q〉 represents
the qth computational basis state, and σ n(q) corresponds to
the n consecutive applications of the permutation σ associated
with UF on the state |q〉 (UF simply permutes the computa-
tional basis states up to a phase). Supposing that the unitary
UF has only matrix elements 0 or 1 (no phase is acquired
due to UF ), one directly observes that the quantum state
|q〉 + |σ (q)〉 + · · · + |σ l−1(q)〉 is an eigenstate of the Floquet
unitary with an eigenvalue of 1. More generally, it is easy to
show that states of the form

|m, q1〉 = 1√
l

l−1∑
k=0

eiαkU k
F |q1〉 (2)

with

β = � + 2πm

l
, � = −i log

(〈q1|U l
F |q1〉

)
,

αk = −kβ, m ∈ {0, 1, . . . , l − 1} (3)

form a complete orthonormal eigenbasis of UF , where |q1〉
in Eq. (2) is a computational basis state appearing in a given
cycle of length l and eiβ is the eigenvalue of the state |m, q1〉.
For a given |q1〉, distinct values of m yield distinct eigen-
values which implies that the obtained states are mutually
orthogonal. Eigenstates corresponding to different cycles are
composed of different computational basis states, so they
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necessarily are orthogonal to each other. Thus, a complete or-
thonormal basis can be obtained by selecting a representative
state |q1〉 in each cycle and the eigenvalue m. Note that if an
integer n such that U n

0 = 1 is to exist, it must be the case that
all the β are integer fractions of 2π which is equivalent to
requiring that all � associated with distinct |q1〉 are an integer
fraction of 2π .

Equations (2) and (3) show that Floquet eigenstates |q1, m〉,
with m ∈ {0, . . . , l − 1}, when viewed as eigenstates of a cor-
responding Floquet Hamiltonian HF (such that e−iHF t = UF ),
correspond to eigenstates separated by a multiple of the con-
stant energy difference �E = 2π

l . The computational basis
states that appear in a given cycle of small length are thus
ideal candidates as area-law entanglement states to embed
in a physical model related to UF . How this can be done is
discussed in Sec. III. First, however, we discuss how Hamil-
tonians A and B are precisely defined from the two-layer
automata considered.

C. Local Hamiltonians from quantum cellular automata

We note that Hamiltonians A and B are not uniquely
defined from UF —there exist multiple Hamiltonians that
yield UF when exponentiated. Since a single layer of UF is
composed of spatially decoupled unitaries U0, we can also
construct A and B from local Hamiltonians satisfying

h0, j = i logU0, j . (4)

This equation alone does not uniquely specify h0, j , but
this ambiguity can be lifted by writing U0, j in terms of the
orthonormal Floquet eigenstates obtained from Eq. (2), which
yields

U0, j =
24∑

k=1

eiβk |βk〉 〈βk| . (5)

|βk〉 are the Floquet eigenstates of U0, j as defined in Eq. (2).
h0, j is then defined as

h0, j ≡ −
24∑

k=1

β̃k |βk〉 〈βk| , (6)

where β̃k is −i times the principal logarithm of eiβk , implying
β̃k ∈ (−π, π ]. The Hamiltonian which we will force to sup-
port quantum scars is the strictly local Hamiltonian

H = A + B (7)

with A = ∑L/4
j=1 h0,4 j−3 and B = ∑L/4

j=1 h0,4 j−1. A can thus be
understood as the logarithm of the second layer of UF and B
as the logarithm of the first layer; see Fig. 1(a).

D. Distinction between UF and e−i(A+B)

So far nothing guarantees that the extracted Hamiltonian
A + B mimics the underlying quantum cellular automaton in
any meaningful way. This is because the original Floquet uni-

tary UF = e−iAe−iB and the time evolution operator associated
with the A + B Hamiltonian e−i(A+B) at t = 1 are not equal in
general. The reason for this discrepancy can be understood
once we interpret the automaton UF as the result of a periodic
driving of the system. Indeed, successive applications of the
Floquet unitary UF to a quantum state |ψ〉 is equivalent to
the time evolution at even integer times resulting from the
stroboscopic driving of the quantum system with the Hamilto-
nians H = A, H = B for equal times. The floquet unitary UF

can alternatively be captured by a Floquet Hamiltonian HF

such that UF = e−iHF ; HF is formally given by the Floquet-
Magnus expansion. In particular, this expansion reduces to the
well-known Baker-Campbell-Hausdorff (BCH) expansion in
the case of the driving described above.

The first few terms of the BCH expansion are given by

HF = A + B − i

2
[A, B]

− 1

12
([A, [A, B]] − [B, [A, B]]) + · · · . (8)

The ith BCH term is denoted by Ci, where the 0th order term
is A + B. For instance,

C0 = A + B, C1 = −i

2
[A, B],

C2 = − 1

12
([A, [A, B]] − [B, [A, B]]), . . . . (9)

Importantly, the amplitude of terms in this series quickly
diverges, owing to the proliferation of the number of nonzero
commutators of local terms. This implies that HF cannot gen-
erally be approximated by its first-order term A + B and thus
e−i(A+B) |ψ〉 	= e−iAe−iB |ψ〉 in general. However, as we will
show in the next sections, it is possible to obtain sets of rules
which, if all or part of them are satisfied, ensure that some
of the subspaces associated with cycles of UF are preserved
or approximately preserved by H = A + B. One useful set of
local rules can be obtained by realizing that the local Hamilto-
nians h0, j assume a special decomposition in terms of powers
of U0, j as we discuss next.

III. RULES THAT GUARANTEE THE PRESENCE
OF QUANTUM SCARS

A. Writing H as a linear superposition of powers
of simple unitary gates

The local unitary gates considered in this work are chosen
such that there exists an integer n for which U n

0, j = 1. Pro-
vided U n

0, j = 1, along with the definition of h0, j specified in
Eq. (6), one can show that

h0, j = i logU0, j =
m−1∑
k=0

ckU
k
0, j (10)

for some set of coefficients ck . An exact recipe for obtaining
the coefficients ck is given in Appendix C; we note here that
in Eq. (10), the integer m � n (where U n

0, j = 1). In other
words, it is possible that not all powers of U0, j up to n are
required to construct h0, j . This is the case for the PXP model
for which U 4

0, j = 1, but 1,U0, j,U 2
0, j are sufficient to obtain
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h0, j = PXP j ; see Table II for a definition of U0, j and h0, j in
the PXP model.

B. Global rules

Equation (10) can be leveraged to construct a set of rules
that will ensure that some chosen area law entanglement states
are common eigenstates of A and B. Indeed, provided a de-
composition of h0, j in terms of powers of U0,i, one can rewrite
A and B as

A =
L/4∑
j=1

n∑
k=1

ckU
k
0,4 j−3, (11)

B =
L/4∑
j=1

n∑
k=1

ckU
k
0,4 j−1. (12)

Next, consider the subspace spawned by a specific cycle of UF

that has length l and define the projector Po to be the projector
onto the computational basis states that compose the cycle

P0 =
l∑

k=1

|σ k (q)〉 〈σ k (q)| . (13)

The states that appear in this cycle are the area-law en-
tanglement states chosen here to be embedded as a linear
superposition of common eigenstates of A and B. A sufficient
condition to embed the subspace spawned by P0 is to enforce
that e−i(A+B)P0 yields the same result as e−iAe−iBP0. For this
to be true, it is sufficient to require that

[Aa, Bb]Po = 0, ∀a, b, (14)

where a, b are positive integers. This set of rules is a necessary
and sufficient condition for the existence of a set of common
eigenstates [48] of A and B denoted here by S which will
spawn the computational basis states that appear in P0. Such
rules are dubbed global rules; see Fig. 1(c). Satisfaction of
all such global rules ensures QMBS phenomenology since
the dynamical evolution of the computational basis states that
appear in P0 undergo a periodic cycle in accordance with
the dynamical evolution prescribed by the underlying Flo-
quet automaton instead of quickly thermalizing. Furthermore,
provided the dimension of the common eigenstate subspace
S grows at most polynomially with system size, then the
common eigenstates of A and B will necessarily have low
entanglement since linear combinations of such states must
spawn the low-entanglement states that appear in P0. As a
consequence, the common eigenstates of A and B appear as
scar eigenstates of H = A + B and form scar towers.

Since A and B are sums of spatially decoupled unitary
gates, powers of A and B are given by

Aa =
(

L/4∑
j=1

n∑
k=1

ckU
k
0,4 j−3

)a

,

Bb =
(

L/4∑
j=1

n∑
k=1

ckU
k
0,4 j−1

)b

, (15)

and generic terms in AaBbP0 take the form

L/4∏
j=1

U
α4 j−3

0,4 j−3

L/4∏
j=1

U
α4 j−1

0,4 j−1Po (16)

up to a multiplicative constant, for some set of positive in-
tegers α j including 0. Thus, in order to satisfy the identity
[Bb, Aa]Po = 0 for arbitrary integers a and b, it is sufficient to
require that the expression

L/4∏
j=1

U
α4 j−3

0,4 j−3

L/4∏
j=1

U
α4 j−1

0,4 j−1Po =
L/4∏
j=1

U
α4 j−1

0,4 j−1

L/4∏
j=1

U
α4 j−3

0,4 j−3Po (17)

is satisfied for all possible set of α j . Note that a dis-
tinct condition can be obtained by considering the alternate
representation

Aa =
(

L/4∑
j=1

h0,4 j−3

)a

, Ba =
(

L/4∑
j=1

h0,4 j−1

)b

, (18)

which leads to the condition
L/4∏
j=1

h
α4 j−3

0,4 j−3

L/4∏
j=1

h
α4 j−1

0,4 j−1Po =
L/4∏
j=1

h
α4 j−1

0,4 j−1

L/4∏
j=1

h
α4 j−3

0,4 j−3Po. (19)

As will be discussed next, conditions (17) and (19) lead to
distinct sets of local rules, dubbed rules of type I and II,
respectively.

C. Local rules of type I

Conditions (17) and (19) can be further reduced to simple
local rules that only involve a small set of unitary gates. The
set of local rules associated with condition (17) is given by

U s1
0, jU

s3
0, j+4U

s2
0, j+2 |σ k (q)〉 = U s2

0, j+2U
s1
0, jU

s3
0, j+4 |σ k (q)〉 ,

∀si ∈ {0, 1, 2, . . . , n − 1},
∀ j ∈ {1, 3, 5, . . . , L − 1},

U n
0, j = 1, ∀k ∈ {1, 2, . . . , l}, (20)

where |σ k (q)〉 are the states that appear in P0. These rules are
denoted rules of type I [see Fig. 1(b)] and a graphical proof
that they indeed ensure that Eq. (17) is satisfied is provided in
Fig. 4. A remarkable property of type I rules is that they are
finite and independent of the system size if the states |σ k (q)〉
are translationally invariant. More precisely, given the small-
est integer m such that S2m |σ k (q)〉 = |σ k (q)〉 where S is the
operator translating all sites by one to the right, then the total
number of sites j one needs to check for the rules associated
with the state |σ k (q)〉 is reduced to j ∈ {1, 3, . . . , 2m − 1}.

D. Local rules of type II

If condition (19) is considered instead of condition (17),
one obtains a different set of local rules given by

hs1
0, jh

s3
0, j+4hs2

0, j+2 |σ k (q)〉 = hs2
0, j+2hs1

0, jh
s3
0, j+4 |σ k (q)〉 ,

∀si ∈ {0, 1, 2, . . . , n − 1},
∀ j ∈ {1, 3, 5, . . . , L − 1},

U n
0, j = 1, ∀k ∈ {1, 2, . . . , l}, (21)
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FIG. 4. (a) Half the gates from the second layer are sent forward
producing a circuit with three layers. (b) Within each triangle (fo-
cusing on the red one), gates from the second layer are sent forward.
(c) Within the resulting configuration, the middle gate of the second
layer is sent to the first layer. (d) The side gates are sent from the
third layer to the first layer (note that this is a two-step operation
for each side gate). The resulting arrangement of gates shows that
by making use of the commutation rules, it is possible to send gate
U α7

0 from the third layer to the first layer in b). Repeating this
procedure on each triangle proves that satisfying the local unitary
rules is sufficient to ensure that [Aa, Bb]P0 = 0 for arbitrary integers a
and b.

which are denoted rules of type II; see Fig. 1(d). A key distinc-
tion with rules of type II is that nothing ensures the existence
of an integer n such that hn

0, j = 1. However, it is easy to see
from the decomposition (10) that hn

0, j can always be written as
a linear superposition of smaller powers of h0, j ; this restricts
si to be less than n; see Appendix G for more details. As
discussed in Sec. III A, there is a possibility that not all powers
of U0, j up to n are actually required to build h0, j . This is also
the case when considering a decomposition of h0, j in terms of
smaller powers of itself. Indeed, there can exist an integer m
smaller then n such that hm

0, j can be written as a linear super-
position of smaller powers of h0, j which can further reduce
the set of integers si one actually needs to check. For instance,
this is true in the PXP model for which h3

0, j = π2

4 h0, j . See
Table II for the definition of the h0, j associated with the
PXP model.

Another key distinction between rules of type I and rules
of type II is that whenever a rule of type I is broken, BCH
terms at all orders become nonvanishing. While since the
BCH expansion is organized in terms of commutators of
h0, j , higher powers of h0, j in commutators only emerge at
higher order in the BCH expansion. Thus, satisfying lower
powers of the type II rules may be important in enforc-
ing prethermal behavior and stabilising scar phenomenology
in the truncated Hamiltonian (although there is no distinc-
tion between the two set of rules when all of them are
satisfied).

A final reason to consider type II rules is that one could
in principle completely ditch any reference to automata and
try to find Hamiltonians which satisfy these local rules to
yield common eigenstates with low entanglement—the real
purpose of the connection to an underlying automaton is to
ensure scar phenomenology and to restrict the search for h0, j

to Hamiltonians which yield a finite set of distinct operators
hi

0, j with i ∈ {0, . . . , n − 1}.

IV. BUILDING MODELS THAT SATISFY LOCAL RULES

It was shown in Sec. III that satisfying all local rules is
sufficient to ensure the protection of the subspace spawned by
the states that appear in P0.

We note that the rules rely on two choices: (1) the unitary
U0 which is determined, in the case we consider, by the per-
mutation it generates over computational basis states, along
with the phases accrued, and (2) the set of computational
basis states |σ k (q)〉, k = 1, . . . , l , we choose to embed in the
putative scar subspace, the projector to which is given by P0.
Now, given the above structure, we note that the rules of type
I, given in Eq. (20), are either exactly satisfied (for a given
choice of s1, s2, s3 and |σ k (q)〉), or the left- and right-hand
sides of Eq. (20) produce entirely different computational
basis states and/or phases. Thus, we can simply count the
number of rules that are satisfied. The situation is trickier
for the set of local rules given in Eq. (21), in that the local
Hamiltonians h0, j will generically produce entangled states
upon acting on computational basis states in P0, and it may be
useful to quantify the violation of the rules using a suitable in-
ner product between the left- and right-hand sides of Eq. (21).
For simplicity, for a search of model Hamiltonians with scar
subspaces which we perform next, we restrict ourselves to
rules of type I and simply enumerate the number of rules (out
of a maximum determined by enumerating the allowed values
of s1, s2, s3, k).

A. Explicit model search

There is a total of 16! permutations of the set of compu-
tational basis states that spawn the four qubits Hilbert space
on which U0, j acts and if phase is allowed, the space of
possibilities is effectively infinite. The size of the search space
makes it prohibitively hard to study exhaustively. To remedy
this problem, we choose to restrict U0 to act trivially on the
rightmost qubit while also preventing phase from being ac-
quired. This produces a set of 8! possible unitary gates which
can be studied exhaustively. The search space was further
reduced by considering unitary gates such that U 6

0, j = 1. The
chosen subspace to protect is given by the two Néel states
|q〉 = |1, 0, 1, . . .〉, |σ (q)〉 = |0, 1, 0, . . .〉, such that UF |q〉 =
|σ (q)〉 ,UF |σ (q)〉 = |q〉. This constrained search results in
three models presented in Table I, which satisfy 70/350,
246/350, and 350/350 of the applicable type I rules, re-
spectively. The unitary gates are represented in Table I by a
permutation and a phase map (in this case trivial) which are
defined in Appendix A. The total number of relevant rules for
each model is discussed in Appendix B.

B. PXP model

Outside of this search, the PXP model is also studied in as-
sociation with an underlying automaton. The circuit geometry
is different due to the fact that the PXP model has a unit cell
composed of one qubit, i.e., UF = ∏L/2

j U0,2 j−1
∏L/2

j U0,2 j

and U0 in this case is a Toffoli gate which acts on three
qubits. Note also that adjacent gates U0, j,U0, j+2 commute
in the PXP model, so the first and second layer can be seen
as a product of decoupled gates and the formalism devel-
oped in Sec. III applies. Finally, for this model, the protected
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TABLE I. Characteristics of the models.

QMBS-A

Permutation
((3, 13, 11, 7, 9, 5),

(4, 14, 12, 8, 10, 6))
Phase (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

h0, j decomposition

(
π

6
+ i

π

2
√

3

)
U0, j +

(
−π

6
− i

π

6
√

3

)
U 2

0, j

+ π

12
U 3

0, j − π

12
U 0

0, j + H.c.

U n
0, j = I n = 6

Orbit |q〉 = |1, 0, 1, 0, . . .〉 , |σ (q)〉 = |0, 1, 0, 1, . . .〉
Rule ratio type I 70/350

QMBS-B

Permutation
((1, 15), (2, 16), (3, 9, 5),

(4, 10, 6), (7, 13, 11), (8, 14, 12))
Phase (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

h0, j decomposition

(
π

6
+ i

π

2
√

3

)
U0, j +

(
−π

6
− i

π

6
√

3

)
U 2

0, j

+ π

12
U 3

0, j − π

12
U 0

0, j + H.c.

U n
0, j = 1 n = 6

Orbit |q〉 = |1, 0, 1, 0, . . .〉 , |σ (q)〉 = |0, 1, 0, 1, . . .〉
Rule ratio type I 246/350

QMBS-C

Permutation
((3, 5), (4, 6), (7, 15, 9),

(8, 16, 10), (11, 13), (12, 14))
Phase (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

h0, j decomposition

(
π

6
+ i

π

2
√

3

)
U0, j +

(
−π

6
− i

π

6
√

3

)
U 2

0, j

+ π

12
U 3

0, j − π

12
U 0

0, j + H.c.

U n
0, j = 1 n = 6

Orbit |q〉 = |1, 0, 1, 0, . . .〉 , |σ (q)〉 = |0, 1, 0, 1, . . .〉
Rule ratio type I 350/350

PXP

Permutation ((11, 15), (12, 16))
Phase (1,1,1,1,1,1,1,1,1,1,i,i,1,1,i,i)
h0, j decomposition ( π

4 + i π

4 )U0, j − π

8 U 2
0, j − π

8 I+ H.c.
U n

0 = 1 n = 4

Orbit
|q〉 = |1, 1, 1, 1, . . .〉 , |σ (q)〉 = |0, 1, 0, 1, . . .〉 ,

|σ 2(q)〉 = |1, 0, 1, 0, . . .〉
Rule ratio type II 38/48

cycle is composed of three states instead of two and given
by |q〉 = |1, 1, 1, 1, . . .〉 , |σ (q)〉 = |0, 1, 0, 1, . . .〉 , |σ 2(q)〉 =
|1, 0, 1, 0, . . .〉.

V. NUMERICAL SIGNATURE OF QUANTUM SCARS

A. Revival strength and signs of quantum scarring

As intuitively expected, the number of type I rules that
are satisfied is correlated with the strength of the revivals.
For instance, QMBS-B shows stronger, longer lasting and

FIG. 5. Revivals of the Néel state (solid line) and of a generic
state (dashed line) showed on a log scale as seen from the PR of the
time-evolved state for the various models studied. L = 10, 12, 12, 16
and Neff = 1024, 1366, 64, 2207 for QMBS-A, QMBS-B, QMBS-C,
and PXP, respectively.

more coherent revivals compared to QMBS-A as can be seen
in Fig. 5 where the revivals are studied by considering the
participation ratio (PR) of the time-evolved state e−i(A+B)t |Z2〉
where |Zk〉 = | 0, 1, 1, . . . , 1︸ ︷︷ ︸

k

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
k

, . . .〉. The PR is evaluated

in the basis of computational basis states |q〉 and is defined
as PR[|ψ〉] = ∑2L

q=1 | 〈q|ψ〉 |4 where |ψ〉 is assumed to be
normalized. A PR close to 1 indicates that the system is largely
in one computational basis state while a PR ∼1/Neff, where
the effective dimension Neff is defined here as the number of
computational basis states connected to the Néel state by a
matrix elements of some given power of H (for the exact value
of Neff in all the models studied, see Appendix E) implies
relaxation For comparison, the revival of a computational
basis state that is not a Néel state is showed in Fig. 5, in which
case it can be seen that the state quickly thermalizes. The exact
scar model QMBS-C supports a spectrum generating algebra
like many other exact QMBS models, and can also be viewed
as an exact embedding, which is discussed in Appendix D.

The presence of quantum scars in the models QMBS-
A/B/C can also be seen from distribution plots of the inverse
participation ratio IPR[|ψ〉] = 1/PR[|ψ〉] of the eigenstates
of the Hamiltonian H = A + B for each model against their
eigenenergies, as shown in Fig. 6 which reveals the presence
of low IPR states that are exactly equidistant in energy for
the QMBS-C model and approximately equidistant in energy
for the PXP, QMBS-B, and QMBS-A model. Furthermore,
we also identify states which have a large overlap with the
Néel states; these appear to coincide with the low IPR eigen-
states (indicated by a black X in the figure). This strongly
indicates a correlation between the number of rules of type
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FIG. 6. Scatter plot of IPR vs eigenstate energy in the four mod-
els studied. The states marked by an x are eigenstates that have an
overlap amplitude with |Z2〉 larger than 0.02. Such states appear
to be approximately equally separated in energy for all the models
QMBS-A/B/C, which is a hallmark of quantum scarring. Similar
behavior is observed in the PXP model as well noted in Ref. [17].
The scar signatures appear to be more pronounced provided a larger
number of rules are satisfied. The Hamiltonians used to compute the
eigenstates are restricted to the computational basis states appearing
in the Kyrlov subspace associated with the Néel states, except for
QMBS-C, for which the full Hamiltonian is used to illustrate the
embedding. Red dots in the QMBS-C panel show the IPR vs energy
of the eigenstates outside the Kyrlov subspace, while the orange
dots show the IPR vs energy of the eigenstates inside the Kyrlov
subspace. Neff = 2207, 1024, 1366, 64, L = 16, 12, 10, 12 for PXP,
QMBS-A, QMBS-B, QMBS-C, respectively. See Sec. V B for a
precise definition of Neff.

I/II satisfied in the models and the presence of low IPR states
(scar eigenstates) in the spectrum. Finally, a finite-size scaling
of the revivals in the PR of the time-evolved Néel states is
shown in Fig. 7. The minima appears to coincide well with the
inverse effective Hilbert space dimension ∼1/Neff, indicating
near complete relaxation at intermediate times. The maxima
corresponding to revivals, on the other hand, decreases with
increasing system size but only as −log(N ) suggesting that
the phenomena should be robust in the large L limit.

B. R-statistic and effective Hilbert space dimension

The level repulsion statistic, obtained as the ratio of
the minimum to the maximum energy differences between
successive eigenstates, rn = min(�En+1/�En,�En/�En+1)
where �En = En − En−1, En � En+1, can be used as a metric
to determine if a given model is integrable or not, which is
key to showing that the approximate scars presented here are
not due to integrability. By computing all the rn values for
a given set of eigenvalues (extracted from a given symmetry

FIG. 7. The maximum and minimum PR of the time-evolved
Néel states in the time range t ∈ (10, 300) vs the effective Hilbert
space dimension Neff. The minimum closely follows the inverse ef-
fective Hilbert space dimension (red line) for all models. Satisfaction
of more rules of type II/I appears to produce revivals that scale better
with system size.

sector of H) and constructing the associated probability den-
sity P(r), one expects P(r) to be Poissonian if the model is
integrable, and charateristic of GOE/GUE ensembles if the
model is nonintegrable [49]. The most prominent feature of
P(r) for nonintegrable models is suppression of P(r) at r
values near 0 which indicates level repulsion, a characteristic
feature of nonintegrable models. One can see in Fig. 8 that the
models QMBS-A and QMBS-B show strong level repulsion
and appear to closely follow GOE predictions indicating that
they are nonintegrable, which rules out integrability as the
reason for the presence of quantum scars in the models. For
a detailed discussion of the symmetry sector (containing the
scar states) studied, see Appendix E.

FIG. 8. Nonintegrability of model QMBS-A and QMBS-B can
be seen in the suppression of P(r) at small r values. Eigenvalues for
QMBS-A and B are computed in the basis of computational basis
states that appear in the Kyrlov subspace associated with the Néel
states. Furthermore, the Hamiltonian is restricted to the common +1
eigenspace of S2 and USM for L = 16, 18 which yields 4115 and 4863
eigenvalues for QMBS-A and QMBS-B, respectively.

184304-8



CONSTRUCTING QUANTUM MANY-BODY SCAR … PHYSICAL REVIEW B 106, 184304 (2022)

VI. BCH EXPANSION AND REVIVALS

An important natural question in our construction is how
accurately the truncated Hamiltonian H = A + B captures the
dynamics we expect from the associated automaton unitary
UF = e−iAe−iB. In particular, of key interest to us is ensuring
that the truncated Hamiltonian captures the dynamics of the
automaton in the scar subspace. It is clear that this is the
case if all terms in the BCH expansion, Cn, vanish on the scar
subspace. Since we do not know what this subspace is exactly
in our construction, instead we examine the action of Cn on
the subspace of orbit states that our construction is designed
to embed on to the scar subspace—recall the projector onto
this subspace is denoted by P0.

In what follows, we will examine the typical matrix ele-
ment of Cn as a function of the order of the BCH exansion
n, connecting (1) orbit states to other orbit states, (2) orbit
states to generic states, and (3) generic states to other generic
states. We will examine these terms by numerically computing
||P0CnP0||/l , ||(1 − P0)CnP0||/(lNeff )1/2 and (1 − P0)Cn(1 −
P0)||/Neff, respectively. Here, ||X || denotes the Frobenius
norm of the matrix X , and we divide this norm by Neff − l ≈
Neff (the Hilbert space dimension of generic states), or l (the
Hilbert space dimension of orbit states) or a composite of the
two to obtain the value of the typical matrix element.

We note a priori that ultimately, we would like the trun-
cated Hamiltonian H = A + B to mimic the dynamics of the
Floquet automaton on a putative scar subspace on which the
selected orbit states have significant overlap. Although this is
true when all matrix elements of BCH terms Cn connecting
scar states to generic states vanish, it is not obvious that exam-
ining the magnitude of terms in the BCH expansion is always
the correct way of probing this aspect of the dynamics. For
one, it may be the case that the BCH expansion may be reorga-
nized in a way that appropriate linear combinations of Cn have
small matrix elements connecting orbit states to generic states
even though individually the Cn themselves have fairly large
matrix elements. Second, here we attempt to examine the ma-
trix elements between orbit states and generic computational
basis states—even if these matrix elements are significant,
it does not preclude the possibility that matrix elements of
Cn between scar eigenstates of H = A + B and other generic
states have small amplitude. The latter depends on how well
the scar eigenstates actually embed the intended orbit states.
We will see that in the PXP model, where rules of type II are
satisfied, the BCH expansion does indeed show suppression
of matrix elements between orbit states and generic states,
order by order. With this clarification, we can now discuss our
numerical findings.

A. Amplitude of BCH terms and possible prethermal
behavior in the PXP model

In Fig. 9 we plot the typical amplitude of the matrix ele-
ments of the nth-order BCH term Cn connecting various states
in the Hilbert space. The following observations can be made:
(1) BCH terms connecting orbit states are heavily suppressed
in the perfect scar model QMBS-C, and the PXP model, while
they are suppressed only at certain specific orders in QMBS-A
and QMBS-B, (2) matrix elements connecting orbit states to

FIG. 9. Leakage from orbit states, characterized by ||(I −
P0 )CnP0|| (green) and norm of the neglected terms Cn projected to
the subspace of generic states (blue) and orbit states (black). The
amplitude of the BCH terms is normalized by the square-root of
the number of matrix elements in the considered subspace, where
l is the length of the orbit to preserve and Neff is the number of
computational basis states connected to the Néel state by a matrix
elements of some given power of H . The Cn are computed from the
Hamiltonian terms A and B in the basis of computational basis states
that appear in the Kyrlov subspace except for QMBS-C for which the
calculation was performed on the full Hilbert space for illustrating
the embedding. Neff = 2207, 4096, 1366, 64, L = 16, 12, 12, 12 for
the PXP, QMBS-A, QMBS-B, and QMBS-C model, respectively. For
the blue curve in QMBS-C, Neff = 4096 − 64 is used.

generic states decrease with n at first for the PXP model,
before eventually increasing again, (3) in the PXP model, even
matrix elements connecting generic states to other generic
states surprisingly show this phenomenology, (4) for QMBS-
A/B, matrix elements connecting the scar subspace to generic
states are smaller but of a similar magnitude to matrix ele-
ments between generic states, and (5) in QMBS-C, the matrix
elements connecting orbit states to generic states vanish ex-
actly; this is to be expected as this is an exact scar model.

Even though QMBS-A/B states show strong revivals only
in the chosen orbit states, an order by order examination of
terms in the BCH expansion does not reflect this fact—indeed,
the matrix elements between orbit states and generic states
is of the same order as those connecting generic states. As
alluded to above, it may be possible to reorganize the BCH
expansion in terms of linear combinations of various Cn, such
that we do see suppression of matrix elements (between orbit
states and generic states). We have not attempted this, but
note that a natural reason for the failure of BCH expansion
to capture this phenomena may be because these models were
designed to strongly obey rules of type I—breaking this rules
implies that for some set of powers, the local unitaries corre-
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sponding to the automata do not commute; see Eq. (20). Since
the local Hamiltonian is constructed as a linear combination of
all powers of these local unitaries [Eq. (10)], the BCH terms
will be nonzero at all orders as soon as any of the type I rules
(defined by the set of powers of the local unitaries) are broken.
Note that in QMBS-C, all rules of type I are satisfied, it is an
exact scar model, and it is thus not surprising that BCH terms
at all orders have no matrix element connecting the scar states
and generic states.

The PXP model is different in that rules of type II can be
enumerated naturally for this model, given the rather simple
form of the local Hamiltonian term, and most of these rules
are satisfied. As a result, we expect the BCH expansion to be
more useful in this case. Specifically, in the PXP model, the
norm of BCH terms first decreases with n before eventually
increasing. This is characteristic of the FM expansion for
systems driven at high frequencies and which concomitantly
possess a prethermal window over which an effective Floquet
Hamiltonian can be obtained by truncating the FM expansion.
We explore this in more detail next.

B. Prethermal behavior in the PXP model

An interesting phenomenon that can occur whenever a
quantum system is driven is Floquet prethermalization, which
describes a prethermal time window inside which the driven
quantum system reaches a prethermal quasisteady state before
slowly drifting towards true equilibrium. In particular, the
length of that prethermal time window goes as e1/τ where τ

is the driving period. Such a prethermal window is normally
accompanied by the norm of BCH expansion terms ||Cn|| first
decreasing with n, up to some order n0, before increasing with
n. The duration of the prethermal window is then O(e1/n0 ).
Such a pattern is naturally obtained in the case of high fre-
quency driving, for instance when UF = e−iAτ e−iBτ for small
τ , such that the lowest BCH terms largely decrease in n as
nτ n. In a many-body setting, eventually, the number of terms
in the commutator in Cn blows up as n!, which ultimately
suppresses the decays from τ n at n0 ≈ O(1/τ ). As a corollary,
one can truncate the BCH expansion to order n0 and expect the
truncated Hamiltonian to mimic the Floquet unitary dynamics
up to times ≈ en0 . In this case, τ = 1, and one cannot expect
a prethermal regime on account of the frequency of the drive.
However, by enforcing the commutator of A, B to vanish on
a subspace, one may expect a similar decrease of the norm of
BCH terms before an eventual increase.

Indeed, as seen in Fig. 9, we do see that the amplitude of
matrix elements connecting scar states to generic states
decreases with the order of expansion n before again
increasing. Thus, there is an effective, emergent, time period
Teff < 1 which we may attribute to the fact that BCH terms Cn,
which are composed of nested commutators of A and B, are
suppressed on the orbit subspace. Perhaps what is surprising is
that the same behavior is in fact even seen for matrix elements
between generic states in the computational subspace.

The latter suggests that the prethermal dynamics may be
applicable to not just the scar subspace, but to the full Hilbert
space of the PXP model. To verify this, we examine the
local autocorrelator, | 〈Zi(t )〉 − 〈Zi〉m.c |2, where 〈Zi〉m.c indi-
cates the microcanonical average over a fixed energy window

FIG. 10. PR of generic states evolved in time and time evolution
of | 〈Zi(t )〉 − 〈Zi〉m.c |2 where 〈Zi〉m.c is the microcanonical average
computed with an energy window �E of 0.4 centered around the
average energy of the considered generic state. QMBS-A and PXP
show signs of prethermalization which manifest themselves as a slow
decay of 〈Zi(t )〉 towards the microcanonical average.

�E = 0.4 centered around the average energy E = 〈ψ | H |ψ〉
and Zi is the Pauli σz operator acting on a particular spin i of
the system, which we choose arbitrarily (see Fig. 10).

Although many-body revivals of generic states decay
rapidly, particularly in the PXP model, autocorrelations of
local Zi continue to have long time revivals in any state.
One may attribute this to the presence of a prethermal
window—the dynamics of spins due to the underlying Floquet
automaton show revivals, and within the prethermal window,
this behavior is mimicked by the truncated, strictly local,
Floquet Hamiltonian which in this case is the PXP model.

To give further credence to this picture, we study the
effect of adding the first few decreasing BCH terms to
Heff = A + B = HPXP. We find that adding these terms in
fact improves many-body revivals (both the revival strength
and the regularity). Thus, one can think of the absence of such
terms in the truncated Hamiltonian A + B as a perturbation
away from the quasilocal Floquet Hamiltonian which captures
the dynamics of the ideal Floquet automaton most faithfully;
these terms lead to decay of revivals; see Fig. 11.

Continuing with the analogy with Floquet systems driven
at a high frequency and which exhibit a prethermalization
window, we note the absence of terms C1,C2, . . . ,Cn0=6 in
our truncated Hamiltonian Heff = A + B can lead to decay
of many-body revivals. We estimate this revival time by
computing a Fermi’s Golden Rule rate of decay of a scar
eigenstate of Heff = A + B into nonscarred states. This rate is
given by the typical matrix element 
 in C2 (which provides
the largest coupling in the case of the PXP model; see
Fig. 9) coupling this state to other states in the Hilbert space,
multiplied by the number of states within an energy window 


around this chosen scar state ∼
/δ, were δ is the many-body
level spacing. The term ||(1 − P0)C2P0||2/(Neffl ) yields the
norm squared of a typical matrix element of the operator C2.
To estimate the many-body level spacing, we note that the scar
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FIG. 11. Revivals seen in models with additional BCH terms Cn

added to A + B. Revivals improve when adding up to fifth order of
BCH terms in the PXP model but worsen upon adding further higher
orders. In contrast, revivals only decrease when adding further terms
in QMBS-A/B. L = 12, 12, 16 for QMBS-A, QMBS-B, and PXP
respectively.

eigenstate does not couple to all states in the Hilbert space.
Some of the Ci terms break full transnational symmetry and
parity, but S2, translation by two qubits, remains a conserved
operator for all Ci. Thus, we can estimate the density of
states 1/δ within a given symmetry sector by 2Neff/(L�EPXP )
where �EPXP ≈ 30 is the bandwidth of the PXP model
for L = 16. The approximate decay rate is then given by
1/τ ≈ 2π [2Neff/(L�EPXP )]||(1 − P0)C2P0||2/(Neffl ) ≈ 0.1.
This agrees approximately with an extrapolation of the nu-
merical stimulated peak of many-body revivals to large times.

Note that for the PXP model, the terms within the Néel
subspace are also small for reasons of locality (which pre-
vents Cn from leading to transitions between the Néel states)
and symmetry (which prevents an energy offset between the
Néel states due to particle-hole symmetry and translational
symmetry in PXP). The latter likely aids stronger revivals
and could be useful ingredients [23,47] in searching for other
approximate QMBS models using the methods outlined here.

C. BCH terms in the PXP model

We now examine these BCH terms for the PXP model in
more detail. In particular, the first few orders are given by

C0 + C1 + C2 =
(

−π

2
+ π3

96

) ∑
j

PjXj+1Pj+2 + i
π2

8

∑
j

(−1) j+1(PjS
+
j+1S−

j+2Pj+3 − PjS
−
j+1S+

j+2Pj+3)

− π3

192

∑
j

(PjXj+1Pj+2Zj+3 + ZjPj+1Xj+2Pj+3) + π3

48

∑
j

(PjS
+
j+1S−

j+2S+
j+3Pj+4 + PjS

−
j+1S+

j+2S−
j+3Pj+4); (22)

see Appendix F for a detailed derivation of this result.

Note that up to support over four qubits, these corrections
correspond to two terms, one which acts trivially on the orbit
subspace, and the other, (PjXj+1Pj+2Zj+3 + ZjPj+1Xj+2Pj+3),
was identified in both Refs. [23,47] as a term that leads to
better revivals and/or integrability of the model. This term was
added to the PXP model with a variable amplitude which was
optimized to improve integrability in Ref. [47] and revivals
in Ref. [23]. Here the magnitude of these terms is obtained
without numerical optimization, and is given by that obtained
from the BCH expansion. The ratio of the amplitude of this
term to the PXP term is ≈0.129, which is about six times
larger than that obtained in Ref. [47] and two times larger than
that obtained in Ref. [23].

Finally, it is observed numerically that revivals in the PXP
model improve upon adding BCH terms to an even order,
while usually degrading upon adding terms to one additional
order. This trend continues up to n = 6 after which revivals
degrade with every successive order; see Fig. 11. This can be
attributed to renewed divergence of the BCH terms in the scar
subspace beyond n = 6.

D. PXP with and without phase

The phase that states accrue as they evolve under the
Floquet automata can play a very important role. Figure 12
highlights the stark difference in revival strength from au-

tomata with unitaries enforcing the same permutation but
one in which the phase is trivial, and the second in which
it is nontrivial. The second one corresponds to the usual
PXP Hamiltonian. One can see that the former model ex-
hibits smaller revivals which further corroborates the intuition
that the amplitude of ||(1 − Po)Cn(Po)|| is correlated with the

FIG. 12. Overlap amplitude squared of |Z2〉 with e−i(A+B)t |Z2〉
for models where phase is trivial vs nontrivial. Insets show how the
effective leakage changes between models with trivial and nontrivial
phase.
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strength of the revivals. For instance, the first leakage term
fully vanish in the PXP model, but it does not in the related
model. (Note that a continuum of models between these two
extremes was studied in [50,51].)

VII. DISCUSSION AND OUTLOOK

In this work, we show a method for engineering quantum
many-body scar Hamiltonians by establishing a connection
between quantum cellular automata UF = e−iAe−iB and the
Hamiltonian H = A + B obtained by carefully taking the ma-
trix logarithm of each layer of UF . Generally, the dynamics
generated by UF and H are unrelated. In particular, one can
view H as a Hamiltonian obtained by truncating the BCH ex-
pansion UF = e−i(A+B)−iC1−iC2··· to zeroth order. Although for
a generic interacting system, these terms Cn rapidly diverge,
we devise two sets of rules, dubbed rules of type I and type II,
that force these terms to vanish on a small subspace of states
that are part of a cycle of UF of finite length l .

We then construct models QMBS-A/B/C that successively
satisfy more of the local rules of type I, which enforce that cer-
tain local commutators of the unitaries in UF vanish on a cycle
composed of the two Néel states. The PXP model is more nat-
urally interpreted as satisfying a large number of rules of type
II; these rules enforce that local commutators of the Hamilto-
nian vanish on a cycle of length 3 composed of the two Néel
states and a vacuum state. The models QMBS-A/B/C satisfy
successively more rules and exhibit concomitantly stronger
revivals, with QMBS-C being an exact scar model.

We also examined, order by order, the typical matrix el-
ement in Cn connecting scar states to generic states. The
amplitude of these terms is ideally heavily suppressed as it
causes leakage from the scar subspace to generic states. We
find that these terms decrease with increasing n in the PXP
model, before again beginning to diverge at order n0 = 6. This
behavior is characteristic of prethermalization phenomena in
Floquet systems driven at high frequencies. Although in this
case the drive frequency is putatively 1, the observed behavior
of the BCH terms suggests an emergent timescale Teff < 1
and a prethermal window τp ∼ e1/Teff . In fact, even matrix
elements of BCH terms connecting different generic states
in the PXP model appear to show the same behavior. We
find evidence of prethermal behavior in the PXP model by
looking at autocorrelators of local spin Zi. This operator shows
revivals even in generic states, and long after many-body re-
vivals of this generic state have decayed. We can also recover
a timescale for decay of many-body revivals by computing a
Fermi’s Golden rule rate of decay based on the amplitude of
matrix elements connecting orbit states to generic states in the
BCH terms neglected.

The BCH expansion does not appear to be the correct way
to understand leakage out of the scar subspace (and thus,
many-body revivals) in the case of QMBS-A/B. Here, order
by order, matrix elements connecting scar states to generic
states can be of the same order as those connecting different
generic states. This seems to contradict the fact that the orbit
states are special and distinct from generic states because only
these states show many-body revivals. A natural explanation is
that the BCH expansion may be reorganized in a way such that
linear combinations of various Cn may have a small matrix

element connecting orbit states to generic states even though
individually the Cn have sizable matrix elements. This requires
further exploration.

We note that we may interpret the results of our work
without directly appealing to Floquet automata. The rules
devised effectively ensure that a putative scar Hamiltonian
H can be decomposed into a partition A + B, where scar
states are common eigenstates of A and B. If A and B are
composed of physically disjoint terms, they naturally possess
eigenstates of low entanglement. If einA = einB = 1, for some
integer n, the eigenvalues of A and B are equidistant. Ensuring
that commutators of A, B vanish on a certain (scar) subspace
ensures that there exist a limited number (scaling at most
polynomially in the system size L) of common eigenstates
of A, B that are equidistant in energy. If we can somehow
embed further low-entanglement states in this subspace, as
we do, then one obtains a scar subspace of low-entanglement
eigenstates.

In many ways, this work is a first step in leveraging
the properties of nonthermal quantum cellular automata to
construct quantum many-body scars. Some questions emerge
naturally from this work. For instance, the choice of parti-
tioning of the Hamiltonian into two parts A and B where A
concerns the “even” gates, and B the “odd” gates is rather
arbitrary. Nothing prevents one from choosing a different de-
composition of H which would ultimately lead to a distinct
automaton being associated with H . Provided this new au-
tomaton satisfies all or a large number of local rules for some
specific states |ψ〉, it might be possible to identify additional
quantum scar towers in the same model. We note here that in
related work, we show that the midspectrum scar states in the
AKLT model, for instance, can be obtained by considering
various partitions of this model. Another interesting avenue
for future work would be to study local unitary gates U0, j that
are not simple permutation gates with phase. The construction
presented here in principle applies to any unitary gate U0, j that
satisfies the property U n

0, j = 1 for some integer n regardless
of the internal structure of U0, j . Such an approach might
lead to quantum scars with more complex structures. An in-
teresting avenue for doing so would be to consider Clifford
gates as the local unitary gates U0, j which, despite generating
entanglement are entirely described by an underlying classical
automaton which acts as a permutation of the set of products
of Pauli matrices rather than the computational basis states
themselves.
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APPENDIX A: PERMUTATION AND PHASE
MAP REPRESENTATION

In order to characterize the unitary matrices U0, j and their
properties, it is convenient to introduce a compact way of
representing them. Since the U0, j act as a permutation on
the computational basis states on which they act as well as
multiplying them by a phase, they can be represented using
the cycle notation of a permutation as well as a phase map.
One can associate the computational basis states with integers
between 1 and 16 by converting their base 2 bit string repre-
sentation to an integer, +1. Explicitly,

|0000〉 → |1〉 |0001〉 → |2〉 · · · |1111〉 → |16〉 . (A1)

The state |0〉 is understood to be the +1 eigenstate of 2Sz

and the |1〉 state is the −1 eigenstate of 2Sz where Sz is the
standard z spin operator for a spin 1/2 particle. The phase map
is represented by an array of length 16 (ph1, ph2, . . . , ph16)
with the understanding that the qth component phq of this
array is the complex number by which the qth computa-
tional basis state is multiplied when acted upon by U0, j ,
i.e., U0, j |q〉 = phq |σ (q)〉; see Fig. 2. The transitions between
computational basis states are represented with the cycle no-
tation of a permutation, e.g., if the permutation matrix U0, j

generates the transitions (1 → 3 → 8 → 1), (2 → 4 → 2)
and sends all other states to themselves (possibly with a
phase), then one can compactly represent the above transitions
by ((1, 3, 8), (2, 4)) where it is understood that consecutive
integers ni, ni+1 in a cycle (n1, n2, . . . , nl ) represent a transi-
tion from ni to ni+1. The cycle is periodic in the sense that
the last integer that appears in the cycle denoted above by nl

is mapped to n1. Any computational basis state that do not
appear in a cycle is assumed to be mapped to itself.

APPENDIX B: TOTAL NUMBER OF RELEVANT RULES

Some of the rules that appear in Eq. (20) are trivially
satisfied. Indeed, for the rules to be nontrivial, it must be
the case that s2 is nonzero, and that at least one of s1 or
s3 is nonzero. Most generally, this yields a total of l (n −
1)(n2 − 1)(L/2) rules where l is the length of the cycle
to be preserved and L is the system size. If the states
|σ n(q)〉 spawning the subspace to be protected are such that
S2 |σ n(q)〉 = |σ n(q)〉 where S is the operator translating all
sites by one to the right, then the number of relevant rules
is reduced to l (n − 1)(n2 − 1) and is independent of system
size. In the remainder of this work, for a given system, the
number of satisfied rules is presented as a fraction of the
total number of relevant rules, i.e., it will be presented as
(Number of satisfied rules) /(Total number of relevant rules).

In the geometry where UF = ∏L/4
i U0,4 j−3

∏L/4
j U0,4 j−1

and with P0 composed of the two Néel states, one has a total
number of relevant rules given by l (n − 1)(n2 − 1) where
n = 6, l = 2, so a total of 350 relevant rules. The PXP model
is special since the local Hamiltonian has the property that
h3

0, j = π2

4 h0, j , so it is worth considering rules of type II in-
stead. The total number of relevant rules of type II for the PXP
model is given by (n − 1)(n2 − 1) + (n − 1)(n2 − 1)2 with
n = 3, so a total of 48 rules. The first term counts the rules
associated with the fully polarized state |1111 . . .〉, the second

term counts all the rules associated with the state |1010 . . .〉.
Note that since the Néel states are such that |1010 . . .〉 =
S |0101 . . .〉, one directly obtains that satisfying all the rules
for one of the two Néel states (taking into account that the
Néel states are not translationally invariant) ensures that the
rules are satisfied for the other Néel state as well, so no
additional rules need to be taken into account.

APPENDIX C: DECOMPOSING HAMILTONIANS IN
TERMS OF POWERS OF SIMPLE UNITARY MATRICES

The coefficients ck that appear in Eq. (10) can be found by
writing Eq. (10) with a set of orthonormal eigenvectors. Doing
so, one obtains

24∑
s=1

−β̃s |βs〉 〈βs| =
24∑

s=1

(
n∑

k=1

eikβs ck

)
|βs〉 〈βs| , (C1)

where |βs〉 is an eigenstate of UF with eigenvalue βs. This
yields the matrix equation

M�c = −�β, Ms,k = eikβs ,

s ∈ {1, 2, . . . , 24}, k ∈ {1, 2, . . . , n} (C2)

with �c = (c1, c2, . . . , cn) and �β = (β̃1, β̃2, . . . , β̃24 ) In this
form, it is not obvious that Eq. (C2) always admits a solution,
but it turns out that a solution does indeed always exist.

To construct it, consider the following set of states

n−1∑
k=0

eiαkU k
0, j |q〉 (C3)

for some set of real numbers αk . Note that since n is such
that U n

0, j = 1, this sequence of states is a closed loop upon
successive applications of UF . It is easy to see that the choice
αk = −kγ , where γ is one of the n roots of unity, yields
an eigenstate of UF with eigenvalue eiγ . Note that all the
generated eigenstates produced by Eq. (C3) for a given |q〉
have distinct eigenvalues and are thus orthogonal, but Eq. (2)
suggests that one should only be finding l eigenstates where l
is the length of the cycle. Furthermore, eigenstates built from
different cycles are necessarily orthogonal to each other since
they contain different computational basis states. For this to
be possible, it must be the case that some of the eigenstates
produced with Eq. (C3) are equal to the vector �0. One can
deduce from the previous sections that the only nonzero eigen-
states will be the ones for which γ is given by γ = �+2πm

l ; see
Eq. (3). The redundant eigenstates can safely be added to the
eigenstate decomposition of U0, j and i logU0, j just like if they
were nonzero vectors which is key to solving for the vector �c.
Doing so yields

nNCycles∑
s=1

−γ̃s |γs〉 〈γs| =
nNCycles∑

s=1

(
n∑

k=1

eikγs ck

)
|γs〉 〈γs| , (C4)

where |γs〉 are eigenstates of U0, j with eigenvalue eiγs now also
including the redundant eigenstates. γ̃s is equal to −i times
the principal logarithm of eiγs and NCycles is the total number
of cycles composing U0, j . From this, one obtains the matrix
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equation


�c = −�γ , 
s,k = eikγs ,

s ∈ {1, 2, . . . , nNCycles}, k ∈ {1, 2, . . . , n}, (C5)

with �c = (c1, c2, . . . , cn), �γ = (γ̃1, γ̃2, . . . , γ̃nNCycles ). Remark-

ably, 
†

nNcycles
is an inverse of 
:

(
†
)k,m

nNcycles
=

nNcycles∑
s=1


∗
s,k
s,m

nNCycles,

=
nNcycles∑

s=1

e−iγs (k−m)

nNCycles
= δk,m. (C6)

To see why Eq. (C6) is valid, note that the sum over s runs
over the augmented eigenvalues γs associated with each cycle
composing U0, j . k and m both take values between 1 and n, so
their difference k − m takes values in the range [−n + 1, n −
1]. γs is one of the n roots of unity modulo 2π . One can
then decide to order the eigenvalues by choosing γs = 2πs

n ,
s ∈ {1, 2, . . . , nNcycles} where, say, the n first eigenvalues are
associated with the first cycle, the n next with the second
cycle, so on and so forth. Equation (C6) then reads

1

nNcycles

nNcycles∑
s=1

e−i 2πs(k−m)
n = Ncycles

nNcycles

n∑
s=1

e−i 2πs(k−m)
n

= 1

n

(
1 − e2π (k−m)(n+1)/n

1 − e2π (k−m)/n
− 1

)
,

(C7)

which always yields 0 provided (k − m) is not a multiple of n.
As seen above, (k − m) takes values in the range [−n + 1, n −
1], so one obtains an indeterminate result only when k = m,
in which case it can directly be seen that the result is 1. This
implies that the coefficients ck are given by

�c = 
†

nNCycles
�γ , (C8)

which provides an explicit method for decomposing
i log(U0, j ) as a linear superposition of powers of U0, j . Re-
markably, the vector �c only depends on the order of the unitary
matrix n, so distinct unitary matrices with the same order n
assume the same decomposition.

APPENDIX D: QMBS-C AS AN EMBEDDED
SPECTRUM GENERATING ALGEBRA

The full Hamiltonian corresponding to the model QMBS-C
is given by

H =
L/2∑
j=1

(
π

2
P2 jX2 jX2 j+1P2 j

+ (1 − P2 j )Hext,2 j−1(1 − P2 j ) − π

2
I

)
(D1)

with Pj+1 = (I − Zj+1Zj+2)/2. Hext, j is given in Table II, but
the exact form of Hext, j turns out to be irrelevant. Let’s begin
by showing that (D1) is an embedded model. Note first that

the set of projectors P2 j and the Hamiltonian all mutually
commute, a state of the system can thus be an eigenstate of all
P2 j simultaneously. This fact allows one to directly connect
the model (D1) to the embedding method presented in [25].
The arbitrary Hamiltonian terms hj correspond to Hext, j and
the Hamiltonian H ′ is

∑
j

π
2 P2 jX2 jX2 j+1P2 j . For a state |ψ〉 to

be a +1 eigenstate of the P2 j , it must be the case that qubits
sitting on sites 2 j, 2 j + 1 have opposite spin. The subspace
spawned by such states has dimension 2L/2 and includes, for
instance, the two Néel states. The effective Hamiltonian acting
on this subspace is given by

Heff =
L/2∑
j=1

(
π

2
X2 jX2 j+1 − π

2
I

)
, (D2)

which is obtained by setting all P2 j to I . The full Hamiltonian
H hosts a spectrum generating algebra, see Ref. [22] for an
introduction to the topic. Indeed, consider the operator

Q† =
L/2∑
j=1

Z2 j (I − X2 jX2 j+1) (D3)

and consider the linear subspace W spawned by the 2L/2 states
that are in the common +1 eigenspace of the P2 j . This oper-
ator can be seen to be responsible for a spectrum generating
algebra. Indeed one has that

([H, Q†] − εQ†)W = 0, (D4)

which follows from

[H, Q†]W =
L/2∑
j=1

[
π

2
P2 jX2 jX2 j+1P2 j, Z2 j (I − X2 jX2 j+1)

]
W

= π

L/2∑
j=1

Z2 j (I − X2 jX2 j+1)W = πQ†W, (D5)

where the second equality comes from (I − P2 j )W = 0,
P2 jW = W and Q†W ⊂ W . One can see from the above that
ε = π . This shows that QMBS-C hosts a spectrum generat-
ing algebra. QMBS-C is thus an example of a model where
one observes an embedded spectrum generating algebra in an
otherwise fully thermal Hamiltonian.

APPENDIX E: SYMMETRY SECTORS OF QMBS-A/B

The relevant symmetries of the QMBS-B and QMBS-A
model are invariance under S2 and invariance under the uni-
tary operator

USM =
(

L∏
i=1

Xi

)
SM, (E1)

where S is the operator that shifts all sites by one to the right
and M is the mirror operation about the center bond. Fur-
thermore, both models posses the antiunitary symmetry RSM
where R is the complex conjugation operation, which im-
plies time-reversal symmetry [which explains why the GOE
ensemble is the best fit for P(r)]. In order to compute the
R-statistic, one must restrict the Hamiltonian to a given sym-
metry sector, which is chosen in this case to be the common
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+1 eigenspace of S2 and USM , which, for instance, contains
the state 1√

2
(|1010 . . .〉 + |0101 . . .〉). Furthermore, one must

also restrict the Hamiltonian to the set of computational basis
states that appear in the Kyrlov subspace associated with the
Néel states. For QMBS-B, one can see that the local Hamilto-
nian h0, j can only lower or increase the total spin Ztot = ∑

i Zi

by multiples of three; see Table II. Thus, the total number of
accessible computational basis states starting from the Néel
state is given by the set of all computational basis states that
have a total spin Ztot which is separated from Ztot = 0 by
some multiple of 3 (the Néel states are such that Ztot = 0). In
QMBS-A, no such restrictions exists. In QMBS-C, the total
number of accessible states from the Néel states is given by
2L/2, see Appendix D for a more precise definition. Finally,
the PXP model is restricted to the well known Fibonacci
subspace [17]. The effective dimension Neff is defined here
as the number of computational basis states connected to the
Néel state by a matrix elements of some given power of H . It
is given here for all the models studied in this work:

Neff,PXP = FL+1 + FL−1,

Neff,QMBS-A = 2L,

Neff,QMBS-B =
�L/3�∑

k=−�L/3�

L!(
L
2 + 3k

)
!
(

L
2 − 3k

)
!
,

Neff,QMBS-C = 2L/2, (E2)

where Fn is the nth Fibonacci number and L is the system size.
Note that the above is only well defined for even system sizes,
the Néel states do not exist otherwise.

APPENDIX F: EXACT PXP BCH TERMS

The first-order BCH term C1 is given by

− i

2
[A, B] =

∑
j∈odd,k∈even

− i

2
[h j, hk]. (F1)

Note that h j and hk commute unless k = j − 1 or k = j + 1
which yields

[A, B] = − i

2

∑
j∈odd

([h j, h j−1] + [h j, h j+1]). (F2)

This can be rewritten as

[A, B] = − i

2

∑
j∈odd

[h j, h j+1] + i

2

∑
j∈even

[h j, h j+1]

= − i

2

∑
j

(−1)i+1[h j, h j+1], (F3)

which shows that the first-order correction [A, B] yields the
same term on even and odd sites, but with an alternating sign.
Let’s now compute the matrix form of [h j, h j+1]. One readily
obtains that the only nonzero matrix elements resulting from

TABLE II. Spin representation of the models.

QMBS-A

Permutation
((3, 13, 11, 7, 9, 5),

(4, 14, 12, 8, 10, 6))
Phase (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

h0, j decomposition

(
π

6
+ i

π

2
√

3

)
U0, j +

(
−π

6
− i

π

6
√

3

)
U 2

0, j

+ π

12
U 3

0, j − π

12
U 0

0, j + H.c.

U0, j spin representation

(S+
j S+

j+1S−
j+2 + S+

j S−
j+1S−

j+2)

+
(

(I−Z j )
2 S−

j+1S+
j+2 + S−

j S+
j+1

(I−Z j+2 )
2

)
+

(
S−

j S+
j+1

(I+Z j+2 )
2 + (I+Z j )

2 S−
j+1S+

j+2

)
+ (S+

j S+
j+1S+

j+2 + S−
j S−

j+1S−
j+2)2

QMBS-B

Permutation
((1, 15), (2, 16), (3, 9, 5),

(4, 10, 6), (7, 13, 11), (8, 14, 12))
Phase (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

h0, j decomposition

(
π

6
+ i

π

2
√

3

)
U0, j +

(
−π

6
− i

π

6
√

3

)
U 2

0, j

+ π

12
U 3

0, j − π

12
U 0

0, j + H.c.

h0, j spin representation

π

4
(S+

j S+
j+1S+

j+2 + S−
j S−

j+1S−
j+2)

+ i
4π

6
√

3
(S−

j S+
j+1 + S−

j+1S+
j+2 + S−

j+2S+
j )

−πPj

4
+ H.c.

Pj = (S+
j S+

j+1S+
j+2 + S−

j S−
j+1S−

j+2)2

QMBS-C

Permutation
((3, 5), (4, 6), (7, 15, 9),

(8, 16, 10), (11, 13), (12, 14))
Phase (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

h0, j decomposition

(
π

6
+ i

π

2
√

3

)
U0, j +

(
−π

6
− i

π

6
√

3

)
U 2

0, j

+ π

12
U 3

0, j − π

12
U 0

0, j + H.c.

h0, j spin representation

π

2
Pj+1Xj+1Xj+2Pj+1

+ (I − Pj+1)Hext, j (I − Pj+1) − π

2
I,

Hext, j = i
4π

6
√

3
(Kj+1 + (I − Kj+1)Xj )

(Kj + (I − Kj )Xj+1Xj+2) + π

4
I + H.c.

Pj+1 = (I − Zj+1Zj+2)/2,

Kj = (I + Zj )/2

PXP

Permutation ((11, 15), (12, 16))
Phase (1,1,1,1,1,1,1,1,1,1,i,i,1,1,i,i)

h0, j decomposition ( π

4 + i π

4 )U0, j − π

8 U 2
0, j − π

8 I+ H.c.

h0, j spin representation − π

2 PjXj+1Pj+2, Pj = (I − Zj )/2
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this computation are the following transitions:

|1011〉 → −π2

4
|1101〉 ,

|1101〉 → π2

4
|1011〉 ; (F4)

all other computational basis states are mapped to 0. Recall
that the class of possible deformations introduced in [47] are∑

j

Z j,
∑

j

Z jZ j+2,
∑

j

Z jZ j+3,

∑
j

Pj−1XjPj+1,
∑

j

Pj−1YjPj+1,

∑
j

Pj−1XjPj+1Zj+2,
∑

j

Z j−2Pj−1XjPj+1,

∑
j

Pj−1YjPj+1Zj+2,
∑

j

Z j−2Pj−1YjPj+1,

∑
j

Pj−1S+
j S−

j+1Pj+2,
∑

j

Pj−1S−
j S+

j+1Pj+2. (F5)

The above commutator can be written as

[h j, h j+1] = −π2

4
(PjS

+
j+1S−

j+2Pj+3 − H.c.), (F6)

which yields for the first-order BCH term

C1 = iπ2

8

∑
j

(−1) j+1(PjS
+
j+1S−

j+2Pj+3 − H.c.). (F7)

Note that the above makes it explicit that the first com-
mutator vanishes when acting on the orbit states and is a
consequence of the first-order rules being respected in PXP.
Next, consider higher order terms in the expansion that act
nontrivially on only four qubits. Using the notation α j =
−π2

4 (PjS
+
j+1S−

j+2Pj+3 − PjS
−
j+1S+

j+2Pj+3) one can write the
second-order term as

C2 = − 1

12

([
A,

∑
j

(−1) j+1α j

]
−

[
B,

∑
j

(−1) j+1α j

])
.

(F8)
This expression can be recast as

− 1

12

[∑
j

(−1) j+1h j,
∑

k

(−1)k+1αk

]
. (F9)

Focusing only on terms with support on four qubits, one
obtains the terms

− 1

12

∑
j

([h j, α j] − [h j+1, α j]). (F10)

Computing first [h j, α j] one obtains that the nonzero matrix
elements produce the transitions

|1111〉 → −π3

8
|1101〉 ,

|1101〉 → −π3

8
|1111〉 , (F11)

and all other matrix elements vanish. This implies that

[h j, α j] = π3

16
(−Pj+1Xj+2Pj+3 + ZjPj+1Xj+2Pj+3). (F12)

The second term gives

[h j+1, α j] = π3

16
(PjXj+1Pj+2 − PjXj+1Pj+2Zj+3). (F13)

By combining the results, one finds that the terms with support
on four qubits for the second-order term in the BCH expansion
are

− π3

192

∑
i

(−Pj+1Xj+2Pj+3 + PjXj+1Pj+2Zj+3

− PjXj+1Pj+2 + ZjPj+1Xj+2Pj+3). (F14)

One can complete the above calculation by also comput-
ing terms that will have support on five qubits which are
given by

− 1

12

∑
j

(−[h j−1, α j] + [h j+2, α j]). (F15)

It can be seen that first the term [h j−1, α j] produces the fol-
lowing transitions:

|10101〉 → π3

8
|11011〉 ,

|11011〉 → π3

8
|10101〉 . (F16)

The other term [h j+2, α j] yields the same transitions, but with
an added minus sign on both transition which yields for the
terms with support on five qubits:

π3

8

1

6

∑
j

(PjS
+
j+1S−

j+2S+
j+3Pj+4 + H.c.). (F17)

Up to second order, one thus obtains for the BCH expansion

C0 + C1 + C2 =
(

−π

2
+ π3

96

) ∑
j

PjXj+1Pj+2 + i
π2

8

∑
j

(−1) j+1(PjS
+
j+1S−

j+2Pj+3 − PjS
−
j+1S+

j+2Pj+3)

− π3

192

∑
j

(PjXj+1Pj+2Zj+3 + ZjPj+1Xj+2Pj+3) + π3

48

∑
j

(PjS
+
j+1S−

j+2S+
j+3Pj+4 + PjS

−
j+1S+

j+2S−
j+3Pj+4).

(F18)
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Classification of the BCH terms

The BCH terms obtained from the PXP model can be clas-
sified according to which symmetries they respect. The PXP
model has three important symmetries which are inversion
symmetry about the central bound, time-reversal symmetry,
and a particle-hole-like symmetry due to anticommutation
with the operator P = ∏

i Zi.
The first-order BCH term [A, B] yields i

2
π2

4

∑
j (−1) j+1

(PjS
+
j+1S−

j+2Pj+3 − H.c.) which vanishes on the orbit sub-
space. This term breaks inversion symmetry, time-reversal
symmetry and does not anticommute with P .

The second-order BCH terms is composed of two terms.
The first one with support on four qubits takes the form
− 1

24
π3

8

∑
j (PjXj+1Pj+2Zj+3 + ZjPj+1Xj+2Pj+3). Such a term

respects all symmetries and was shown to improve re-
vivals [23] and integrability [47]. The second term with sup-
port on five qubits is given by 1

6
π3

8

∑
i(PjS

+
j+1S−

j+2S+
j+3Pj+4 +

H.c.). This term also respects all symmetries. Note that both
these terms act nontrivially on the orbit subspace.

APPENDIX G: CLOSING CONDITION FOR h0, j

Provided the fact that there exist an integer n such that
U n

0, j = 1 and given the decomposition of h0, j in terms of
powers of U0, j ,

h0, j =
n−1∑
k=0

ckU
k
0, j, (G1)

it is natural to ask if the local Hamiltonian’s h0, j satisfy a
closing relation similar to the U0, j closing relation. More
precisely, does there exist an integer m such that

hm
0, j =

m−1∑
k=0

αkhk
0, j, (G2)

which would restrict the total number of rules of type II one
needs to satisfy in order to obtain QMBS phenomenology.
First, consider the decomposition of hm

0, j in terms of powers

of U k
0, j ,

hs
0, j =

∑
k=0

c(s)
k U k

0, j, (G3)

where c(s)
k denotes the coefficients associated with the sth

power of h0, j and h0
0, j ≡ I . It is straightforward to see that

the coefficients c(s)
k for 1 � s are given explicitly by

Ms−1�c =

⎛
⎜⎜⎜⎜⎝

c(s)
0

c(s)
1
...

c(s)
n−1

⎞
⎟⎟⎟⎟⎠, (G4)

where

M =

⎛
⎜⎜⎝

c0 cn−1 . . . c2 c1

c1 c0 cn−1 . . . c2
...

. . .
...

cn−1 cn−2 cn−3 . . . c0

⎞
⎟⎟⎠ �c =

⎛
⎜⎜⎝

c0

c1
...

cn−1

⎞
⎟⎟⎠.

(G5)
It is a known fact that for any matrix M of size l by l , then one
has that Ml can always be written as a linear superposition
of smaller powers of the matrix M. This has the important
implication that there exist a set of coefficients αk such that

hn
0, j = Mn�c =

n−1∑
k=0

αkMk �c =
n−1∑
k=0

αkhk
0, j, (G6)

which shows that the local Hamiltonian h0, j closes on itself
once the power n is reached.

APPENDIX H: SPIN REPRESENTATION OF THE MODELS

The spin representation of the model QMBS-A/B/C and
the PXP model is presented in this section (see Table II) using
the convention

Z |1〉 = − |1〉 , Z |0〉 = |0〉 ,

S+ |0〉 = |1〉 , S− |1〉 = |0〉 . (H1)

One has X = 2Sx, Y = 2Sy and Z = 2Sz where S j are the
standard spin operators acting on a spin 1/2 particle.
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