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Anomalous thermal response of bulk diamond to uniaxial (100) strain:
A first-principles prediction
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Diamond, a material that exhibits ultrahigh thermal conductivity with a sensitive thermal response to stress, is
an ideal heat-sink material in the embedded cooling paradigm. This study uses first-principles calculations with
the phonon Boltzmann transport equation to predict the variation rules of the thermal conductivity of diamond
along the 〈100〉 crystal direction under strains at three orders of magnitude: 0.1%, 1%, and 10.5%. Density
functional theory is used to predict the stress–strain dependence of diamond and the temperature-dependent
thermal conductivity of unstrained diamond. The predictions are in good agreement with the experimental
results. The calculated uniaxial strain–thermal conductivity dependence results reveal that the thermal con-
ductivity of diamond abnormally increases by approximately 15% under small-scale uniaxial strain because
of the weakened anharmonic interatomic force constants. Under large-scale strain, the thermal conductivity
considerably decreases because of reduced phonon group velocities and increased numbers of phonon scattering
channels. The findings in this study will guide analyses of the dependence of thermal conductivity on strain
in other diamondlike structures, such as Group IV element-based materials. The abnormal thermal response at
small strain is expected to lead to the realization of an artificial thermal conduction channel.
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I. INTRODUCTION

Diamond, a crystalline material composed of carbon, has
an extraordinarily high thermal conductivity (κ), which ben-
efits from high acoustic velocities and weak phonon–phonon
Umklapp (U) scattering based on its strong sp3 bond stiffness
between carbon atoms and light atomic mass [1]. The power
density requirement of the electronic components is increas-
ing with their rapidly increasing integration, miniaturization,
and performance. Diamond has become an ideal heat-sink
material in the embedded cooling paradigm, which is a third-
generation thermal management technology [2]. Currently,
microwave plasma-assisted chemical vapor deposition [3] and
high-temperature and high-pressure methods [4] are used to
synthesize diamond in large quantities. Ralchenko et al. pre-
pared high-purity synthetic single-crystalline diamonds (of
natural carbon isotope composition) that exhibited the high-
est κ-value of 2400 W m−1 K−1 at room temperature [5].
Diamond is the ceiling in terms of the thermal conductivity of
natural materials. However, there are efforts to regulate or ex-
ceed this thermal conductivity limit. Strain is an effective tool
for adjustment of the physical properties of diamond [6,7,8].
Anomalous physical properties in diamond can be obtained by
changing the crystal lattice and the distribution of electrons
around the carbon nucleus through the application of stress.

*zhujq@hit.edu.cn

Dang et al. [6] achieved sample-wide uniform elastic strains
in a microfabricated diamond under uniaxial tensile loading
at room temperature. Liu et al. [7] predicted the emergence
of superconductivity in a compression shear-strained diamond
crystal. Additionally, Broido et al. [8] found that diamond
thermal conductivity was improved nearly fivefold at the high
compressive hydrostatic pressure of 400 GPa. Thus, there is
considerable value in further exploration of the effect of strain
engineering on diamond thermal conductivity.

Three-dimensional bulk materials and two-dimensional
(2D) materials under isotropic tensile stress or compressive
hydrostatic pressure have been extensively studied. Although
the rules are different, strain can significantly alter κ and its
behavior by changing phonon lifetimes, group velocities, heat
capacities, and dispersion relationships [9]. For bulk mate-
rials, the enhancement of isotropic pressure or reduction of
tension generally causes the lattice constant to decrease, group
velocities to increase, intrinsic phonon scattering to decrease,
and κ to increase [8,10,11,12]. Tang and Dong [10] calculated
the κ of MgO in the pressure and temperature ranges of
0–150 GPa and 300–4000 K; their values match the values
of the mantle. The same rule was found in an experimental
study by Dalton et al. [11]. First-principles calculations by
Broido et al. [8] revealed that diamond thermal conductivity
had a positive pressure dependence. In that study, hydrostatic
pressure improved the frequencies of longitudinal acoustic
(LA) and optical phonon modes, thereby decreasing their
populations. The increase in κ under hydrostatic pressure
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was primarily because of the decrease in the phonon–phonon
scattering rate. Parrish [12] predicted the strain-dependent
phonon properties of a soft system and found that the κ of
Lennard-Jones argon decreased monotonically from compres-
sion to tension because of decreased phonon lifetimes and
group velocities. Although the dependence of boron arsenide
κ on pressure has a similar trend, it is very weak because of the
weak pressure dependence of phonon–phonon scattering rates
[13]. However, the relationship between κ and strain is not
always monotonous in all bulk materials because of synergy
among many factors. For example, silicon exhibits anomalous
behavior; the silicon κ is constant when compressed (0–0.03)
and begins to decline only when the system is stretched
[12]. During decompression, the effects of increased phonon
lifetimes and group velocities on κ neutralize the effect of
reduced heat capacity on κ; thus, κ is generally stable. When
silicon is under tensile stress, the heat capacity dominates
and κ decreases. Additionally, the authors of a review [9]
noted that κ decreased with increasing pressure in large mass
difference compounds because of increased intrinsic phonon
scattering rates [14]; it decreased in HgTe and CuCl [15,16]
because of pressure-induced phase transitions.

In 2D materials, pressure can cause corrugation of the 2D
layer [17]; thus, it is more useful to study the effect of tensile
stress on κ . 2D materials include silicene, graphene, MoS2,
and the recently developed diamane [18]. The κ and strain
dependence of 2D materials are often complex and abnormal.
The κ of small graphene [19] minimally varies with tensile
strain and slightly decreases because of the synergistic effect
of altered harmonic interatomic force constants (IFCs) and
weakened anharmonic IFCs. As the system size increases, κ

generally diverges for both silene and graphene [20,21]. For
large samples, κ initially increases with tensile strain, which
is largely related to the hardening of out-of-plane acoustic
modes (ZA modes) [20,22]. The subsequent competition be-
tween the reduced heat capacity of the mode and the increased
lifetime of a ZA phonon results in a κ peak [23]. Kuang et al.
[21] found that long-wavelength ZA phonons had a dominant
role in the thermal transport of strained graphene, which is
responsible for κ divergence and a strong size effect. This
divergence is mutative and related to the abrupt dispersion
transition in the long-wavelength limit, which can be ana-
lytically determined using the elastic theory of a thin plate
[20,24]. In contrast to silicene and graphene, the κ of MoS2

decreases monotonically under tensile strain, which leads to
phonon vibration softening [17,25] and a red shift in the
major peak of the vibrational density of state. Moreover, Ding
et al. [25] found that κ was not influenced by any obvious
coupling between defects and strains of MoS2. Additionally,
a substantial effect of strain on the hydrodynamic behavior of
phonons was found in diamane [26]. For some common 1D
materials, such as silicon nanowires and diamond nanowires,
the variation of κ with strain is generally similar to the varia-
tion in corresponding bulk materials [12].

The findings in the present study indicate that the isotropic
strain process has distinct effects on the κ values of various
materials; there are unusual phenomena at special state points.
Additionally, different tensile scales typically affect κ and
its underlying mechanisms. There appears to be a consensus
among researchers that isotropic mechanical tension has a

negative effect on the thermal transport of 3D materials in
terms of softening phonon modes, reducing phonon group
velocities, and reducing phonon lifetime, particularly for di-
amonds.

Although it is difficult to implement isotropic strain in
practice, the application of uniaxial strain is easier. Uniaxial
stretching usually results in anisotropic physical responses,
compared with isotropic stretching. Furthermore, the varia-
tion rule of physical properties caused by uniaxial stretching
sometimes differs from the variation rule caused by isotropic
stretching. Hu et al. [27] found an anomalous thermal
response of silicene after uniaxial stretching; under tensile
strain, its κ significantly increased, then fluctuated at an
elevated plateau. These findings result from the interaction
between two competing mechanisms of silicene heat con-
duction. Pereira et al. [28] confirmed that the divergence
predicted for isotropically strained graphene also occurred
under uniaxial strain at finite temperature; it was confined to
the strain direction. With respect to bulk materials, Seijas-
Bellido et al. [29] compared the responses of ZnO κ under
isotropic and uniaxial pressures. Under hydrostatic strain, the
change in κ mainly resulted from the change in phonon relax-
ation time. For uniaxial compressive strain, the contribution
of phonon relaxation time was balanced by increased group
velocities; thus, κ was less affected by strain. The diamond
κ under uniaxial deformation has not been studied thus far.
There is a need to determine whether variations in diamond
κ under uniaxial strain follow the same rule as its variations
under isotropic strain. There is also a need to determine the
anisotropy variation rule of diamond κ under uniaxial strain.
Diamond κ is very important for efficient heat dissipation and
thermal management of diamond-based electronic devices.
Therefore, analyses of diamond κ have important theoretical
and practical implications. The findings provide important in-
sights for diamond growth with controllable stress on devices
to be cooled.

In this paper, the diamond κ under uniaxial strain is pre-
dicted using a first-principles approach combined with an
exact solution of the linearized phonon Boltzmann transport
equation (BTE). The method achieves sufficiently high mate-
rial fidelity without the need for empirical and semiempirical
potentials, compared with the nonequilibrium molecular-
dynamics method and the equilibrium Green-Kubo approach
[30]. The stress–strain and strain–thermal conductivity re-
lationships in diamond are obtained in this study. There
is an abnormal thermal response under small-scale (SS)
strain. Through analyses of phonon behavior, we clarify the
thermal response mechanisms of diamond under different
scale strains. Our results will guide studies of the dependence
of thermal conductivity on stress in other diamondlike struc-
tures, such as Group IV element-based materials.

II. COMPUTATIONAL METHODS

Density functional theory (DFT) is used to optimize the
lattice structure (fixation in the z direction and relaxation in
the x and y directions) and calculate IFCs. The linearized BTE
is used to predict the thermal conductivity of diamond under
stress.
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FIG. 1. Stress-strain relationships in diamond. (a) Isotropic strain and (b) uniaxial strain along the 〈100〉 crystal direction.

All first-principles calculations, carried out using the
Vienna ab initio Simulation Package with the projector
augmented wave method [31,32] and the local density approx-
imation (LDA) [33], are used to describe exchange-correlation
effects. The plane wave cutoff energy is set to 520 eV. The
force is regarded as the convergence criterion, and the struc-
tural optimization is stopped when the force of all atoms is
< 10−6 eV Å−1. The first Brillouin zone is sampled with 16 ×
16 × 16 Monkhorst-Pack [34] k-point grids. In the process of
structural optimization, the diamond unit cells are allowed to
relax only in the x and y directions. Mechanical properties
are examined by conducting uniaxial tensile and hydrostatic
pressure loading simulations. The stress–strain relationships
in diamond under stress are shown in Fig. 1. In Fig. 1(a),
the DFT calculation from this work (red solid line) is in good
agreement with the DFT calculation with LDA (blue hollow
squares) from Kunc et al. [35]. However, it is approximately
1% less than the lattice constant measured for diamond [36]
because the LDA has a tendency to overbind [8]. In contrast,
the generalized gradient approximation has a tendency to
overestimate. There may be slight differences in results with
either the LDA or the generalized gradient approximation, but
the main findings in this paper are not affected. The stress–
strain relationships for uniaxial stress along the 〈100〉 crystal
direction are shown in Fig. 1(b); the DFT results are in good
agreement with the experimental data [37]. Previous studies
concerning strain–thermal conductivity dependence usually
used strain between 1.0% and 10.0% [12,17,20,22,25].
The subsequent calculation mainly analyzes the effects of
three uniaxial stress conditions (i.e., 1.076, 10.881, and
101.411 Gpa) on the thermal conductivity of diamond. Their
corresponding strains span three orders of magnitude: 0.1%,
1.0%, and 10.5%, respectively.

Table I presents the calculated bond lengths and bond
angles for the different scale strains. In this paper, we use
ε = l−l0

l0
to denote the dependent variable. Positive numbers

indicate stretching and negative numbers indicate compres-
sion; l0 and l represent sample length in the strain direction
before and after strain application, respectively.

Density functional perturbation theory calculations are
carried out by the Vienna ab initio Simulation Package
for 5 × 5 × 5 supercells for the relaxed unit cells of di-
amond with 2 × 2 × 2 Monkhorst-Pack k-point grids. The
harmonic IFCs and phonon dispersion curve are acquired
using the PHONOPY package [38]; anharmonic IFCs are cal-
culated using code from the SHENGBTE package [39] known
as THIRDORDER.PY for 4 × 4 × 4 supercells with 2 × 2 × 2
Monkhorst-Pack k-point grids. For this calculation, up to the
fifth-nearest neighbors are considered. Diamond has a high
Debye temperature of approximately 2200 K, which leads
to a more normal (N) scattering of diamond near and below
room temperature. Thus, a full iterative solution is com-
puted to accurately describe the κ of strained diamond using
the SHENGBTE package [39] with harmonic and anharmonic
IFCs [1].

Phonons are thermal carriers in crystals. As early as 1929,
Peierls developed the Boltzmann gas heat conduction theory
and provided the first description of the thermal conductivities
of semiconductors and insulators in microscopic terms [40].
At the temperature T, the phonon distribution in the crystal
obeys the Bose-Einstein distribution in thermodynamic equi-
librium state, as follows:

f 0
λ = 1

eh̄ω/kBT − 1
. (1)

A temperature gradient drives a phonon heat current by di-
verting phonon distribution from the equilibrium distribution,
as follows:

fλ = f 0
λ − ∂ f 0

λ

∂Eλ

�λ = f 0
λ + f 0

λ

(
1 + f 0

λ

)
�λ. (2)

The resulting nonzero phonon heat flux J can be expressed
as follows [30]:

J = 1

NV

∑
λ

h̄ωλvλ fλ

= 1

kBT 2NV

∑
λ

f 0
λ

(
1 + f 0

λ

)
(h̄ωλ)2vλ(Fλ · ∇T ), (3)
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TABLE I. Bond lengths of bond12 (B12), bond13 (B13), bond14 (B14), and bond15 (B15) under strain; bond angles between bond12 and
bond15 (ϕ215), bond13 and bond14 (ϕ314), bond12 and bond13 (ϕ213), and bond14 and bond15 (ϕ415) under strain.

ε 0.0% 0.1% 1.0% 10.5%

B12 = B13 = B14 = B15 (Å) 1.53106 1.53144 1.53500 1.57962
ϕ215 = ϕ314 (deg) 109.4712 109.4101 108.8699 103.6376
ϕ213 = ϕ415 (deg) 109.4712 109.5018 109.7727 112.4644

where λ includes the phonon branch index p and wave vector
q; ωλ and vλ are the angular frequency and group velocity of
phonon mode λ, respectively; Fλ is the mean free displace-
ment of phonons; N is the number of q points in the first
Brillouin zone; V is the volume of the unit cell; and T is the
temperature.

According to Fourier’s law Jα = −∑
β

καβ (∇T )β , the co-

efficient of thermal conductivity can be obtained as follows:

καβ = 1

kBT 2NV

∑
λ

f 0
λ

(
1 + f 0

λ

)
(h̄ωλ)2vα

λ Fβ

λ , (4)

where καβ represents κ corresponding to the heat flow gen-
erated in the α direction by the temperature gradient in the β

direction.
The linearized BTE Fλ can then be written as follows [39]:

Fλ = τ 0
λ (vλ + �λ), (5)

where �λ represents the effective change in velocity after
scattering and τ 0

λ is the lifetime of mode λ, the inverse of
which is the scattering rate calculated by Matthiessen’s rule
[41]. The phonon–phonon (anharmonic) and phonon–isotope
scatterings with the natural isotopic distribution of diamond
are considered. Total scattering rates 1/τ 0

λ are determined as
follows:

1

τ 0
λ

= 1

τ anh
λ

+ 1

τ iso
λ

. (6)

The phonon–phonon scattering rates require the identifica-
tion of a set of three-phonon scattering processes that satisfy
phonon energy and momentum conservation conditions, as
follows [42]:

ωλ ± ωλ′=ωλ′′ and q ± q′=q′′+K, (7)

where λ, λ′, and λ′′ represent the three phonons in-
volved; K is the reciprocal lattice vector. K = 0 characterizes
momentum-conserving normal processes and K � 0 corre-
sponds to resistive umklapp processes [43]. However, the
intrinsic three-phonon scattering rates are treated similarly
(“+” represents absorption processions and “–” represents
emission processions), as follows:

�+
λλ′λ′′ = h̄π

4

f ′
0 − f ′′

0

ωλωλ′ωλ′′
|V +

λλ′λ′′ |2δ(ωλ − ωλ′ − ωλ′′ ), (8)

�−
λλ′λ′′ = h̄π

4

f ′
0 + f ′′

0 + 1

ωλωλ′ωλ′′
|V −

λλ′λ′′ |2δ(ωλ − ωλ′ − ωλ′′ ). (9)

The Dirac distribution δ(ωλ ± ωλ′ − ωλ′′ ) enforces the con-
servation of energy in the absorption and emission processes.

The scattering matrix elements V ±
λλ′λ′′ can be calculated by

third-order IFCs, as follows [1,44]:

V ±
λλ′λ′′ =

∑
i∈u.c.

∑
j,k

∑
αβγ

�
αβγ

i jk

eα
λ (i)eβ

p′,±q′ ( j)eγ

p′′,−q′′ (k)√
MiMjMk

, (10)

where �
αβγ

i jk is the anharmonic IFCs matrix. It refers to move-
ment of the two atoms in multiple directions in the supercell,
followed by calculation of the Hellmann-Feynman force after
displacement.

Finally, we obtain the anharmonic scattering rates 1/τ anh
λ

according to the following equation:

1

τ anh
λ

= 1

N

( +∑
λ′λ′′

�+
λλ′λ′′ +

−∑
λ′λ′′

1

2
�−

λλ′λ′′

)
. (11)

In addition to intrinsic three-phonon scattering, elastic
scattering of phonons introduced by isotope impurities is
present, as follows [45,46]:

1

τ iso
λ

= 1

N

∑
λ′

�λλ′

= 1

N

∑
λ′

πω2

2

∑
i∈u.c.

g(i)|e∗
λ(i) · eλ′ (i)|2δ(ωλ − ωλ′ ), (12)

where g(i) = ∑
S fS (i)[1 − MS (i)/M(i)]

2
is the Pearson devi-

ation coefficient of the masses MS (i) of isotopes s of atom i.

III. RESULTS AND DISCUSSION

A. Phonon dispersion

The accuracy of the solution is closely associated with
the division of the Brillouin zone grids. We first confirm the
grid independence of thermal conductivity (Fig. 2). Through
comprehensive consideration of accuracy and calculation effi-
ciency, a 31 × 31 × 31 q-point grid is used in the calculation
of thermal conductivity. Convergence with the force range
cutoff, scalebroad value [39], and the supercell size is also
checked.

Figure 3 presents the phonon dispersions and phonon den-
sities of state for unstrained and strained diamond, calculated
using the harmonic IFCs. It is clear that first-principles cal-
culations can describe phonon frequency variation completely
and accurately, without the need for empirical parameters. The
phonon dispersion in diamond is characterized by longitudinal
optical branch overbending and the large splitting between the
longitudinal optical and transverse optical phonons formed
between the � and X points, as well as the parabolicity of
the TA branches at the high-symmetry point X in comparison
to kin element materials Si and Ge [47]. The high group
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FIG. 2. Grid independence verification.

velocities and weak anharmonic scattering of phonons in
diamond are closely associated with its special phonon dis-
persion.

The strain-dependent phonon dispersion relationships in-
dicate that the LA branch monotonically decreases with
increasing strain. Concerning the TA branches, TA1 decreases
and TA2 increases under small-scale (SS; ε = 0.1%) and
medium-scale (MS; ε = 1.0%) strains, but these changes are
minimal. The separation of TA1 and TA2 branches is re-
lated to the transformation of diamond carbon atoms from
the highly symmetrical regular tetrahedral structure to the
ordinary tetrahedral structure. Under large-scale (LS) strains
(ε = 10.5%), both TA branches decrease, and TA1 is signif-
icantly lower than TA2. This leads to low group velocities,
which is one of the main factors that reduces κ . Concerning
the variation of optical branches, the rule remains consis-

FIG. 3. Calculated phonon dispersion relationships in diamond
under different tensile stresses and phonon densities of state
(DOSs). (SS strain represents small-scale strain, ε = 0.1%; MS
strain represents medium-scale strain, ε = 1.0%; LS strain repre-
sents large-scale strain, ε = 10.5%).

tent under isotropic tensile action and under uniaxial tensile
action: the optical branches decrease with increasing stress.
The LS strain significantly reduces the frequency of optical
phonons, which usually leads to strong scattering between
acoustic and optical phonons due to reduction of the band gap.
This is because stress increases the distance between carbon
atoms in the unit cell, thus weakening interactions among
the atoms. Additionally, under LS strain, the major peak fre-
quency of phonon densities of state decreases from 36.61
to 27.30 THz because of longitudinal optical and transverse
optical branch reduction; the peak value is also smaller. Such
a red shift is the result of the softened phonon vibrations. This
behavior generally causes a decrease in both group velocities
[48,49], thereby reducing thermal conductivity [25]. However,
SS strain does not have a significant effect on optical phonon
branches because of the small change in atomic interactions,
with minimal red shifting of the major peak.

B. Thermal conductivity

The calculated κ values of strained and unstrained di-
amond are plotted in Fig. 4. Figure 4(a) presents the
temperature dependence of κ under uniaxial tensile stress
at different scales. The calculated value of κ is in good
agreement with the experimental data from Inyushkin et al.
[5] for their bar-shaped sample with dimensions of 7.25 ×
1.54 × 0.32 mm3. The application of uniaxial stress does
not change the temperature dependence of diamond ther-
mal conductivity. Phonon–phonon scattering provides most
of the thermal resistance at high temperatures. In this state,
increasing the temperature increases the heat occupation of
phonons at all frequencies [8], leading to larger increases
in the intrinsic three-phonon scattering rate and smaller
values of κ . Additionally, κ behaves anisotropically. The
κ along the uniaxial stretching direction (〈100〉) is higher
than the κ perpendicular to it (〈010〉 and 〈001〉). This
anisotropy is not obvious for SS strain systems. Because
of the large lattice deformation, the anisotropy becomes
distinct at ε = 10.5% and tends to be strengthened with
temperature. However, this is a common phenomenon be-
cause the atoms are arranged in different numbers and
manners in different directions [50,51]. This paper does not
focus on this aspect. The research focus of this paper is
the abnormal response of κ under uniaxial strain; κ in-
creases with SS strain and decreases with LS strain. The
inset in Fig. 4(a) shows that the phenomenon is not ob-
served under isotropic stretching. Such behavior, typically
observed in 2D materials under stretching [20,21,22,23], re-
sults from the synergistic effects of heat capacity, group
velocity, and phonon lifetime. Although these effects all oc-
cur under similar strain, this thermal response is anomalous
for bulk diamond with an SS strain that has minimal ef-
fect on phonon dispersion; κ increases by up to ∼ 15%
at room temperature. At the low temperature of 100 K,
the response is more obvious and κ is up to ∼ 36%
higher. This cross-scale comparison and analysis of strain–
thermal conductivity dependence have been ignored by most
studies. Preliminary analysis of the phonon dispersion rela-
tionship in Fig. 3 revealed that the internal mechanism of
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FIG. 4. (a) Temperature dependence of the thermal conductivity (κ) of diamond. The inset shows the strain dependence of κ (at room
temperature, 300 K) under uniaxial and isotropic strains. (b) Mean mode κ under different tensile stresses, (c) contribution to κ from each
acoustic band, and (d) normalized cumulative thermal conductivity κacc/κ0 of isotopically pure diamond.

the variation of thermal conductivity differs under strain at
different scales.

The mode κ graph shown in Fig. 4(b) indicates that low-
frequency phonons mainly contribute to κ . High-frequency
phonons generally belong to the optical vibration mode with
smaller group velocities and stronger phonon scattering [17].
Therefore, the optical phonon mode also has a very short
mean free path (MFP). The peak value point of mode κ is
(3.20, 41.95) under SS strain. The frequency varies minimally
compared with the frequency under the unstrained condition,
but κ considerably increases. The peak value point of mode
κ is (3.16, 38.00) under MS strain, with a lower κ and fre-
quency compared with the values obtained at 0.1% strain. The
dominant phonon frequency of κ is smaller under LS strain
and occurs at (2.78, 10.8). The variation rule of the mode κ

of the peak point is identical to the variation rule of κ , and
we presume that the variation of κ is related to the dominant
heat-carrying phonons.

Figure 4(c) presents the contribution from each band to
κ . The increase in κ under SS and MS strains is mainly
caused by the TA1 branch. The phonon group velocities of
the TA1 branch are generally low; thus, the increase in the
contribution of TA1 to κ is presumably related to intrinsic an-
harmonic coupling between phonons. Approximately 80% of
the three-phonon scattering process involves optical phonons
[8]. The results suggest two reasons for this behavior. First,
the reduction of TA1 under SS and MS strains will lead to a
large energy band gap between TA1 and the optical branch,
which will reduce the phonon scattering channels. Second,
changes in bond length and energy among atoms influence
the anharmonic interactions among atoms. However, the κ

of the three branches significantly decreases under LS strain.
The decreased κ may be caused by the large reduction of the
LA branch, which leads to lower group velocities, as well as
the partial increase in acoustic-optic mode scattering channels
caused by the reduction of the optical branches.
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TABLE II. Strain dependence of mode heat capacity.

ε 0.0% 0.1% 1.0% 10.5%

Heat capacity (105 J K−1 m−3) 18.442 18.452 18.554 20.318

To clarify the effects of uniaxial stress on phonon–phonon
interactions, the normalized cumulative thermal conductivity
κacc/κ0 of isotopically pure diamond is shown in Fig. 4(d),
considering only intrinsic phonon–phonon scattering; κacc

refers to the cumulative thermal conductivity and κ0 is the
total thermal conductivity for the corresponding case. In the
absence of strain, only a small portion of the heat-carrying
phonon spectrum is thermally populated [8]; a large portion of
κ is contributed by phonons with short MFP (< 2 μm). The
curve of the LS strain case is similar to the curve of the un-
strained case, but the shift to a smaller scattering length shows
that increasing the LS uniaxial strain reduces the scattering
length of all mode phonons and thus reduces κ . This behavior
is related to the decreases in acoustic phonon group velocities
and phonon lifetime, which lead to smaller |τ 0

λ |vλ. The red
and blue solid lines correspond to the κacc/κ0 relationship for
SS and MS strains, respectively. The results show that these
strains mainly affect phonons with larger intrinsic scattering
lengths (> 0.8 μm). Acoustic phonons at low frequencies are
coupled to optical phonons mainly through anharmonic in-
teractions. Thus, SS and MS strains cause TA1 to decrease
and weaken anharmonic interactions, thereby reducing the
scattering rate of acoustic and optical phonons.

C. Mean free path, group velocity, and phonon scattering

According to the theory of ordinary gas heat transfer and
the ideal gas thermal conductivity formula, we can simply
express the lattice thermal conductivity as κl=CV vl/3, where
CV is the specific heat at constant volume, v is the mean group
velocity of phonons, and l is the MFP of phonons. The κ

of crystalline materials is closely associated with these three
parameters. We analyze variations in specific heat, phonon
group velocities, MFP, and lifetime in this section. Table II
presents the specific heat capacities under different stress
states. The SS and MS strains do not substantially influence
the specific heat capacity, whereas the LS strain slightly in-
creases this capacity. Thus, the heat capacity is not the source
of this anomaly. Additionally, we analyze the squared group
velocity, MFP, and lifetime at the phonon mode level in Fig. 5.
Because low-frequency phonons dominate the diamond κ , we
focus on the analysis of phonons with modes < 10 THz. This
selection eliminates modes that are not important for thermal
conductivity.

Figure 5(a) presents the squared group velocities v2
λ of

phonons. The results show that the uniaxial tensile stress
mainly affects the LA and TA1 branches. The v2

λ of the TA2
branch slightly increases under SS and MS strains, with al-
most identical amplitude, whereas it slightly decreases under
LS strain. The v2

λ of the LA branch decreases monotonically
with uniaxial tensile strain, and the reduction is proportional
to the strain scale. v2

λ of the TA1 branch decreases slightly
under SS and MS strains, while the MS strain decreases more.

FIG. 5. Strain dependences of (a) squared group velocity,
(b) phonon mean free path (The inset shows the corresponding poly-
nomial fitted curves), and (c) phonon lifetime (The inset presents the
effects of SS strain on N and U scattering).

The significant decreases in v2
λ of LA and TA1 are important

factors that contribute to the decrease in κ under LS strain.
The v2

λ of LA and TA1 branches are slightly smaller under
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TABLE III. Thermal conductivity obtained by different harmonic interatomic force constants (IFCs) and anharmonic IFCs.

Combination harmonic IFCs of unstrained case and different anharmonic IFCs

ε 0 0.001 0.01 0.1
κ (W m−1 K−1) 3524.9 4032.3 4151.9 5551.6

Combination anharmonic IFCs of unstrained case and different harmonic IFCs

ε 0 0.001 0.01 0.1
κ (W m−1 K−1) 3524.9 3507.0 3307.8 1366.8

MS strain than under SS strain, which may explain the slight
difference in κ between them.

The phonon MFP and phonon lifetimes presented in
Figs. 5(b) and 5(c), respectively, indicate that their variation
rules are similar to the variation rules for κ . The SS and MS
strains increase the MFP and lifetime of phonons, whereas LS
strain clearly reduces them. Thus, the effect of strain on κ is
mainly through its effect on the phonon scattering rate. The
inset in Fig. 5(c) presents the effects of SS strain on N and U
scattering. The SS strain reduces both U and N scattering, but
it has almost no effect on isotope impurity scattering. Addi-
tionally, our calculations indicate that SS strain substantially
reduces N scattering at low temperature; moreover, SS strain
strongly influences phonons with long MFP, as shown in the
inset in Fig. 5(b).

The effect of uniaxial strain on the scattering rate mainly
refers to the effect on the three-phonon scattering rate. This
effect is usually complex, and the essential phenomenon
described by phonon collision comprises anharmonic in-
teractions among atoms. Usually, stretching increases the
bond lengths and decreases the bond energy between car-
bon atoms (Table I). Interatomic force constants characterize
the local interatomic energy landscape [47]. Thus, decreased
bond energy weakens anharmonic IFCs. This behavior re-
duces the anharmonic scattering rate of phonons, which is
quadratically dependent on the force constant [17,19], as
shown in Eqs. (8)–(10). Therefore, under the action of tensile
strain, if other factors are constant, weakened anharmonic
interactions will lead to an increase in phonon lifetimes
and κ . However, in 3D bulk materials, tensile strain will
not only reduce the anharmonic interactions, but also the
harmonic interactions [8]. Anharmonic and harmonic IFCs
generally change at the same time and affect κ concur-
rently; harmonic IFCs tend to enhance κ , the opposite of
anharmonic IFCs. The reduction of harmonic interactions
generally results in the decrease of phonon mode frequency
in phonon dispersion, which will decrease phonon group
velocity and increase acoustic-optic mode scattering chan-
nels, reducing phonon lifetimes. Therefore, the increase or
decrease of phonon lifetimes or κ is closely related to the
synergistic change of harmonic interactions and anharmonic
interactions under strain. Under the action of isotropic ten-
sile strain, the influence of harmonic interactions is usually
dominant. The strain reduces phonon lifetimes. In this study,
under the action of uniaxial tensile strain, as shown in
Fig. 5(c), the strain at different scales has the opposite effect
on phonon lifetimes, that is, SS strain and MS strain increase
phonon lifetimes and LS strain decreases phonon lifetimes.

Its internal mechanism will be explained in the following
analysis.

Here, we confirm the actions of harmonic and anhar-
monic IFCs on κ by swapping force constants. Broido et al.
exchanged IFCs between an unstrained case and the case of
applied hydrostatic pressure [8]. They found that the increase
in harmonic forces under hydrostatic pressure dominates κ .
Table III presents κ obtained by different harmonic IFCs and
anharmonic IFCs, considering only three-phonon scattering.
The κ obtained by combining harmonic IFCs without stress
and anharmonic IFCs under SS strain is 4032.3 W m−1 K−1.
The κ obtained by combining harmonic IFCs under SS strain
and anharmonic IFCs without stress is 3507.0 W m−1 K−1.
By comparison with κpure = 3524.9 W m−1 K−1 without
stress, it is evident that anharmonic IFCs contribute much
more to κ , relative to harmonic IFCs under SS strain. Thus, the
increase in phonon lifetime under SS strain is mainly caused
by reduced anharmonic IFCs that originate from phonon soft-
ening. However, this relationship is not observed for LS strain,
and the influences of harmonic IFCs and anharmonic IFCs
on κ are generally numerically similar. Therefore, the main
reason for the high scattering rate of LS strain may be the
increased number of scattering processes allowed in diamond,
which results from a change in the dispersion relationship.
Enhancement of the scattering phase space will increase the
phonon scattering rate [17].

Figure 6 compares the weighted phase space distribution
of phonons at each frequency in the three working conditions

FIG. 6. Weighted phase space at room temperature as a function
of frequency for strained and unstrained diamond.
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of no strain, SS strain, and LS strain. The number of scatter-
ing processes available per phonon can be directly measured
according to the weighted phase space. It differs from the
scattering rate and depends only on phonon dispersion [52],
and it can be expressed as follows [53]:

W ±
λ = 1

2N

∑
λ′ p′′

{
2( fλ′ − fλ′′ )
fλ′ + fλ′′ + 1

}
δ(ωλ ± ωλ′ − ωλ′′ )

ωλωλ′ωλ′′
. (13)

Equation (13) represents the sum of frequency-containing
factors in the expression of three-phonon transition proba-
bilities [Eqs. (8) and (9)]. The change in effective scattering
channels can be confirmed by calculating W . Figure 6 shows
that the weighted phase space of phonons under SS strain min-
imally varies, whereas the weighted phase space of phonons
under LS strain becomes significantly larger. This supports the
previous conjecture that the increase in phonon lifetime under
SS strain is mainly caused by phonon softening, whereas the
decrease under LS strains is mainly caused by the increase in
phonon scattering channels related to dispersion changes.

IV. CONCLUDING REMARKS

The uniaxial strain–thermal conductivity relationships at
different scales are predicted along the 〈100〉 crystal direction
using a first-principles approach combined with the linearized
phonon BTE. The thermal conductivity of diamond of natu-
ral isotopic abundance will increase by approximately 15%
under SS strain of 0.1% at room temperature, which is con-
siderable. The thermal conductivity limit is thus broken on

the premise of minimally changing the mechanical proper-
ties of diamond. The underlying mechanism is that diamond
anharmonic IFCs decrease under SS strain, reducing the an-
harmonic interactions between phonons, thereby increasing
the phonon lifetime and MFP.

Under LS strain, LA and TA1 phonon group velocities
are considerably reduced, and the large reduction in optical
phonon branches drastically increases the phonon scattering
channels, thereby increasing the phonon scattering rate. Con-
sequently, the thermal conductivity decreases.

V. OUTLOOK

These findings will guide analyses of the dependence of
thermal conductivity on strain in other diamondlike structures,
such as Group IV element-based materials. The ultrahigh
thermal conductivity of diamond under SS strain suggests that
local strain could be used to regulate the thermal conduc-
tivities of materials by creating artificial thermal conduction
channels.
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