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We propose an interferometry within the framework of the quantum Kibble-Zurek mechanism by exemplifying
two prototypical quench protocols, namely, the round-trip and quarter-turn ones, on the transverse Ising and
quantum XY chains. Each protocol contains two linear ramps that drive the system across quantum critical point
twice. The two linear ramps arouse two respective nonadiabatic critical dynamics that are well described by the
quantum Kibble-Zurek mechanism. However, in combination, the two critical dynamics can interfere with each
other deeply. As an effect of the interference, the dynamical phase is exposed in the final excitation probability,
which leads to a quantum coherent many-body oscillation in the density of defects with predictable characteristic
period. Thus, such an interference is available for direct experimental observations. In the quantum XY model,
we show that an interference can also arise from the interplay between two different critical dynamics derived
from a critical point and a tricritical point. Furthermore, we demonstrate a phenomenon of multiple length scales
in the defect-defect correlator, which is due to the interplay between the interference and the quantum dephasing
of excited quasiparticle modes. It turns out that the dephased result relies on how the diagonal and off-diagonal
lengths are modulated by the controllable parameters in a quench protocol.
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I. INTRODUCTION

The Kibble-Zurek mechanism (KZM) was first proposed
in a cosmological setting [1,2], which reflects the nonadia-
batic nature of the critical dynamics in symmetry-breaking
phase transitions. Later, its scenario for the creation of topo-
logical defects was disclosed to be remarkably adaptable
to condensed matter systems being quenched [3–5], which
paves the way to experimental tests [6–19]. As the analog in
quantum phase transitions, quantum KZM (QKZM) [20–24]
attracts lots of attention in recent years. Significant pro-
gresses in both theory [25–48] and experiment [49–62] have
been made.

The QKZM is well demonstrated by transverse Ising chain,
which can be analyzed thoroughly [23] and emulated by ex-
periment on Rydberg atoms [59]. As an integrable model, its
many-body state can be reduced to different modes (quasi-
particles) so that the quench dynamics is mapped to the
two-state Landau-Zener transition problem. This scenario is
widely applicable to similar systems, whose quench dynamics
can be mapped to multistate Landau-Zener transition prob-
lem [63,64]. Studies of quenches have been to a large extent
concentrating on the density of defects that is accessible to
experiments. The density of defects is counted by summing
up all pairs of excited quasiparticles. In a quench protocol,
most modes evolve adiabatically as a superposition of the
ground and excited states, while the nearly gapless modes
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evolve nonadiabatically, which results in eternal defects in
the final many-body state. The nonadiabatic dynamics in the
transverse Ising chain is ensured by its energy gap closing
near the quantum critical point (QCP) [65,66]. In practice,
given that the system is linearly ramped from its initial ground
state across the QCP at a slow but uniform rate controlled by
the quench time τQ, we can parametrize this linear ramp in a
smooth form ε(t ) = (t − tc)/τQ, where ε(t ) is a dimensionless
distance from the QCP and tc marks the time when the QCP
is crossed. Generally, QKZM states that the final density of
defects scales like n ∝ τ

−dν/(1+zν)
Q , where d is the number

of space dimensions, z and ν are the dynamical and the cor-
relation length exponents, respectively [24]. This conclusion
means that the quench time sets a fundamental length scale.
Specifically, for the quantum Ising chain (d = 1) in a trans-
verse field, the density of defects is related to the so-called
KZ correlation length ξ̂ ∝ √

τQ by the relation n ∝ ξ̂−1 since
we have z = 1 and ν = 1 [67–70]. It is worth noting that
each pair of excited quasiparticles acquires a dynamical phase,
which contains a second scale of length,

√
τQ ln τQ. To fully

characterize the quantum state after quench, we must involve
both of the two scales of length [48,71].

On the other hand, a kind of quantum interference in the
defect dynamics was brought up by designed quench pro-
tocol [31] and subsequent investigations demonstrated that
the dynamical phase can play a vital role in the interfer-
ence [36,72]. Soon afterwards, the phenomenon of dynamical
freezing due to the interference was proposed in noninter-
acting spin systems [73] and verified by experiment later
[74]. It was also shown that a periodically driven system by
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interference asymptotically approaches a time-periodic steady
state at long times [75] and quantum interference is applica-
ble to periodic Gibbs’ ensembles in Ising-type free-fermionic
systems [76]. In interacting systems, stabilization of Floquet
phases by repeated interference was demonstrated [77–80]. In
the last decade or so, quantum interference has extended to
the entire field of the statistical mechanics of stable Floquet
quantum matter [78,81]. Recently, a relevant work showed
that the dynamical phase influences the coherent many-body
oscillations of transverse magnetization due to interference
[82].

In this work, we propose a concise interference effect
induced by two successive critical dynamics. We demon-
strate this effect by applying appropriate quench protocols
to the transverse Ising and quantum XY chains. Each proto-
col consists of two linear ramps that conform to the QKZM
[23,39,62]. The interference leads to an exposure of the dy-
namical phase in the final excitation probability, so that an
oscillatory behavior in the density of defects can be ob-
served directly. More intriguingly, we shall further disclose
a remarkable phenomenon of multiple length scales in the
defect-defect correlator, which reflect the intricate quantum
dephasing of the excited quasiparticle modes in the final state.

The remainder of this paper is organized as follows. Two
prototypical quench protocols, the round-trip and quarter-turn
ones, are presented in Secs. II and III, respectively. We demon-
strate in detail the effect and mechanism of interference by the
former and show a flexible way to realize the interference by
the latter. In Sec. IV, we reveal an associate phenomenon of
multiple length scales in the defect-defect correlator. At last,
a brief summary and discussion is given in Sec. V.

II. TRANSVERSE ISING CHAIN

In this section, a round-trip quench protocol is designed
for the transverse Ising chain, which displays the essential
elements for realizing the interference effect within the frame-
work of QKZM. We present the details of solution for the
quench protocol and elucidate the interference effect through
the analysis of the final excitation probability and density of
defects. The occurrence of interference is attributed to the
mechanism of two successive Landau-Zener transitions. A
reversed round-trip quench protocol is also discussed at last.

A. The model and round-trip quench protocol

The transverse field quantum Ising chain reads as

H = −
N∑

j=1

(
Jσ x

j σ
x
j+1 + gσ z

j

)
, (1)

where σ a
j (a = x, y, z) are Pauli matrices and the total number

of lattice sites N is assumed to be even. The periodic bound-
ary condition σ a

N+ j = σ a
j is imposed here. We only consider

the ferromagnetic case (i.e., J > 0) and will henceforth set
the reference energy scale as J = 1. By the Jordan-Wigner
transformation,

σ z
j = 1 − 2c+

j c j, σ x
j = −(c+

j + c j )
∏
l< j

σ z
l , (2)

where the spinless fermionic operators satisfy the anticommu-
tation relations {c j, c†

l } = δ jl and {c†
j , c†

l } = {c j, cl} = 0, we
can transform the Hamiltonian in Eq. (1) to

H = P+H+ + P−H−, (3)

where P± = 1
2 (1 ± ∏N

j=1 σ z
j ) are projectors on the subspaces

with even (+) and odd (−) parities and the corresponding
fermionic Hamiltonians read as

H± =
N∑

j=1

(
c jc j+1 − c†

j c j+1 + gc†
j c j − g

2
+ H.c.

)
. (4)

In H−, the periodic boundary conditions cN+1 = c1, and in
H+, the antiperiodic boundary conditions cN+1 = −c1, must
be obeyed respectively. It is noteworthy that the ground state
exhibits even parity for any nonzero value of g and the parity
is a good quantum number.

Because the quench process that we will concentrate on
begins in the ground state, we can confine our discussion to
H+. Adopting the same convention as the one in Ref. [65],

c j = 1√
N

e−iπ/4
∑

q

eiq jcq, (5)

q = −π + (2 j − 1)π

N
, j ∈ {1, . . . , N} (6)

we can rewrite the Hamiltonian as

H+ =
∑

q

{(
c†

q, c−q
)( εq 
q


q −εq

)(
cq

c†
−q

)
+ g

}
, (7)

where

εq = 2(g − cos q), 
q = 2 sin q. (8)

Next, by the canonical Bogoliubov transformation,

cq = uqηq − vqη
†
−q, (9)

with the coefficients satisfying

u2
q = ωq + εq

2ωq
, v2

q = ωq − εq

2ωq
, 2uqvq = 
q

2ωq
, (10)

we can arrive at the diagonalized form of the Hamiltonian

H+ =
∑

q

ωq

(
η†

qηq − 1

2

)
, (11)

where the quasiparticle dispersion reads as

ωq =
√

ε2
q + 
2

q. (12)

In the thermodynamic limit N → ∞ and at zero tempera-
ture, there is a second-order quantum phase transition from a
ferromagnetic state (0 < g < 1) with Z2 symmetry breaking
to a quantum paramagnetic state (g > 1) [66]. The QCP oc-
curs at gc = 1, where the quasiparticle dispersion becomes a
linear one, ωq ∼ 2|q − qc| with critical quasimomentum qc =
0, that is responsible for the dynamical exponent z = 1. And
as depicted in Fig. 1, the energy gap between the ground state
and the first excited state behaves as ω0 ∝ |g − gc|, which
implies the correlation length exponent ν = 1.

Suppose the system is initially prepared in the param-
agnetic ground state with all spins polarized up along the
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FIG. 1. Phase diagram of the transverse Ising chain and schemat-
ics of the round-trip quench protocol defined in Eq. (13). The shaded
area contains all excited energy states. There is an energy gap above
the ground state except at the gapless quantum critical point gc.
The round-trip quench protocol consists of two successive linear
ramps. τQ and τ ′

Q denote the quench times of the two linear ramps,
respectively.

transverse field | ↑,↑, . . . ,↑,↑〉, at a large enough value of
gi � 1. Then a round-trip quench protocol is applied to the
system: The system is driven from the paramagnetic to the
ferromagnetic regimes and returns to the paramagnetic regime
in the end. This protocol contains two linear ramps: one from
gi ≡ g(−∞) � 1 to grt (0 � grt < 1) in the first stage and
another from grt to g f � 1 in the second stage. As illustrated
in Fig. 1, the full procedure of the round-trip quench can be
parametrized as [83]

g → g(t ) =

⎧⎪⎪⎨
⎪⎪⎩

grt − t

τQ
(−∞ < t � 0),

grt + t

τ ′
Q

(0 < t � t f ),
(13)

where grt is a turning point, τQ and τ ′
Q are quench times

of the two individual linear ramps, respectively, and t f =
(g f − grt )τ ′

Q is a reasonably large enough time. In the round-
trip quench, the system comes across the QCP twice at t =
−(gc − grt )τQ and t = (gc − grt )τ ′

Q successively. It will be
very useful to introduce the ratio

R = τ ′
Q

τQ
. (14)

Throughout this paper, both τQ and τ ′
Q are considered to

be large enough and the ratio takes moderate values so that
QKZM works well in each individual linear quench.

As time evolves, the system gets excited from the instan-
taneous ground state. We adopt the Heisenberg picture here,
so the Bogoliubov quasiparticle operators do not change with
time, i.e., i d

dt ηq = 0. The Jordan-Wigner fermions still evolve
according to the Heisenberg equation i d

dt cq = [cq, H+]. By a
time-dependent Bogoliubov transformation,

cq = uq(t )ηq + v∗
−q(t )η†

−q, (15)

we can arrive at the dynamical version of the time-dependent
Bogoliubov–de Gennes (TDBdG) equations

i
d

dt

[
uq(t )
vq(t )

]
=

[
εq(t ) 
q


q −εq(t )

][
uq(t )
vq(t )

]
. (16)

It can be solved exactly by mapping to the Laudau-Zener (LZ)
problem [23]. We need to solve this problem for the round-trip
quench protocol and calculate the density of defects through
the excitation probability in the final state of the system.
We shall adopt the long-wave approximation appropriately
since only the long-wave modes within the small interval
q � 1√

πτQ
� π

2 can make a contribution and the short-wave
modes rarely get excited during the quantum phase transition.

At last, in the paramagnetic phase with a large enough
value of g f � 1, the operator of the number of defects NP

measured by the deviation of spins reduces to the total number
of excitations N approximately [39,62],

NP ≡ 1

2

∑
j

(
1 − σ z

j

) ≈ N ≡
∑

q

η†
qηq. (17)

One can define the excitation probability as

pq(t ) = 〈η†
qηq〉 = |uq(t )vq − vq(t )uq|2, (18)

so that the density of defects is measured by

n = 〈N 〉
N

= 1

N

∑
q

pq, (19)

where 〈. . . 〉 means the average over the final state of the sys-
tem. The summation can be replaced by an integral 1

N

∑
q →∫ π

0
dq
π

. The details of solution of the TDBdG equations in
Eq. (16) are put in Appendix A. We only quote the results
here.

B. Interference effect at grt = 0

For simplicity, we dwell on the case of grt = 0 now, which
gives a clear interference effect with many-body oscillation.

1. Final excitation probability

By Eq. (18), we work out the final excitation probability
after the full round-trip quench as

pf
q ≡ pq(t f ) = A2 + B2 − 2AB cos ψ, (20)

where

A = e−πq2τQ

√
1 − e−2πq2τQR, (21)

B = e−πq2τQR
√

1 − e−2πq2τQ , (22)

ψ = π

2
+ 2(1 + R)τQ + q2τQ{(1 + R) ln τQ

+ (1 + R)(ln 4 + γE − 2) + R ln R}. (23)

In the calculation, we have made the substitutions sin2 q ≈ q2

and cos2 q ≈ 1 − q2, according to the long-wave approxima-
tion [39]. The presence of the total dynamical phase ψ in pf

q

undoubtedly manifests an interference effect. This result is in
contrast to the usual one after the first linear ramp, in which
the excitation probability (at t = 0 here) reads as

p0
q ≡ pq(0) ≈ e−2πτQq2

, (24)

as has been revealed by the classical works [21,23]. p0
q reaches

its peak at q∗ = π/N ∼ 0.

184301-3



HAN-CHUAN KOU AND PENG LI PHYSICAL REVIEW B 106, 184301 (2022)

FIG. 2. Analysis of the final excitation probability pf
q (grt = 0

and R = 1). (a), (d) Exemplify the density plots of pf
q for 10 <

τQ < 16.3 and 1000 < τQ < 1006.3, respectively, which illustrate
the oscillatory behavior of pf

q along τQ direction with a period
TQ = π/2 according to Eq. (27). (b), (e) Illustrate pf

q versus q
at several fixed values of τQ (τQ = 11.3, 11.56, 11.82 and τQ =
1000.6, 1001, 1001.4), where the characteristic momentum q∗ =√

ln 2/(2πτQ ) of the upper bound (A + B)2 is denoted by the vertical
dashed lines. (c) The graph representation of Eq. (20). Please see
more details in the text.

To see through the interference taking effect after the sec-
ond linear ramp, we look into the density plots of pf

q , which
shows an array of humps lining up along τQ direction as
exemplified in Figs. 2(a) and 2(d). First of all, pf

q takes values
between lower and upper bounds,

(A − B)2 � pf
q � (A + B)2. (25)

For the upper bound, we can define its characteristic quasimo-
mentum q∗ by its peak position [Figs. 2(b) and 2(e)], whose
value can be numerically solved from the equation

1 + √
2eπ (R−1)τQq2

R
√

R + eπ (R−1)τQq2
= eπ (R+1)τQq2

1 + R
. (26)

For R = 1, the equation can be solved analytically and gives

q∗ =
√

ln 2
2πτQ

. In general, we have the behavior q∗ ∼ τ
−1/2
Q .

When τQ increases, the humps become distorted with tails
bending down so that more peaks along q direction can be
observed for larger τQ as shown in Figs. 2(b) and 2(e). Second,
the period of oscillation along τQ direction can be worked out

readily as

TQ = lim
τQ→∞

2π

(1 + R){2 + (q∗)2 ln τQ} = π

1 + R
(27)

because only the modes around the peaks at q∗ make con-
tributions and the value of q∗ is as small as ∼τ

−1/2
Q . In fact,

this period is due to the length scale τQ in the total dynamical
phase ψ . Another important length scale, τQ ln τQ, in ψ affects
the dephasing of the excitation modes [48], which will be
discussed later. The same oscillatory behavior can also be
measured by the variable τ ′

Q and the corresponding period
becomes

T ′
Q = TQ

R
= π

R(1 + R)
. (28)

2. Oscillatory density of defects

As a more easy way to observe the effect of interference,
we work out the final density of defects as

n = n0

{
f +

3∑
i=1

Mi cos

(
2π

τQ

TQ
+ δi

)}
, (29)

in which

n0 = 1

2π
√

2τQ
(30)

is a QKZM factor matching the result of usual one-way
quench [23],

f = 1 + 1√
R

− 2√
1 + R

(31)

is a factor without oscillation, M ′
i s and δ′

is are oscillation
amplitudes and phases whose expressions are to be found in
Appendix A. This result can be abbreviated to

n = n0

{
f + M cos

(
2π

τQ

TQ
+ δ

)}
. (32)

To distinguish the contribution of each term, we write

n0 f = 1

2π
√

2τQ
+ 1

2π
√

2τ ′
Q

− 1

π
√

2(τQ + τ ′
Q)

. (33)

So it is clear to see that the former two terms in Eq. (33) are in-
dividual contributions from the two critical dynamics of linear
quenches and the last term is a nonoscillatory part of interplay
between the two critical dynamics. While the oscillatory part
of interplay between the two critical dynamics is embedded in
the cosinusoidal terms in Eq. (29) or the one in Eq. (32). The
oscillatory density of defects for R = 1 and 2 < τQ < 60 is
exemplified in Fig. 3. We see the formula in Eq. (32) obtained
by long-wave approximation is in good agreement with the
numerical solution of the TDBdG equations in Eq. (16). This
intriguing result is in contrast to the traditional case of one-
way quench [23].

In the large-τQ limit, the amplitude factor M becomes

lim
τQ,τ ′

Q→∞
M =

2πτQ

√
2πτ ′

Q

(τQ ln τQ + τ ′
Q ln τ ′

Q)3/2
(34)
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FIG. 3. Oscillatory density of defects as an effect of interference. Both analytical (blue curve) and numerical (red circles) results are
illustrated for comparison, which show a good agreement. The analytical result comes from the expression in Eq. (32) and the numerical one
is obtained by numerically solving the TDBdG equations in Eq. (16). The black solid line denotes the nonoscillatory part n0 f and the dashed
and dotted lines denote the upper and lower bounds n0( f + M ) and n0( f − M ) of the density of defects. The period of oscillation is TQ = π

2
according to Eq. (27) since we have R = 1 here. The inset shows the rescaled density of defects n/n0 evolving with rescaled time t/τQ. In it,
we have select several typical values of quench time within half a period, 30 � τQ � 30 + TQ

2 . It is clear that the density of defects is finally
dispersed in a range of amplitude n0( f − M ) ∼ n0( f + M ).

asymptotically. To see its behavior more clear, one can get
limτQ→∞ M ∼ (ln τQ)−3/2 by setting R = 1. In fact, this am-
plitude factor is a remnant due to the interference after
quantum dephasing of the excited quasiparticle modes in
the final state being accomplished. To be more specific, we
illustrate the density of defects evolving with time in the
inset of Fig. 3, which is a numerical solution of the TDBdG
equations in Eq. (16). The final state is a superposition over
many quasiparticle eigenstates, whose dynamical phases rely
on the quasimomentum q. The q-dependent phases become
so scrambled that the dephasing is ensured providing enough
time for the final state to evolve in the last adiabatic stage
[48]. Meanwhile, the excitation probability pf

q containing the
total dynamical phase ψ becomes frozen after the dephasing.
Henceforth, the density of defects is dispersed in a range of
amplitude n0( f − M ) ∼ n0( f + M ).

It is noteworthy that the interplay between the interference
and the dephasing also influences the correlation functions
deeply and lead to a phenomenon of multiple length scales,
which will be discussed later.

3. Mechanism of interference: Two successive
Landau-Zener transitions

Now we look into how the quantum dynamical phase can
result in an interference in the round-trip quench protocol.
In fact, the interference can be attributed to a mechanism
based on a theory of two successive Landau-Zener transitions.
As illustrated in Fig. 4(a), the full round-trip quench process
can be divided into three adiabatic and two impulse stages
approximately [24]. The system is driven across QCP twice,
i.e., the system undergoes nonadiabatic transitions in the two
impulse regimes as represented by the shaded areas. To get a
rough but clear picture, we discuss the theory in an intuitive
way below.

First of all, different pairs of quasiparticles get excited
independently, thus we can focus on the single-mode problem.

In the initial state, the q mode is empty and we label the state
by |0〉. With time increasing, the q mode state that is labeled
by |q,−q〉 = c†

qc†
−q|0〉 is involved. Then we can follow the

evolution of the two states only concerning the q mode. Ac-
cording to the standard Landau-Zener transition theory, the

FIG. 4. (a) Two successive Landau-Zener transitions for (q, −q)
modes in the round-trip quench process. The full process can be
roughly divided into three adiabatic and two impulse stages. (b) Evo-
lution of the excitation probability. The final excitation probability is
output for large enough time t . The two insets show a shift of peak
of the excitation probability pq(t ) evolving from p0

q to pf
q . We have

selected the parameters R = 1 and τQ = 12.87 in this demonstration.
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two states after the first nonadiabatic transition can be written
as [84]

|1〉 ∼
√

1 − p0
q eiθ1

∣∣0〉 + √
p0

q eiθ2 |q,−q〉, (35)

|2〉 ∼
√

p0
q e−iθ2

∣∣0〉 − √
1 − p0

q e−iθ1 |q,−q〉, (36)

where p0
q = e−2πτQq2

, θ1/2 are nonzero phases determined by
the quench time τQ. Next, through the second nonadiabatic
transition, the two states mix again and output another two
new ones,

|1′〉 ∼
√

1 − p′
q eiφ1 |1〉 +

√
p′

q eiφ2 |2〉, (37)

|2′〉 ∼
√

p′
q e−iφ2 |1〉 −

√
1 − p′

q e−iφ1 |2〉, (38)

where p′
q = e−2πτ ′

Qq2
, φ1/2 are other nonzero phases deter-

mined by the quench time τ ′
Q.

At t = 0 (after the first linear quench), the excitation prob-
ability reads as

p0
q = |〈q,−q|1〉|2 = e−2πτQq2

, (39)

which exhibits a Gaussian peak centered at q∗ = 0 and no
information of phase remains. However, an interference is
inevitable after the second nonadiabatic transition because the
final excitation probability contains a nonzero phase and reads
as

pf
q = |〈q,−q|1′〉|2

= A2 + B2 − 2AB cos(θ1 + θ2 + φ1 − φ2). (40)

This concise result is actually the same as that in Eq. (20). It
is easy to see that the phases θ1/2 and φ1/2 mimic the former
ones θu/v

q and φa/b
q in Eq. (23) faithfully.

We have also calculated numerically the evolution of the
excitation probability pq(t ) to observe in detail how the two
successive Landau-Zener transitions influence the final out-
put. The numerical results for a system with size N = 1000
are illustrated in Fig. 4(b). We can observe that the mode
q = π/N approaches the saturate value 1 after the first linear
ramp and drops precipitously down to 0 after the second linear
ramp. And the modes q ∼ τ

−1/2
Q indeed have the chance to be

excited with a higher probability.
In short, the occurrence of interference can be attributed

to the fact that the system gets excited twice in the whole
quench process. But one may doubt that why there is no such a
kind of interference in the quench process with the transverse
field being ramped from g = ∞ to −∞ in the transverse Ising
model as depicted in previous studies [30,62,85] since the
systems also get excited twice. The answer lies in that both the
first and second excitations must involve the same modes to
get an interference. While in the previous studies, the first and
secondary excitations agitate the modes near qc = 0 and π

independently, thus there is no chance for such an interference
to occur.

C. Interference effect at grt = gc = 1

When the turning point locates at the critical point grt =
gc = 1, the second adiabatic stage disappears and the two

impulse stages merge. In this situation, the interference still
exists, but does not induce the oscillation in the density of
defects. Here, we will calculate the density of defects for
grt = 1 and demonstrate the vanished many-body oscillation
in the case based on the two-step Landau-Zener transition and
the numerical result. But the analytics is a little different with
grt = 0. We need to make use of the asymptote of Dm(z),

lim
z→0

Dm(z) = 2m/2

√
π

�
(

1
2 − m

2

) , (41)

to get the final excitation probability containing an interfer-
ence term pf

q ∼ cos ψ , where the total dynamical phase turns
out to be (please see details in Appendix A 3)

ψ = π

2
+

1
2 ,1∑
a

τQ,τ ′
Q∑

T

(−1)2a arg

{
�

(
a − i

2
T q2

)}

≈ π

2
+ 1

2

{
γE + γd

(
1

2

)}
(1 + R)τQq2, (42)

where γd ( 1
2 ) ≈ −1.963 51 and γd (x) is the digamma function.

Comparing the total dynamical phase in Eq. (42) with that in
Eq. (23), we find the term like 2(1 + R)τQ does not appear
in Eq. (42). Thus, the final density of defects will behave
like n ∼ τ

−1/2
Q , and there is no oscillation any longer. This

conclusion is similar to a previous study of the Kitaev model
[36]. We have also numerically investigated the case with
grt = gc = 1 on a lattice as large as N = 10 000 and confirmed
a QKZM factor without oscillation n ≈ 0.053τ−0.495

Q ∼ τ
−1/2
Q

in the final density of defects.

D. Interference effect for 0 < grt < 1

Now we free the turning point from grt = 0 and 1 to the
range 0 < grt < 1 and skip the details of deduction since it is
not much different from the previous one. The final excitation
probability and density of defects can still be expressed by
Eqs. (20) and (32). But the total dynamical phase changes to

ψ = π

2
+ 2(grt − 1)2(1 + R)τQ + q2τQ(R ln R

+ (1 + R)[2(grt − 1) + ln{4τQ(grt − 1)2} + γE ]). (43)

As a consequence, the period of oscillation is generalized
from Eq. (27) to

TQ = π

(grt − 1)2(1 + R)
, (44)

and the oscillation amplitude of the density of defects still
behaves as limτQ→∞ M ∼ (ln τQ)−3/2 asymptotically. The for-
mula of period in Eq. (44) is numerically verified in Fig. 5
for several selected values of grt. Furthermore, we reckon that
this formula also holds when grt → 1 although it approaches
infinity. It means that the oscillation will disappear eventually,
which is consistent with the discussion on the case of grt = 1
in the previous subsection.

E. Reversed round-trip quench protocol

In the round-trip quench protocol elaborated above, both
the starting point and ending point are located in the
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FIG. 5. Density of defects versus rescaled quench time
(grt − 1)2τQ. We get the results by numerically solving the
TDBdG equations in Eq. (16) with parameters R = 1 and grt =
0.0, 0.2, 0.4, 0.6, 0.8. The repeated peaks and troughs justify the
formula of period in Eq. (44).

paramagnetic phase. We can also consider a reversed round-
trip quench protocol, which is shown in the inset of Fig. 6,
for the same Hamiltonian in Eq. (1). The reversed protocol is
parametrized as

g → ḡ(t ) =

⎧⎪⎪⎨
⎪⎪⎩

grt + t

τQ
(−grtτQ < t � 0),

grt − t

τ ′
Q

(0 < t � grtτ
′
Q),

(45)

where grt is the turning point. The initial time is set at t =
−grtτQ, where the system is a classical Ising model with zero
transverse field. In the first stage, the dynamics is ramped up
from the ferromagnetic phase to the paramagnetic one. At
t = 0, the transverse field reaches the turning point g(0) =
grt > 1, where the first nonadiabatic process has been suffi-
ciently accomplished, i.e., we would get a usual result falling
in the QKZM. Then, in the second stage, the transverse field

FIG. 6. Density of defects after the reversed round-trip quench
protocol is applied to the transverse Ising chain with parameters
R = 1 and grt = 1.5. The period of oscillation is TQ = 2π . The in-
set shows the phase diagram of the transverse Ising chain and the
reversed round-trip quench protocol.

is linearly ramped down and the system finally returns back to
the classical Ising model, i.e., the limit of the ferromagnetic
phase. In this limit, the kinks along the x axis play the role of
defects and the number of defects NF matches the number of
excitations N exactly [23]:

NF ≡ 1

2

∑
j

(
1 − σ x

j σ
x
j+1

) = N ≡
∑

q

η†
qηq. (46)

In fact, the two definitions of the number of defects in the
limit of paramagnetic phase NP and the limit of ferromagnetic
phase NF are dual to each other. One can see this clearly
by introducing the dual transformation [86] μz

j = σ x
j σ

x
j+1 and

μx
j = ∏

k< j σ
z
k , which leads to the mapping of defects,

1

2

∑
j

(
1 − σ z

j

) ↔ 1

2

∑
j

(
1 − μx

jμ
x
j+1

)
, (47)

1

2

∑
j

(
1 − σ x

j σ
x
j+1

) ↔ 1

2

∑
j

(
1 − μz

j

)
. (48)

The followed calculations are direct and similar to pre-
vious ones. We will omit the details. In short, we get the
same expressions of final excitation probability and density
of defects as the ones in Eqs. (20) and (32). And the total
dynamical phase ψ and the period of oscillation TQ are the
same as the ones in Eqs. (43) and (44), but note that we have
grt > gc = 1 now. We have also verified that the amplitude
factor still falls into the asymptotical behavior limτQ→∞ M ∼
(ln τQ)−3/2. However, if letting grt → ∞, we get

lim
grt→∞ M =

√
R

[
π

(1 + R)(grt − 1)

]3/2

→ 0, (49)

which means the oscillation will fade out eventually as a
dephasing effect. The oscillatory density of defects for R = 1
and grt = 1.5 is illustrated in Fig. 6.

III. QUANTUM XY CHAIN

The quantum XY chain with a transverse field reads as

HXY = −
N∑

j=1

(
Jxσ

x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + gσ z

j

)
, (50)

where Jy (> 0) and Jx (> 0) are interactions in x and y di-
rections, respectively. We shall set Jx as an energy unit
appropriately. The Hamiltonian can also be solved by Jordan-
Wigner transformation [65,87]. As shown in Fig. 7, this model
exhibits four phases: two ferromagnetic (FM) and two para-
magnetic phases. One gets x-FM or y-FM phase if Jx or
Jy prevails, respectively. In Fourier space, the quasiparticle
dispersion reads as

ωq = 2
√

{g − (Jx + Jy) cos q}2 + {(Jx − Jy) sin q}2. (51)

On the phase boundaries, the gap between the ground state
and the lowest excited state vanishes at a critical quasimo-
mentum qc. The phase boundaries are three lines: g = Jx + Jy,
g = −Jx − Jy, and Jy = Jx with qc = 0, π , and arccos(g/2Jx ),
respectively. Moreover, there are two tricritical points at
(g/Jx, Jy/Jx ) = (±2, 1).
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FIG. 7. Phase diagram of the quantum XY model and quench
protocols. There are four phases divided by three phase boundaries.
Two quench protocols are illustrated by the colored lines. In the
round-trip quench protocol (red line), the starting and ending points
are deeply located in the y-FM phase, and the turning point is set
at Jy/Jx = 0. The system crosses over either one phase boundary
twice (0 < g0 < 1 and g0 � 2) or two phase boundaries with each
one twice (1 < g0 < 2). In the quarter-turn quench protocol (green
line), starting from the y-FM phase, the system goes across the phase
boundary g/Jx = 1 + Jy/Jx twice and finally reaches the limit of the
x-FM phase, the classical Ising model. The turning point is labeled
by the parameters fulfilling gqt > 1 and Jy/Jx = 0. Please see more
details in the text.

Aside from the round-trip quench protocol, another one,
say the quarter-turn quench protocol, can also be applied to
the quantum XY chain to produce the same kind of interfer-
ence effect. We demonstrate them one by one.

A. Round-trip quench protocol

Without loss of generality, let us concentrate on the round-
trip quench protocol depicted by the red line along the Jy/Jx

direction as shown in Fig. 7. In this protocol, the parameter
g0/Jx is fixed and takes some appropriate value, the starting
and ending points are located in the deep region of the y-FM
phase, and the turning point is set at Jy = 0. In the following,
we shall set the unit of energy, Jx = 1.

First, in the cases of 0 < g0 < 1 and g0 � 2, the system
crosses over the same phase boundary twice. We found that
the density of defects still falls into the same formula as that
expressed in Eq. (32), but the quantities in it behave differently
depending on which phase boundary is crossed. We get

n0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
2

π
(
4 − g2

0

)√
τQ

(0 < g0 < 1),

1

2π (g0 − 2)
√

2τQ
(g0 > 2),

�(7/6)

π (2πτQ)1/6
(g0 = 2),

(52)

f =

⎧⎪⎪⎨
⎪⎪⎩

1 + 1√
R

− 2√
1 + R

(g0 > 0
∧

g0 �= 2),

1 + 1

R1/6
− 2

(1 + R)1/6
(g0 = 2),

(53)

FIG. 8. (a) Density of defects n after the round-trip quench pro-
tocol is applied to the quantum XY chain. The parameters are R = 1
and g0 = 0.5 (red line), 1.2 (blue line), 2.0 (green line), 2.5 (dark
yellow line). (b) Density of defects n for g0 = 1.2 in a larger range
of τQ. (c) Oscillatory part of n for g0 = 2. Please see more details in
the text.

TQ =

⎧⎪⎨
⎪⎩

π

1 + R
(0 < g0 < 1),

π

(g0 − 1)2(1 + R)
(g0 � 2),

(54)

and

M ∼

⎧⎪⎪⎨
⎪⎪⎩

e
− g2

4−g2 τQ (0 < g0 < 1),

(ln τQ)−3/2 (g0 > 2),

τ
−7/3
Q (g0 = 2).

(55)

All the expressions have been verified by numerical solutions.
δ is too tedious to be presented here since it is not important.
As exemplified in Fig. 8(a), we see that M decreases expo-
nentially in the case of 0 < g0 < 1, which is quite different
from the case of g0 > 2. At the tricritical point [g0 = 2, see
Figs. 8(a) and 8(c)], the factor n0 behaves as ∼τ

−1/6
Q , which is

in agreement with the previous study [30]. And because M is a
sum of a series of complex generalized hypergeometric func-
tions in the case of g0 = 2, we get a concise result M ∼ τ

−7/3
Q

by numerical fitting.
Second, in the case of 1 < g0 < 2, the system crosses over

two phase boundaries with each one twice, which means that
there are two independent sources of interferences because
of two different critical quasimomenta, q′

cs, corresponding
to each phase boundary (see Fig. 7). Thus, the final defect
density contains two kinds of oscillations since it is a sum of
two contributions like

n = n0

{
f +

∑
i=1,2

Mi cos

(
2π

τQ

TQ,i
+ δi

)}
, (56)
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FIG. 9. Density of defects n after the quarter-turn quench proto-
col is applied to the quantum XY chain. The parameters are R = 1
and gqt = 1.5 (red line), 2 (blue line), 2.5 (green line). For the case
of gqt = 2 (blue line), the system goes across a tricritical point so
that the result is expressed by Eq. (68), whose oscillatory part is
illustrated in the inset.

where

n0 = 6 + g0

2π
(
4 − g2

0

)√
2τQ

, (57)

f = 1 + 1√
R

− 2√
1 + R

, (58)

TQ,1 = π

1 + R
, M1 ∼ e

− g2
0

4−g2
0
τQ

, (59)

TQ,2 = π

(g0 − 1)2(1 + R)
, M2 ∼ (ln τQ)−3/2. (60)

The term with TQ,1 and M1 corresponds to the contribution
due to the boundary Jy/Jx = 1, while the other term with TQ,2

and M2 corresponds to the contribution due to the bound-
ary g/Jx = 1 + Jy/Jx. Since M1 decreases exponentially with
τQ increasing, the main contribution would come from the
boundary g/Jx = 1 + Jy/Jx for large enough τQ (say τQ �
100). The result is exemplified in Figs. 8(a) and 8(b).

B. Quarter-turn quench protocol

It is interesting to find new ways for realizing interference
effect in the dynamics of this system since it contains more
abundant phases and phase transitions. We propose another
typical case, the quarter-turn quench protocol, which is shown
in Fig. 9. The full procedure also contains two linear ramps
and can be parametrized as⎧⎪⎪⎨

⎪⎪⎩
Jy(t ) = − t

τQ
and g(t ) = gqt (ti < t � 0),

Jy(t ) = 0 and g(t ) = gqt − t

τ ′
Q

(0 < t � t f ),
(61)

where ti = −∞ and t f = gqtτ
′
Q. The starting point is set in the

deep region of the y-FM phase. In the first stage, the interac-
tion Jy is ramped down to zero so that the system is driven
to the paramagnetic phase, which is ensued by the transverse
field taking an appropriate value. Then, in the second stage,
the transverse field is ramped down from gqt > 1 to zero and

the system reaches the classical Ising model eventually. In this
limit, again, the kinks along the x axis play the role of defects
and the number of kinks matches the number of excitations
exactly according to Eq. (46).

Because the situation is much more delicate, we shall omit
the details of solution that is similar to the one elaborated in
Sec. II A. Here we only write the final excitation probability
before taking long-wave approximation

pf
q =

{
A2 + B2 − 2AB cos ψ (1 < gqt < 2),
A2 + B2 − 2AB cos(ψ − π ) (gqt � 2),

(62)

where

A = e−πτQ (gqt sin q−sin 2q)2

√
1 − e−2πτ ′

Q sin2 q, (63)

B = e−πτ ′
Q sin2 q

√
1 − e−2πτQ (gqt sin q−sin 2q)2

, (64)

ψ = π

2
+ 2(gqt cos q − cos 2q)2τQ + 2(gqt − cos q)2τ ′

Q

+ τQ(gqt sin q − sin 2q)2[ln{4τQ(gqt cos q − cos 2q)2}
+ γE ] + τ ′

Q sin2 q[ln{4τ ′
Q(gqt − cos q)2} + γE ]. (65)

The delicacy lies in the following facts.
First, the system undergoes two and three quantum phase

transitions for gt > 2 and 1 < gt < 2, respectively. In the
former case, the two transitions occur at the same phase
boundary g = Jx + Jy with critical quasimomentum qc = 0,
thus, an oscillation in the density of defects would be observed
inevitably. In the latter case, an extra transition occurs at
the phase boundary Jy/Jx = 1 with critical quasimomentum
qc = arccos(g/2Jx ), which is independent from the other two
transitions and does not affect their interference. In both cases,
the final density of defects still takes the general form in
Eq. (32) but with renewed factor

f =

⎧⎪⎪⎨
⎪⎪⎩

1

gqt − 2
+ 1√

R
− 2√

(gqt − 2)2 + R
(gqt > 2),

6 + gqt

4 − g2
qt

+ 1√
R

− 2√
(gqt − 2)2 + R

(1 < gqt < 2),

(66)

and period of oscillation

TQ = π

(gqt − 1)2(1 + R)
. (67)

We have also verified numerically that the amplitude of oscil-
lation behaves asymptotically like limτQ→∞ M ∼ (ln τQ)−3/2.

Second, if we let gqt = 2, the system will go across a tricrit-
ical point in the first linear ramp and a usual critical point in
the second linear ramp. It is well known that a single tricritical
point will lead to a quite different scaling n ∼ τ

−1/6
Q rather

than the familiar scaling n ∼ τ
−1/2
Q , fit for the usual critical

point. After the quarter-turn quench process, the final den-
sity of defects should contain both contributions intricately.
Although no common QKZM factor [like n0 in Eq. (30)]
could be singled out, the final density of defect would reflect
an interplay between the critical point and tricritical point.
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Specifically, we arrive at

n = �(7/6)

π (2πτQ)1/6
+ 1

2π
√

2τ ′
Q

− π1/3{Ai(x)2 + Bi(x)2}√
2(3τQ)1/6

+ A′ cos

(
2π

τQ

TQ
+ δ

)
, (68)

where Ai(x) and Bi(x) are two kinds Airy functions and

x = − π2/3τ ′
Q

(3τQ )1/3 . The first two terms are individual contributions
from two linear ramps, respectively. The third term is the
nonoscillatory part of the interplay between the two ramps.
The last term is the oscillatory part (please see the inset in
Fig. 9), whose amplitude A′ goes to zero quickly when τQ is
large enough with the asymptotical behavior ∼τ

−3/2
Q .

The final densities of defects for three distinct values of gqt

are illustrated in Fig. 9, in which the curves are obtained by
integration on pf

q expressed in Eq. (62) over the first Brillouin
zone. And we have verified that a numerical solution of the
dynamical TDBdG equations gives almost the same results.
We can see that the oscillations for gqt �= 2 are prominent.
While the oscillation for gqt = 2 fades out very quickly with
τQ increasing, although the period is still given by Eq. (67).

IV. DEFECT-DEFECT CORRELATOR WITH MULTIPLE
LENGTH SCALES

In this section, we disclose an interesting phenomenon
of multiple length scales, diagonal and off-diagonal ones,
in the defect-defect correlator due to the interference effect.
This correlator can reflect the special dephasing effect in the
post-transition state. By a comparative study of the round-trip
and reversed round-trip quench protocols for the transverse
Ising chain, we show that the dephased result relies on how
the diagonal and off-diagonal lengths are modulated by the
controllable parameter in a quench protocol.

Throughout this paper, we are only concerned with two
kinds of definitions of defects according to the destination
of dynamics: NP in Eq. (17) for the limit of paramagnetic
phase and NF in Eq. (46) for the limit of ferromagnetic phase.
The former is fit for the round-trip quench protocol, while
the latter the reversed round-trip quench protocol. Likewise,
the defect-defect correlator should be defined differently for
these two limits. For the round-trip quench protocol, it turns
out to be the transverse spin-spin correlator

Czz
r = 〈P̂j P̂j+r〉 − 〈P̂j〉〈P̂j+r〉

= 1
4

(〈
σ z

j σ
z
j+r

〉 − 〈
σ z

j

〉〈
σ z

j+r

〉)
, (69)

where the defect operator P̂j = 1
2 (1 − σ z

j ). While for the re-
versed round-quench protocol, it is the kink-kink correlator
[48]

CKK
r = 〈F̂j F̂j+r〉 − 〈F̂j〉〈F̂j+r〉, (70)

where the defect (or kink) operator F̂j = 1
2 (1 − σ x

j σ
x
j+1).

A. Transverse spin-spin correlator for the round-trip
quench protocol

We consider the round-trip quench protocol applied to the
transverse Ising chain first. For abbreviation, we confine our
discussion to the simplest case with R = 1 and grt = 0.

1. Fermionic correlators and multiple length scales

The system goes back to the paramagnetic phase finally,
thus the transverse correlator plays the role of defect-defect
correlation. The details on computing this correlator are pre-
sented in Appendix B. Here we only quote the result:

Czz
r = |βr |2 − α2

r , (71)

where

αr ≡ 〈c+
j c j+r〉 = −

∫ π

0

dq

π
|vq(t f )|2 cos(qr), (72)

βr ≡ 〈c jc j+r〉 =
∫ π

0

dq

π
uq(t f )v∗

q (t f ) sin(qr) (73)

are diagonal and off-diagonal quadratic fermionic correlators
[28]. The negative term in Eq. (71) implies an antibunching
effect of the defects in short space distances, which means the
defects can hardly approach one another.

For the diagonal fermionic correlator αr , we arrive at

αr = 2e−r2/ξ̂ 2

√
π ξ̂

(
1 −

√
2e−r2/ξ̂ 2)

+
∑

m=1,2

√
8(−1)me−r2/(lαm )2

(2mπ2)1/4
√

ξ̂ lα
m

sin φα
m,r, (74)

where

φα
m,r = 4τQ − b

m

r2(
lα
m

)2 + 1

2
arctan

b

m
(75)

are phase factors with b = 1
π
{ln(4τQ) + γE − 2} ≈ ln τQ

π
and

ξ̂ = 4
√

πτQ, (76)

l ′α
m = 2

√
2mπτQ

√
1 +

(
b

m

)2

(77)

are three length scales. Exposed by the interference, lα′s
m (m =

1, 2) are two new lengths that could be called the diagonal
lengths since they appear in the diagonal fermionic correlator.
They attenuate the sinusoidal interference terms sin φm,rα′s by
the Gaussian decaying factors in space. We still call ξ̂ the
KZ length, although it also appears in the diagonal fermionic
correlator.

For the off-diagonal fermionic correlator βr , we arrive at

βr =
5∑

m=1

(−1)m−1 ym r√
ξ̂
(
lβ
m
)3

e−r2/

(
lβm
)2

eiφβ
m (r), (78)
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FIG. 10. Length scales lα
m (m = 1, 2) and lβ

m (m = 1, . . . , 5), in
the transverse spin-spin correlator. All length scales are plotted in
units of KZ length ξ̂ . We have fixed the parameters R = 1 and gf =
10.

where ym = 2Ym
{π2(hm )3}1/4 are coefficients with Y2 = √ e

ln 2 for

m = 2 and Ym = 1
2

√ e
ln 2 for other m,

φβ
m(r) = λ′

m − λm r2

πhm(lβ
m )2

− 3

2
arg

(
1 − i

λm

πhm

)
(79)

are phase factors with

λ1 = ln τQ − 2g f − 2 ln(g f − 1),

λ2 = λ3 = − ln τQ − 2g f − 2 ln(g f − 1),

λ4 = λ5 = −3 ln τQ − 2g f − 2 ln(g f − 1),

λ′
1 = −λ′

2 = −λ′
3 = π

4
+ 2τQ,

λ′
4 = λ′

5 = −3π

4
− 6τQ,

h1 = h2 = h5 = 2 + 1

ln 2
, h3 = h4 = 1

ln 2
,

and

lβ
m = 2

√
πhmτQ

√
1 +

(
λm

πhm

)2

(80)

are other five new lengths. Likewise, we call them off-
diagonal lengths.

So we get eight lengths in total. We illustrate them in
Fig. 10 by setting the typical parameters R = 1 and g f = 10.
It is clear to see that lmβ′s are larger than lα′s

m and lβ

4 is always
the largest one overall. In fact, except for the KZ length (ξ̂ ∼√

τQ), all other lengths share the same asymptotic behavior
∼√

τQ ln τQ for a fixed finite value of g f .
The transverse spin-spin correlator scaled as n−2

0 Czz
r versus

the scaled distance n0r is exemplified in Fig. 11. We see that
the length scales coming out of the diagonal and off-diagonal
fermionic correlators play quite different roles. The transverse
correlator is governed by the diagonal part for small space dis-
tances and by the off-diagonal part for large space distances,

FIG. 11. Transverse spin-spin and fermionic correlators. The
correlators Czz

r , −|αr |2, and |βr |2 scaled in n2
0 are plotted versus the

rescaled distance n0r for (a) τQ = 8, (b) τQ = 32, and (c) τQ = 128.
Other parameters are R = 1 and gf = 10. The multiple lengths are
illustrated by the colored bar charts in each inset. The fermionic
correlator −|αr |2 also stands for the dephased transverse spin-spin
correlator when gf → ∞ according to Eq. (89).

i.e., we have

Czz
r ≈

{
−α2

r

[
r � min

(
lα
m, ξ̂

)]
,

|βr |2
[
r � min

(
lβ
m

)]
,

(81)
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FIG. 12. Density plot of n−2
0 Czz

r in typical ranges of variables n0r
and τQ. We have set the parameters R = 1 and gf = 10. TQ = π

2 de-
notes the period of the oscillation along the direction of the variable
τQ in the transverse spin-spin correlator.

approximately. The former is due to the fact (lα
m)−1/2 �

r(lβ
m )−3/2 for small r, and the latter e−(lβm/lαm )2 → 0 and

e−(lβm/ξ̂ )2 → 0 for large enough r. When the space distance
exceeds the largest length scale, i.e., r > lβ

4 , the transverse
correlator reduces to the Maxwell-Boltzmann form

Czz
r ≈ 1

16

√
e2 ln 2

π

r2

ξ̂
(
lβ

4

)3 e−2r2/

(
lβ4

)2

(82)

with only one prevailing length lβ

4 . While for intermediate
space distances, the transverse correlator is influenced by all
lengths.

2. Periodicity due to interference

Both fermionic correlators αr and βr contain interference
terms. It is easy to discern an oscillation with a period TQ = π

2
(please note that R = 1 at present), in the diagonal part of the
transverse spin-spin correlator, −|αr |2, along the τQ direction.
While for the off-diagonal part |βr |2, one can find that

|βr |2 ∼
∑

m,n=1...5

Amn cos(�mnτQ + δmn), (83)

where

�mn ≡ λ′
m − λ′

n

τQ
− r2

τ 2
Q

(
1

λm
− 1

λn

)

− 3

2τQ

[
arg

(
1 − i

λm

πhm

)
− arg

(
1 − i

λn

πhn

)]
. (84)

�mn takes two possible values, 4 or 8, asymptotically when
τQ � r (please note that we also have τQ � ξ̂ , lβ

m). Thus, the
fermionic correlator |βr |2 also exhibits the same period TQ =
π
2 . The oscillatory behavior characterized by the period TQ can
be easily observed in the density plot of the full transverse
spin-spin correlator as shown Fig. 12.

3. Quantum dephasing

In Sec. II B 2, we saw the interplay between the interfer-
ence and the quantum dephasing results in the oscillation of
the density of defects. Now, we reveal that the phenomenon of
multiple length scales is also a consequence of this interplay.

Here the off-diagonal lengths lmβ′s rely on the controllable
parameter g f . If we let g f � ln τQ, instead of fixing g f , all
off-diagonal lengths will grow linearly with the final time t f =
g f τQ increasing,

lβ
m ∼ √

τQg f = t f√
τQ

. (85)

The off-diagonal fermionic correlator can be written as

βr =
∫ π

0

dq

π
sin(qr)e−hmπτQq2

Xm

√
2πτQ

× e
i
(

4t f −2
t2
f

τQ
+2q2t f

)( 5∑
m=1

(−1)m−1eiλ′
m

)
. (86)

We see the off-diagonal lengths lβ ′s
m play the role of dephasing

length because the phase factor e
i(4t f −2

t2
f

τQ
+2q2t f )

oscillates very
rapidly with the quasimomentum q varying and the magnitude
of βr becomes negligible when t f → ∞. The dephasing time
tD measures the time when the dephasing effect becomes
noticeable [48]. Here, it can be estimated by setting

λm

πhm
= 1 (87)

in Eq. (80). Now that we have leading terms linear in g f , i.e.,
|λm| ∝ 2g f = 2 t f

τQ
, and there are two values of hm (i.e., h1 =

h2 = h5 = 2 + 1
ln 2 and h3 = h4 = 1

ln 2 ), we get two dephasing
times due to the multiple length scales

t3,4
D = 1

2 ln 2
πτQ,

t1,2,5
D =

(
1 + 1

2 ln 2

)
πτQ, (88)

which means that the off-diagonal fermionic correlator de-
creases significantly at two moments with t f increasing.
For long enough evolution time (t f � tD), the off-diagonal
fermionic correlator will be suppressed. Physically, this is due
to the fact that the excited quasiparticle modes are completely
dephased. Meanwhile, the KZ length and the two diagonal
lengths remain intact after such a dephasing, which leads to
a reduced transverse spin-spin correlator

Czz
r (t f → ∞) ≈ −α2

r . (89)

This result is illustrated by the dashed lines in Fig. 11. Aside
from the strong antibunching, the dashed lines also display a
sinusoidal behavior that is rendered by the diagonal lengths.
The sinusoidal behavior is in contrast to the traditional case
without interference, where only the KZ length remains [48].
Moreover, the periodicity in τQ direction still remains in the
dephased correlator.
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B. Kink-kink correlator for the reversed round-trip
quench protocol

Now we point out that the same phenomenon of multiple
length scales will also appear in the kink-kink correlator in the
reversed round-trip quench protocol applied to the transverse
Ising chain. But, there are some interesting differences that
need to be addressed adequately. We mainly focus on the
dephasing effect that is regulated by the multiple lengths.

The kink-kink correlator after the reverse round-trip
quench process can still be reduced to

CKK
r = |β ′

r |2 − (α′
r )2, (90)

where α′
r and β ′

r are diagonal and off-diagonal quadratic
fermionic correlators. For the diagonal fermionic correlator
α′

r , we arrive at

α′
r = 2e−r2/ξ̂ 2

√
π ξ̂

(
1 −

√
2e−r2/ξ̂ 2)

+
∑

m=1,2

√
8(−1)me−r2/(l ′αm )2

(2mπ2)1/4
√

ξ̂ l ′α
m

sin φ′α
m,r, (91)

where

φ′α
m,r = 4τQ − b′

m

r2(
l ′α
m

)2 + 1

2
arctan

b′

m
(92)

are phase factors with

b′ =2[ln{4τQ(grt − 1)2} + 2(grt − 1) + γE ], (93)

l ′α
m = 1

π

√
2mπτQ

√
1 +

(
b′

m

)2

(m = 1, 2) (94)

and ξ̂ defined in Eq. (76) is the usual KZ length.
For the off-diagonal fermionic correlator β ′

r , we arrive at

β ′
r =

5∑
m=1

(−1)m−1 ym r√
ξ̂
(
l ′β
m
)3

e−r2/(l ′βm )2

eiφ′β
m (r), (95)

ym = 2Ym
[π (hm )3]1/4 are coefficients with Y2 = √ e

ln 2 for m = 2 and

Ym = 1
2

√ e
ln 2 for other values of m,

φ′β
m (r) = χ ′

m − χm r2

πhm(lβ
m )2

− 3

2
arg

(
1 − i

χm

πhm

)
(96)

are phase factors with

χ1 = ln 4τQ + 4grt − 2 + 4 ln(grt − 1) + γE ,

χ2/3 = −(ln 4τQ − 2 + γE ),

χ4/5 = −{3 ln 4τQ + 4grt − 6 + 4 ln(grt − 1) + 3γE },
χ ′

1 = π

4
+ 2τQ(2g2

rt − 4grt + 1),

χ ′
2/3 = −π

4
− 2τQ,

χ ′
4/5 = −3π

4
− 2τQ(2g2

rt − 4grt + 3),

h1 = h2 = h5 = 2 + 1

ln 2
, h3 = h4 = 1

ln 2
,

and

l ′β
m = 2

√
πhmτQ

√
1 +

(
χm

πhm

)2

(97)

are five more new length scales.
The dephasing process here is quite different from the

former of the transverse spin-spin correlator. Now we notice
the fact that the KZ length ξ̂ and the off-diagonal lengths lβ

2

and lβ

3 are free of grt, while all others increase linearly in grt:
l ′α
1/2, l ′β

1/4/5 ∼ √
τQgrt. This fact means that only ξ̂ , lβ

2 , and lβ

3
can remain intact with the parameter grt → ∞. So, after such
a dephasing, we get a reduced kink-kink correlator

CKK
r (grt → ∞) = −4e−2r2/ξ̂ 2

π ξ̂ 2
(1 −

√
2e−r2/ξ̂ 2

)2

+
∣∣∣∣∣∣
∑

m=2,3

(−1)m−1ym r e−r2/

(
l ′βm
)2

eiφ′β
m (r)√

ξ̂
(
l ′β
m
)3

∣∣∣∣∣∣
2

.

(98)

These dephased kink-kink correlators for τQ = 8, 32, 128 are
illustrated by the red dashed lines in Fig. 13, which are plotted
in comparison with the kink-kink correlators with finite value
of grt = 10 (black lines). We can still observe the strong anti-
bunching in short space distances. But the sinusoidal behavior
is rendered by the off-diagonal lengths instead of the diagonal
ones. More interestingly, despite a bit of oscillatory behavior,
the dephased kink-kink correlator can even become positive
due to the contributions of the two off-diagonal lengths lβ

2

and lβ

3 .

V. SUMMARY AND DISCUSSION

In summary, we have demonstrated a kind of concise in-
terference effect by applying appropriately designed quench
protocols to the transverse Ising and quantum XY models.
The underlying mechanism can be well described by the com-
bination of two successive Landau-Zener transitions, which
renders an exposure of the dynamical phase in the final ex-
citation probability so that the characteristic lengths in it are
embedded in the density of defects. In essence, the density
of defects can reflect the interference between two same or
different critical dynamics in a neat way. Let us retrospect a
typical one as shown in Eq. (68): its first two terms are individ-
ual contributions of the two critical dynamics and the rest two
terms are joint contributions, in which one is nonoscillatory
and the other oscillatory. On the practical side, the interference
effect can be directly observed by the coherent many-body
oscillation in the density of defects with characteristic period
TQ. As we discovered for several typical quench protocols,
the characteristic period TQ falls into a generic form, say,
e.g., Eqs. (44), (54), and (67). We expect it is waiting to
be confirmed or generalized in other systems. The period
comes from the term proportional to τQ + τ ′

Q = (1 + R)τQ

in the dynamical phase [e.g., Eqs. (23), (43), and (65)]. In
the dynamical phase, another term proportional to (q − qc)2

also plays important roles. First, it affects the amplitude of
oscillation in the density of defects. Second, it can lead to
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FIG. 13. Kink-kink correlator CKK
r scaled in n2

0 versus rescaled
distance n0r for τQ = 8 (a) 32 (b) and 128 (c). The black solid lines
and the colored bar charts of multiple lengths in the insets are for
the case of grt = 10. The red dashed lines are dephased results for
grt → ∞.

the phenomenon of multiple length scales in the defect-defect
correlator.

In an actual quench process, the control over the system
is not so perfect that the interference effect would have to
be potentially impacted by decoherence, noise, flaws, and so
on. These important topics need to be studied further in the
future [88–92]. In view of the current technological advances,
e.g., the experiment in which a transverse Ising chain was
emulated by Rydberg atoms [59], or other ones that pave the
way to study quantum dynamics [93–96], the interferometry
proposed in this paper may provide a valuable means used as
a diagnostic tool to benchmark the experimental implemen-

tations of emulation against loss of coherence. For example,
the interference may be utilized in a quantum heat engine
to evaluate whether the working medium has fully reached
a steady state with maximum entropy or ground state and
to estimate an optimal time for the working medium to be
thermalized or cooled [97].
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APPENDIX A: SOLUTION OF THE LANDAU-ZENER
PROBLEM WITH INTERFERENCE

In this Appendix, we give the solution of the TDBdG
equations in Eq. (16), which was deduced for the round-trip
quench protocol applied to the transverse Ising chain. We also
work out the final excitation probability pf

q and the density of
defects n. We discuss the case of grt = 0 in detail first, then
the cases of 0 < grt < 1 and grt = 1 briefly.

1. Solution for grt = 0

a. First stage: Linear ramp from gi � 1 to grt = 0

In the first stage, we can think the time t varies from
ti = −∞ to 0. The TDBdG equations in Eq. (16) can be
mapped to the standard Landau-Zener problem [98,99] and
the solution can be expressed in terms of complex parabolic
cylinder functions Dν (z) as

vq(z) = C1D−sq−1(iz) + C2D−sq−1(−iz), (A1)

uq(z) = eiπ/4

√
τQ sin q

(
i

d

dz
+ iz

2

)
vq(z)

= (−1)1/4

√
τQ sin q

{C1D−sq (iz) − C2D−sq (−iz)}, (A2)

where z = 2
√

τQ( t
τQ

+ cos q)eiπ/4, sq = −iτQ sin2 q, and both
C1 and C2 are normalization coefficients. By the initial con-
ditions uq(−∞) = 1 and vq(−∞) = 0, we find the values of
the two normalization coefficients

C1 = e−iπ/4√τQ sin q

D−sq (iz)

∣∣∣∣
t→ti=−∞

, C2 = 0. (A3)

b. Second stage: Linear ramp from grt = 0 to g f � 1

In the second stage, we assume the time t varies from 0 to
t f

τ ′
Q

� 1. The basic TDBdG equations are the same as the ones

in Eq. (16). Likewise, the solution is

uq(w) = C′
1D−s′

q−1(iw) + C′
2D−s′

q−1(−iw), (A4)

vq(w) = eiπ/4√
τ ′

Q sin q

(
i

d

dw
+ iw

2

)
u′

q(w), (A5)
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where w = −2
√

τ ′
Q(− t

τ ′
Q

+ cos q)eiπ/4, s′
q = −iτ ′

Q sin2 q, and

C′
1 and C′

2 both are normalization coefficients. The two nor-
malization coefficients read as

C′
1 =

D−s′
q
(−iw0)u0

q + v0
q

√
τ ′

Q sin q

(−1)1/4 D−s′
q−1(−iw0)

de(s′
q,w0)

, (A6)

C′
2 =

D−s′
q
(iw0)u0

q − v0
q

√
τ ′

Q sin q

(−1)1/4 D−s′
q−1(iw0)

de(s′
q,w0)

, (A7)

where w0 = w|t→0 and the denominator of C′
1/2 is

de(s′
q,w0) =

∑
α=±

D−s′
q−1(−iαw0)D−s′

q
(iαw0). (A8)

c. Asymptotic analysis of the solutions

To reduce the above rigorous solution with elementary
functions, we need to apply the asymptotes of Dm(z) that are
given by [99]

Dm(z) = e−z2/4zm, ∀ | arg(z)| < 3π/4, (A9)

Dm(z) = e−z2/4zm −
√

2π

�(−m)
e−imπ ez2/4z−m−1,

∀ − 5π/4 < arg(z) < −π/4. (A10)

We concern the asymptotic solution at two moments: (1) t = 0
(the end of the first stage), (2) t = t f (the end of the second
stage).

At t = 0, the solution valid for q � 1√
πτQ

is reduced to

u0
q ≡ uq(0) = C1√

τQ sin q
e−3πτQ sin2 q/4eiθu

q , (A11)

v0
q ≡ vq(0) = C1sgn(q)

√
2π

|�(1 + sq)| e−πτQ sin2 q/4e−iθv
q , (A12)

where coefficient C1 fulfills

|C1|2 = τQ sin2 q e−πτQ sin2 q/2, (A13)

and the two phase angles are

θu
q = τQ cos2 q + τQ sin2 q

2
ln(4τQ) + arg {�(1 + sq)},

(A14)

θv
q = π

4
+ τQ cos2 q + τQ sin2 q

2
ln(4τQ), (A15)

�(x) is the gamma function,
√

2π
|�(1+ix)| = √

2 sinh(πx)/x, and
arg{�(1 + ix)} ≈ −γE x with Euler constant γE ≈ 0.577 216.
Please notice that the initial conditions in the second stage are
exactly Eqs. (A11) and (A12).

At t = t f , the solution is reduced to

uq(t f ) =
√

(1 − e−2πτ ′
Q sin2 q)(1 − e−2πτQ sin2 q)e−i(θv

q +φa
q )

+ e−πτQ sin2 qe−πτ ′
Q sin2 qei(θu

q −φb
q ), (A16)

vq(t f ) = −e−πτQ sin2 q

√
1 − e−2πτ ′

Q sin2 qei(θu
q +φa

q )

+ e−πτ ′
Q sin2 q

√
1 − e−2πτQ sin2 qe−i(θv

q −φb
q ), (A17)

where θu/v
q are to be found in Eqs. (A14) and (A15) and

φa
q = π

4
+ τ ′

Q{(g f − cos q)2 + cos2 q} + arg{�(1 + s′
q)}

+ τ ′
Q sin2 q ln{4τ ′

Q(g f − cos q) cos q}, (A18)

φb
q = τ ′

Q{(g f − cos q)2 − cos2 q} + τ ′
Q sin2 q ln

g f − cos q

cos q
(A19)

are another two phase angles produced by the second stage of
the quench process.

By Eq. (18), we can deduce the final excitation probability
as

pf
q = |vq(t f )uq − uq(t f )vq|2

= ∣∣−A ei(θu
q +φa

q ) + B e−i(θv
q −φb

q )
∣∣2

= A2 + B2 − 2AB cos ψ, (A20)

where uq ≈ 1 and vq ≈ 0 are the equilibrium Bogoliubov
amplitudes defined in Eq. (10) at g = g f � 1. A, B, and ψ

are defined in Eqs. (21), (22), and (23) in the main text.
The density of defects is defined in Eq. (19). In the ther-

modynamical limit N → ∞, we can replace the sum with an
integral

n =
∫ π

0

dq

π
pq. (A21)

First, we make an approximation

√
(1 − e−2πτQq2 )(1 − e−2πRτQq2 )

≈ 1

2

[√
R(1 − e−2πτQq2

) +
√

1

R
(1 − e−2πRτQq2

)

]
. (A22)

Then, the defect density can be worked out by the integral
formula

∫ π

0

dq

π
e−cq2

cos(a + bq2) = cos
[
a + π

4 − 1
2 arctan(c/b)

]
2
√

π (b2 + c2)1/4
,

(A23)

and the solution is

n = n0

{
f +

3∑
i=1

Mi cos(�QτQ + δi )

}
, (A24)

184301-15



HAN-CHUAN KOU AND PENG LI PHYSICAL REVIEW B 106, 184301 (2022)

where

f = 1 + 1√
R

− 2√
1 + R

, (A25)

�Q = 2(1 + R), (A26)

Mi = Xi√
ci

{
1 +

(
b

ci

)2}−1/4

, (A27)

b = 1

π
[(1 + R){ln(4τQ) + γE − 2} + R ln R], (A28)

δi = 3π

4
− 1

2
arctan

ci

b
, (A29)

X1 = −2(1 + R)√
2R

, X2 =
√

2R, X3 =
√

2

R
, (A30)

c1 = 1 + R, c2 = 3 + R, c3 = 1 + 3R. (A31)

We can rewrite the solution in Eq. (A24) to

n = n0{ f + M cos(�QτQ + δ)}, (A32)

where the amplitude and phase are

M =
√(∑3

i=1 Mi sin δi
)2 + (∑3

i=1 Mi cos δi
)2

, (A33)

δ = arctan

∑3
i=1 Mi sin δi∑3
i=1 Mi cos δi

. (A34)

2. Solution for 0 < grt < 1

For the case of 0 < grt < 1, the final excitation probability
pf

q and the density of defects n should be updated by substi-
tuting �Q and b in Eqs. (A26) and (A28) with

�Q = 2(1 + R)(1 − grt )2, (A35)

b = 1

π
[(1 + R){ln(4τQ) + 2 ln(1 − grt ) + γE }

− 2(1 − grt ) + R ln R ]. (A36)

3. Solution for grt = gc = 1

In the round-trip quench protocol with grt = gc = 1, we
need to tackle the TDBdG equations in Eq. (16) in another
way. At the end of the first stage, t = 0, the solutions are

v0
q = C1

√
π/2

�(1 − iτQq2/2)
2iτQq2/2, (A37)

u0
q = (−1)1/4C1

√
π√

τQq �(1/2 − iτQq2/2)
2iτQq2/2, (A38)

where C1 is defined in Eq. (A3) and 2iτQq2/2 is a trivial term.
And, at the end of the second stage, the solutions are

v f
q = (−1)1/4u0

q√
2πτ ′

Q q

(
e− 3

4 πτ ′
Qq2 − e

1
4 πτ ′

Qq2)
�
(

1 − i

2
τ ′

Qq2
)

+ v0
q

2
√

π

(
e− 3

4 πτ ′
Qq2 + e

1
4 πτ ′

Qq2)
�

(
1

2
− i

2
τ ′

Qq2

)
, (A39)

u f
q =

⎧⎨
⎩

√
τ ′

Qq v0
q

2
√

π (−1)1/4

�
(

1
2 − i

2 iτ ′
Qq2

)
�
(
1 − i

2τ ′
Qq2

) + u0
q√
2π

⎫⎬
⎭

×
√

2π �
(
1 − i

2τ ′
Qq2

)
�(1 − iτ ′

Qq2)
e− π

4 τ ′
Qq2

. (A40)

The final excitation probability is still expressed by Eq. (20)
but with different variables

A = 1
2

√
1 + e−πτQq2

√
1 − e−πτ ′

Qq2
,

B = 1
2

√
1 − e−πτQq2

√
1 + e−πτ ′

Qq2
,

and ψ that has been shown in Eq. (42). When R = 1, we can
get a reduced excitation probability

pf
q = (1 − e−2πτQq2

) sin2

[
π

4
+ τQq2

2

{
γE + γd

(
1

2

)}]
.

(A41)

APPENDIX B: CALCULATION OF THE DIAGONAL AND
OFF-DIAGONAL FERMIONIC CORRELATORS

By the long-wave approximation, we can rewrite the diag-
onal fermionic correlator in Eq. (72) to

αr =
∫ π

0

dq

π
cos(qr){2e−2πτQq2

(e−2πτQq2 − 1)

+ 2(e−2πτQq2 − e−4πτQq2
) cos ψ}, (B1)

where ψ is the total dynamical phase defined in Eq. (23).
Then, by utilizing the following two integrations (m = 1, 2),∫ π

0

dq

π
cos(qr)e−2mπτQq2 =

√
m

πξ̂ 2
e−mr2/ξ̂ 2

, (B2)

∫ π

0

dq

π
e−2mπτQq2

cos(qr) cos ψ =
√

8e−r2/(lαm )2
sin φα

m,r

(2mπ2)1/4
√

ξ̂ lα
m

,

(B3)

where the three lengths ξ̂ and lαm′s , and the phases φm,rα′s , are
defined in Eqs. (76), (77), and (75), we can get the result in
Eq. (74).

For the off-diagonal fermionic correlator βr , we first adopt
the approximation

e−πτQq2
√

1 − e−2πτQq2 ≈ Y q
√

2πτQe−yπτQq2
(B4)

to make the integral analytically tractable. The two variational
parameters y and Y are to be fixed. This can be done nu-
merically [48]. Here we provide an alternative way, which
demands the two sides of Eq. (B4) share the same extremum at
their peaks. The left side of Eq. (B4) exhibits a peak at position

q∗ =
√

ln 2
2πτQ

with the extreme value 1
2 . Meanwhile, the right

side of Eq. (B4) exhibits a peak at position q̃∗ = 1√
2πyτQ

with
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the extreme value Y√
ye . So we get two equations

q∗ = q̃∗,
1

2
= Y√

ye
. (B5)

The solutions are y = 1
ln 2 and Y = 1

2

√ e
ln 2 . Thus, we can ar-

rive at

uq(t f )v∗
q (t f ) ≈

5∑
m=1

(−1)m−1Ym qe−hmπτQq2√
2πτQ

× ei(λ′
m+q2τQλm ), (B6)

where hm, Ym, λ′
m, and λm can be found below Eq. (78) in

the main text. Next, by substituting Eq. (B6) into βr , we can
deduce the integrals like

Xm

√
2πτQ

∫ π

0

dq

π
sin(qr)qe−hmπτQq2

ei(λ′
m+q2τQλm )

=
√

2τQXmr eiφβ
m (r)

4{(πhmτQ)2 + (τQλm)2}3/4 e
− πhmτQr2/4

(πhmτQ )2+(τQλm )2

= ym√
ξ̂ lβ

m

r

lβ
m

e−(r/lβm )2

eiφβ
m (r), (B7)

where the lengths lmβ′s and the phases φβ
m(r) are defined in

Eqs. (80) and (79).
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