
PHYSICAL REVIEW B 106, 184210 (2022)

Crossover between quantum and classical waves and high-frequency localization landscapes
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Anderson localization is a universal interference phenomenon occurring when a wave evolves through a
random medium and it has been observed in a great variety of physical systems, either quantum or classical.
The recently developed localization landscape theory offers a computationally affordable way to obtain useful
information on localized modes, such as their location or size. Here we examine this theory in the context of
classical waves exhibiting high-frequency localization and for which the original localization landscape approach
is no longer informative. Using the so-called Webster’s transformation, to convert a classical wave equation into a
Schrödinger equation with the same localization properties, and combining a set of frequency-shifted operators,
we introduce an optimized localization landscape. This optimized localization landscape offers an affordable
way to reveal key information on mode localization across the frequency spectrum.
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I. INTRODUCTION

Anderson localization AL refers to wave localization due
to the presence of a strongly inhomogeneous medium. Origi-
nally predicted by P. W. Anderson in 1958 for electronic wave
functions [1,2], this phenomenon was since evidenced in a
great variety of oscillatory systems, such as electromagnetic
[3–5] or matter waves [6–8], in the context of meta-materials
[9], photonic lattices [10] or cavity QED [11]. Recently, an
attempt at AL measurement involving Bose-Einstein con-
densates was conducted [12], but the observation have not
been reproduced yet. AL has also been studied for classical
vibrating systems, mostly for ultrasounds [13–17]. Notable
differences exist in the mathematical structure of the opera-
tors describing classical and quantum waves, and the general
properties of AL, such as the link between the presence of
spectral gaps and the emergence of localized modes, are still
discussed [18–20]. Despite the abundant literature produced
over six decades, many questions on the nature of AL remain
open. One important concern is the following: is it possible to
determine, from the knowledge of the random medium config-
uration, where waves are going to localize? And this, without
solving the computationally expensive associated eigenvalue
problem.

In 2012, M. Filoche and S. Mayboroda developed an
original and innovative tool to apprehend wave localization,
which they coined as the localization landscape [21]. For a
given quantum potential V (x), possibly random, one considers
the eigenvalue problem for the Schrödinger equation in a
domain �

(−� + V (x))ψn(x) = Enψn(x), ψn|∂� = 0. (1)

Instead of Eq. (1), one can solve the elliptic equation

(−� + V (x))uψ (x) = 1, uψ |∂� = 0, (2)
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with uψ the so-called localization landscape (LL). When an-
alyzing the LL’s shape, i.e., its peaks and valleys, one can
predict the position, shape and energy of the low-energy lo-
calized eigenstates, to a certain extent, and, of course, without
solving the eigenvalue problem of Eq. (1). The LL can ac-
tually be understood as the inverse of an effective confining
potential for the eigenmodes [22], and it has been successfully
applied in various contexts [23–30].

This remarkable theory is also extendable to localization
associated with other symmetric elliptic differential opera-
tors governing wave propagation, such as the Laplacian, the
bilaplacian or the operator −div(A(x)∇ ), notably describing
classical waves in inhomogeneous media. However, as we will
show, the LL only returns useful information in the case of
low frequency localization. When the system exhibits high-
frequency localization, i.e., when the first eigenmodes are
delocalized, the LL does not bring any insight on the position
or shape of the localized modes. Such situation might occur
upon the choice of the differential operator or the boundary
conditions. Similar observations were reported in Ref. [31]
and a first attempt was considered to extend the localization
landscape to higher frequencies in a discrete tight-binding
Schrödinger model. However, the proposed technique heavily
relies on the discreteness of the system and on symmetry
properties of the tight-binding model, and hence cannot be
applied in the more general case we are interested in. Another
interesting attempt to capture high-energy localized states has
been recently conducted with the introduction of a modified
LL computed from a computationally expensive partial inver-
sion of a Hamiltonian-based matrix [32].

In this paper, we adapt the localization landscape theory
(LLT) to classical scalar waves exhibiting high-frequency lo-
calization, using as example of a classical wave equation the
Helmholtz equation governing acoustics. For a given type
of random quantum potential or acoustic structure, we first
review and compare the phenomenology associated with the
quantum and classical systems, which is essentially an op-
posite transition between the localization and delocalization
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FIG. 1. Comparison of mode localization between a quantum [(a)–(d)] and a classical scalar system [(e)–(h)]. [(a) and (e)] Random
Bernoulli-type quantum potential V (x) and classical parameter z(x) with N = 256 sites. [(b) and (f)] Selection of eigenmodes normalized
to their max, for the quantum and classical system, respectively. [(c) and (g)] Mode localization length 〈ξ〉, averaged on 1000 realizations (blue
lines) along with some single realizations. The dash part of the blue curves indicates that the exponential fit is less relevant when modes are
delocalized [33]. The dashed-red line set at 1/256 defines the smallest possible localization site, hence the limit value for 〈ξ〉. [(d) and (h)]
Same selection of modes, now normalized to their energy [Rψ

n and Rϕ
n , see Eq. (3)] and bounded by the corresponding LLs uψ and uϕ (black

lines). The purple-shaded areas correspond to the supports Sψ

1 and Sϕ

2 for the modes ψ1 and ϕ2, defined by Eq. (4). An animation of (d) and (h)
is provided in Ref. [34].

regimes. Then, we make use of the Webster’s transformation
[35,36] to symmetrize and convert the Helmholtz equa-
tion into a Schrödinger equation with an equivalent random
potential that preserves the localized nature of high-energy
modes. From that, we build an optimized LL to retrieve in-
formation on the original classical modes and their support.
This work highlights limitations of the original LLT for sys-
tems exhibiting high-frequency localization and enriches it by
restoring the LL as a predictive and computationally afford-
able tool to treat AL.

The paper is organized as follows. Section II illustrates the
issue of the lack of effectiveness of the LL for mode local-
ization in classical systems by comparing localized modes
in a quantum and classical systems. In Sec. III, we develop
an optimized version of the LL, suitable to detect high-
frequency localized states. In Sec. IV, we discuss in more
details several key aspects of our optimized LL: computa-
tional efficiency, applicability to general acoustical systems,
and physical meaning of our proposal. Finally, Sec. V con-
cludes the paper.

II. COMPARISON BETWEEN QUANTUM AND
CLASSICAL WAVE LOCALIZATION

We start our analysis by examining the phenomenologi-
cal differences between localization of quantum and classical
waves, see also Ref. [37] for more comparisons. We first con-
sider the 1D Schrödinger eigenvalue problem of Eq. (1) with a
continuous Bernoulli-type random potential V (x) constructed
as follows: a unit-length space is divided into N segments on
which V either takes the value Vmin or Vmax, with equiprobabil-
ity. An example of possible realization with 256 segments is
shown in Fig. 1(a). We then calculate the first 100 eigenmodes
and show a selection of them in Fig. 1(b). Localized modes
are expected to decay exponentially as |ψn(x)| ∼ exp(−x/ξ ),

with ξ the localization length. In Fig. 1(c), we show the value
〈ξ 〉 fitted for each mode and averaged over a thousand realiza-
tions [33]. First modes are indeed localized and delocalization
progressively occurs at higher energies. This is typical of a
low-energy localization system. We then compute the LL uψ

from Eq. (2) and present it in Fig. 1(d). One can see the
effectiveness of the LLT, with the matching between the LL’s
main peaks and the first localized modes. The mathematical
essence of the LLT is encapsulated in the following inequality
[21]:

Rψ
n

def= |ψn(x)|
max�|ψn(x)|En

� uψ (x). (3)

Practically, Rψ
n represents the mode |ψn(x)| normalized by its

peak value and its energy. Therefore, the inequality of Eq. (3)
states that the LL uψ > 0 acts as a maximum and bounds the
normalized eigenmodes.

In Fig. 1(d), we show how the LL acts as an upper bound
for the normalized modes Rψ

n . Moreover, an eigenmode ψn

with energy En possesses the following approximate support
[38]:

Sψ
n

def=
{

x ∈ � : uψ (x) � 1

En

}
. (4)

In other words, the support Sψ
n defines where most of a mode’s

“mass” must sit, as illustrated in Fig. 1(d). As En increases
with n, eigenmodes are allowed to occupy a larger region
of space and thus to delocalize. These mathematical tools
constitute the core of the LLT and the way to predict the
position and the spatial extent of the localized modes.

We now perform the same analysis with a classical system,
taking the example of the 1D scalar wave equation

− 1

ρ(x)
∇ · (κ (x)∇ϕn(x)) = Enϕn(x), (5)
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where ρ(x) and κ (x) can be interpreted as a mass density and
bulk modulus in the context of acoustics, and the eigenvalues
En represent frequencies squared (they are usually denoted ω2

n
but we stick to our notation En to simplify the comparison
with Schrödinger systems). Note that in this form, the op-
erator in the left-hand side of Eq. (5) is not self-adjoint but
could be rewritten as a generalized eigenvalue problem. We
further simplify this problem by considering a single random
variable, setting ρ(x) = κ (x) = z(x). This model is known as
the Webster’s horn equation [35,36] and as we will see later
on, can be easily mapped into a Schrödinger equation. This
configuration readily extends to the case where κ (x) = αρ(x),
where α is a (positive) constant, by simply rescaling the
eigenvalue En. This choice will be discussed in Sec. IV. The
random parameter z(x) is constructed in the same way as
for V (x), and can take the values zmin or zmax, see Fig. 1(e).
A selection of eigenmodes for Eq. (5) is shown in Fig. 1(f)
along with the averaged measurement of their localization
length 〈ξ 〉. Unlike for the Schrödinger system, the first modes
are fully delocalized and localization progressively occurs at
higher energies, see Fig. 1(g), until 〈ξ 〉 reaches the minimal
possible value allowed by the system, that is the size of a
single site 1/N . This is typical of a high energy localization
system. In Appendix A, we briefly show that for a homoge-
neous 2D problem, the choice of boundary conditions can also
lead to a modification of the localization regime.

The phenomenological difference between the quantum
and classical systems can be intuitively understood from
the structure of Eqs. (1) and (5). We refer to the argument
presented in Ref. [39], which essentially states that for the
Schrödinger equation, the potential term is additive to the
energy, so that a quantum wave predominantly perceives the
effect of the disordered potential at low energies, thus ex-
hibiting low-energy mode localization. On the other hand,
the classical wave equation can be rewritten in the form of
a Laplacian plus another term, equivalent to a potential, but
multiplicative to the energy. At low energy, a classical wave
thus essentially perceives a homogeneous medium, and the
first eigenmodes resemble the usual global modes of the do-
main [40], see Fig. 1(f). The random fluctuations become
predominant only at higher energies, allowing AL.

We then attempt to compute an equivalent LL for the clas-
sical system, for this purpose we solve

− 1

z(x)
∇ · (z(x)∇uϕ (x)) = 1, (6)

and show the solution uϕ in Fig. 1(h) along with a selec-
tion of normalized modes Rϕ

n . Despite the bound Rϕ
n � uϕ

being seemingly valid, uϕ does not here provide any useful
information about the mode localization. It is akin to the first
eigenmode of the system, and does not possess any peaks or
valleys. The higher-energy modes, regardless of their localiza-
tion, rapidly fall orders of magnitude below uϕ . Equivalently,
the support Sϕ

n for the first modes already represents a large
region of space and quickly converges to the whole domain �

as the eigenvalue increases (1/En decreases). The solution uϕ

thus fails to provide information when the first modes of the
system are delocalized.

III. OPTIMIZED LOCALIZATION LANDSCAPE
FOR HIGH-FREQUENCY LOCALIZATION

The inability of the original LL to detect high energy mode
localization brings the need for an updated formulation. To do
so, we first use a symmetrized version of the classical wave
equation in order to convert it into an equivalent Schrödinger
equation. The transformation implies a simple mapping be-
tween the two systems as we set ψn(x) = √

z(x)ϕn(x), which
leads to

− 1√
z(x)

∇ ·
(

z(x)∇ ψn(x)√
z(x)

)
= Enψn(x). (7)

Expanding the left-hand side of Eq. (7), one obtains the Lapla-
cian operator and the equivalent potential

Veq(x) = 1

2

(
�z

z
− |∇z|2

2z2

)
, (8)

see Appendix B for details of the transformation.
Such a transformation is notably known as the Webster’s

transformation [35,36]. It preserves the energy spectrum and
only affects the eigenmodes’ shape, here modulated by the
factor

√
z, see Fig. 2(a) for the first transformed mode. Hence,

a localized mode modulated by the delocalized function√
z(x) remains localized in the transformed basis, under the

reasonable hypothesis that the function
√

z(x) does not grow
exponentially with x. Incidentally, this transformation reveals
an interesting fact: one can actually construct a quantum po-
tential Veq(x), although quite nonintuitive, see Fig. 4(e), which
leads to high energy mode localization and consequently to an
uninformative LL.

We thus adapt the LL by adding an energy shift Es to
the operator in Eq. (7), affecting the eigenvalues but not the
eigenstates, and we compute the corresponding LL ūψ (x; Es):

− 1√
z(x)

∇ ·
(

z(x)∇ ūψ (x)√
z(x)

)
+ Esūψ (x) = 1. (9)

Expressing this equation back into the original space through
inverse Webster’s transform, we obtain the final expression for
the shifted LL ūϕ (x; Es):

−∇ · (z(x)∇ūϕ (x; Es)) + Esūϕ (x; Es)z(x) =
√

z(x). (10)

We therefore derive an adapted bound for the original classical
modes

R̄ϕ
n (Es)

def= |ϕn(x)|
max�|√z(x)ϕn(x)|(En + Es)

� ūϕ (x; Es), (11)

and an adapted expression for their support

S̄ϕ
n (Es)

def=
{

x ∈ � : ūϕ (x; Es) � 1

(En + Es)
√

z(x)

}
. (12)

In Figs. 2(a)–2(c), we show the supports S̄ϕ
n (Es) of the first

transformed mode n = 1, which is delocalized, as well as
those of the localized modes n = 66 and 70. The supports
S̄ϕ

n (Es) are computed from Eq. (12) with Es = 2 × 104. As
with the original landscape (Es = 0), the shifted landscape
does not provide any insight concerning the modes that are
delocalized at low energies, see Fig. 2(a). However, contrarily
to the original landscape, the introduction of a nonzero shift
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FIG. 2. (a) Shifted LL ūϕ (x; Es ) (black) computed with Es =
2 × 104, and bound for the first eigenmode R̄ϕ

1 (Es ) (blue). Purple-
shaded areas correspond to the support S̄ϕ

1 (Es ) defined in Eq. (12).
[(b) and (c)] Focus on bounds of the localized modes R̄ϕ

66(Es ) and
R̄ϕ

70(Es). The dashed-green line corresponds to the right-hand side of
the inequality in Eq. (13) which locally defines the mode’s support.
The red-shaded area indicates the extra support obtained from the
previous eigenvalue. (d) Evolution of the shifted LL ūϕ (x; Es ) (re-
scaled) for different values of energy shift Es ∈ {103, 2 × 104, 106}
(blue to red). (e) Measure �ϕ

n (Es ) of mode support for the same
values of shifts Es as in (c), and measure of the minimum support
� min

n (dashed-green). (f) Function u(x) defining the minimal mode
support (black). The purple-shaded area is the support for the 65th

eigenvalue while the red-dashed area indicates the extra support
obtained for the 66th one. An animation of (a) and (f) for a set of
modes is provided Ref. [34].

Es > 0 now reveals information on the modes that are local-
ized at high energies, see Figs. 2(b) and 2(c). We emphasize
that the shifted LL ūϕ can be computed for an arbitrary energy
shift Es. Yet, the choice of Es has a strong influence on the
LL’s final shape, and on its capacity to reveal information
on localized modes in a given range of energy. For a small
shift (Es → 0), the LL remains uninformative as it is akin to
a global structure mode [40], as in Fig. 1(h). In the limit of
large shifts (Es → +∞) the LL converges to the medium’s
structure (ūϕ → 1/

√
z). In the first limit the LL does not

possess any peaks or valleys, and in the second limit all peaks
or valleys have the same values, which is uninformative in
both cases. Only intermediary values of Es lead to a useful
landscape with distinct local maxima, as shown in Fig. 2(d)
where ūϕ (x; Es) is plotted for different values of Es.

To finally get rid of the arbitrary choice of Es, we propose
a method to compute a minimal support S̄ϕ,min

n for each mode.
We have seen that a mode ϕn must be mostly located in the
support S̄ϕ

n (Es) defined by Eq. (12), and this, for all values of
Es. By contraposition, we can state that if, at a given position

x, there exists a shift Es for which Eq. (12) is not satisfied,
then x must be excluded from S̄ϕ,min

n . So for every point of
the domain � and at a given energy level En of interest,
one can simply check among a previously calculated set of
landscape functions ūϕ (x; Es), if there is a value Es for which
Eq. (12) is not satisfied. In such case this position is excluded
from the support of the mode ϕn. This procedure amounts in
computing the intersection of all mode supports associated
with the considered shifts, and it defines the minimal support
for the modes

S̄ϕ,min
n =

{
x ∈ � : u

ϕ (x) � 1

En

}
, (13)

with the optimized LL function defined as

u
ϕ (x) =

(
max

Es

{
1

ūϕ (x; Es)
√

z(x)
− Es

})−1

. (14)

We emphasize that the optimization in this definition is per-
formed locally for each x, so that the value of the optimal
u

ϕ (x) in different positions might correspond to different Es.
In order to understand which values of the shift give infor-
mation on localized states, we show in Fig. 2(e) the measure
�n(Es) = ∫

�
S̄ϕ

n (Es)dx of the mode support for different val-
ues of shift, along with the measure of the minimal support
�min

n = ∫
�

S̄ϕ,min
n dx. This highlights the drawback in using

a single shift value Es: the landscape ūϕ (x; Es) and support
S̄ϕ

n (Es) only provide useful information in a certain range of
energies (or mode number). Above this value, �n(Es) con-
verges to the whole domain �, hence being not informative
anymore. This confirms the interest of the proposed approach
where an optimal shift is locally found numerically to recover
the most information.

The function u
ϕ defining the minimal support and the ex-

ample of the minimal support for the 66th mode are presented
in Fig. 2(f). It clearly shows how low-energy modes possess
an extended support (purple-shaded areas) and how extra sup-
ports (red-shaded area) for the localized mode appear at higher
energies. Equations (13) and (14) arise as a powerful tool to
predict the position of high-energy localized states as well as
the energy at which these localized modes appear.

IV. DISCUSSION

In the following discussion, several remarks on the pro-
posed methodology are in order.

(a) Use of Webster’s transform and universality of the
considered acoustical system. In our proposal, we have limited
our attention to acoustical systems for which κ (x) = αρ(x)
where α is a constant. This case includes the important re-
alistic situation of a composite structure whose constituents
belong to a class of materials with identical ratios κ/ρ. Out-
side of such classes, Webster’s technique is not sufficient to
transform the acoustic equation into a Schrödinger equation,
and more general transformation must be considered, these
more complex transformations notably involve mappings of
coordinates [41,42] and will be described in a forthcoming
paper. Note that we choose to transform the original classical
wave equation into a Schrödinger equation in order to readily
apply the theoretical arguments of [38] to characterize the
eigenmodes by a relationship such as Eq. (12).
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(b) Physical meaning of the shift in Eq. (10). In our proposal,
the original operator is shifted by a positive energy Es. The
reason for this shift to be positive is that using a negative
shift would result in a shifted operator that would not verify
a maximum principle so that a bound of the form of Eq. (12)
could not be retrieved. However, it is interesting to note that
the most classical numerical algorithms to derive eigenvalues,
such as the Rayleigh-Ritz algorithm, are iterative procedures
where the operator is shifted through negative energies to
induce resonance around a given eigenvalue, where the re-
sponse of the system is mostly governed by the associated
eigenmode. Clearly, the phenomenon that is induced with our
shifted operator is not resonance. Besides, the optimization
of Eq. (14) involves not only the solution ūϕ (x; Es) of the
shifted operator but again a shift (negative this time). The
overall phenomenon at play here is therefore quite different,
and remains to be investigated further.

(c) Computational cost. The original LLT has the enor-
mous advantage of revealing information on (low-energy)
mode localization by solving one elliptic problem, with a
computational complexity of O(M log M ) [31,43], instead of
solving an eigenvalue problem, with a computational com-
plexity of O(M2 log M ). In these comparisons, M is the size
of the system (number of sites in a discrete setting, or number
of discretization nodes in a numerical approximation of a
continuous system), and sparsity of the resulting matrix has
been assumed. Although our method is less efficient than the
original [21], in the sense that a user-chosen number (say, m)
of elliptic problems need to be solved instead of just one, it is
still much more efficient than solving an eigenvalue problem,
as for large M, O(mM log M ) 
 O(M2 log M ), as long as m
is not dependent on M, as seem to indicate our numerical
experiments.

(d) Are low-energy modes of the Schrödinger equation al-
ways localized ? Although this is not the main objective of
this paper, it is interesting to note that, through the Web-
ster’s transform, we have explicitly constructed a potential
for a Schrödinger equation for which the low-energy modes
are delocalized, and localization occurs at higher energies.
We believe that this approach might provide a strategy for
constructing potentials that yield localization at some specific
energy levels.

V. CONCLUSION

In conclusion, we have shown that, although being mathe-
matically valid for classical waves, the LLT is not appropriate
to describe high-energy AL. The LLT is therefore not well
suited to describe localization in classical systems, and even
in some quantum systems, such as the one derived in this
paper. The inversion of the usual localization/delocalization
phenomenology greatly complicates the analysis of localized
modes and the prediction of their position and shape. We
have introduced an optimized LL, combining a nonuniform
excitation of the system and an optimization process over a
set of positively shifted operators, which allows to recover
information on localized modes. The minimal support for
each mode can then be constructed by combining landscape
functions computed from these different energy shifts. This
is of course computationally more expensive than solving a

FIG. 3. Effect of boundary conditions on mode localization for
a 2D homogeneous surface randomly pierced with holes. Left col-
umn corresponds to homogeneous Dirichlet BCs on all boundaries.
Right column corresponds to homogeneous Dirichlet BCs on the
external domain boundaries and homogeneous Neumann BCs on the
boundaries of the holes. [(a) and (b)] Localization landscape uψ . First
[(c) and (d)] and second [(e) and (f)] eigenmodes.

single elliptic problem but remains, in practice, an advanta-
geous alternative to solving the original eigenvalue problem
[43]. Although the optimized LLT was derived here in the case
of an acoustic model for which the material parameters verify
κ (x) = αρ(x) to simplify the mathematical derivations, the
more general case will be described in a forthcoming paper.
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APPENDIX A: EFFECT OF BOUNDARY CONDITIONS
ON 2D WAVE LOCALIZATION

We provide a concrete and illustrative example of the effect
of the boundary conditions (BCs) on the mode localization for
a homogeneous 2D surface randomly pierced with holes. We
always assume homogeneous Dirichlet BCs on the edge of the
2D domain and we either consider homogeneous Dirichlet or
homogeneous Neumann BCs on the edges of the holes. Using
a finite-element method, we compute the first modes for the
eigenvalue problem −�ψn = Enψn and the associated LLs
−�uψ = 1, with the corresponding BCs. The LLs along with
the two first modes for each case are shown in Fig. 3. The
case with homogeneous Dirichlet BCs everywhere is analog
to the one presented in Ref. [21] and exhibits low-frequency
mode localization, with the main peaks of the LL indicating
the position and shape of the first localized eigenmodes, see
panels (a), (c), and (e). However, with homogeneous Neu-
mann BCs on the edges of the holes, the first modes are
essentially unaffected by the presence of holes and thus they
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are delocalized. The LL is akin to the first global structure
mode, so uninformative, see panels (b), (d), and (f).

APPENDIX B: WEBSTER’S TRANSFORMATION

The Webster’s transformation maps a one-parameter clas-
sical wave equation into a time-independent Schrödinger
equation. Starting from

− 1

z(x)
∇ · (z(x)∇ϕn(x)) = Enϕn(x) (B1)

and introducing ψn(x) = √
z(x)ϕn(x) yields

−�ψ√
z

+ 1

2z
√

z

(
�z − |∇z|2

2z

)
ψ = En

(
ψn√

z

)
. (B2)

Simplifying by
√

z, and introducing the equivalent potential

Veq(x) = 1

2

(
�z

z
− |∇z|2

2z2

)
(B3)

eventually leads to a Schrödinger equation for ψ (x):

−�ψn(x) + Veq(x)ψn(x) = Enψn(x). (B4)

The eigenvalue En is both the eigenfrequency (squared) cor-
responding to the eigenmode ϕn(x) of the original acoustic
equation and the eigenenergy corresponding to the eigenmode
ψn(x) of the resulting Schrödinger equation.

Since the definition in Eq. (B3) involves differentiation of
the material parameter z, care must be taken with discontinu-
ous parameters (as in the examples of this paper). In that case,
the procedure described in Appendix C can be used.

APPENDIX C: ACOUSTIC STRUCTURE AND
ASSOCIATED POTENTIAL

The Bernoulli-type random parameter z(x) that we pre-
viously considered essentially consists in a succession of
rectangle functions with different widths, see Fig. 1(e). Prac-
tically, to numerically construct our classical 1D random
structure z(x), we choose a smoothed approximation of rect-
angular functions based on error functions. At a site k, we

FIG. 4. (a) Example of a basis function zk (x) for a single site,
centered at xk = 0.5, with zmax = 10, zmin = 1 and a width σ = 0.3.
With μ = 0.025 edges are smoothed (blue line), and the original rect-
angle function is recovered with μ → 0 (dashed-red line). (b) First
derivative of zk (x), that is a sum of two Gaussian functions of op-
posite sign. (c) Second derivative of zk (x). (d) Quantum potential
obtained from z(x), see Eq. (8), possessing both a positive and
negative part. (e) Section of the effective potential computed with
the parameter z(x) from Fig. 1(e).

thus have

zk (x) = zmax − zmin

4

[
erf

(
x + σk/2 − xk

μ
+ 1

)

× erf

(−x + σk/2 + xk

μ
+ 1

)]
, (C1)

shaping a smooth rectangle function of height zmax, centered at
a position xk and with width σk . The parameter μ controls the
smoothness of the rectangle’s walls, assuming 0 < μ 
 σ . In
the limit of μ → 0, zk (x) defines a straight rectangle function.
This choice is particularly convenient for the derivation and
the numerical computation of the Webster’s equivalent poten-
tial Veq(x), see Eq. (8), since it essentially involves first and
second derivatives of z(x). In our approximation, they end
up being Gaussian and first derivative of Gaussian functions,
instead of Dirac delta functions and their derivatives if sharp
rectangle functions are chosen. The rectangle (μ → 0) and
smoothed rectangle functions (μ > 0) are plotted in Fig. 4(a),
along with the first (b) and second derivative (c), for the
smoothed case. The potential function from Eq. (8) is shown
in Fig. 4(d). A section of the equivalent potential computed
from the initial parameter z(x) of Fig. 1(e) is also shown in
Fig. 4(e). Performing the Webster’s transform leads here to an
equivalent potential which resembles a “Gaussian” comb.
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