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Mean-field theory of failed thermalizing avalanches
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We show that localization in quasiperiodically modulated, two-dimensional systems is stable to the presence
of a finite density of ergodic grains. This contrasts with the case of randomly modulated systems, where such
grains seed thermalizing avalanches. These results are obtained within a quantitatively accurate, self-consistent
entanglement mean-field theory, which analytically describes two level systems connected to a central ergodic
grain. The theory predicts the distribution of entanglement entropies of each two level system across eigenstates,
and the late time values of dynamical observables. In addition to recovering the known phenomenology of
avalanches, the theory reproduces exact diagonalization data, and predicts the spatial profile of the thermalized
region when the avalanche fails.
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I. INTRODUCTION

In the presence of sufficiently strong disorder, an inter-
acting many-body quantum system may become many-body
localized (MBL) [1–15]. Local subsystems of an MBL system
do not thermalize, and instead retain memory of their initial
conditions indefinitely. MBL systems thus provide remarkable
counterexamples to the ergodic hypothesis, and are outside the
scope of quantum statistical mechanics [14,16]. Instead, the
phenomenology of these systems is dictated by an extensive
set of emergent and exponentially localized conserved opera-
tors, known as local integrals of motion or l-bits [17–22].

Even when typical regions appear strongly localized, ther-
malizing avalanches seeded by rare ergodic inclusions may
destabilize MBL [23]. This instability places restrictions on
the existence of MBL. Consider an ergodic grain—a mi-
croscopically small spatial region, which locally thermalizes.
The grain can serve as a bath, thermalizing nearby l-bits.
These thermalized l-bits are absorbed into the bath, forming a
thermal bubble. The density of states of the thermal bubble is
enhanced, increasing exponentially in the number n of l-bits
absorbed. However, the coupling strength of an l-bit to the
bubble decays exponentially in its spatial separation r from
the grain. In dimension D the separation of the nth most
strongly coupled l-bit scales as r ∼ n1/D. Which of these two
effects dominates depends on D.

In D = 1, the enhancement to the bubble and the small-
ness of the couplings are both exponential in n, leading to
a competition [23–31]. If the exponential decay constant of
the couplings is slower than a critical rate, the enhancement
prevails, and an avalanche occurs in which all l-bits are ab-
sorbed into the thermal bubble. In contrast, if the decay of the
couplings is sufficiently fast, MBL is stable as the avalanche
halts after absorbing finitely many l-bits. If, in the thermo-
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dynamic limit, the number of thermalized l-bits is large, but
subextensive, the grain may be regarded as having induced a
failed avalanche.

In D > 1, the enhancement of the bubble always prevails
asymptotically [23,32,33]. Whether avalanches occur instead
depends only on whether the microscopic environment of the
grain allows the avalanche to reach this asymptotic regime.
However, such effects of the microscopic environment may be
overcome by larger initial grains. For thermodynamic systems
with uncorrelated random disorder, arbitrarily large ergodic
grains occur in the system. Thus, grains large enough to seed
avalanches necessarily exist with a finite density, destabilizing
the putative MBL phase. In contrast, it is believed that if
the localizing spatial potential is highly correlated (e.g., with
quasiperiodic modulation), there may be no ergodic grains of
sufficient size to start an avalanche. That is, the correlated
potential can cause all putative avalanches to fail at a finite
size, allowing for stable MBL in D > 1.

However, a quantitative theory of how avalanches fail is
lacking. For example, it is not known how strongly coupled
to the bubble an l-bit must be to thermalize; how to treat
groups of l-bits with comparable couplings to the bubble; or
how to account for l-bits that are only partially thermalized.
Moreover, the presence of a collar of partially thermalized
l-bits blurs the bubble’s boundaries, making it unclear how
to quantify its size [29].

In this paper, we develop a quantitative theory of failed
avalanches in a toy model. Specifically, we develop an en-
tanglement mean-field theory of l-bits coupled to a central
thermalizing grain [Fig. 1(a)]. This theory captures the en-
hancement of the bubble due to partially thermalized l-bits.
Quantitatively, it predicts the distribution of l-bit entangle-
ment entropies across eigenstates, and late time values of
l-bit observables in dynamical experiments. We apply this
theory to study avalanches in D = 1 and D = 2. In D = 1,
the theory exhibits quantitative agreement with exact diago-
nalization. In D = 2, for a single finite grain and sufficiently
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FIG. 1. Nonergodicity in central grain models. (a) The central
grain model (1) consists of two level systems coupled to a grain. The
coupling operators Vn may vary independently. (b) For Vn = 0 the
spectrum can be divide into two sectors: σn =↑ / ↓. When Vn �= 0 is
in the intermediate regime, most eigenstates remain close to product
states of the l-bit and grain (blue). However, a minority of the Vn = 0
eigenstates are close to a state in the opposite sector, and conse-
quently form resonances when Vn is introduced (red). The relevant
scale of closeness is set by the matrix elements (purple collars). (c) In
the intermediate regime the distribution of eigenstate entanglement
entropies of σn over eigenstates pSna (S) is bimodal: Approximate
product states contribute the mode at S = 0, and resonances con-
tribute the mode at S = log 2. (d) The formation of resonances with
σn enhances the entropy of the grain by η(gn), where gn is the reduced
coupling (3).

strong quasiperiodic modulation, avalanches always fail, and
the number of l-bits in the thermal bubble is bounded. Using
this bound we establish that a finite density of regularly spaced
grains does not induce an avalanche. In contrast, for arbitrarily
strong random modulation, we find that a single grain has a
nonzero probability of inducing an avalanche.

II. CENTRAL GRAIN MODEL

We consider l-bits, here spins-1/2, which are coupled to a
central few level system, or grain [Fig. 1(a)]

H = Hg +
N∑

n=1

hnσ
z
n +

N∑
n=1

Vn (1)

where Hg is the grain Hamiltonian, hn sets the splitting of the
nth l-bit, and the coupling operator Vn both flips the nth spin,
and acts nontrivially on the grain [Vn, Hg] �= 0, e.g.,

Vn = Jn
(
σ x

g σ x
n + σ y

g σ y
n

)
. (2)

Here σα
g acts on the grain, and the Jn are coupling constants.

In toy models of the localized phase, the Jn are typically
exponentially decaying in n. We assume the grain has a
density of states at maximum entropy ρg and is ergodic. In
technical terms: Physical operators on the grain satisfy the off-
diagonal eigenstate thermalization hypothesis (ETH) in the
eigenbasis of Hg, see Refs. [34–41]. For simplicity, we restrict
to the case where the splittings hn are below the bandwidth
of the grain hn � |Hg|, but above its energy level spacing
hnρg � 1. Central grain models have been previously studied,
both in their own right [42–44], and as toy models for ergodic
inclusions in the MBL phase [23,25,29,33].

III. SINGLE SPIN CASE

We begin with the simplest case, that of N = 1, where we
recap the relevant parts of Ref. [45] in which this problem was
analyzed in detail. The strength of the spin-grain coupling is
characterized by a single dimensionless quantity: The reduced
coupling g1. The reduced coupling is defined as the mean off-
diagonal matrix element of the coupling operator V1 measured
in units of the level spacing

g1 := ρ [|V1,ab|], V1,ab = 〈Ea|V1|Eb〉 (3)

where [·] denotes the mean over the indices a �= b, ρ, and
|Ea〉 are respectively the density of states at maximum entropy
and eigenbasis of H , both evaluated for V1 = 0. The reduced
coupling is given in terms of macroscopic quantities by

g1 = g1,0 := √
2ρgv1(h1)/π (4)

where v1(ω) is the infinite temperature spectral function of V1

when evolved under H |V1=0 [46].
The reduced coupling determines the sensitivity of the

eigenstates to switching on V1. Specifically, let g1a denote the
L2 norm of the first-order term in perturbation theory when
the eigenstate |Ea〉 is expanded about V1 = 0,

g1a =
√√√√∑

b�=a

∣∣∣ V1,ab

Ea − Eb

∣∣∣2

. (5)

The norm g1a follows a distribution pg1a (g1a), which may be
exactly calculated. Typical values drawn from this distribution
are on the scale of the reduced coupling [g1a]typ. = cg1 [for an
O(1) numerical constant c], however, the heavy power-law tail

pg1a ∼ 2g1/g2
1a (6)

implies the frequent occurrence of much larger values. This
tail is a generic and robust feature, which is due to reso-
nances: Pairs of states, which are accidentally close in energy,
and so strongly hybridize upon even very weak perturbations
[Fig. 1(b)].

The reduced coupling dictates three distinct regimes of
eigenstate structure, which manifest in corresponding regimes
of late time dynamical behavior. We discuss these regimes in
turn:

Strong coupling (g1 � 1). In this regime, typical eigen-
states are nonperturbatively corrected by the coupling. This
results in strong mixing between eigenstates, and the eigen-
states of the combined system of spin and grain satisfy ETH.
Specifically, the entanglement entropy of the spin S1a in the
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state |Ea〉, is close to maximal value of log 2 for all states close
to maximum entropy, and the spin has no infinite time memory
of its initial condition, as characterized by the infinite temper-
ature time-averaged spin-spin correlator Czz

1 = 〈σ z
1 (t )σ z

1 (0)〉,
[S1a] = log 2, Czz

1 = 0, (strong coupling), (7a)

where here [·] denotes the average over states at maximum
entropy. For brevity, we here neglect corrections in g−1

1 , and
throughout we neglect finite size corrections, which are small
in 1/dg where dg := dim(Hg) is the grain dimension.

Weak coupling (g1 � 1/dg). For weak coupling, in a typ-
ical realization maxa g1a � 1, so that all the eigenstates,
including those in the tail of pg1a experience only perturbative
corrections from the zero coupling (V1 = 0) limit of [Sa] = 0
and Czz

1 = 1.
Intermediate coupling (1 � g1 � 1/dg). In the intervening

regime typical eigenstates are only perturbatively corrected
(as for weak coupling), whereas an O(g1) fraction of states are
rare resonances, which have g1a > 1. The resonant eigenstates
are nonperturbatively corrected, and consequently attain large
spin entanglement entropies S ≈ log 2. In the intermediate
regime, the distribution of eigenstate entanglement entropies
is bimodal [Fig. 1(c)], with the resonances forming the domi-
nant contribution to the mean

[S1a] = 2πg1 log 2, Czz
1 = 1 − kg1, (int. coupling),

(7b)
where we have neglected subleading O(g2

1) corrections,
and the constant k may be calculated. We emphasize: Al-
though resonances are identified using g1a, a quantity that
is perturbative in nature, the subsequent treatment is nonper-
turbative. Consequently, (8) remains accurate throughout the
intermediate regime, up to the crossover to strong coupling
g1 � 1. See Appendix A 1 for precise forms of [S1a], Czz

1 and
the distribution of entanglement entropies over eigenstates
pS1a (S1a) accurate for all g1, and Ref. [45] for an explanation
of these results.

IV. TWO SPIN CASE

We now consider the N = 2 case. Suppose first, that the
second spin is in the weak-coupling regime irrespective of
the value of g1. The coupling strength of the second spin is
characterized by a reduced coupling g2, defined analogously
to g1 (3). However, as the second spin sees an effective thermal
bath comprising the first spin and central grain, g2 must be
defined using the eigenbasis and density of states calculated
for the combined system of the first spin and central grain.
When g1 is in the weak-coupling regime, we thus obtain

g2 = g2,0 := √
2ρgv2(h2)/π, (g1 weak). (8a)

in direct correspondence with (4). In contrast, if g1 is strongly
coupled, g2 is enhanced [23,45]

g2 =
√

2g2,0, (g1 strong). (8b)

In the intermediate regime, the reduced coupling g2 is in-
termediately enhanced. This intermediate enhancement to
[|V2,ab|] may be calculated by accounting for resonances (see

Appendix)

g2 = g2,0eη(g1 )/2, 0 � η(g1) � log 2. (8c)

Here η(g1) is the entropic enhancement to the central
grain due to the resonances formed upon coupling to the
first spin. This function smoothly interpolates between the
small and large limits of η(g) ∼ −8g log g and η(g) = log 2 +
O(g−4). An analytic form for η(g) is calculated and verified in
Ref. [45], quoted in Appendix, and plotted in Fig. 1(d).

We briefly comment on how (8c) should be quantitatively
understood. As before, we may characterise the effect of cou-
pling to the second spin by calculating pg2a , the distribution
of g2a. Here g2a is the L2 norm of the first-order correction
in perturbation theory to the eigenstate |Ea〉 upon introducing
the coupling V2, but with V1 finite. For the g1 intermediate
regime, pg2a will differ from pg1a in details, however it has an
identical power-law tail of nonperturbatively corrected states,
i.e., resonances, pg2a ∼ 2g2/g2

2a, with g2 given by (8c) (see
Appendix). As before, this tail of resonances dictates eigen-
state entanglement entropy, and long time memory, via (7b)
(with the index changed as appropriate).

When the first and second spins are in the intermediate
regime, the second spin sees an effective bath, which is en-
hanced as compared to the bare grain due to hybridization
with the first spin, and vice versa. As a result the entropic
enhancement must be solved self-consistently

g1 = g1,0eη(g2 )/2, g2 = g2,0eη(g1 )/2. (9)

This results in a pair of solutions whose reduced couplings are
enhanced over the bare seed properties g1 � g1,0, g2 � g2,0.
We note that the second spin sees an effective bath, which is
enhanced to a greater degree than might naively be expected
by hybridization between the first spin and grain alone g2 �
g2,0eη(g1,0 )/2. Physically, this additional enhancement origi-
nates with the formation of resonances involving both spins
in addition to the resonances involving the grain and one or
other of the spins.

V. GENERIC (N-SPIN) CASE

We now introduce a third spin, which is weakly coupled,
and thus does not enhance the effective bath. Its coupling to
the grain is characterized by the reduced coupling g3. Remark-
ably, the entropic enhancement to the grain due to hybridizing
with the first and second spin takes a simple additive form (see
Appendix)

g3 = g3,0e(η(g1 )+η(g2 ))/2. (10)

This may be further generalized to a self-consistency equa-
tion for the many-spin case

gn = gn,0 exp

(
1

2

∑
m �=n

η(gm)

)
. (11)

Several comments are in order. Firstly, we emphasise that
the self-consistency equations constitute a mean-field-like ap-
proximation: specifically we characterise the distribution pgn

of the L2 norms gna between each spin and the enhanced
grain by a single value gn, which characterises the heavy
tail pgn ∼ 2gn/g2

na. Secondly, we note that we do not assume
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that the effective bath (comprising the central grain and spins
with which it is entangled) satisfies ETH. On the contrary,
whenever spins are in the intermediate coupling regime, the
effective bath comprising the central grain and spins exhibits
marked deviation from ETH. This deviation from ETH may be
regarded as an accurate accounting of the “back action” of the
intermediately coupled spins onto the bubble. This is shown
for the case N = 1 in Ref. [45], where the distribution of off
diagonal elements of a local operator on the grain is shown
to be highly non-Gaussian. The same result may be obtained
for N > 1 by direct generalization. Thus, our technique goes
beyond approximations standard in the literature [23,29], and
quantifies the formation of entanglement in non-ETH central
grain systems, which are too large to be studied directly using
exact diagonalization.

VI. AVALANCHES IN 1D

The De Roeck and Huveneers (DRH) model [23,25] is
a minimal model of the avalanche instability of the MBL
phase in D = 1. Specifically, it corresponds to the model (1)
with exponentially decaying couplings between the grain and
l-bits. We use the couplings (2) with

Jn = J1α
n−1 (12)

corresponding to a grain coupled to one end of a localized
chain [25]. The DRH model avalanches when the couplings
decay slower than the critical value α > αc = 1/

√
2 and J1

not pathologically large or small. For α < αc, the avalanche
fails, and the thermal bubble absorbs a finite number n� of
l-bits. Close to the critical point this number diverges as n� ∼
|α − αc|−ν with ν = 1 [23,25,29,47].

We compare the predictions of mean-field theory (11) with
exact diagonalization (ED) data from the DRH model. We
show the theory provides a quantitatively accurate descrip-
tion of failed avalanches, including their spatial extent, and
both the infinite time memory and eigenstate entanglement
entropies of the putative l-bits.

The ED results are obtained for the DRH model, with
the hn drawn uniformly from the interval hn ∈ h + [−δh, δh]
and Hg a GOE matrix. We use parameters h = 1, δh = 0.1,
J1 = 0.41, and dg = dim(Hg) = 8. The N = 1 DRH model is
numerically found to exhibit good thermalization of the single
l-bit for these parameter values, indicating that the avalanche
will initiate easily, and is not prevented by a poor choice of
parameters (e.g., J1 so small that g1 � 1 or so large that it
exceeds the bandwidth of Hg). The bandwidth of Hg is deter-
mined by the root-mean-square eigenvalue ([tr(H2

g )]/dg)1/2 =
1.5. The mean-field equations are solved by iteration

gn = lim
k→∞

gn,k, gn,k+1 = gn,0 exp

(
1

2

∑
m �=n

η(gm,k )

)
(13)

for parameters gn,0 = g1,0α
n−1. The mean and distribution of

entanglement entropies are then extracted from the gn using
the forms in Appendix A 1, from Ref. [45]. As we are in-
terested in verifying the mean-field equations, and not the
accuracy of our calculation of g1,0, we fit g1,0 so that the mean
field and ED results agree at α = αc.

(a)

(b)

FIG. 2. Comparison between the mean-field equations (11) and
exact diagonalization (ED) in the DRH model. (a) The state and
sample averaged eigenstate entanglement entropy of the end l-bit
[Send] calculated via exact diagonalization for the DRH model is
plotted (points with error bars), number of l-bits N given in leg-
end. The solid lines show the analytic mean-field calculation. Inset:
Same data shown on a log scale. ED data for N = 6, 7, 8, 9, 10
is averaged over M = 250, 250, 250, 100, 12 realizations of the H
respectively. (b) The sample averaged distribution over eigenstates
p(Send ) is shown for ED (“+” symbols) and mean-field calculation
(solid) for different values of α (values of [Send] given in legend to
2.d.p, and corresponding respectively to α = 0.45, 0.55, 0.65). Other
parameters as in the text.

The mean-field equations quantitatively reproduce the ED
results on the localized side. In Fig. 2(a) we plot the eigenstate
and sample averaged entanglement entropy of the end (i.e.,
n = N) l-bit [Send] as a function of the tuning parameter α

extracted both from ED (points) and the mean-field equa-
tions (solid curves). The mean-field and ED data both display
the same key features: For α > αc the system avalanches
thermalizing all N l-bits, yielding [Send] = log 2 up to finite
size corrections. On the localized side, the avalanche fails
before reaching the final l-bit yielding [Send] = 0, again up to
finite size corrections. The crossover between these two limits
extends over a range of α values of width O(N−1), sharpening
to a step at large N .

For α < αc, and for all system sizes N , the mean-field
theory shows good quantitative agreement with ED. This may
be contrasted with the noticeable discrepancy found on the
thermal side for small N . Discrepancy on the thermal side may
be expected, as the two-level resonance picture underlying the
mean-field equations becomes inaccurate in this regime.
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(a)

(b)

FIG. 3. Failed avalanches in the DRH model. (a) The mean
entanglement entropy [Sn] vs site index n, for small, negative δα

calculated using the mean-field equations. The putative avalanche
absorbs many (n� = |δα|−1) l-bits before failing. Parameters: δα =
−0.07, N = 50, g1,0 = 1/2. (b) The total entropic enhancement of
the bubble ηtot ∼ n� log 2 is shown for different system sizes N (leg-
end inset). For localized systems ηtot = O(N0), for thermal systems
ηtot = O(N1). For sufficiently small |δα|, and sufficiently large N , the
critical scaling ηtot ∝ |δα|−1 (black dashed) emerges, corresponding
to very large failed avalanches.

In the lower panel, Fig. 2(b), we compare distributions of
entanglement entropies over eigenstates: The ED data (points)
is calculated for parameters N = 10, α = 0.45, 0.55, 0.65
where [Send] = 0.10, 0.50, 0.90 (2 d.p.), and may be com-
pared with the mean-field theory (solid lines) corresponding
to the same values of [Send] (these correspond to slightly dif-
ferent values of α due to small discrepancies between theory
and numerics in Fig. 2(a). We again find the mean-field equa-
tions show excellent agreement on the localized side (i.e., for
[Send] = 0.1) with visible discrepancies when [Send] is larger.

By accurately accounting for the partial entropic enhance-
ment to the central grain from l-bits in the intermediate
coupling regime, the mean-field equations describe the
physics of failed avalanches. An example is shown in Fig. 3(a)
where the mean-field equations are solved for N = 50 and
δα := α − αc = −0.07. The avalanche thermalizes the first
n� ≈ 30 l-bits, before failing. This leaves the subsequent N −
n� ≈ 20 l-bits with entanglement entropies, which are expo-
nentially decaying in n. The avalanche proceeds to this extent
despite the modest scale of the initial reduced coupling g1,0 =
1/2. In general, as the critical point αc is approached, the
avalanche fails after thermalizing a number n� = O(|δα|−1) l-
bits. This behavior can be seen by analyzing the total entropic
enhancement of the effective thermal bubble

ηtot =
∑

n

η(gn). (14)

Unlike [Send], ηtot provides information on the spatial extent
of a failed avalanche: On the localized side ηtot grows pro-

portional to the number of thermalized l-bits ηtot ∼ n� log 2 =
O(|δα|−1), whereas for avalanched systems ηtot = N log 2.
This ν = 1 scaling is visible in Fig. 3(b) where the mean-field
values of ηtot are plotted for different system sizes N .

VII. AVALANCHES IN 2D

We apply the mean-field equations to understand failed
avalanches in 2D systems, revealing the marked stability of
quasiperiodically modulated systems in higher dimensions to
avalanches.

MBL due to uncorrelated random disorder is not stable
in dimensions D > 1 as thermal grains sufficiently large to
cause avalanches always occur [23,33]. Instead, MBL is stable
only if the localizing potential is sufficiently correlated that all
putative avalanches deterministically fail at small sizes, before
the feedback argument would allow them to self sustain. It
is believed that this may occur in systems with quasiperiodic
(QP) modulation.

As a model for avalanches in higher dimensions we con-
sider a grain coupled to a system of free fermions on a 2D
square lattice,

H = Hg + H2D + c†
gc�0 + c†

�0cg,

(15)
H2D =

∑
NN

c†
�nc �m +

∑
�n

V (θ�n)c†
�nc�n,

where the hopping is nearest neighbor only, and c†
g acts on the

grain, which is coupled only to the �n = �0 lattice site. We com-
pare two cases in which the potential is obtained by sampling
the periodic function V (θ ) = V (θ + 2π ) either (i) quasiperi-
odically, in which case θ�n = �q · �n + θ0 with �q = (q1, q2) =
π (1 + √

5, 1 + √
3) or (ii) randomly, in which case the θ�n

are drawn independently and uniformly from the circle θ�n ∈
[0, 2π ]. For the periodic function V (θ ) we use an asymmetric
triangular wave of amplitude W obtained by linearly inter-
polating between the points V (0) = W , V (2π/q1) = −W ,
V (2π ) = W . This model has desirable simplicity: In the ran-
dom case the on-site potentials are uncorrelated and follow a
box distribution. In the QP case, the modulation ensemble has
a single parameter θ0, and, as V (θ ) does not have an inversion
center, the resulting lattice does not have points of “almost
inversion symmetry” as present in, e.g., the Aubry-Andre
model [48].

The model (15) may be brought to the central grain form
(1) by working in the diagonal basis f�n = ∑

�m φ�n �mc �m of H2D

H = Hg +
∑

�n
ε�n f †

�n f�n +
∑

�n
φ�n�0(c†

g f�n + f †
�n cg). (16)

The diagonal orbitals f�n are labeled with the index cor-
responding to the physical site c�n with greatest overlap.
Specifically, we maximise the quantity

∏
�n |φ�n�n| over permuta-

tions of the rows of φ �m�n [49]. We extract the diagonal orbitals
numerically, for which it is necessary to use a finite lattice. We
truncate to a finite lattice radius R around the site �n = �0 (i.e.,
we keep only sites �n = (n1, n2) satisfying |n1| + |n2| � R),
yielding a number of l-bits N = 2R2 + 2R + 1. We note that
in this model the two-level systems are fermionic orbitals,
differing from (1) where we considered spins; however, this
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(a) (b)

FIG. 4. Avalanches and failed avalanches in 2D. Orbitals on a
square lattice (lattice vectors at ±45◦ from vertical) within lattice
radius R = 15 of the origin are shown. An ergodic grain is coupled at
the origin. Orbital coloring denotes the state averaged entanglement
entropy [S�n] (legend on right). In (a) the sample does not avalanche,
and only orbitals close to the ergodic grain become thermal. In
(b) the avalanche thermalizes all orbitals. Parameters: W = 45(20)
left (right), R = 15, g0 = 1, each plot corresponds to a single real-
ization with θ0 = 2.954 (no θ0 averaging).

detail is unimportant and both the mean-field equations, and
avalanche phenomenology are unaltered.

For sufficiently strong potential strength W , for both QP
and random potentials, the avalanche may fail. To see why,
consider an avalanche, which has thermalized (n − 1)-l-bits,
we thus approximate η(gm) ≈ 0 (log 2) for m � n (m < n)
where we have ordered the l-bits by coupling strength. The
coupling Jn ≈ J0e−rn/ζ to the next most strongly coupled l-bit
is exponentially small in the distance rn ∼ √

n, yielding a
reduced coupling to the nth spin of

gn ∝ Jn exp

(
1
2

∑
m �=n

η(gm)

)
≈ J0e−√

n/ζ+(n−1) log 2/2. (17)

Asymptotically the quantity (17) is increasing in n, imply-
ing that gn � 1 for all n sufficiently large, leading to a
self-sustaining avalanche. However, at smaller n, the
avalanche must pass through a bottleneck corresponding to
the minimum of (17) over n. If, at this minimum, the reduced
coupling to the next l-bit is not strong minn gn � 1 then the
naive avalanche argument indicates the avalanche ceases at
(or before) reaching this size. This is the basic picture of
avalanche failure. The mean-field analysis here refines this
argument in two ways. First, it quantitatively describes the
avalanche. Second, it includes the previously missing physics,
that sufficiently many l-bits with comparable weak coupling
gn may provide the entropic enhancement necessary for the
avalanche to continue.

In Fig. 4 we plot the l-bit entanglement entropies in a sys-
tem of radius R = 15 for two cases. In Fig. 4(a) the avalanche
fails and only orbitals close to the ergodic grain thermalize.
In Fig. 4(b) the avalanche thermalizes all orbitals. These plots
are obtained by solving the mean-field equations with bare
reduced couplings corresponding to (16),

gn,0 = g0|φ�n�0|, (18)

where g0 characterises the properties of the central grain.
The mean-field analysis exhibits a striking difference be-

tween QP and random potentials that has been frequently

(a)

(b)

(c)

(d)

FIG. 5. Avalanches in QP and random 2D systems. Upper
panels: The ensemble averaged total enhancement to the bubble
entropy [ηtot]θ is plotted as a function of the potential strength
W for systems of different lattice radius (legend inset; number
in brackets is N , the total number of sites) for (a) quasiperi-
odic and (b) iid random disorder. For the data for radius R =
10, 12, 15, 18, 22, 27, 33, 41, 50 we average over M hamiltonian re-
alizations with M/103 = 27, 26, 15, 10, 20, 40, 10, 5, 3 respectively.
Lower panels: For the quasiperiodic case ηtot may be resolved as
a function of θ0. For strong QP disorder (c) ηtot is continuous
and converges in the limit of large N . For weaker QP disorder
(d) the system avalanches for some values of θ0, for which ηtot

scales as N , and does not avalanche for other values. Regions
of avalanching/nonavalanching are demarcated by the grey-dashed
lines. Fixed parameters: g0 = 1.

conjectured: For QP modulation the potential can be suffi-
ciently strong that the system never avalanches. We see this in
Figs. 5(a) and 5(b) where the ensemble averaged (i.e., average
over θ0 for QP and θ�n for random) total entropic enhance-
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ment ηtot (14), calculated for bare reduced couplings (18) for
g0 = 1. The enhancement satisfies the asymptotic equality

[ηtot]θ ∼ N faval. log 2, (19)

where faval. is the fraction of samples in the QP/random
ensemble, which avalanche. For QP potentials [Fig. 5(a)]
there are three regimes. At the smallest W , we find [ηtot]θ =
N log 2, indicating that the system avalanches for all realiza-
tions of the potential, i.e., faval. = 1. At stronger modulation
there is a regime where [ηtot]θ = O(N ) < N log 2, indicating
the system avalanches for a finite fraction of realiza-
tions 0 < faval. < 1. Finally, at disorders above a finite (g0

dependent) threshold value W > Wth. ≈ 45, we find [ηtot]θ =
O(N0) indicating that the system does not avalanche for
any realizations [50]. These three regimes faval. = 1, 0 <

faval. < 1, and faval. = 0 are demarcated in Fig. 5 by the
vertical-dashed grey lines. In contrast, for random potentials
[Fig. 5(b)], we find the data consistent with avalanching at all
disorder strengths (i.e., faval. > 0) for a fraction faval., which
is monotonically decreasing in W (indeed, for all W , L ana-
lyzed, we encountered avalanching samples). Indeed, simple
arguments tell us this must be the case: Uncorrelated random
disorder always yields a finite probability of the disorder being
uncharacteristically low in the vicinity of the grain, allowing
the avalanche to reach the asymptotic regime where it may self
sustain. This contrasts with the QP case, where varying the
ensemble realization, i.e., θ0 (or equivalently the site to which
the grain is coupled) does not lead to significant variation in
the apparent potential strength.

In Figs. 5(c) and 5(d) we resolve ηtot as a function of θ0 for
W < Wth and W > Wth respectively. Figure 5(c) shows that
for W > Wth., for all system sizes, and for all θ0 the avalanche
fails. Specifically, we find ηtot converges in the limit of N →
∞ where the failed avalanche becomes insensitive to the sys-
tem’s boundary. The form of ηtot is continuous, although not
smooth, at points the variation is so rapid that finite sampling
leads to apparent discontinuities. In contrast, for W < Wth.,
shown in Fig. 5(d), different values of θ0 lead to different
behaviours. For certain ranges of θ0 [corresponding approx-
imately to regions of smaller ηtot in Fig. 5(c)] the system
does not avalanche and ηtot = O(N0). For other ranges, the
avalanche thermalizes the entire system, and ηtot = N log 2.

Figure 5(d) further highlights a distinction between
avalanches in D = 1 and D > 1. In QP systems, in D > 1,
avalanches cannot fail at arbitrarily large sizes. Specifically,
for the parameters shown, we see that either avalanches suc-
ceed, yielding ηtot = N log 2, or fail, yielding shown ηtot �
14 log 2, with no possibility of failure at intermediate values.
This observation justifies (19). We contrast this with the D =
1 case (Fig. 3) where the avalanche may fail at an arbitrarily
large size in the vicinity of the critical point [29].

VIII. STABILITY OF QP-MBL TO AVALANCHES IN 2D

In this section, we consider the effect of a finite density of
thermal grains, and argue that this picture implies the stability
of localization in both models with and without the presence
of many-body interactions.

Consider introducing a finite density of grains into the
QP system (15). Each grain has a slightly different local

environment, parameterized by θ0. The failure of avalanches
for all θ0 in Fig. 5(c) suggests that this density of grains
may not destabilize localization if the density is sufficiently
small. Precisely, localization is stable provided (i) each grain
does not exceed a bounded initial size, and (ii) each grain is
sufficiently far from the others that the thermal bubbles do not
merge—both conditions are natural for a quasiperiodic model.

The mean-field theory allows us to construct a conser-
vative, but quantitative, estimate for the necessary spacing
between grains. Specifically, we calculate the radius R beyond
which all l-bits experience only perturbative corrections, in
all eigenstates, due to the failed avalanche. If all grains are
separated by at least 2R, the collars of nonperturbative in-
fluence do not overlap, and the failure of each avalanche is
described by the mean-field theory (11). Consider a failed
avalanche in which the total entropic enhancement of the
grain is ηtot. The thermal bubble has a dimension d = dgeηtot ,
and the reduced coupling of the �nth l-bit to the bubble is
g�n = g�n,0eηtot/2. The nth l-bit is resonant in O(g�nd ) states, and
only perturbatively corrected in others. Thus, in the weak-
coupling regime g�n � 1/d , the �nth l-bit is perturbatively
corrected in all eigenstates for a typical disorder realization.
By extension, the total number of resonances involving any
l-bits outside the radius R is O(

∑
�n:R<|�n| g�nd ). Hence, within

a typical disorder realization [51], all such l-bits experience
only perturbative corrections in all eigenstates if

∑
�n:R<|�n|

g�n � 1/d. (20)

Equation (20) may be used to define R. As g�n is exponentially
small in |�n|, solutions are generic.

In the model (15), we have considered the effect of in-
teractions only within the ergodic grains. In contrast, generic
models of MBL have interactions everywhere. Nevertheless,
at strong modulation, the effect of interactions is typically
perturbative. If one identifies spatial regions where the effects
of interactions are nonperturbative with the ergodic grains,
then (15) provides a toy model for their influence on surround-
ing l-bits. We then expect that avalanches do not destabilize
generic QP-MBL.

However, we note that the toy model does not account for
two features numerically observed in generic MBL. Consider
first the “Hartree shifts” to the energies of the orbital config-
urations, e.g., terms of the form f †

�n f�n f †
�m f �m. These shifts result

in small changes to the decoupled many-body energies, and
thus detune certain resonances, whilst bringing other pairs
of states into resonance. Overall, the statistics of resonances
across eigenstates (in particular the reduced coupling gn) is
unchanged. Second, the toy model (15) neglects couplings
that act on the grain and multiple orbitals simultaneously,
e.g., c†

g f †
�n f �m f �p. A particular class couple specific pairs of

distinct orbital configurations, e.g., (|Ea〉〈Eb| + H.c). For rare
pairs, such terms are uncharacteristically large, corresponding
to when |Ea〉, |Eb〉 are many-body resonances in the lattice
basis [31,52–54]. Nevertheless, we expect multi-orbital terms,
which involve rearrangements in a large radius are suffi-
ciently suppressed so that only the collar region of the failed
avalanche is quantitatively modified.
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IX. DISCUSSION

We have developed a self-consistent entanglement mean-
field theory of central grain models. In this theory, the
coupling between l-bits and the central grain leads to many-
body resonances between the eigenstates as calculated for
zero coupling. We quantify these resonances in terms of the
reduced couplings gn (6). The reduced coupling parameterizes
the distribution of hybridization strengths (5), closely related
quantities are studied in Refs. [26,29,55–57]. At small gn,
the reduced coupling is equal to the fraction of eigenstates
in which the nth l-bit is resonant (i.e., nonperturbatively hy-
bridized) [45]. We describe how gn may be self-consistently
calculated, and used to determine the infinite time properties
of the system: Namely, the distribution of eigenstate entangle-
ment entropies, and the infinite time memory of observables.

The mean-field theory describes l-bit properties in eigen-
states at maximum entropy in a central grain model. We
leave to future work the extension of this theory to different
geometries; finite temperature effects; systems in which the
l-bits have more than two levels; and to include multi-l-bit
couplings.

The mean-field theory quantitatively captures how the pro-
cess of resonance formation may run away leading to an
avalanche, or conversely how the avalanche may fail, resulting
in l-bits, which are partially thermalized, having a bimodal
distribution of entanglement entropies across eigenstates [see
Figs. 1(c) and 2]. Beyond the central spin geometry, several
recent papers have explored the role of many-body resonances
in many-body delocalization [31,52–54,58–60].

Correlations in a localizing potential can alter the dy-
namical properties of a system [61–67]. In particular, while
sufficiently small higher dimensional systems may appear
many-body localized [68–75], it is argued that for random
potentials avalanches destabilize MBL [23]. In contrast, MBL
due to quasiperiodic potentials has long been of interest
[76–84], due to the conjecture that QP-MBL may not suffer
from the avalanche stability, altering the universality class of
the 1D MBL-thermal transition [85], and stabilizing the phase
in 2D.

We provide analytic evidence that a grain in a two-
dimensional random potential has a finite probability of
inducing an avalanche at any modulation strength, unlike in
the QP case, where for a sufficiently strong potential, the sys-
tem never avalanches. On this basis, we argue for the stability
of QP-MBL to avalanches in 2D. However, we note that the
stability of MBL has recently been a subject of active debate
[30,31,53,54,57,86–89].

A further conceptual insight provided by mean-field theory
is that a weak coupling to sufficiently many l-bits, as opposed
to a sufficiently strong coupling to a single l-bit, can sustain
an avalanche. This is illustrated most simply in the central
grain model with symmetric couplings gn,0 = g0, correspond-
ing closely to the models of Refs. [42–44,90]. In this case
the mean-field equations are correspondingly symmetric, with
gn = g given by

g = g0eNη(g)/2. (21)

By straightforward analysis of (21) [using the asymp-
totic relation η(g) ∼ −8g log g], the enhancement entropy is

nonextensive, ηtot = Nη(g) ∼ N0, and hence the system is
localized, only for

g0 < gc ∼ (4N log N )−1. (22)

We note this critical value agrees with the breakdown of local-
ization predicted by Ref. [91] (although the mean-field theory
does not produce the nonergodic delocalized phase reported
between gc ∝ (N log N )−1 and g′

c ∝ N−1 [42,91]). Thus, for
arbitrarily weak couplings g0, one can always increase N to
violate (22) and thermalize all l-bits.

Note added. We became aware of recent Refs. [92] and
[93]. Reference [92] argues for the stability of 2D QP-MBL
phase against avalanches from a complementary perspective,
reaching conclusions in agreement with this paper. Reference
[93] argues for the stability of 2D QP-MBL even in the pres-
ence of infinite ergodic regions, a claim, which is inconsistent
with our results.
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APPENDIX: ENHANCEMENT TO THE BATH DUE
TO INTERMEDIATELY COUPLED SPINS

In this section, we recap and extend the calculation of
Ref. [45]. We derive the entropic enhancement to the ergodic
grain due to multiple intermediately coupled spins. For sim-
plicity we assume Hg to be a GOE matrix, however the results
are readily generalizable to the case of an ETH satisfying
system (see Ref. [45]). The results are obtained using an
ansatz for the many body eigenstates, which accounts for the
effect of resonances. The main results of this Appendix are:

(1) For an N = 2 spin central grain model, where g1,0

and g2,0 are in the intermediate and weak coupling regimes
respectively, the reduced coupling of the second spin is
given by

g2 = g2,0 exp
(

1
2η(g1)

)
(A1)

where g1 = g1,0, and the entropic enhancement η(g) is given
by (A27).

(2) For the general case of N intermediately coupled spins,
and a single (N + 1)th spin in the weak-coupling regime, the
reduced coupling of the weakly coupled spin is enhanced by
an additive entropic term

gN+1 = gN+1,0 exp

(
1

2

N∑
n=1

η(gn)

)
, (A2)

where, as before, η(g) is given by (A27).
The form of η(g) derived in this Appendix (A27) is used

in numerical calculations throughout this paper, and plotted in
Fig. 1.
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1. Single spin

We begin by recapitulating the properties of the many body
eigenstates in the N = 1 case, studied in detail in Ref. [45].

When spin is in the intermediate coupling regime, the
infinite time properties (i.e., distribution of entanglement en-
tropies and time averaged autocorrelators) of the spin are
determined by the distribution of the quantity g1a—the norm
of the first corrections in perturbation theory as V1 is intro-
duced (5). As in the main text, we denote the distribution of
this quantity with pg1a (g) so that the ensemble averaged frac-
tion of the g1a in the interval [g, g + dg] is given by pg1a (g)dg.
For the GOE grain considered here pg1a (g) may be calculated,

pg1a (g) = p̃(g/g1)/g1,

p̃(x) = 2

x2
exp

(
− π3

4x2

)(
1 + c1

x
+ c2

x2
+ O(x−3)

)
,

(A3)
where c1 = 5.3 . . ., c2 = 11.2 . . .. However, the main features
are more general: (i) a rapid decay for g � g1, (ii) a unimodal
peak around the typical value g ≈ g1, and (iii) a power-law tail
at large g given asymptotically by

pg1a (g) ∼ 2g1/g2. (A4)

Here g1 is defined [as in (3)] by

g1 = ρ[|V1,ab|], (A5)

where ρ is the many body density of states at maximum
entropy, and V1,ab are the matrix elements of V1 between the
eigenstates |Ea〉 of H evaluated for V1 = 0, and the square
bracket [·] denotes averaging over a �= b. Each of these eigen-
states is a product state of the first spin and grain

|Ea〉 = |εα〉|σ 〉 (A6)

for a = (α, σ ), σ ∈ {↑,↓}, and |εα〉 an eigenstate of the
grain Hg.

Consider following the eigenstates as the coupling V1

tuned from zero to its finite value. As the spin is in the
intermediate coupling regime, typically eigenstates are only
perturbatively altered. However, a minority of states |Ea〉 are
accidentally close to states from the opposite spin sector,
and have correspondingly large values g1a � 1. These states
strongly hybridize, forming resonances [depicted in Fig. 1(b)].
Typically, such resonances involve only a pair of states: the
state |Ea〉, and some other nearby state |Ec〉. We may thus
approximate g1a,

g1a =
√√√√∑

b�=a

∣∣∣ V1,ab

Ea − Eb

∣∣∣2

≈
∣∣∣ V1,ac

Ea − Ec

∣∣∣ (A7)

where c is obtained by minimising the denominator |Ea − Eb|.
An ansatz for the eigenstates is obtained by diagonaliz-

ing within these two-level resonance subspaces. The effective
two-level Hamiltonian is given by

Heff =
(

Ea V1,ac

V1,ac Ec

)
≈ �ac

(
1 g1a

g1a 0

)
+ Ec (A8)

where �ac = Ea − Ec and we have used (A7) that g1a ≈
|V1,ac/�ac|. Explicit diagonalization of (A8) yields the new

eigenvectors

|E ′
a〉 =

√
Qa|Ea〉 + √

Pa|Ec〉,
|E ′

c〉 = √
Pa|Ea〉 −

√
Qa|Ec〉,

(A9)

where Pa = P(g1a), Qa = Q(g1a) are given by

P(g) := 1 − Q(g) := 1

2

(
1 − 1√

1 + 4g2

)
. (A10)

Infinite time observables

This eigenstate ansatz (A9) can be used to calculate the
distribution of eigenstate entanglement entropies and infinite
time memory of the spin, and agrees with numerics [45].

Specifically, we have that the entanglement entropy Sna of
the (n = 1)th spin the ath state is given by Sna = S(gna) with

S(g) = −P(g) log P(g) − Q(g) log Q(g) (A11)

and thus follows a distribution

pSna (Sn) =
∫

dgδ(Sn − S(g))pgna (g) (A12)

with mean value

[S] =
∫

dgS(g)pgna (g). (A13)

By similar arguments the infinite time correlator is given by

Czz
n =

∫
dgpgna (g)(P(g) − Q(g))2. (A14)

In the intermediate regime it is sufficient to write

pgna (g) = gn/g2 + O
(
g2

n/g3
)

(A15)

to obtain the limits given in the main text (7b) (details in
Ref. [45]).

2. Two spins

We next consider introducing a second spin. Again, this
case was considered in Ref. [45], and we here recap the
calculation. The “effective bath” seen by the second spin is
composed of the first spin and grain. As a result, the reduced
coupling is enhanced from its bare (V1 = 0) value

g2 = g2,0 exp
(

1
2η(g1)

)
. (A16)

In this section we calculate η(g).
We begin by considering pg2a (g), the distribution of g2a the

norm of the first-order term in perturbation theory when the
eigenstate |Ea〉 is expanded about V2 = 0, but for V1 finite.
This distribution has the same qualitative features as pg1a (g):
(i) a rapid decay for g � g2, (ii) a unimodal peak around the
typical value g ≈ g2, and (iii) a power-law tail at large g given
asymptotically by

pg2a (g) ∼ 2g2/g2 (A17)

where

g2 = ρ[|V ′
2,ab|]. (A18)

where V ′
2,ab are the matrix elements of V2 between the eigen-

states |E ′
a〉 of H evaluated for V2 = 0 but V1 finite. Each of

these eigenstates is a product state of the second spin and
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grain, but in general is an entangled state of the first spin and
grain (A9). From (A16) and (A18) it follows that

η(g1) = 2 log

(
[|V ′

2,ab|]
[|V2,ab|]

)
(A19)

where V2,ab are the matrix elements of V2 between the eigen-
states |Ea〉 of H evaluated for V2 = 0 and V1 = 0. In the
remainder of this section, we evaluate (A19).

Each many-body eigenstate may be identified with a sector
of the first spin by following the state adiabatically as we
tune V1 → 0, and measuring the state of the first spin. Using
this labelling scheme, we see that there are two qualitatively
different families of matrix elements: V ′

2,ab is even if |E ′
a〉 and

|E ′
b〉 correspond to the same sector, and odd otherwise. Half of

the matrix elements are even, and half odd, so that

[|V ′
2,ab|] = 1

2

([∣∣V (e)′
2,ab

∣∣] + [∣∣V (o)′
2,ab

∣∣]), (A20)

where [|V (e)′
2,ab|], [|V (o)′

2,ab|] are the averaged taken over the
odd/even sectors only. We evaluate each of these contribu-
tions in turn.

We first evaluate the even sector. We consider two generic
states

|E ′
a〉 =

√
Qa|Ea〉 + √

Pa|Ec〉
=

√
Qa|εα〉| ↑1〉 + √

Pa|εβ〉| ↓1〉, (A21a)

|E ′
b〉 =

√
Qb|Eb〉 + √

Pb|Ed〉
=

√
Qb|εγ 〉| ↑1〉 + √

Pb|εδ〉| ↓1〉, (A21b)

where in each case in the second line we have denoted the
state of the first spin σ1 explicitly, following (A6). As V2 does
not act on the first spin (i.e., [V2, σ

α
1 ] = 0), the corresponding

matrix element contains only two terms,

V (e)′
2,ab =

√
QaQbV

(e)
2,ab + √

PaPbV
(e)

2,cd (A22)

where V (e)
2,ab are the even matrix elements of V2 calculated in

the basis |Ea〉, the eigenbasis calculated for both V2 = 0 and
V1 = 0. Note that by this definition the odd elements are zero
V (o)

2,ab = 0.
As the Pa = P(g1a) describe resonances induced by V1,

they are uncorrelated with the matrix elements V2,ab. More-
over, as the bare grain is ergodic, the matrix elements V2,ab,
V2,cd are iid Gaussian distributed. For iid Gaussian distributed
random variables x, x′ with zero mean [x] = [x′] = 0, it fol-
lows have that [|ax + bx′|] = √

a2 + b2[|x|]. Using this, we
obtain [∣∣V (e)′

2,ab

∣∣] = [∣∣V (e)
2,ab

∣∣][√PaPb + QaQb]

= 2[|V2,ab|][
√

PaPb + QaQb],
(A23)

where in the second line we have used that [|V2,ab|] =
1
2 ([|V (e)

2,ab|] + [|V (o)
2,ab|]) = 1

2 [|V (e)
2,ab|]. Furthermore, Pa and Pb

are uncorrelated, so we obtain

[∣∣V (e)′
2,ab

∣∣] = 2[|V2,ab|]
∫∫

dgdg′ pg1a (g)pg1a (g′)K (e)(g, g′),

K (e)(g, g′) =
√

P(g)P(g′) + Q(g)Q(g′).
(A24)

Repeating the same series of arguments for the odd terms we
obtain[∣∣V (o)′

2,ab

∣∣] = 2[|V2,ab|]
∫∫

dgdg′ pg1a (g)pg1a (g′)K (o)(g, g′),

K (o)(g, g′) =
√

P(g)Q(g′) + Q(g)P(g′).
(A25)

By substituting (A24) and (A25) into (A20) we have

[|V ′
2,ab|] = [|V2,ab|]

∫∫
dgdg′ pg1a (g)pg1a (g′)K (g, g′),

K (g, g′) = K (e)(g, g′) + K (o)(g, g′).
(A26)

Substituting (A26) into (A27) we obtain the entropic enhance-
ment to the effective bath due to hybridization between the
grain and first spin

η(g) = 2 log

(∫∫
dgdg′ pg1a (g)pg1a (g′)K (g, g′)

)
, (A27)

where the right-hand side depends on g1 via its appearance in
pg1a (A3).

3. Three spins

We next consider introducing a third spin. To calculate g3

we require a model for the eigenstates of the central grain
model for finite V1 and finite V2. We generalize the ansatz (A9)
to the two spin case

|E ′′
a 〉 = √

QaQ′
a|Ea〉 + √

PaQ′
a|Eb〉

+ √
QaP′

a|Ec〉 + √
PaP′

a|Ed〉 (A28)

where Pa = 1 − Qa = P(g1a) and P′
a = 1 − Q′

a =
P(g2a) σn ∈ {↑,↓} and we use a bar notation to denote
spin flips so that ↑̄ =↓, ↓̄ =↑, and the |Ea〉, · · · , |Ed〉 are
eigenstates in the limit V1,V2 → 0, i.e., product states of the
two spins

|Ea〉 = |εα〉|σ1〉|σ2〉, |Eb〉 = |εβ〉|σ̄1〉|σ2〉,
|Ec〉 = |εγ 〉|σ1〉|σ̄2〉, |Ed〉 = |εδ〉|σ̄1〉|σ̄2〉.

(A29)

The calculation of [|V ′′
3,ab|] then proceeds in direct gen-

eralization of the previous section. However, now there are
more “species” of matrix element. Consider adiabatically fol-
lowing the eigenstates as we take the limit of g1, g2 → 0:
the state (A28) tends to the (σ1, σ2) sector of the two spins.
As before, we use a convention in which we associate the
state (A28) with the (σ1, σ2) sector even for finite V1, V2.
Consequently, there are four species of matrix element V ′′

3,ab
depending on whether σ1, σ2, both or neither must changed
to relate the states |E ′′

a 〉 and |E ′′
b 〉, which we refer to as the

(odd,even), (even,odd), (odd,odd), and (even,even) sectors
respectively.

The mean matrix element is obtained by averaging across
these sectors

[|V ′′
3,ab|] = 1

4

([∣∣V (e,e)′′
3,ab

∣∣] + [∣∣V (e,o)′′
3,ab

∣∣]
+ [∣∣V (o,e)′′

3,ab

∣∣] + [∣∣V (o,o)′′
3,ab

∣∣]). (A30)

These are calculated following the same prescription of the
previous section. In the (even,even) case we consider the
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matrix element between two states, e.g., |E ′′
a 〉 from (A28) and

|E ′′
e 〉 = √

QaQ′
a|Ee〉 + √

PaQ′
a|E f 〉 + √

QaP′
a|Eg〉 + √

PaP′
a|Eh〉 (A31)

where similarly

|Ee〉 = |εε〉|σ1〉|σ2〉, |E f 〉 = |εζ 〉|σ̄1〉|σ2〉,
|Eg〉 = |εη〉|σ1〉|σ̄2〉, |Eh〉 = |εθ 〉|σ̄1〉|σ̄2〉.

(A32)

Computing the matrix element directly, we use that V3 does not alter the state of the first or second spin, and obtain

V (e,e)′′
3,ae = √

QaQ′
aQeQ′

e〈Ea|V3|Ee〉 + √
PaQ′

aPeQ′
e〈Eb|V3|E f 〉 + √

QaP′
aQeP′

e〈Ec|V3|Eg〉 + √
PaP′

aPeP′
e〈Ed |V3|Eh〉 (A33)

with a mean size[∣∣V (e,e)′′
3,ae

∣∣] = [∣∣V (e,e)
3,ae

∣∣][√PaP′
aPeP′

e + QaP′
aQeP′

e + PaQ′
aPeQ′

e + QaQ′
aQeQ′

e]

= [∣∣V (e,e)
3,ae

∣∣][√PaP′
a + QaQ′

a

√
PeP′

e + QeQ′
e]

= 4
[∣∣V3,ae

∣∣][√PaP′
a + QaQ′

a][
√

PeP′
e + QeQ′

e]

= 4[|V3,ae|]
(∫∫

dgdg′ pg1a (g)pg1a (g′)K (e)(g, g′)
)(∫∫

dgdg′ pg2a (g)pg2a (g′)K (e)(g, g′)
)

. (A34)

Repeating this calculation for the other sectors we obtain

[∣∣V (s,s′ )′′
3,ae

∣∣] = 4[|V3,ae|]
(∫∫

dgdg′ pg1a (g)pg1a (g′)K (s)(g, g′)
)(∫∫

dgdg′ pg2a (g)pg2a (g′)K (s′ )(g, g′)
)

(A35)

for s, s′ ∈ {o, e} and hence, using (A30)

[|V ′′
3,ae|] = [|V3,ae|]

(∫∫
dgdg′ pg1a (g)pg1a (g′)K (g, g′)

)(∫∫
dgdg′ pg2a (g)pg2a (g′)K (g, g′)

)
. (A36)

With this result, we determine that the enhancement is given
by a sum of the enhancements due to the two spins.

log

(
g3

g3,0

)
= log

(
[|V ′′

3,ab|]
[|V3,ab|]

)
= 1

2
(η(g1) + η(g2)). (A37)

4. N spins

The many spin case is found by direct generalization of the
previous section. Here we simply state the eigenstate ansatz,
and the result.

The ansatz for an eigenstate associated to the sector �σ =
(σ1, σ2 · · · σN ) is given by∣∣E (n)

a

〉 =
∑

�τ
C�σ,�τ |εα,�τ 〉|τ1〉|τ2〉 · · · |τN 〉 (A38)

where

C�σ ,�τ =
∏

n

cσn,τn (A39a)

cσn,τn =
{√

P(gna) if σn = τn√
Q(gna) if σn �= τn

(A39b)

and |εα,�τ 〉 are a set of distinct eigenvectors of the grain.
The form (A38) can be seen to reduce to the forms (A21a)
and (A28) in the cases N = 1 and N = 2. By generalizing the
above calculation, we obtain

log

(
gN+1

gN+1,0

)
= 1

2

N∑
n=1

η(gn) (A40)

as desired.
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