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We consider a disordered one-dimensional tight-binding model with power-law decaying hopping amplitudes
to disclose wave-function maximum distributions related to the Anderson localization phenomenon. Deeply
in the regime of extended states, the wave-function intensities follow the Porter-Thomas distribution while
their maxima assume the Gumbel distribution. At the critical point, distinct scaling laws govern the regimes
of small and large wave-function intensities with a multifractal singularity spectrum. The distribution of maxima
deviates from the usual Gumbel form and some characteristic finite-size scaling exponents are reported. Well
within the localization regime, the wave-function intensity distribution is shown to develop a sequence of
pre-power-law, power-law, exponential, and anomalous localized regimes. Their values are strongly correlated,
which significantly affects the emerging extreme values distribution.
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I. INTRODUCTION

The Anderson localization transition is a key physical phe-
nomenon related to a drastic change in the spatial distribution
of Hamiltonian eigenfunctions promoted by disorder [1–3].
In general lines, the eigenfunctions become exponentially
localized in the regime of strong disorder while remaining
spatially extended for weak disorder. Anderson transition is
a quite general phenomenon affecting the transport of elec-
tronic, acoustic, magnetic, and optical waves [4–8].

The critical behavior of the Anderson transition has been
extensively studied over the past decades and shown to
strongly depend on the system’s dimensionality, symmetries,
and the short or long-range character of the underlying cou-
plings [3]. In particular, all eigenstates become exponentially
localized in one-dimensional systems with short-range cou-
plings for any finite amount of uncorrelated disorder. In
contrast, one-dimensional systems with power-law decay-
ing couplings support an Anderson transition and have been
frequently used as a prototype model to investigate its univer-
sality classes and critical behavior [9–24].

Field theoretical renormalization group and random matrix
(RM) theories yield several relevant aspects of the Anderson
localization transition. In particular, random matrix theory
unveiled universal characteristics of the eigenvalues statis-
tics in the localized and extended phases [25]. Exponentially
localized states are uncorrelated and randomly distributed
along the energy band, resulting in a Poissonian probabil-
ity distribution function (PDF) of the level spacements. On
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the other hand, the level repulsion typical of spatially ex-
tended states leads to a new spacement PDF that depends
of the nature of the random matrix ensemble (Gaussian or-
thogonal, unitary or symplectic). RM theory has also been
used to explore the statistical properties of the extreme
eigenvalues [26].

Extreme events play a fundamental role in the study of
disordered physical systems [27,28]. These are events with
magnitude much larger than the average value of a physical
stochastic process. In condensed matter physics, they have a
key impact on transport phenomena where the largest energy
barriers and maximally localized modes hinder the trans-
mission of physical excitations [29,30]. The extreme values
statistics of uncorrelated and identically distributed (IID) ran-
dom variables is well understood [31]. Unbounded random
variables having a PDF with a faster than power-law tail
have a Gumbel distribution of the extreme values in long
subsequences. A Fréchet extreme values PDF is in order for
random variables with power-law decaying PDF tails. In the
case of bounded stochastic variables, the extreme values are
distributed according to an asymptotic Weilbull PDF. For se-
quences of strongly correlated random variables, very little
is known regarding the extreme values statistics (for a recent
review see [28]). In the context of Anderson localization,
although RM theory discloses the PDF of the extreme values
for the correlated eigenvalues of Gaussian ensembles [26],
studies of the extreme values statistics of the own eigenfunc-
tion intensities are missing. Although the structureless nature
of Gaussian extended eigenfunctions with an exponentially
decaying Porter-Thomas intensity distribution [32] allows
us to anticipate that the maximum distribution of extended
states shall fall in the Gumbel class, multifractal correlations
present in critical states as well as the structured aspect of
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exponentially localized states point to new distributions of the
wave-function intensity maxima that are still unexplored.

In this paper, we address the above relevant open question
aiming to unveil how the extended or localized nature of
single-particle eigenstates in a disordered system is reflected
in the extreme values statistics of their eigenfunctions. We
will consider the prototype one-dimensional Anderson model
with random power-law decaying hopping amplitudes that
exhibits a well-known localization-delocalization transition.
We will focus in unveiling the scaling behavior of the average
maximum value of the eigenfunctions as well as its probability
distribution in the extended, critical, and localized regimes.
Further, we will unfold the role played by intrinsic eigenfunc-
tion correlations in the extreme values distributions.

II. MODEL AND NUMERICAL METHODS

We consider the following tight-binding Hermitian
Hamiltonian model with power-law decaying hopping ampli-
tudes on a linear chain with N sites and periodic boundary
conditions

H =
∑

i

εi |i〉 〈i| +
∑
i> j

ti j (|i〉 〈 j| + | j〉 〈i|), (1)

with εi representing the on-site potentials and hopping am-
plitudes given by ti j = Wi j/rσ

i j . ri j is the distance between
the chain sites, restricted to the interval 1 � ri j � N/2 (ri j =
i − j for i − j < N/2 and ri j = N − (i − j) for i − j > N/2).
σ is a characteristic power-law exponent that controls the
effective range of the hopping amplitudes. We consider a large
ensemble of the above Hamiltonian with εi and Wi j being
random real numbers distributed uniformly in the interval
[−1, 1].

The above Hamiltonian belongs to the class of power-law
random band models. A perturbation analysis based on a field-
theoretical model of interacting supermatrices, supported by
exact diagonalization results, has settled that a well-defined
Anderson transition occurs as a function of the control ex-
ponent σ [9–11]. All states are extended for σ < 1. In this
regime, the statistical properties are those of the Gaussian
orthogonal ensemble of RM for σ < 1/2, with stronger fluc-
tuations developing for 1/2 < σ < 1. All states are critical at
σ = 1, exhibiting a multifractal character [33]. For σ > 1 all
states are localized with integrable power-law tails |φ(r)|2 ∝
r−2σ . A superdiffusive short-time spreading of wavepackets
sets up for 1 < σ < 3/2.

Here, we will perform a statistical analysis of the extreme
values of the above Hamiltonian eigenfunctions. Exact nu-
merical diagonalization will be employed to compute the full
spectrum of eigenvalues and the corresponding eigenfunc-
tions of a large ensemble of disorder configurations. After a
preliminary analysis of the density of states and level spac-
ing distribution of the different regimes, we will focus on
the eigenfunction statistics. One can associate a sequence of
random variables to each eigenfunction {φ2

1 , φ
2
2 , ..., φ

2
N }, from

which the distribution of eigenfunction intensities P(φ2) can
be extracted. We further identify the maximum φ2

m of each
eigenfunction and its distribution F (φ2

m ) over a spectral range
around the band center.
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FIG. 1. Density of states for three values of the hopping decay
exponent σ representing the extended (σ = 0.5), critical (σ = 1),
and localized (σ = 2) regimes. The smooth profile of extended states
evolves to a rough profile typical of localized states. The shaded
region represents the band central region |E | � 0.5, where the DOS
has a flat profile. Data are from 103 disorder configurations on closed
chains with N = 103 sites.

In the regime where the eigenfunction intensities are un-
correlated, the above two distribution functions are closely
related. The cumulative distribution of maxima of IID eigen-
function intensities can be expressed as

QN
(
φ2

m

) =
[

1 −
∫ 1

φ2
m

P(φ2)dφ2

]N

, (2)

from which the distribution of maxima can be derived as
F (φ2

m ) = dQN/dφ2
m. Three limiting distributions of maxima

can be anticipated for IID variables [31]. In particular, when
the tail of the parent distribution P(φ2) decays faster than a
power law and the upper cutoff can be ignored, the distribution
of maxima converges to the Gumbel form

F
(
φ2

m

) ∝ exp
[ − aφ2

m − b exp
( − aφ2

m

)]
, (3)

where a and b are distribution parameters related to the aver-
age value and dispersion. Parent distributions with power-law
tails lead to a distinct Fréchet distribution of maxima. On the
other hand, when the parent distribution vanishes at and above
a cutoff value, an asymptotic Weibull distribution of maxima
of IID sequences of random variables is predicted. In what fol-
lows, we directly compute both the parent distribution P(φ2)
and the maxima distribution F (φ2

m ) of extended, critical, and
strongly localized states, with particular emphasis on possible
deviations from the prediction based on the assumption of IID
variables.

III. RESULTS

We start displaying the density of states (DOS) for three
representative values of the power-law exponent σ . Data
shown in Fig. 1 were obtained from the exact diagonalization
of the matrix Hamiltonian on chains with N = 103 sites and
over an ensemble of 103 disorder configurations. The DOS
changes from the smooth profile at small σ values, typical of

184207-2



WAVE-FUNCTION EXTREME VALUE STATISTICS IN … PHYSICAL REVIEW B 106, 184207 (2022)

0 1 2 3

σ

0.35

0.45

0.55
〈r〉

G.O.E

Poisson

N = 500

N = 1000

N = 2000

FIG. 2. Average gap ratio 〈r〉 vs the hopping exponent σ . Aver-
age was performed over all eigenstates in chains with distinct chain
sizes, considering 103 configurations of disorder. Below the critical
point (σ = 1), the gap ratio assumes the GOE value, with 〈r〉 ≈
0.5307. In contrast, it slowly converges to the Poisson prediction for
strongly localized states 〈r〉 = 2 ln 2 − 1 ≈ 0.3863.

effectively high-dimensional systems with extended states, to
a rough profile signaling the localized nature of states. The
later is reminiscent from the DOS of the one-dimensional
tight-binding model with short-range couplings on which the
band edges singularities were rounded off by disorder. We
highlight the central region of the spectrum in the energy
range E = [−0.5, 0.5] on which the DOS has a nearly flat
profile, such that the average level spacing is roughly constant.

To clearly evidence the transition from extended to lo-
calized states, we computed the average energy gap ratio
[34,35] defined as 〈r〉 = 〈min(sn, sn−1)/max(sn, sn−1)〉, where
sn = En+1 − En, as a function of σ , shown in Fig. 2.
For σ < 1, it assumes the value expected for extended
states of a Gaussian orthogonal RM ensemble 〈r〉 � 0.5307.
It slowly converges to the Poisson limit 〈r〉 = 2 ln 2 − 1
at large σ .

To study the extreme values statistics, we captured the
maximum intensity of all eigenfunctions. Their average values
on small energy windows are reported in Fig. 3 within the en-
tire spectral range. In the phase of extended states, the average
maximum decreases with the system size, showing reduced
fluctuations. In contrast, they become size independent with
large fluctuations for strongly localized states. In the high-
lighted central spectral window, the maxima are uniformly
distributed. The average value of the intensity maxima can be
used as an order-parameter measure of the Anderson transi-
tion. Figure 4 brings its dependence on the control exponent
σ . Deeply in the extended phase, the wave-function maximum
average vanishes in the thermodynamic limit as 1/N with
a logarithmic correction (〈φ2

m〉 ∝ log N/N), as shown in the
inset of Fig. 4. In opposite, it becomes finite in the localized
phase. At the critical point, it assumes a power-law finite-size
scaling 〈φ2

m〉 ∝ N−ξ with ξ � 0.413(2).
Before addressing the distribution of maxima, we raised

the parent distribution of the own eigenfunction intensities
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FIG. 3. Spectrum of eigenfunction maximum intensity for the
same values of σ in Fig. 1. Shown values are averages over small
energy windows. Notice the transition from extended (small maxima)
to localized (large maxima) states. Near the band center the maxima
are uniformly distributed. Data are from 103 disorder configurations
on chains with N = 103 sites.

P(φ2) built from all eigenfunctions with −1/2 < E < 1/2
[11,36,37]. We start building P(φ2) well within the extended
phase where the GOE statistics are expected to hold. The
resulting PDF is shown in Fig. 5(a) in a proper scaled form
for σ = 0.25. Data were obtained from all eigenfunctions
with −0.5 < E < 0.5 with chains with distinct sizes and
typically 103 disorder realizations. According to RM theory,
the wave-function intensities shall follow the Porter-Thomas
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FIG. 4. Average eigenfunction maximum intensity as a function
of the hopping exponent σ for several lattice sizes. It behaves as an
order-parameter measure, vanishing in the extended phase and be-
coming finite in the localized phase. Upper inset: Size dependence of
〈φ2

m〉 at the critical point. It displays a power-law decay 〈φ2
m〉 ∝ N−ξ ,

with ξ = 0.413(2). Lower inset: Size dependence of 〈φ2
m〉 deep in the

extended phase (σ = 0.3). It decays as 〈φ2
m〉 ∝ log N/N .
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FIG. 5. Scaled PDFs of the wave-function intensities for three
representative values of σ . (a) σ = 0.25 well within the extended
phase. The wave-function intensities follow the Porter-Thomas dis-
tribution [Eq. (4)]. Inset shows the same data in log-linear scale.
(b) σ = 1 (at the Anderson transition). For weak intensities, the
critical distribution behaves as Nβ/

√
φ2 with β = 0.64. Inset shows

the tail of the scaled critical PDF. Notice, the slow convergence to
the exponential form. Scaling exponents are distinct in the small
and large intensities regimes. (c) σ = 5 (well within the localized
phase). Here we plot φ2P(φ2) to clearly evidence the four distinct
regimes: extreme low intensities with P(φ2) ∝ 1/

√
φ2 (first shaded

region), the power-law regime with the P(φ2) decaying faster than
1/φ2 (white region), the exponential regime with P(φ2) ∝ (Nφ2)−1

(plateau in the second dashed region), and the anomalously local-
ized regime for the largest intensities (deep in the second shaded
region).

distribution [32]

P(φ2) =
√

N

2πφ2
e−Nφ2/2, (4)

which is shown as a solid curve in Fig. 5(a) and accurately fits
the numerical data.

The wave-function intensity distribution at the Ander-
son transition σ = 1 is shown in Fig. 5(b). The multifractal
character of the critical wave functions leads to relevant de-
viations from the above Porter-Thomas form. Although a
closed form of the critical wave-function intensity distribu-
tion is not known, one can infer its asymptotic behaviors
from the numerical data obtained from chains of distinct
sizes. In the regime of very low intensities, the distribution
also varies as 1/

√
φ2. However, we find it displays a dis-

tinct finite-size dependence, being proportional to Nβ , with
β = 0.64. In the main frame of Fig. 5(b) we plot data in
the proper scaling form with data from distinct chain sizes
collapsing into a single curve for low intensities. Our results
suggest the critical low-intensity wave-function distribution to
follow

P(φ2, N ) = Nβ g(φ2N2β )√
φ2

, (5)

with g(x → 0) approaching a constant and β = 0.64. Notice
that the above scaling function fails for large intensities. This
reflects the need of distinct scaling exponents to character-
ize the underlying multifractality. In the inset of Fig. 5(b)
we report our finite-size scaling result for the regime of
large wave-function intensities. We evidence a slow con-
vergence to the asymptotic exponential tail. Data collapse
at the large-intensities distribution tail was plotted in the
scaling form

P(φ2, N ) = N−η e−φ2Nγ√
φ2

, (6)

with η = 1.2 and γ = 0.3. The present analysis of the crit-
ical parent distribution adds to previous studies of scaling
properties at the Anderson transition that focused on the wave-
function multifractal singularity spectrum and the inverse
participation ratio distribution [3]. The power-law behavior at
low wave-function intensities is also consistent with previous
reports signaling deviations from a log-normal distribution at
the Anderson transition [36,37]. To extract the multifractal
singularity spectrum at the Anderson transition, we followed
the prescription developed by Chhabra and Jensen [38]. One
firstly split the chain in Nl = N/l segments of linear size l .
For a given eigenfunction, we compute the probability μi to
find the electron in the ith segment. After that, we introduce a
set of generalized measures

δi(q, Nl ) = [μi(Nl )]q∑Nl
i=1[μi(Nl )]q

, (7)

where q is a parameter used to explore different sets of the
multifractal measure δi(Nl ). The Hausdorff fractal dimension
of μ(q) can be
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FIG. 6. Multifractal singularity spectrum associated to the crit-
ical wave functions. Here, we used data from wave functions with
energies in the interval −1/2 < E < 1/2. It closely satisfies the
expected symmetry f (2 − α) = f (α) − α + 1 shown as a dashed
line. Data were obtained from chains with N = 1200 sites splitted
in segments of size l = 2 to reduce numerical uncertainties in the
right branch of f (α).

expressed as

f (q) = − lim
Nl →∞

1

log Nl

Nl∑
i=1

δi(q, Nl ) log [δi(q, Nl )]. (8)

In addition, the average singularity strength with respect to
δ(q) is given by

α(q) = − lim
Nl →∞

1

log Nl

Nl∑
i=1

δi(q, Nl ) log [μi(Nl )]. (9)

The function f (α), parameterized by q, gives the Hausdorff
fractal dimension of the set of points where μ scales as
N−α

l . Figure 6 shows our numerical result for the singularity
spectrum averaged over all eigenfunctions with eigenener-
gies in the interval −1/2 < E < 1/2. It is consistent with
previous reports of the multifractal singularity spectrum at
the critical point of one-dimensional tight-binding models
with power-law decaying hopping amplitudes in the regime
of intermediate multifractality [3]. Further, it closely satisfies
the well-established symmetry relation f (2 − α) = f (α) −
α + 1 [39]. We stress that the Hausdorff fractal dimension
is strictly positive. Therefore, negative parts of f (α) related
to rare events that typically do not occur in a single wave
function are not reachable [3,40,41].

Well within the phase of localized states, the wave-
function intensity distribution shows new trends, as illustrated
in Fig. 5(c) on which we plotted φ2P(φ2) to clearly un-
cover four distinct regimes. For very small intensities P(φ2)
decays as 1/

√
φ2. Although being size independent, this

behavior is similar to the initial decay of extended and
critical states. Above a characteristic intensity that depends
on the relative strength of diagonal and off-diagonal dis-
order, a faster than 1/φ2 decay sets up. This regime is
expected to appear due to the long-distance power-law decay
of the wave-function envelope. In this regime, the intensity

distribution is also size independent. The plateau depicted
in Fig. 5(c) signals an (Nφ2)−1 decay of the intensity
distribution, which accounts for the exponential decay of
the wave-function profile at very short distances φ2(r) ∝
e−r/lc from which one can extract P(φ2) = [N |dφ2/dr|]−1

[30]. The deviation from the plateau for the largest in-
tensities is associated to the emergence of anomalously
localized states.

The wave-function extreme value distributions of ex-
tended, critical, and strongly-localized states are reported in
Fig. 7. Here we plot the numerically obtained distributions as
well as the distributions derived from the parent distributions
built in Fig. 5 by assuming the IID variables hypothesis. For
σ = 0.25 [see Fig. 7(a)] both distributions are indistinguish-
able within the numerical accuracy. This feature supports the
irrelevance of correlations in the structureless wave-function
profile according to the GOE statistics. The resulting distribu-
tion is fairly well fitted by the Gumbel distribution [Eq. (3)]
with parameters a = 559.95 and b = 481.96. By analyzing
data from distinct chain sizes, we found that the average max-
imum scales with the same logarithmic correction displayed
in the inset of Fig. 4, as expected for extended states. The
Gumbel distribution presented in Fig. 7(a) are the same for
any σ � 0.5, where the system behavior is fully described by
the GOE statistics.

At criticality σ = 1, the wave-function maximum distri-
bution is not well fitted by the Gumbel curve. This feature
is associated to the development of multifractal fluctuations
[9–11]. To illustrate this behavior, we plot the measured distri-
bution of maxima and the one assuming the IID hypothesis at
the Anderson transition [σ = 1 in Fig. 7(b)]. As one can see,
both distributions are numerically coincident but are not well
fitted by the Gumbel curve. The peak of the extreme values
distribution is at an intensity that scales as N−ξ , the same
scaling reported in Fig. 4 for the average maximum intensity
at criticality.

Right after the critical point, the IID hypothesis no longer
holds for the system and then the data obtained from the
derivative of Eq. (2) starts to deviate from the measured one.
In order to show this difference, we report the extreme distri-
bution well within the localized phase (σ = 5) in Fig. 7(c). It
is clear the different between those distributions, been similar
only in the regime of very large maxima coming from the
most localized states. The strong deviation from the IID pre-
diction uncovers the underlying correlations emerging from
the exponential short-distance wave-function profile of typical
localized states.

To finish, we illustrate in Fig. 8 how the wave-function
maximum intensity distribution changes as the hopping ex-
ponent increases. In Fig. 8(a), we plot the F(φ2

m ) in the
anomalous extended phase 1/2 < σ < 1. As already men-
tioned, in the regime where the system is fully described by
the GOE statistics (0 < σ � 0.5), the extreme distribution is
well fitted by the Gumbel curve. When the extended wave
functions start to develop anomalous fluctuations, the distri-
bution deviates significantly from Gumbel, showing a longer
tail and a larger standard deviation. Figure 8(b) shows the
corresponding crossover from the critical to the well localized
regime. As one enters the localized phase, the IID hypothe-
sis fails. The distribution of wave-function maxima becomes
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FIG. 7. Wave-function maximum intensity distributions for rep-
resentative values of σ . (a) Well within the extended phase. The
average maximum scales as log N/N (see text) and the PDF has a
Gumbel form (solid line). The measured distribution (circles) is well
reproduced from the parent distribution assuming the IID hypothesis
(squares). (b) At the Anderson transition. The average maximum
scales as N−ξ with ξ = 0.413(2) (see Fig. 4). The measured distribu-
tion (circles) and the one derived from the IID hypothesis (squares)
are slightly distinct and deviates from the Gumbel form (solid line).
(c) Well within the localized phase. The distribution is size indepen-
dent. The measured and IID-based distributions are similar in the
strongly localized regime (φ2

m close to unit) but significantly deviate
from each other as φ2

m decreases.
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FIG. 8. Wave-function maximum distributions for distinct values
of the hopping exponent σ . (a) In the extended regime, F(φ2

m ) devi-
ates from the Gumbel distribution when the wave function starts to
display anomalous fluctuations (1/2 < σ < 1). (b) In the localized
regime, the extreme distribution moves towards the asymptotic curve
for high values of σ , as illustrated for σ = 5.0.

wider, exhibiting an intermediate pre-asymptotic regime. The
exponential tail is fully suppressed in the regime of very short-
ranged hopping amplitudes (large σ ) with a finite probability
density at φ2

m = 1 signaling the presence of extremely local-
ized states.

IV. SUMMARY AND CONCLUSION

In summary, we considered the one-dimensional tight-
binding Anderson model with random power-law decaying
matrix elements to uncover the extreme value distributions of
extended, critical, and exponentially localized wave functions.
We recall that this model has been widely considered in the lit-
erature as a simple model that exhibits an Anderson transition
at a well-known critical point, which has been used in several
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studies exploring fundamental features related to the critical
fluctuations [9–24].

We showed that structureless extended eigenstates satis-
fying the GOE ensemble exhibit a Gumbel distribution of
intensity maxima that can be indeed extracted from the par-
ent wave function Porter-Thomas distribution assuming IID
wave-function values. On the other hand, we unveiled that
multifractal critical eigenstates have a nontrivial distribution
of maxima whose tail deviates significantly from the Gumbel
distribution due to the slow convergence to the exponential
tail of the wave-function distribution. The latter was shown
to exhibit distinct scaling behaviors at low and large in-
tensities. In particular, the average wave-function intensity
maximum behaves as an order-parameter measure. At criti-
cality, it scales with the system size 〈φ2

m〉 ∝ N−ξ with ξ �
0.413(2). Well within the localized phase, we showed that
the wave-function distribution exhibits a nontrivial sequence
of regimes (pre-power-law → power-law → exponential →
anomalous localized). This unconventional distributions was
shown to impact on the extreme value distribution. The cor-
responding distribution of maximum eigenfunction intensities
has contributions coming from the anomalously localized and
exponential regimes. It substantially deviates from the dis-
tribution based on the IID hypothesis. Further, it depicts a
finite probability density at φ2 = 1 coming from the anoma-
lously localized states. We stress that, although the finite-size
scaling exponents at the Anderson transition for the present
model with long-range hopping amplitudes are nonuniversal,
depending on the specific relation between short and long-
range terms [3], the main reported aspects related to the parent

and maximum wave-function distributions in the extended
Gaussian, critical, and exponentially localized regimes shall
remain valid for general model systems presenting an Ander-
son transition. At criticality, the reported deviation from the
standard Gumbel distribution of maxima shall also universally
hold as it is directly related to the presence of multifractal
wave-function fluctuations.

The detailed aspects of the new distributions reported
in the present paper were based on numerical results. We
hope these can stimulate future developments based on the
field-theoretical renormalization group and the nonlinear σ

model [9–11] with the potential to derive analytical forms
for these distributions at least in some relevant asymptotic
regimes. The here-disclosed features of the wave-function
extreme value distributions open an approach to investigate
the Anderson transition. Questions related to the influence
of mobility edges, system’s dimensionality, interactions, and
class of random matrix ensemble deserve future investiga-
tions. Considering that extreme wave functions play a key role
in disordered systems, these studies shall shed light on the
general wave transport phenomenology.
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