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Disordered graphene ribbons as topological multicritical systems
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The low-energy spectrum of a zigzag graphene ribbon contains two gapless bands with highly nonlinear
dispersion, ε(k) = ±|π − k|W , where W is the width of the ribbon. The corresponding states are located at the
two opposite zigzag edges. Their presence reflects the fact that the clean ribbon is a quasi-one-dimensional
system naturally fine-tuned to the topological multicritical point. This quantum critical point separates a
topologically trivial phase from the topological one with the index W . Here we investigate the influence of the
(chiral) symmetry-preserving disorder on such a multicritical point. We show that the system harbors delocalized
states with the localization length diverging at zero energy in a manner consistent with the W = 1 critical point.
The same is true regarding the density of states (DOS), which exhibits the universal Dyson singularity, despite the
clean DOS being substantially dependent on W . On the other hand, the zero-energy localization length critical
exponent, associated with the lattice staggering, is not universal and depends on the topological index W .
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I. INTRODUCTION

Disorder is generically relevant in low-dimensional sys-
tems, leading to localization and a lack of transport even
for arbitrarily weak disorder. In two dimensions, disorder is
marginally relevant, and perturbations such as the addition
of spin-orbit coupling allow for the possibility of a metal-
insulator transition at a finite disorder strength [1–4]. In one
dimension, however, the scaling theory of localization pre-
dicts that disorder is relevant [5,6], and localization is always
expected in the presence of disorder.

If the conditions are just right, then it is possible to ob-
serve a critically delocalized state in quasi-one-dimensional
(1D), similarly to the state at a 2D metal-insulator transi-
tion. This state is present precisely at the transition between
topologically distinct phases. The simplest example of this
phenomenon is the 1D chain with random nearest-neighbor
hopping, first studied by Dyson [7]. In the absence of disorder,
if the nearest-neighbor hoppings are staggered uniformly, say,
due to Peierls instability, then the system is in an insulating
phase with a winding number (topological invariant) either
0 or 1 [8,9]. When all the hoppings are identical, there is a
linearly dispersing gapless mode near zero energy and the sys-
tem is at the critical point between two topologically distinct
phases. This critical point survives in the presence of hopping
disorder, provided that all bonds are identical on average:
Even in the presence of disorder, there must be a critically de-
localized state at zero energy at the boundary between phases
with different average band structure topology.

The mechanism for the formation of the delocalized state
is deeply rooted in topology [10]. Adding disorder creates
domains between the topologically distinct phases, with low-
energy bound states localized on these domain walls. The
interactions of the low-energy bound states is what gives
rise to the critical state at zero energy, which is known to

have multifractal characteristics [11–13]. This mechanism
also leads to critical zero-energy states in 1D Dirac
Hamiltonians with random mass and in random XY spin
chains [11,14,15].

While the localization length of the state at zero energy
is formally infinite, it is not a perfectly conducting delocal-
ized state, but one with a broad transport distribution that
is dominated by rare-region effects. The associated trans-
port statistics at zero energy have traditionally been studied
using the Fokker-Planck approach, which describes the evo-
lution of the probability distributions of transport with the
length [16–19]. For Hamiltonians in symmetry class BDI
(AIII), which describes the 1D chain with random nearest-
neighbor hopping when time-reversal symmetry is present
(absent), this approach predicts that at zero energy, in 1D
systems with an odd number of channels, the average con-
ductance does not decay exponentially but instead falls off as
a power of the system size [20,21].

In addition to BDI and AIII, the 10-fold classifica-
tion scheme for topological insulators and superconduc-
tors [22–25] identifies several other symmetry classes that
admit multiple topologically distinct phases in 1D. These
classes admit gapped phases with an integer (BDI, AIII, and
CII) or Z2 (D and DIII) valued topological invariant in 1D,
and thus also contain Hamiltonians describing the critical
point separating these. All of them correspondingly harbor a
disordered critical point at zero energy, whose transport can be
studied using the Fokker-Plank approach [26]. This predicts a
power law in system size average conductance at zero energy
in classes BDI, AIII, and CII for an odd number of channels,
and in classes D and DIII for any number of channels [27].

In reality, for all of these symmetry classes accessing the
true critical point requires fine-tuning [10,28], and in gen-
eral, it is possible to add symmetry allowed terms that move
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the system away from criticality [29]. Interestingly, however,
sufficiently close to the critical point the transport statistics are
found to be universal across all symmetry classes in 1D [28].

The present work focuses on zigzag graphene ribbons with
nearest-neighbor hopping. Although these belong to the same
symmetry class (BDI) as armchair ribbons and the random
hopping chain, in the clean limit they have very different prop-
erties near zero energy [30,31]: They have a higher-order band
crossing at zero energy, with a dispersion of the form |π − k|W
for momenta k close to π (the band crossing point), where
W is the width of the ribbon. Therefore the lowest-energy
sub-band gets increasingly flat as the width, W , increases.
This reflects the fact (see Sec. II B) that a clean zigzag ribbon
is at a multicritical point, i.e., it is at the transition point
between topological phases whose winding numbers differs
by W . Our goal is to study the fate of this multicritical point
in the presence of hopping disorder.

Because of the higher-order band crossing, transport
strictly at zero energy is not accessible, since the veloc-
ity of 0-energy particles incident from a clean lead is 0.
Instead, we focus on the system’s behavior as the energy
ε → 0. For typical disordered critical points, this exhibits
many features indicative of the nature of the underlying crit-
icality. The density of states has a characteristic divergence,
of the form 1/(|ε ln3(ε)|) [7,26,32]. The typical localization
length diverges logarithmically with energy [15,33–37]. Rare-
region effects play an increasing role closer to the critical
point [13], and the average properties start to differ dra-
matically from the typical ones. For instance, the average
localization length diverges as ln2(ε) [11]. We will show
that these divergences also describe the low-energy regime of
the disordered multicritical point relevant to zigzag graphene
ribbons.

The traditional Fokker-Planck approach cannot describe
these divergences, as away from zero energy it ceases to
capture the transport statistics of disordered critical points. To
access this regime, the one-parameter scaling inherent to the
Fokker-Plank equation must be replaced by a two-parameter
scaling, describing the crossover of transport statistics from
the critical point at zero energy (described by the Fokker-
Plank equation for class BDI) to that at high energies
(described by a Fokker-Plank equation for class AI) [38,39].
This scaling leads to a universal form of the transport dis-
tribution, which captures the low-energy regime in both the
1D chain with hopping disorder, and in metallic armchair
graphene ribbons [39], which in the clean limit also have a
linearly dispersing band crossing at zero energy associated
with a critical point separating topologically distinct phases.
Here we give evidence that the same two-parameter scaling,
and underlying distribution, describe transport at low energies
in the zigzag case.

An alternative perspective on the higher-order disper-
sion in zigzag graphene ribbons stems from the fact that
two-dimensional graphene is an example of a topological
semimetal: The large number of very low-energy states of
the zigzag graphene nanoribbon, which are localized near its
edges, are a manifestation of the boundary flat band in the
2D topological semimetal. The fate of the boundary modes in
the presence of disorder is also investigated. These are found
to be stable and remain close to zero energy when hopping

disorder is added, indicating that this feature of the topological
semimetal is robust to disorder.

There are several works which have studied the effects
on disorder on zigzag graphene ribbons, though not for the
current scenario, where hopping disorder is considered. A
few of these works are highlighted here to provide a broader
perspective. In Refs. [40–42], it was found that there is a
perfectly conducting channel in zigzag ribbons in the presence
of long-range on-site disorder. This is because there is an
additional chiral mode in the each valley that is not affected by
long-range impurities. However, for short-range impurities,
localization is still expected, as was shown in Refs. [43–45].
Disorder on the edge has also been found to strongly affect
the transport in graphene ribbons [46,47]. In Ref. [48], it was
shown that the edge states are stable under the presence of
edge roughness.

The rest of this paper is structured as follows. In Sec. II, the
model of zigzag graphene with only nearest-neighbor hopping
is introduced, followed by the properties of the spectrum in
the absence of disorder. Particular emphasis is placed on the
low-energy band and its dispersion. This is followed by a
discussion of the generic symmetries of the model and its
topological properties. In Sec. III, the transport, density of
states, and stability of the edge states of the disordered zigzag
ribbon are discussed. This is followed by a discussion of the
results in Sec. IV.

II. SPECTRUM, SYMMETRY, AND TOPOLOGY
IN ZIGZAG GRAPHENE

A. Model and spectrum

The present work focuses on zigzag graphene ribbons with
nearest-neighbor hopping, described by the Hamiltonian:

H =
∑

i

W∑
j=1

t a
i, jc

†
i, j,Bci, j,A + H.c.

+
∑

i

W∑
j=1

t b
i, jc

†
i+1, j,Aci, j,B + H.c.

+
∑

i

W −1∑
j=1

t c
i, jc

†
i, j+1,Aci, j,B + H.c., (1)

where the hopping parameters t a,b,c
i, j are real. The choice of

unit cell, and conventions for labeling sites, are shown in
Fig. 1. Here c†

i, j,α is the creation operator for an electron on
the unit cell labeled by index i along the horizontal direction,
on the vertical chain labeled by j; the subscript α ∈ {A, B}
refers to the A and B sublattices of the two-site unit cell of the
honeycomb lattice (orange and blue, respectively, in Fig. 1).
As no spin-orbit terms are included, it suffices to consider a
single spin species, and the spin index is therefore suppressed.
The lattice constant has been set to unity.

The model contains three types of hopping parameters,
t a, t b, and t c, associated with the three bond orientations of the
honeycomb lattice (inset of Fig. 1). With the choice of unit cell
shown, t a parameterizes hopping within the unit cell along the
horizontal direction, t b describes hopping to the next unit cell
along the horizontal direction, and t c represents hopping along
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FIG. 1. Zigzag graphene ribbon of width W = 4 is shown. Dif-
ferently colored sites correspond to different sublattices and the
dashed box encloses the unit-cell of the zigzag ribbon which is trans-
lation invariant in the horizontal direction. The labeling convention
for the sites used in this work is also shown here. The inset shows the
hopping parameters.

the vertical direction within the unit cell. In general we will
not require any lattice symmetries, such that all three types of
hopping parameters depend explicitly on the indices i and j.

The clean limit of the zigzag ribbon is obtained by setting
tα
i, j ≡ t . The resulting band structure for W = 4 and t = 1 is

shown in Fig. 2. For a general width W , the clean system
has 2(W − 1) fully gapped bands, and one pair of gapless
bands, which cross at k = π . Near this degeneracy point
(approximately in the region 2π/3 < k < 4π/3 spanning the
projection of the bulk Dirac cones), the dispersion is very
flat, and the wave function is localized near the ribbon’s
zigzag edges, as indicated by the coloring of the bands in
Fig. 2. In contrast, the wave functions of the fully gapped
bands, as well as of the gapless band far from the degeneracy
point, are delocalized throughout the bulk. The Dirac points
of 2D graphene (located at k = 2π/3 and 4π/3 in the limit
W → ∞) are separated from zero energy by a finite-size gap
that scales as 1/W . Hereafter we always focus on energies
smaller than this 1/W gap, where only the two flat sub-bands
are present.

FIG. 2. Band structure of the zigzag ribbon of width W = 4 is
shown. The bands are colored by the probability of the corresponding
wave functions to be localized on the A(B) sublattice on the bottom
(top) of the zigzag ribbon, denoted by Pedge.

FIG. 3. The low-energy band as a function of momentum close
to the degeneracy point. The axes are rescaled so that all the curves
fall on the same dashed gray line, in agreement with Eq. (2).

The analytical solutions for the energies and wave func-
tions of clean zigzag ribbons can be found in Appendix B
of Ref. [31]. A notable feature of the wave functions of the
edge states that make up the lowest-energy band is that they
are sublattice polarized, with support only on sublattice A
(B) of the honeycomb lattice at the lower (upper) edge. On
expanding the dispersion of this band near the band crossing
at k = π , one finds that:

ε(k) ≈ ±|π − k|W . (2)

At energies below the finite-size gap, this is in a good
agreement with the dispersion obtained via numerical diag-
onalization, as shown in Fig. 3.

B. Symmetry and topology

1. Generic symmetries of zigzag graphene

Before discussing disordered ribbons, it is crucial to un-
derstand the symmetries of the Hamiltonian (1), as well as the
band structure topology of the clean zigzag ribbons discussed
above.

Systems of noninteracting fermions can be classified into
10 distinct symmetry classes based on the existence of three
generic symmetries [22,23]: time reversal (T ), particle-hole
(C), and chiral or sublattice (S). These are best understood
by examining the so-called first quantized Hamiltonian H,
where H = ∑

α,β c†
αcβHα,β , and α, β label individual sites in

the system. Time-reversal symmetry requires that:

U †
TH∗UT = H, (3)

where UT is a unitary operator. In the case at hand, the
fermions are effectively spinless, and UT is the identity matrix,
as it maps a site to itself. It follows that the Hamiltonian (1)
has time-reversal symmetry, since all the hoppings are re-
stricted to real values, and that T 2 = 1.

Chiral symmetry is present if there exists a unitary matrix
US such that

U †
S HUS = −H. (4)

When μ = 0, any free fermion Hamiltonian on a bipartite
lattice for which hopping terms connect only the A and B
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sublattices has chiral symmetry. Explicitly,

(US )α,β =
⎧⎨
⎩

0, α �= β

1, α = β belongs to sublattice A
−1, α = β belongs to sublattice B

. (5)

Thus, because we take all tα
i j to be real, the Hamiltonian (1)

has both time-reversal and chiral symmetries. Since S = TC,
particle-hole symmetry is also present and squares to +1.
As a result, the zigzag nanoribbons studied here, for which
μ = 0 and there is no chemical potential disorder, belong to
symmetry class BDI.

2. Zigzag graphene as a multicritical point

In one dimension, symmetry class BDI admits topologi-
cally nontrivial gapped phases, characterized by an integer-
valued topological invariant, the winding number [23–25]. For
the hopping models studied here, such gapped phases can be
obtained by introducing staggered hopping parameters. For a
single chain (W = 1), taking t a

i j ≡ t a, t b
i j ≡ t b in Eq. (1) gives

the Su-Schrieffer-Heeger (SSH) model [8,9], which describes
a 1D topological insulator in symmetry class BDI with wind-
ing 1 (t b > t a) or 0 (t b < t a). The limit t a = t b corresponds to
a critical point separating these two phases.

For W = 2, with translation invariance there are five dis-
tinct hopping parameters t a

j , t b
j ( j = 1, 2), and t c

1 . (Here the
index i labeling the horizontal unit-cell is omitted due to
translation invariance.) The Hamiltonian can be written in
momentum-space as:

H =
∑

k

�
†
kH(k)�k, (6)

where �
†
k = (c†

k,1,A c†
k,2,A c†

k,1,B c†
k,2,B). This choice of

basis is most convenient to find the winding number,
since the Hamiltonian in momentum space is block off-
diagonal [23,49], i.e.,

H(k) =
[

0 D(k)
D†(k) 0

]
, (7)

where

D(k) =
(

t a
1 + t b

1 e−ik 0
t c
1 t a

2 + t b
2 e−ik

)
. (8)

The winding number is given by [23,49]:

ν = i

2π

∫ 2π

0
dkTr

[
D−1

k ∂kDk
]
. (9)

One then finds:

ν = θ
(∣∣t b

1

/
t a
1

∣∣ − 1
) + θ

(∣∣t b
2

/
t a
2

∣∣ − 1
)
, (10)

where θ is the step function. This is simply the sum of the
winding numbers of the individual horizontal 1D chains. No-
tably, the vertical hopping between the chains does not play
a role in the topology of the W = 2 zigzag ribbon. Taking
tα
1 = tα

2 = tα yields a winding number of 2 (t b > t a) or 0 (t b <

t a). As before, the gapless model corresponding to uniform
hopping parameters t a = t b = t c describes the critical point
separating the two phases with winding numbers 0 and 2. The
other possibilities for the topology of the W = 2 ribbon are
summarized in Fig. 4.

FIG. 4. Phase diagram for the W = 2 zigzag ribbon as a function
of the hopping parameters, when there is no disorder. ν is the wind-
ing number at half-filling. The vertical hopping parameter t c

1 is not
relevant to the topology, in accordance with Eq. (10).

This finding can be generalized for larger widths. In gen-
eral, a translationally invariant ribbon of width W can be
viewed as an array of W chains coupled via the vertical
hoppings t c

j , j = 1, . . . ,W − 1, each with two intrachain hop-
ping parameters t a

j , t b
j . When t a

j = t b
j for all j, the system is

gapless, with a dispersion near the band-crossing that goes as
|π − k|W . If all the chains have t a

i �= t b
i , then the spectrum is

fully gapped with a winding number ranging anywhere from
0 to W , given by

ν =
W∑
j=1

θ (mj ), (11)

where mj = |t b
j | − |t a

j | is the SSH staggering along the jth
chain. Thus the clean limit discussed above corresponds to
a multicritical point separating gapped topological phases of
windings 0 and W .

A continuum low-energy theory of the edge mode can be
represented by an effective 1D Hamiltonian of the form:

H =
[

0 (∂x + m1) . . . (∂x + mW )
(−∂x + mW ) . . . (−∂x + m1) 0

]
, (12)

where the 2 × 2 structure is associated with A/B sublattices.
For x-independent staggerings mj , the corresponding spec-
trum is given by:

ε(p) = ±
W∏
j=1

√
p2 + m2

j , (13)

where p = π − k. This leads to the spectrum (2) in the
uniform hopping limit, mj = 0. Moreover, it is clear from
here that to open a gap in the spectrum, all chains must be
staggered. If there are w < W nonstaggered chains, then the
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low-energy spectrum is gapless and scales as ε(p) ∝ |p|w. It
is also clear from Eq. (12) that the corresponding winding
number is given by Eq. (11).

If one of the staggerings changes sign over the system’s
length, e.g., mi(x) = |mi|sgn(x), while all others remain finite
everywhere, then there is a zero energy in-gap state localized
to the B sublattice and given by the solution of:

[∂x + mi(x)](∂x + mi+1) . . . (∂x + mW )ψB = 0. (14)

This leads to a homogeneous equation for the unnormal-
ized wave function (∂x + mi+1) . . . (∂x + mW )ψB = e−|mi||x|,
which for constant mi+1, . . . , mW may be easily solved by,
e.g., the Fourier transform. On the other hand, if mi(x) =
−|mi|sgn(x), then the zero energy state, found from (−∂x +
mi−1) . . . (−∂x + m1)ψA = e−|mi||x|, is localized to the A
sublattice.

3. Zigzag graphene as a topological semimetal

In addition to this, two-dimensional graphene can be
thought of as a gapless topological material [49]. The bulk
band structure contains a pair of Dirac nodes located at the
two distinct corners of the Brillouin zone. Through a bulk-
boundary correspondence, the topological nature of the Dirac
nodes arising from their nontrivial Berry phase of ±π gives
rise to low-energy states localized on the boundaries. This is
a two-dimensional analog of the Fermi arcs that exist at the
surface of a 3D Weyl semimetal [50–52].

To see how the bulk-boundary correspondence plays out
in the quasi-1D system, one can consider the momentum-
dependent Hamiltonian H(k) of a ribbon, where k is
momentum along the translationally invariant direction. In the
case of a zigzag ribbon, this is given by the W × W matrix:

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 + e−ik

1 + eik 0 1
1 0 1 + e−ik

1 + eik 0 1
. . .

1 + eik 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(15)
At fixed k, one can view this as a Hamiltonian of a W -site
1D system. In the case at hand, H(k) is identical to the
Hamiltonian of an SSH chain without time-reversal symmetry
(class AIII), with t a = 1 + e−ik , and t b = 1. This chain is
topological when:

|1 + e−ik| < 1, (16)

i.e., when 2π/3 < k < 4π/3. The endpoints of the topolog-
ical region are exactly where the Dirac points occur in the
limit W → ∞. For the values of momenta where the chain
is topological, there are states close to zero energy that are
localized on the boundaries of this auxiliary 1D system at
fixed k (i.e., at the zigzag edges). These are the edge states
seen in the dispersion of Fig. 2. The existence and dispersion
of the edge states depends on the boundary condition of the
ribbons [31,48]. For instance, in the armchair ribbons, the
Dirac points with opposite Berry phase are crossed simulta-
neously and thus no edge states occur.

Because the topology in this case is explicitly related to
the existence of the translation-invariant Hamiltonian H(k),
it is not clear if the edge states persists at a finite disorder
strength. (This is in contrast to gapped topological phases,
where boundary states are known to be robust provided that
all relevant symmetries are preserved.) It is thus interesting
study the stability of edge states in the presence of disorder
that preserves the chiral symmetry (which is required for the
existence of the edge states in the SSH chain).

III. OFF-DIAGONAL DISORDER IN ZIGZAG GRAPHENE

A. Disordered critical point in the 1D chain: A review

To provide context for understanding transport and density
of states in disordered zigzag graphene ribbons, it is helpful
to review the properties of the disordered 1D random hopping
chain at the critical point. When there is a single conducting
channel, it is often convenient to write the dimensionless
conductance g (using the Landauer paradigm of transport) as:

g = 1

cosh[2](x)
. (17)

A body of work [10,20,28] has established that the critical
point separating phases of different winding persists to finite
disorder strength. If the distribution of hopping parameters
is the same on each bond, then adding disorder in the un-
staggered chain leads to an unconventional type of Anderson
localization, in which the average conductance at zero energy
decays as a power of the system size rather than exponentially.
The corresponding transport behavior is described by the
Fokker-Planck equation in symmetry class BDI [20,38,53],
which for a single propagating channel leads to the following
transport distribution:

P(x; s) =
√

2

πs
e− x2

2s ; x � 0. (18)

Here s = L/l , where L is the system size, and l is the mean
free path.

To see that this distribution describes unconventional lo-
calization, one can define the typical and average localization
lengths:

ξtyp ≡ − 2L

〈ln (g)〉 , ξavg ≡ − 2L

ln (〈g〉)
. (19)

For the distribution (18), one finds ξtyp ∼ √
Ll and ξavg ∼

L/ ln s, indicating that both typical and average localization
lengths diverge with the system size. In contrast, for conven-
tional Anderson insulators, say, in class AI, one finds that
ξtyp = 2l and ξavg = 8l .

Since the clean zigzag ribbon with homogeneous hoppings
is at the multicritical point, one expects that this criticality
will persist in the presence of hopping disorder. This suggests
that adding disorder will lead to unconventional localization,
much like in the disordered hopping chain. However, the pre-
cise nature of this unconventional localization could be very
different.

For ribbons of width W > 1, an additional subtlety arises in
trying to determine the nature of the underlying critical point.
For W = 1 (or in the case of armchair nanoribbons [39]),
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one can deduce the presence of the critical point by consid-
ering the conductance of a disordered segment connecting
two disorder-free leads, when the incident particle has en-
ergy ε = 0. For W � 2, however, the transport at zero energy
cannot be accessed directly, because the velocity of the band
goes to zero at ε = 0. Therefore the injected particle does not
propagate through the disordered region. Instead, the nature of
the critical point at zero energy must be inferred by studying
transport at small but finite energies.

This difference is significant because the distribution (18)
characteristic of critical transport in symmetry class BDI is
valid only when the energy is exactly zero, where chiral sym-
metry imposes additional constraints on the allowed scattering
processes. From the transport point of view, moving away
from zero energy is therefore analogous to tuning away from
the critical point. For a fixed energy and disorder strength,
this leads to a crossover between transport reminiscent of
the chiral distribution (18) at shorter length scales to more
conventional localization and exponentially suppressed con-
ductance at long distances. For W � 2, the nature of the
underlying critical point must be inferred by studying trans-
port in this crossover regime.

The study of this crossover dates back to work by
Dyson [7]. A key observation is that when the clean system is
at a critical point between phases of different winding, disor-
der creates domains of each of the corresponding phases. The
resulting domains walls harbor bound states, whose energy
is exponentially small in the domain size. These low-energy
states are thus resonant and can hybridize, leading to delocal-
ization [10]. When the disorder distribution is uniform (i.e., no
net staggering), such domains form on all length scales, and
the eigenstates of the disordered system are not exponentially
localized even at the longest length scales, as indicated by the
divergence of both typical and average localization lengths.

This intuitive picture explains several of the unusual fea-
tures seen in disordered 1D systems proximate to a topological
phase transition. First, as pointed out by Dyson [7,26,32], the
density of states diverges at low energies according to:

ρ(ε) ∝ 1

|ε(ln ε)3| . (20)

When the system is perturbed away from the critical point
by, say, introducing staggering of the bonds on average, this
divergence becomes a power law ε−1+δ with a nonuniversal
exponent δ [10].

Second, as the energy decreases toward zero, the typical
localization length defined in Eq. (19) has a characteristic
logarithmic divergence [15,33–37]:

ξtyp = l|ln(r)|. (21)

Here r = ετ is a dimensionless measure of the energy, ε is
the energy of the injected electron, and τ the scattering time,
and the formula is valid for r � 1. Moreover, as zero energy
is approached, transport becomes increasingly dominated by
rare-region effects and one finds that the average localization
length diverges as log2(r) [11]. Evidently, for finite L, both
divergences are cut off at sufficiently low energies by the L-
dependent localization lengths of the zero-energy BDI case.

Finally, the full transport statistics of the disordered W =
1 chain near zero-energy were studied in Ref. [39]. In that

case, the distribution of conductance values, and therefore all
transport properties, is determined by the two dimensionless
parameters s = L/l , and r = ετ . When s � 1, or r � 1, the
transport distribution was found to be of the form:

P(x) = 2

γ �(δ/2)

(
x

γ

)δ−1

exp

[
−

(
x

γ

)2]
, x � 0, (22)

where δ and γ are functions of s, r. The parameter δ dictates
the shape of the distribution: While the chiral distribution 18
is obtained for δ = 1, a Gaussian distribution corresponding
to exponential localization is obtained as δ → ∞. For r � 1,
one finds

δ ≈ 3

2

s

| ln2 r| , (23)

indicating that the overall shape of the distribution is con-
trolled by the ratio of ξ 2

typ/l ∼ ξav to the system size L.

B. Disordered zigzag graphene nanoribbons:
Theoretical expectations

In the remainder of this section, numerical evidence is
presented to indicate that for a range of widths W , disordered
zigzag ribbons exhibit the same two-parameter scaling with s
and r as the 1D chain, with an underlying distribution of the
same form. Because the dispersion of the disorder-free critical
point depends strongly on W , this nevertheless describes a
family of disordered models with quantitatively very different
transport properties.

To set the stage for the numerical results that follow, it
is instructive to consider how the relaxation time τ and the
mean-free-path l might depend on the width W and energy ε.
This can be done analytically when the disorder is sufficiently
weak, such that the scattering rate can be calculated perturba-
tively using Fermi’s golden rule, which gives:

τ−1(ε) = 2πρ0(ε)|〈ψL|Himp|ψR〉|2. (24)

Here ρ0 is the unperturbed density-of-states, |ψL〉(|ψR〉) is the
wave function for the left (right) moving mode, and Himp is
the impurity Hamiltonian.

The right-hand side of Eq. (24) contains two terms that
depend on the width of the ribbon. First, the dispersion of the
clean system leads to the density of states

ρ0(ε) = 1

πW
ε−1+1/W , (25)

which for W > 1 has a power-law divergence as ε → 0. Sec-
ond, the matrix elements 〈ψL|Himp|ψR〉 also depend on W . To
see why, consider a single impurity located on unit-cell 0 and
chain m with a strength of V , i.e.,

Himp = V c†
0,m,Ac0,m,B + H.c. (26)

Using the analytical form of the wave functions of the edge
states in Ref. [31], and expanding about ε = 0, gives a scat-
tering amplitude 〈ψL|Himp|ψR〉 ∼ V ε1−1/W which vanishes as
ε → 0. There are some typos/errors in the wave functions of
Ref. [31]. For a more correct result, one can refer to Ref. [54].
This strong suppression of back-scattering results from the
fact that the edge states are well localized on the A sublattice
near the bottom edge and the B sublattice near the top edge

184206-6



DISORDERED GRAPHENE RIBBONS AS TOPOLOGICAL … PHYSICAL REVIEW B 106, 184206 (2022)

FIG. 5. The relaxation rate calculated numerically using the
Fermi’s golden rule is plotted as a function of the energy for several
widths. The axes are chosen in such a way that all the curves collapse
onto a single line according to Eq. (27). Inset shows a zoomed in
version at higher energies where one starts to see deviations from
Eq. (27) as the low-energy dispersion of Eq. (2) starts to deviate.

(see Sec. II A), such that backscattering between the left and
right moving states is highly suppressed in the presence of
off-diagonal disorder.

The exact matrix elements can be easily computed using
the right- and left-moving wave functions obtained through
numerical diagonalization. After averaging over all possible
values of m, the relaxation rate scales as:

τ−1 ∝ V 2ε1−1/W , (27)

in accordance with the analytical estimate described above.
This is confirmed by the scaling plot in Fig. 5. The mean-
free-path is given by l = τv(ε), where v(ε) ∼ W ε1−1/W is
the velocity. Because of the nonlinear dispersion, the Fermi
velocity rapidly approaches zero as ε vanishes, giving:

l ∝ W

V 2
. (28)

Thus the energy dependence of the velocity exactly cancels
that of the relaxation rate, and the mean-free-path l is roughly
independent of energy and increases linearly with the width
W . Note that these scaling laws for l, τ are only valid in the
weak-disorder limit when the dispersion can be approximated
by Eq. (2). The energy scale for this dependent on the finite-
size gap and goes as 1/W .

C. Numerical results for transport in zigzag graphene

In order to study transport in zigzag ribbons, a finite size
tight binding system of length L and width W is created
with the Hamiltonian given by Eq. (1). In the absence of
disorder, all the hoppings are set to 1. To add disorder, a
random term from the uniform distribution spanning [−V,V ]
is independently added to every hopping. The quantity V is a
measure of the disorder strength. Semi-infinite, disorder-free
leads of the same width are attached on either side of the
disordered strip. One can then send in electrons at a certain
energy and compute the S matrix, which relates the amplitudes
of the incoming waves to the outgoing waves. From this the
conductance and other transport properties can be obtained.

FIG. 6. Probability distribution for x = arccosh(1/
√

g) is shown
for a range of widths for L = 1000 and ε = 10−2. The solid lines are
the histograms obtained from numerics while the dashed lines are fits
to Eq. (22).

All of this is done using methods available in the package
KWANT for python [55], which uses the MUMPS library to
efficiently solve sparse linear equations [56].

A range of widths W from 2 to 8 are studied, with lengths
L ranging from 100 to 1000 unit cells. The disorder strength
V is taken to be 0.5 for all the cases, unless stated otherwise.
The energy of the incoming electron ε ranges from 10−6 to
10−2. Over 104 disorder configurations are generated for each
W and L and ε in order to obtain comprehensive statistics.

As a first step, one can try to compare the numerically
computed transport data of the zigzag chains to the transport
statistics obtained for the 1D chain in Ref. [39]. In Fig. 6,
it is shown that the probability distribution for the quantity
x = arccosh(1/

√
g) is well described by that of the 1D chain,

Eq. (22). This suggests that the full transport statistics in a
zigzag ribbon could be described by the same two-parameter
scaling functions, with the parameters being s = L/l and
r = ετ .

In order to study this scaling further, the values of s and r
for a given zigzag chain must be obtained. In principle, this
could be done by fitting to the distribution (22); in practice,
however, it is more straightforward to fit the data of the zigzag
nanoribbons to that of 1D chain, for which these parameters
can be extracted from the transport statistics at ε = 0. Details
of this fitting procedure are given in the Appendix. The re-
sulting energy and width dependence of the relaxation time τ

is shown in Fig. 7 and agrees strongly with both the energy
and width dependence predicted by Eq. (27). Similarly, the
mean-free-path l is also found to scale linearly with the width
W as predicted by Eq. (28) (this is not shown). To summarize,
fits of the transport data of the zigzag ribbon to those of 1D
chain, obtained by assuming the same two-parameter scaling
of transport, show good agreement with perturbation theory.

The agreement shown in Fig. 7 suggests that the disordered
critical point in graphene nanoribbons exhibits the same scal-
ing behavior as that of the random hopping chain. A number
of other measures also indicate the universality of this scaling.
Figure 8 shows that the typical localization length shows good
data collapse for multiple widths when plotted as a function
of r. A few features of this plot are worth emphasizing. For
|ln(r)| ≈ 0, the ratio ξtyp/l approaches 2. This is the value

184206-7



KASTURIRANGAN, KAMENEV, AND BURNELL PHYSICAL REVIEW B 106, 184206 (2022)

FIG. 7. The scattering time τ , obtained from fits of 〈ln(g)〉 vs.
L, is shown as a function of energy for several widths. Based on
Eq. (27), the dashed lines show fits to τ = cε−1+1/W , where the only
free parameter is c. In general, c depends on the disorder strength.
In this case it is around 1.5 for all the lines. The fits show good
agreement with the scaling relationship predicted by perturbation
theory.

predicted by the Fokker-Planck equation for symmetry class
AI [19,57], where chiral symmetry is absent. The logarithmic
divergence of Eq. (21) is only reached for |ln(r)| � 5. This
regime becomes increasingly inaccessible for the zigzag rib-
bons as the width increases, even though the smallest energy
studied for all the systems is 10−6. This is because backscat-
tering is suppressed as the width of the zigzag ribbon increases
[see Eq. (27)], so that the regime r � 1 occurs at smaller
energies for larger W . In practice, even for W = 2 much of
this regime is numerically inaccessible.

D. Density of states

To obtain a second probe of critical scaling, the density
of states is computed using the recursive Green’s function
technique [58]. This is done completely independent of the
transport calculations. The self-energy of the lead is added to
the initial Green’s function to stabilize the results. Also, an
imaginary part of 10−2ε is added to the energy. The maxi-
mum length studied is L = 104, with energies ranging from
10−10 to 10−1, and V = 0.5. Once again, around 104 disorder
configurations are computed.

In terms of the scaling variables here, the density of states
in the W = 1 chain diverges at low energies according to:

ρ(ε) = πρ0(ε)

|r ln3(r)| , (29)

where ρ0 is given by Eq. (25). For the zigzag ribbons at low
energies, using τ = cε−1+1/W and the expression for ρ0 25,
one finds:

ρ(ε) = W 2

|2cε ln3(cW ε)| . (30)

Thus, up to an overall prefactor, the density of states at any W
exhibits the same Dyson singularity as the disordered critical
point separating phases whose topological winding number
differs by 1.

In the absence of disorder, in contrast, the low-density of
states of the zigzag ribbons depends strongly on their width,

FIG. 8. The ratio of typical localization length to mean free path
ξtyp/l is shown vs. |ln(r)|. Excellent data collapse is observed for
several widths. Here ξtyp is obtained using Eq. (19) and r is obtained
from fits to the data for the 1D chain (see the Appendix). The dashed
line shows ξtyp/l = |ln(r)|, which is the behavior expected for r � 1.
Data for W = 1 is included to show that logarithmic divergence is
only attained when |ln(r)| � 5. An additional disorder strength for a
dew widths are included in (b) to show that the data collapse is not
coincidental.

diverging as ε−1+1/W at small energies [see Eq. (25)]. Never-
theless the low-energy density of states of disordered ribbons
is completely universal and W independent. This feature, in
combination with the long relaxation time of the zigzag rib-
bons, means that the excess density of states due to disorder
becomes apparent only at extremely small energies. This is
similar to what was observed with the localization length
divergence.

Figure 9 shows the low-energy divergence of the density
of states obtained from numerics. In Fig. 9(a), the energy-
dependent disordered density of states for W = 2 is compared
that of the clean system, showing that the Dyson singularity
becomes detectable only at energies less than approximately
10−5 in this system. Figure 9(b) shows the the density of states
rescaled by ρ0 and plotted as a function of r. Excellent data
collapse is found across a range of widths. The observed r
dependence interpolates between the Dyson form of the diver-
gence given by Eq. (20) for r � 1 and the value at the clean
limit for r ∼ 1. Notably, the scaling parameter τ is obtained
from the transport data, completely independent of the density
of states calculations.

With this, there is a sufficient evidence to conclude that the
zigzag graphene ribbons are at a critical point with a delocal-
ized state at zero energy, on adding off-diagonal disorder.
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(a)

(b)

FIG. 9. The density of the states for disordered zigzag ribbons
obtained using the recursive Green’s function. Figure 9(a) shows the
density of states as a function of energy for a chain of width 2, with
the dotted line showing the density of states in the absence of dis-
order. The deviation from the dotted line becomes more pronounced
at lower energies. Figure 9(b) shows the rescaled density of states
plotted as a function of r = ετ . The gray dotted line shows the value
in the absence of disorder, while the black dashed line corresponds
to Eq. (20), which is valid for r � 1.

E. Edge state stability

Last, the robustness of the edge states to hopping disorder
is studied. As noted above, when chiral symmetry is pre-
served, the existence of a Dyson singularity ensures that the
density of states of the disordered system diverges as ε → 0.
The difference between chains with W = 1 and W � 2 is that
in the latter case, the low-energy density of states is divergent
even in the clean system; this divergent density of states comes
from the flat-band boundary modes. Moreover, since the low-
energy modes of the clean system are localized to the edge,
the matrix elements of the disorder Hamiltonian with the edge
states are highly suppressed due to the sublattice polarized na-
ture of the wave functions. One might anticipate that these two
effects combine to render the edge states effectively robust up
to some finite disorder strength.

To show that these expectations are indeed borne out, finite
size zigzag ribbons of length L = 100 and several widths
are studied. The wave functions are calculated by exact di-
agonalization and 103 disorder realizations are computed for
each parameter value. In Fig. 10, the probability of a state
being localized on either the A sublattice on the bottom of
the chain, or the B sublattice on the top of the chain, denoted

FIG. 10. The probability of a state being localized on the zigzag
edges Pedge is shown as a function of the energy for a zigzag chain of
width 5 and a few disorder strengths. The persistence of the peak at
zero energy indicates that the edge states are still present near zero
energy.

by Pedge, is shown for several disorder strengths and W = 5.
As seen in the figure, disorder does not destroy the peak in
the edge state probability at zero energy; rather, it pushes
the edge states closer to zero energy. This reflects the Dyson
singularity. Moreover, disorder does not substantially alter the
degree to which these low-energy states are localized to the
system’s boundaries, indicating that the edge states are stable
with disorder.

The total number of edge states can also be computed by
setting a threshold for Pedge above which a state is considered
an edge state. Figure 11 plots the resulting ratio of number
of edge states in a disordered system to those in the clean
system, with the threshold value for Pedge taken to be 0.8. The
figure shows that, for several different widths, this quantity
varies very little as function of disorder strength, with the ratio
of disordered to clean edge states very close to 1 in all cases.
This indicates that the edge states near zero energy persist on
increasing the disorder strength.

IV. DISCUSSION

Zigzag graphene with homogeneous nearest-neighbor hop-
ping is at a multicritical point between gapped topological

FIG. 11. The ratio of number of edge states in a disordered
system to those in the clean system Nedge is shown as a function of
disorder strength for a few widths. The number of edge states remains
roughly the same on increasing the disorder strength.
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phases identified by a topological winding number related
to the width W of the ribbon. As a result, it is particularly
interesting to study these models with the addition of hopping
disorder, which preserves the symmetry class BDI of the clean
system. The resulting width W zigzag ribbons can be viewed
as an extension of the 1D SSH chain at criticality, where the
disordered critical point is associated with the Dyson singular-
ity in the density of states, and diverging localization length,
at zero energy.

Our work shows that the underlying crossover in transport
statistics and the scaling of localization length and density
of states are essentially the same as the critical 1D chain,
after accounting for the difference in scattering time due to
the slow velocities of the low-energy modes. The numerical
evidence for this is substantial. At nonzero energies near
the critical point, the transport statistics of the 1D chain
were previously found to obey a two-parameter scaling [39],
where the two parameters s = L/l and r = ετ completely
determine any transport quantity. The transport data obtained
for the zigzag ribbons of all widths studied here fits well to
this two-parameter scaling data, with the relaxation times and
mean free paths obtained from the fits in good agreement with
the predictions from perturbative calculations. Other quanti-
ties studied, such as the typical localization length, also show
excellent data collapse across several widths, with evidence
of the logarithmic divergence expected for the W = 1 criti-
cal point seen for r � 1. Moreover, the density of states is
computed independently of the transport and also shows data
collapse when plotted as a function of r. All of this leads to
the conclusion that there is indeed a disorder induced critical
point at zero energy, obeying the same two-parameter scaling
of transport at nonzero energy.

Though this universal scaling collapse may seem to
indicate that the multicritical point belongs to the same uni-
versality class as the ordinary disordered critical point in class
BDI, this is actually not the case. The coincidence of the
energy scaling of the localization length and the density of
states is due to the fact that these scaling have a peculiar
logarithmic character. This is not the case when considering
other possible deviations from criticality.

To be specific, let us consider a uniform staggering in all of
the chains along the ribbon’s direction. In the Hamiltonian 1,
this is achieved by choosing the hopping amplitudes such that
mj = |t b

j | − |t a
j |. Equation (13) suggests that:

ξtyp ∝
W∏
j=1

1

|mj |α . (31)

A natural conjecture for the exponent here is that it take on the
value α = 1 [12,13] of the 1D chain. To justify this, imagine
taking mj �= 0 in all but one of the chains. In this case there is
a linear band crossing at zero energy [see Eq. (13)], and the re-
sulting critical point separates phases whose winding numbers
differ by 1, exactly as in the 1D SSH chain. It follows that for
a uniform staggering, mj ≡ m, the localization length scales
as ξtyp ∝ m−W and thus the corresponding critical exponent is
W dependent.

The unusual properties of the low-energy band in zigzag
graphene ribbons follow from the fact that 2D graphene can
be viewed as a topological semimetal, which has edge states

FIG. 12. Fits of 〈ln(g)〉 vs. L to the data obtained for the 1D
chain are shown for a zigzag chain with W = 4 and a few different
energies. The crosses mark the numerical data and the dashed lines
show the fits, with the relaxation time τ obtained from the fit shown
in the legend.

with zigzag boundary conditions. These topological proper-
ties extend also to finite-width ribbons and explain the nature
of the low-energy edge states studied above. These edge states
appear numerically to be stable in the presence of hopping
disorder, remaining well localized near the boundary and very
close to zero energy. However, away from zero energy dis-
order does lead to localization in the transport of these wave
functions; thus at low energies the edge states remain present
in the spectrum but cease to be conducting.

ACKNOWLEDGMENTS

This work was supported primarily by the National Science
Foundation through the University of Minnesota MRSEC
under Award No. DMR-2011401. F.J.B. acknowledges the
financial support of NSF: DMR-1928166 and the Carnegie
corporation of New York. A.K. was supported by the NSF
Grant No. DMR-2037654.

APPENDIX: FITTING PROCEDURE FOR TRANSPORT

In order to fit the transport data of the zigzag ribbons to the
two-parameter scaling functions of the 1D random hopping
chain, one could potentially use the distribution Eq. (22).
One could perform maximum likelihood fits to obtain the
parameters δ and γ . However, analytic expressions for these
quantities in terms of the relevant scaling parameters s and r is
only known when r � 1. Due to the suppression of backscat-
tering in the zigzag ribbons, the majority of transport does
not fall in this regime. To circumvent this issue, one can use
the numerical interpolating functions for relevant transport
quantities as a function of s, r that are available for the 1D
chain [59].

In this case 〈ln(g)〉 is considered, as it has good self-
averaging properties and is a well-behaved function. Here
〈. . . 〉 denotes averaging over disorder realizations. Given a
zigzag ribbon of certain width W and energy of incoming
electrons ε, one can fit 〈ln(g)〉 vs. L to the data from the
1D chain. This allows one to extract l and τ . Note that there
is only one free fitting parameter since l = vF τ , where the
velocity vF is known at a given energy. Figure 12 shows a few
fits for W = 4 as the energy is varied. The quality of the fits is
generally good.
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