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Disorder-induced phase transitions in double Weyl semimetals
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The double Weyl semimetal (DWSM) is a newly proposed topological material that hosts Weyl points with
chiral charge n = 2. The disorder effect in DWSM is investigated by adopting the tight-binding Hamilto-
nian. Using the transfer matrix method and the noncommutative Kubo formula, we numerically calculate the
localization length and the Hall conductivity in the presence of the on-site nonmagnetic disorder or orbital
(spin-flip) disorders, and give the corresponding global phase diagrams. For the on-site nonmagnetic disorder,
the system undergoes the DWSM-3D quantum anomalous Hall (3D QAH) and normal insulator (NI)–DWSM
phase transitions, and evolves into the diffusive metal phase before entering the gapless Anderson insulator
phase, which is consistent with the Weyl semimetal. For σx orbital disorder, increasing disorder strength can
generate a pair of Weyl nodes at the boundary of the Brillouin zone and induce a 3D QAH–DWSM phase
transition. Surprisingly, DOS calculations manifest that the insulator phase induced by the σx disorder is gapped,
which is different from the gapless DOS in the system with σ0 disorders. Another difference is the direct
DWSM-NI transition. These results indicate that the σ0 and σx disorders have a diverse impact on the system.
Then we investigate the interplay of orbital disorders for both disordered 3D QAH phase and DWSM phase.
The disorder-induced transitions at low disorders can be well understood in terms of the self-consistent Born
approximation.

DOI: 10.1103/PhysRevB.106.184202

I. INTRODUCTION

The Weyl semimetal is a three-dimensional topological
state of matter, in which the conduction and valence bands
touch at a finite number of nodes [1–3]. The Weyl nodes
always appear in pairs and each Weyl node can be regarded
as a monopole in k space carrying the chiral charge n = 1.
The Weyl semimetal has the Fermi arc surface states that
connect the surface projections of two Weyl nodes [4]. The
Weyl semimetal has been predicted to exist in many materials
[4–9]. Researchers found the Weyl fermions in TaAs [10], fer-
romagnetic semimetal Co3Sn2S2 [11], and MoTe2 [12]. The
Weyl semimetal supports many fascinating properties such
as the chiral anomaly [13–17], quantum Hall effect [18–20],
anomalous Hall effect [21,22], the nonlinear optical effect
[23,24], and the magneto-optical response [25,26].

However, the chiral charge of the Weyl node can be more
than one, namely n > 1, and the corresponding materials are
named as multi-Weyl semimetals [27–30]. For n = 2, which is
the double Weyl semimetal (DWSM), the dispersion relation
in the vicinity of such node is quadratic in two directions
and linear in the third direction. These Weyl nodes are pro-
tected by the crystallographic point group symmetries [27].
The DWSM is theoretically proposed in HgCr2Se4 [6] and
SrSi2 [28] and can be achieved in photonic crystals [29]. Nu-
merical calculations suggest the presence of multiple surface
Fermi arcs in multi-Weyl semimetals [31–33]. The topological
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semimetal with a large chiral charge can also induce intriguing
transport phenomena [30].

Quantum interference can completely suppress the diffu-
sion of a particle in a random potential, a phenomenon known
as Anderson localization [34]. Li et al. investigated the role of
disorder in the HgTe/CdTe quantum well and found, surpris-
ingly, that disorder can induce the topological phase transition
and generate the topological Anderson insulator phase [35].
Afterward, the disorder effect was extensively discussed in
3D topological insulators [36], the Kane-Mele model [37],
the HgTe/CdTe quantum well [38,39], Dirac semimetal thin
films [40], quasicrystals [41,42], Weyl semimetals [43–48],
and higher-order topological materials [49,50]. The disorder
can also induce phase transitions between type-I and type-II
Weyl semimetals [51]. However, the role of disorder in the
DWSM has not been thoroughly investigated and needs to be
further explored. Besides, most of the works only involve the
on-site nonmagnetic disorder referring to the σ0 term in the
Hamiltonian. There also exists the bond disorder [52–55], the
orbital disorder or spin-flip disorder referring to σx, σy, or σz

terms in the Hamiltonian. The orbital (or spin-flip) disorder
can also alter the topological properties of various systems
[47,56,57]. In addition, the effect of the orbital (or spin-flip)
disorder in the DWSM has not been discussed yet.

In this paper, we first study the effect of the on-site non-
magnetic and orbital (or spin-flip) disorders in the DWSM by
calculating the localization length and the Hall conductivity.
These disorders can give rise to rich phase transitions shown
in the phase diagrams. First, the tight-binding Hamiltonian
of the DWSM is introduced in momentum and real space.
Then the phase diagram in the clean limit is presented. In the
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presence of disorder, the results indicate that the 3D quantum
anomalous Hall (3D QAH) phase and DWSM phase are stable
in the weak disorder and the system undergoes a series of
phase transitions with increasing of the disorder strength. For
nonmagnetic disorder, phase transitions in the DWSM are
consistent with those reported in the Weyl semimetal [43,58].
We calculate the density of states (DOS) for different disorder
strengths. For the σx orbital (or spin-flip) disorder, the 3D
QAH–DWSM transition is consistent with that reported in
the previous research [47]. However, according to the DOS
calculation, the system enters into a gapped insulator phase
instead of the gapless Anderson insulator (AI) phase gener-
ated by σ0 disorder. Another difference is the direct transition
from DWSM to normal insulator (NI) phase, which is also
different from the effect of the σ0 disorder. For the latter,
the system must enter the diffusive metal (DM) phase before
being localized by the strong disorder. The combined effect of
orbital disorders is also investigated for disordered 3D QAH
and DWSM phases. Furthermore, the self-consistent Born
approximation (SCBA) is introduced to explain the disorder-
induced phase transitions. At last, we discuss the experimental
realization of the disordered DWSM.

The paper is organized as follows: In Sec. II, we introduce
the model Hamiltonian and give the phase diagram in the
clean limit. The numerical calculation methods are also given
here. In Sec. III, we show the localization length and Hall
conductivity and plot the global phase diagrams and DOS in
the presence of disorder. In Sec. IV, we interpret the disorder
effect in terms of the SCBA method. Finally, a brief discussion
and summary are given in Sec. V.

II. MODEL AND METHOD

We consider the tight-binding Hamiltonian that describes
the DWSM on a simple cube lattice with the lattice constant
a ≡ 1. The Hamiltonian has the form [32,47]

h(k) = tx(cos kx − cos ky)σx + ty sin kx sin kyσy

+(mz − cos kx − cos ky − tz cos kz )σz, (1)

where tx,y,z and mz are model parameters. σx,y,z are Pauli
matrices in the orbital (or spin) space. The Hamilto-
nian (1) has the form of h(k) = d(k) · σ. Diagonalizing
the Hamiltonian (1), we can get the energy spectrum

Ek = ±
√

d2
x (k) + d2

y (k) + d2
z (k). The conduction and va-

lence bands touch each other when dx(k) = dy(k) = dz(k) =
0. By solving the equations, we can obtain a pair of twofold
degenerate double Weyl points [see Figs. 1(c) and 1(d)] lo-
cated at (0, 0,± arccos[(mz − 2)/tz]) for 2 − tz < mz < 2 +
tz. When tz − 2 < mz < 2 − tz, the energy spectrums open
a topological nontrivial gap and this model corresponds to
the 3D QAH phase [see Fig. 1(b)]. When mz > tz + 2, the
spectrums open a gap as well but the model now is topo-
logically trivial and generates a NI phase. According to the
above inequality equations, we draw the phase diagram in the
clean limit in Fig. 1(a). In this work, we choose tz = 0.5 and
tx = ty = 1.

It is not convenient to include the disorder effect
in Eq. (1) in k space, so we take the Fourier transform

FIG. 1. (a) Phase diagram of DWSM without disorder on the tz-
mz plane. There are 3D QAH, DWSM, and NI phases for different mz.
(b) Band structure of 3D QAH phase with open boundary condition
in the y direction (Ny = 50) for kz = 0 and mz = 1. (c) Band structure
on the E -kz plane with kx = ky = 0 and mz = 2. The Weyl nodes are
located at (0, 0, ±π/2). (d) Band structure on the E -kx plane with
ky = 0, kz = π/2, and mz = 2. The dispersion relation is quadratic in
the kx direction near the Weyl node. Other parameters are tx = ty = 1.

akσ = (1/
√

V )
∑

r eikrarσ and get the real-space Hamiltonian

Hreal =
∑

r

a†
r T0ar + (a†

r+xTxar + a†
r+yTyar + a†

r+zTzar

+a†
r+x+yTxy1ar + a†

r+x-yTxy2ar + H.c.), (2)

where a†
r = (a†

rσ , a†
rσ ′ ) with a†

rσ (arσ ) being the cre-
ation(annihilation) operator at site r for the electron with
σ , and x, y, z denote the hopping directions. T0 is the on-
site energy; Tx, Ty, and Tz are the nearest-neighbor hopping
matrices along the x, y, z axis. Txy1 (Txy2) is the next-nearest-
neighbor hopping matrix along the x + y (x − y) direction.
Here T0 = mzσz, Tx = 1

2 (σx − σz), Ty = − 1
2 (σx + σz), Tz =

− 1
2 tzσz, Txy1 = − 1

4σy, and Txy2 = 1
4σy.

The orbital (or spin-flip) disorder can be introduced by
adding the random Hamiltonian Hdisorder [47,59] to Eq. (2) to
calculate the localization length and DOS:

Hdisorder =
∑
〈r,r′〉

a†
r

[
U r

x σx + U r
y σy + U r

z σz + U r
0σ0

]
ar′ . (3)

For r �= r′, this Hamiltonian means that the hopping term
between neighboring sites is random and this disorder is
termed as bond disorder [52,53]. When r = r′ (only summa-
tion over the variation r), the Hamiltonian can describe the
orbital disorder or the spin-flip disorder. In this article, we
only study the case of r = r′. The first three terms denote the
orbital (or spin-flip) disorder and the last term is the on-site
nonmagnetic disorder. U r

x,y,z,0 are uniformly distributed within
[−Wx,y,z,0/2,Wx,y,z,0/2] with Wx,y,z,0 representing the disorder
strength.
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We use the transfer matrix method to numerically calcu-
late the localization length to determine the phase boundary
induced by disorder [60–64]. We consider a quasi-one-
dimensional long bar with the system volume Lx × Ly × Lz

and apply periodic boundary conditions in the x and y direc-
tions. We divide the system into slices with each slice’s cross
section Lx × Ly = L × L. We let ψn and Hn,n be the wave
function and hopping matrix of the nth slice. Hn,n−1 (Hn.n+1)
is the hopping matrix between the nth and (n − 1th) [(n +
1)th] slice. The Schrödinger equation can be written as [47,60]

Hn,nψn + Hn,n+1ψn+1 + Hn,n−1ψn−1 = Eψn. (4)

Equation (4) can be further expressed as(
ψn+1

ψn

)
= Tn

(
ψn

ψn−1

)
, (5)

with the transfer matrix

Tn =
(

H−1
n,n+1(E − Hn,n) − H−1

n,n+1Hn,n−1

1 0

)
. (6)

QLz = ∏Lz

n=1 Tn is the product of the transfer matrix and there

exists a limit matrix � = limLz→+∞(Q†
Lz

QLz )
1

2Lz . By diagonal-
izing the matrix �, we obtain the normalized eigenvectors
{ui}. The Lyapunov exponent is defined as

γi = 1

Lz
lim

Lz→+∞
ln

∥∥QLz ui

∥∥. (7)

The localization length λ characterizes the largest possible
extension of a state and is defined as the inverse of the smallest
positive γi by λ = 1/γmin. Besides, to determine the critical
point of the phase transition, what we need is the normalized
localization length � defined as � = λ/L, where L is the side
length of each slice. In the following calculation, we choose
L = 8, 10, 12, and 14 ignoring the unit since we fix the lattice
constant to be a ≡ 1. In general, in the metallic phase, the
rate of change of normalized localization length � with the
system size L satisfies d�/dL > 0. In the insulator phase,
d�/dL < 0. A phase transition happens when d�/dL = 0.

In the clean limit, we can view the DWSM as coupled
multiple 2D subsystems labeled by kz as H0(kz ) [65]. The
Weyl nodes are located at (0, 0,±k0). For kz ∈ (−k0, k0), the
subsystem is a 2D Chern insulator and contributes a quantized
Hall conductance σ 2D

xy = 2e2/h. For kz /∈ (−k0, k0), the sys-
tem is topologically trivial and therefore has no contribution
to the Hall conductance. The total Hall conductivity of the
3D system is σ 3D

xy = ∑
kz σ 2D

xy (kz )/Lz with Lz being the size
along the z direction. In the presence of disorder, the Hall con-
ductivity can be calculated by the noncommutative geometry
method [66–69], which is used to calculate the Chern number
in real space now that the disorder can break the translational
symmetry in k space. When calculating the disorder-induced
Chern number, we adopted an approximation that there still
exists a translational symmetry along the z direction in the
presence of disorder [58,70]. In terms of this approxima-
tion, we can get the Hall conductivity by calculating the
kz-dependent Chern number for all of the 2D planes and
summing them together, which vastly saves computing time
compared to the direct diagonalization of the 3D Hamiltonian

[50]. The Chern number in real space can be expressed as

C = −2π i

N2

〈∑
n,α

〈n, α|P[ − i[x1, P],−i[x2, P]]|n, α〉
〉

W

, (8)

where

[xi, P] = i
Q∑

m=1

cm(e−imxi
i Peimxi
i − eimxi
i Pe−imxi
i ). (9)

In Eqs. (8) and (9), N is the sample size along the x and y
directions, 
i = 2π/N . P is the projection operator of the
occupied state in the real space and |n, α〉 is the real-space
coordinate. 〈· · · 〉W represents the average over the differ-
ent disorder configurations. In terms of the noncommutative
geometry method, Q takes the integer between 0 and N/2.
During the process of calculating the Chern number, one need
to solve the inverse of one required matrix. For Q ∈ [1, 8], the
inverse matrix exists, but when Q � 9, the inverse matrix is
close to a singular value and the numerical results might be
not accurate. Thus in our calculation, we set Q = 8 to obtain
accurate and reliable results.

III. NUMERICAL RESULTS

In this section, we numerically calculate the localization
length and the Hall conductivity based on the above meth-
ods and draw the global phase diagrams in the presence of
disorder. In Sec. III A and Sec. III B, we consider the non-
magnetic disorder σ0 and the σx orbital disorder, respectively.
In Sec. III C, we investigate the combined effect of three sorts
of orbital disorders.

A. On-site nonmagnetic disorder

By adjusting the parameter mz in Eq. (1), the system in the
clean limit can be 3D QAH, DWSM, or NI phase [marked by
the black dots in Fig. 1(a)] with tz = 0.5 and tx,y = 1. Here we
set mz ∈ [1.2, 2.8] and investigate the phase transition caused
by the nonmagnetic disorder. We calculate the renormalized
localization length to determine the phase boundaries and
the Hall conductivity to distinguish different phases. The 3D
QAH phase has a quantized Hall conductivity. In the DWSM
phase, the Hall conductivity is fractionally quantized. This
fractionally quantized Hall conductivity is a finite-size effect.
When the size in the z direction is large enough, the Hall
conductivity gradually approaches the nonquantized thermo-
dynamic limit value and the fractional plateau disappears.
Figure 2 shows the phase diagram on the W0-mz plane for
tz = 0.5 and tx = ty = 1. We can see that, with increasing
of the disorder strength, the system gradually evolves from
3D QAH, DWSM, or NI phase into DM phase, and then AI
phase. The dark blue lines with dots are identified by using
the transfer matrix method, which are used to determine the
phase boundaries. In order to verify the reliability of the
phase boundary, we calculate the self-energy correction to
the Hamiltonian in terms of the SCBA (see Sec. IV). The
phase boundaries obtained from the SCBA are represented by
the red dotted line, as shown in Fig. 2, and agree well with
the results of the transfer matrix method in the case of weak
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FIG. 2. Phase diagram on the W0-mz plane for tz = 0.5 and tx =
ty = 1. The dark blue solid lines with dots are identified by using the
transfer matrix method. The accurate phases are determined by the
Hall conductivity σxy. The red dotted line is obtained numerically by
using SCBA.

disorders. Similar numerical results obtained from the SCBA
are presented in Figs. 7 and 11.

We pick four typical results of the localization length and
the Hall conductivity for mz = 1.3, 1.52, 1.7, and 2.52, and
plot them in Fig. 3 and Fig. 4. For mz = 1.3, the rate of change
d�/dL of the normalized localization length is a negative
value; i.e., the � decreases with the increase of side length
L from 8 to 12 for a fixed W0 < 3.4. Meanwhile, the Hall
conductivity stays quantized σxy = 16e2/8h, which indicates
that the 3D QAH phase is robust against the weak disorder.
In Fig. 3(a), d�/dL = 0 at W0 = 3.4 shows the existence of a
phase transition. By increasing the disorder strength, d�/dL

FIG. 3. The normalized localization length � is plotted as a
function of the disorder strength W0 for the values of (a) mz = 1.3,
(b) 1.52, (c) 1.7, and (d) 2.52. The inset in Fig. 3(b) shows the details
near the phase transition points. Four colored curves are associated
with different side lengths of the cross section. Other parameters are
tz = 0.5 and tx = ty = 1.

FIG. 4. The Hall conductivity σxy as a function of the disorder
strength W0 for the values of (a) mz = 1.3, (b) 1.52, (c) 1.7, and
(d) 2.52. The system size is 40 × 40 × 8. Other parameters are
tz = 0.5 and tx = ty = 1.

turns to a positive value and the Hall conductivity σxy becomes
nonquantized; thus the system evolves into the DM phase.
In regard to the DM phase, on the one hand, the disorder
destroys the surface states of 3D QAH when W0 > 3.4 and
therefore the quantized Hall conductivity disappears. On the
other hand, the disorder can broaden the band and the broad-
ened conduction and valence bands mix up; thus the system
becomes gapless. Even though the bulk electrons experience
the weak-disorder scattering, the electrons can still diffuse
through the material and contribute to Hall conductivity. This
Hall conductivity is nonquantized and can be expressed by
the Einstein relation σ = e2 ∂n

∂μ
D where ∂n

∂μ
is the DOS at the

Fermi energy and D is the diffusion constant. Further increas-
ing the disorder strength, d�/dL again becomes the negative
value and the second phase transition happens at W0 = 14.7.
The vanishing Hall conductivity σxy = 0 in Fig. 4(a) manifests
that the system is localized by the strong disorder and evolves
into the AI phase. For mz = 1.52, a phase transition from
the DWSM phase to 3D QAH phase occurs as evidenced by
the Hall conductivity transition from 14e2/8h to 16e2/8h in
Fig. 4(b) and d�/dL changing from a positive to negative
value in Fig. 3(b) at W0 = 0.9. Based on the SCBA (see
Sec. IV), the nonmagnetic disorder renormalizes the mass
term mz in the Hamiltonian (1) with mz determining the po-
sitions of the Weyl nodes in the Brillouin zone. Utilizing the
zero-order Born approximation (BA), one can qualitatively
understand the phenomenon of the phase transition. Accord-
ing to Eq. (12), the renormalized mass term m̃z decreases
with the increase of the disorder strength W0, which causes
a pair of Weyl nodes to depart from each other and move to
the boundary of the Brillouin zone (see Fig. 5). When they
arrive at the zone boundary, they annihilate pairwise and a
nontrivial bulk gap arises, and the system realizes the phase
transition from DWSM to 3D QAH phase. Further increasing
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FIG. 5. The schematic diagram of the Weyl cone in the Brillouin
zone. The direction of the arrow represents the direction of motion of
the Weyl node. The difference of the color for the Weyl cones refers
to different chirality.

the disorder strength to W0 = 2.16, d�/dL turns to a positive
value and the Hall conductivity becomes nonquantized, which
means the system evolving into the DM phase. Likewise, the
system is localized when the disorder strength surpasses the
value of W0 = 14.8.

For mz = 1.7, as shown in Figs. 3(c) and 4(c), a DWSM-
DM phase transition happens at W0 = 2.3 as the disorder
strength increases. In this parameter configuration, the 3D
QAH phase disappears compared with mz = 1.52. The dis-
appearance of the 3D QAH phase can be interpreted in terms
of the SCBA. The renormalized mass term m̃z decreases with
the increase of W0. If m̃z decreases to 1.5 [the phase transition
point between 3D QAH and DWSM phase in Fig. 1(a)], the
DWSM–3D QAH phase transition happens. For mz = 1.7,
the system enters the DM phase at W0 = 2.3. According to
the SCBA, the self-energy correction Σz for W0 = 2.3 is
−0.13. Thus the renormalized mass term m̃z = mz + Σz =
1.7 − 0.13 = 1.57, which is greater than 1.5. Since m̃z con-
trols the location of Weyl nodes in BZ, the Weyl nodes are
destroyed by the disorder strength at W0 = 2.3 before they
reach the BZ boundary. Subsequently the system undergoes
the DM and AI phase. The DOS is also calculated for mz =
1.7 at different disorder strengths by using the nonequilib-
rium Green’s function (NEGF) method (see Appendix A).
For W0 = 0, Fig. 6(a) shows the DOS of the DWSM. When
W0 = 4, the Weyl nodes are destroyed and the energy bands
are broadened. The DOS at E f = 0 becomes finite, which
means the system entering the DM phase. When W0 increases
to 16 [see Fig. 6(c)], the DOS is about 0.12 and the Hall
conductivity becomes zero. It means that the electrons are
localized by strong disorders and the system becomes an An-
derson insulator. When the parameters are chosen as mz = 2.7
and W0 = 0, the DOS is zero when the Fermi energy is in the
band gap, namely −0.2 < E f < 0.2 eV. Correspondingly, the
system is in the NI phase. For the NI phase, the zero value of
the Hall conductivity arises from the vanishing DOS.

For mz = 2.52, with increasing of the disorder strength, as
shown in Figs. 3(d) and 4(d), a phase transition takes place at
W0 = 0.78 and the Hall conductivity increases from σxy = 0
to a fractional quantized value of σxy = 2e2/8h. This interest-
ing phase transition can also be qualitatively understood by

FIG. 6. DOS as a function of Fermi energy obtained by NEGF
for different mz and W0. mz = 1.7 and (a) W0 = 0 for DWSM phase,
(b) W0 = 4 for DM phase, (c) W0 = 16 for AI phase. (d) mz = 2.7 and
W0 = 0 for NI phase. Other parameters are tz = 0.5 and tx = ty = 1.

the zero-order BA. According to Eq. (12), the renormalized
mass term m̃z decreases as W0 increases. When m̃z reaches
the critical point corresponding to mz = 2.5 in Fig. 1(a), this
trivial bulk gap closes and a pair of Weyl nodes emerge at
the center of the Brillouin zone, realizing the phase transition
from NI phase to DWSM phase. With further increasing of the
disorder strength, the system evolves from DWSM phase to
DM phase, and finally enters the AI phase. The global phase
diagram in Fig. 2 is obtained by repeatedly calculating the
normalized localization length and the Hall conductivity at
various values of W0 and mz.

B. σx orbital disorder

There is another kind of disorder, i.e., the orbital disor-
der. The orbital disorder means that the electron could be
randomly scattered from one orbital state to another orbital
state. The σx term can also describe the spin-flip disorder [56].
This type of disorder exists widely and cannot be ignored
when describing a real system, which has been investigated in
previous research [47,56,57,71]. The research of the σx orbital
disorder is missing in DWSM, which deserves to be studied in
detail. Thus we next study the phase transition generated by
σx orbital disorders. Figure 7 shows the global phase diagram
for different mz and disorder strengths Wx. Figures 8 and 9
give the typical results of the normalized localization length
and the Hall conductivity for mz = 1.3, 1.48, 1.7, and 2.2.

Concerning the phase transition and for mz = 1.3, as
shown in Figs. 8(a) and 9(a), with increasing of the disorder
strength Wx, the system also undergoes the phase transitions
from 3D QAH to DM phase, which is similar with those given
in Fig. 3(a) for the nonmagnetic disorder. For mz = 1.48,
the system is in the 3D QAH phase and close to the phase
boundary of 3D QAH–DWSM [see Fig. 1(a)]. According
to the results in Figs. 8(b) and 9(b), d�/dL alters from a
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FIG. 7. Phase diagram on the Wx-mz plane for tz = 0.5 and tx =
ty = 1. The dark blue solid lines with dots are identified by using
the transfer matrix method. The accurate phases are determined by
the Hall conductivity σxy. The red dotted line is obtained numerically
from the SCBA method.

negative to positive value at Wx=1 and the Hall conductivity
decreases from a quantized value σxy = 16e2/8h to σxy =
14e2/8h, which demonstrates a transition from 3D QAH to
DWSM phase. This result is consistent with previous study
[47]. We use the zero-order BA to qualitatively explain this
transition. In contrast with the nonmagnetic disorder that di-
minishes m̃z, instead, according to Eq. (12), the σx orbital
disorder has a positive correction to m̃z. With increasing of
the disorder strength Wx, m̃z gradually increases and arrives at

FIG. 8. The normalized localization length � is plotted as a
function of the disorder strength Wx for the values of (a) mz = 1.3,
(b) 1.48, (c) 1.7, and (d) 2.2. Four colored curves are associated
with different side lengths of the cross section. Other parameters are
tz = 0.5 and tx = ty = 1.

FIG. 9. The Hall conductivity σxy is plotted as a function of the
disorder strength Wx for the values of (a) mz = 1.3, (b) 1.48, (c) 1.7,
and (d) 2.2. The system size is 40 × 40 × 8. Other parameters are
tz = 0.5 and tx = ty = 1.

the value of 1.5, which is a phase boundary between 3D QAH
and DWSM phase [see Fig. 1(a)]. The bulk gap closes and
a pair of Weyl nodes emerge at the Brillouin zone boundary,
inducing the 3D QAH–DWSM transition. Further increasing
the disorder strength Wx, it can render the Weyl nodes to
approach each other. The decrease of the distance between
the Weyl nodes induces a plateau-to-plateau transition of the
Hall conductivity from σxy = 14e2/8h to σxy = 10e2/8h [see
Fig. 9(b)]. Note that the Hall conductivity of the system is
proportional to the distance of two Weyl nodes. Subsequently,
the system experiences the phase transition from DM to NI
phase with increasing of Wx.

Likewise, the system undergoes the phase transitions from
DWSM to DM phase, then to NI phase as the disorder strength
Wx increases for the case mz = 1.7, as shown in Figs. 8(c) and
9(c). This is similar to the result of the nonmagnetic disorder
[see Fig. 4(c)].

For mz = 2.2, the normalized localization length in
Fig. 8(d) manifests the phase transition at Wx = 2.3. Accord-
ing to Fig. 9(d), the Hall conductivity varying from 2e2/8h to
zero demonstrates the DWSM-NI transition. This is a differ-
ence between the case of σ0 and σx disorders. For σ0 disorder,
the system must undergo the DM phase before being localized
by the strong disorder. However, the σx disorder generates
a direct transition from DWSM to NI phase without going
through the DM phase.

Figure 10 presents the DOS for the insulator phase at a
fixed disorder strength Wx = 5.5 for different values of mz.
It is obvious that there exists a DOS gap with zero value
in the energy range −0.08 < E f < 0.08 eV [see Fig. 10(a)],
in which the Hall conductivity becomes zero as shown in
Figs. 9(c)–9(d). This means that, in the normal insulator
phase, the Hall conductivity is zero, and DOS has zero value
near the Fermi energy, while in the Anderson insulator phase,
the Hall conductivity is also zero, but DOS has no zero value
[see Figs. 4(c), 6(c)]. That is to say, the value of DOS is
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FIG. 10. DOS as a function of Fermi energy obtained by NEGF
at Wx = 5.5 for (a) mz = 1.8, (b) mz = 2.0, (c) mz = 2.2, and
(d) mz = 2.4. We can clearly see a gap near Ef = 0. Other parameters
are tz = 0.5 and tx = ty = 1.

crucial for us to distinguish the NI and AI phase when the Hall
conductivity is zero. With increasing of mz, the width of the
DOS gap gradually increases from 0.16 to about 0.9, which
associates with a more noticeable insulating state.

There is a prominent difference between σ0 and σx disor-
ders. When the system has a strong σ0 disorder, the system
enters the AI phase with a nonzero DOS [see Fig. 6(c)]. How-
ever, for σx disorder, the DOS in the normal insulator phase
manifests that the system is a gapped insulator. These results
indicate that these two kinds of disorders have an obviously
different effect on the insulator phase of the system.

C. Combined effect of orbital disorders

In this section, we discuss the combined effect of three
kinds of orbital disorders. Since σx and σy orbital disorders
have identical correction to the mass term mz, we take Wx =
Wy = Wxy. We plot the phase diagrams on the Wz-Wxy plane for
mz=1.48 (3D QAH phase in the clean system) in Fig. 11(a)
and for mz = 1.52 (DWSM phase in the clean system) in
Fig. 11(b).

For mz = 1.48, as shown in Fig. 11(a), when Wxy < 0.73,
the system is first in 3D QAH phase, and then evolves into
DM phase with increasing of Wz. When the disorder strength
further increases, for example Wxy = 0.95 (see the blue verti-
cal dashed line), the increase of Wz can induce the transition
from DWSM to 3D QAH phase. We can interpret this phase
transition according to the competition between Wxy and Wz.
This competition can be illustrated according to Eq. (12). Wxy

has positive correction to mz while it is opposite for Wz. When
Wz < 0.7, the renormalized mass term m̃z > 1.5, so the system
is still in DWSM phase. When Wz exceeds 0.7, the system
enters the 3D QAH phase because the effect caused by Wz

is greater than that of Wxy. The system goes into DM phase
when Wz further increases and reaches the value of 2.5. When
the disorder strength increases to Wxy = 1.66 (see the black

FIG. 11. Phase diagrams on the Wz-Wxy plane for (a) mz = 1.48
and (b) mz = 1.52. The dark blue solid lines with dots are identified
by using the transfer matrix method. The accurate phases are deter-
mined by the Hall conductivity σxy. The red dotted line is obtained
numerically from the SCBA method. Other parameters are tz = 0.5
and tx = ty = 1.

vertical dashed line), the system undergoes the DWSM-DM-
NI phase transitions. For Wz = 0.7 (see the red horizontal
dashed line), when Wxy > 0.95, the system enters DWSM
phase from 3D QAH phase because the effect of Wxy is greater
than that of Wz. Further increasing Wxy can render the sys-
tem evolve into DM and NI phase in sequence. For the case
Wz = 3.5 (see the yellow horizontal dashed line), the system
enters DM phase from 3D QAH phase when Wxy surpasses
0.6.

We can use the same competition between Wxy and Wz to
describe the phase transition for the case mz = 1.52, as shown
in Fig. 11(b). For Wxy = 0.39 (see the blue vertical dashed
line), the system experiences the DWSM-3D QAH-DM phase
transitions with increasing of Wz. For Wxy = 1.56 (see the
black vertical dashed line), the system undergoes the phase
transition from DWSM to DM phase. For Wz = 1.0 (see the
red horizontal dashed line), the system enters DWSM phase

184202-7



JIAYAN ZHANG et al. PHYSICAL REVIEW B 106, 184202 (2022)

from 3D QAH phase when Wxy exceeds 0.39. Then the system
enters DM and NI phase with the increase of Wxy. For the
case Wz = 3.0 (see the yellow horizontal dashed line), a 3D
QAH-DM phase transition happens with increasing of Wxy,
and then the system evolves into NI phase when Wxy exceeds
the value of 2.76.

IV. SELF-CONSISTENT BORN APPROXIMATION

The self-consistent Born approximation is extensively
used to analyze the weak-disorder effect in various systems
[52,54,72]. In the SCBA framework, the disorder can gener-
ate a self-energy correction to the Hamiltonian and therefore
renormalize the model parameters. The self-energy Σ can be
calculated in terms of the following integral equation,

Σ = W 2

12

(
a

2π

)3 ∫
BZ

d3k{σi[E − h(k) − Σ]−1σi}, (10)

where the self-energy can be written as Σ = Σ0σ0 + Σxσx +
Σyσy + Σzσz. The renormalized mass term is m̃z = mz+Σz.
Next we introduce the numerical calculation method for
SCBA. We use Eq. (10) to evaluate Σz. We transform the
integral into the discrete summation

Σz = W 2

12

(
a

2π

)3 ∑
k

dz(k) + Σz

Ẽ2 − ∑3
μ=1 d̃2

μ(k)
. (11)

The variable k is discrete with ki
α = 2πni/N ; ni = 1, . . . , N ;

α = x, y, z; and 
 = 2π/N . The iterative algorithm is listed
as follows:

(1) For a given mz, choose a disorder strength W .
(2) If it is the first iteration, set the initial value Σ1

z on the
right-hand side of Eq. (11) to be zero. For the mth (m � 2)
iteration, use Σm−1

z as the seed.

(3) For each ki
α , calculate dz (ki

α )+Σm
z

Ẽ2−∑3
μ=1 d̃2

μ(ki
α )


3 and add this

term to the sum I0.
(4) Repeat steps (2) and (3) until |Σm

z − Σm−1
z |/|Σm

z | < δ.
In our calculation, we set N = 400 and δ = 0.001. The

results are plotted in the phase boundary of the phase diagrams
with red dotted lines. The results obtained from SCBA are
consistent with the results obtained from the transfer matrix
method.

In order to qualitatively describe the phase transition, we
can adopt the zero-order Born approximation by neglecting
the Σ term on the right-hand side of Eq. (10), and obtain m̃z

with the zero-order correction

m̃z = mz + W 2a3

192π2

∫ π

−π

ln

∣∣∣∣
(

π

a

)4 8

(k2
z + 4mz − 10)2

∣∣∣∣dkz,

(12)

with W 2 = W 2
x + W 2

y − W 2
z − W 2

0 . The detailed calculating
steps are given in Appendix B. The integration on the right-
hand side of Eq. (12) is always positive, so the σx orbital
disorder Wx and σy orbital disorder Wy enlarge the value of
m̃z, while the on-site nonmagnetic disorder W0 and σz orbital
disorder Wz diminish m̃z.

V. SUMMARY AND DISCUSSION

In summary, we first study the effect of the on-site non-
magnetic and orbital disorders in DWSM by calculating the
localization length and the Hall conductivity. These disorders
can give rise to rich phase transitions shown in the phase
diagrams. First, the tight-binding Hamiltonian of DWSM is
introduced in the momentum and real space. Then the phase
diagram in the clean limit is presented. In the presence of
the disorder, the results indicate that the 3D QAH phase and
DWSM phase are stable in the weak disorder and the system
undergoes a series of phase transitions with increasing of the
disorder strength. For nonmagnetic disorder, phase transitions
in DWSM are consistent with those reported in the Weyl
semimetal [43,58]. We also calculate the DOS for different
disorder strengths. For the σx orbital disorder, the 3D QAH–
DWSM transition is also consistent with the previous research
[47]. However, according to DOS calculation, the system
enters the gapped insulator phase instead of the gapless AI
phase which is generated by σ0 disorder. Another difference
is the direct transition from DWSM to NI phase, which is also
different from the effect of the σ0 disorder. For the latter, the
system must enter the DM phase before being localized by the
strong disorder. The combined effects of orbital disorders are
also investigated for disordered 3D QAH and DWSM phases.
Furthermore, the self-consistent Born approximation is intro-
duced to explain the disorder-induced phase transitions. At
last, we discuss the experimental realization of the disordered
DWSM.

The DWSM is realized experimentally in photonic crystals
by using planar fabrication technology with the robustness
of the surface state [29]. Besides, the disorder-induced topo-
logical phase transition is observed experimentally from a
trivial insulator to a topological Anderson insulator with
robust chiral edge states [73]. The researchers fabricate a
microwave-scale photonic crystal consisting of dielectric and
gyromagnetic pillars. Disorder is introduced by randomly ro-
tating the dielectric pillars in each unit cell, with the disorder
strength parametrized by the maximum rotation angle. There-
fore, we can utilize the same method to verify the disorder
effect discussed in this article.
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APPENDIX A: CALCULATION OF DENSITY OF STATES

In this Appendix, we show the DOS calculation by using
the NEGF method [19,74]. The DOS is expressed as

ρ(E ) = − 1

πLxLyLz
Im[Tr(Gr )]. (A1)

Lx, Ly, and Lz are the system size along the x, y, z directions.
Gr is the retarded Green’s function of the system. We uti-
lize the following algorithm to calculate the retarded Green’s
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function Gr :

Gr
ii=

[
E − Hii−Hi,i−1Gr,R(i−1)

i−1,i−1 Hi−1,i−Hi,i+1Gr,L(i+1)
i+1,i+1 Hi+1,i

]−1
,

(A2)

Gr,R(i)
ii = [

E − Hii − Hi,i−1Gr,R(i−1)
i−1,i−1 Hi−1,i

]−1
, (A3a)

Gr,L(i)
ii = [

E − Hii − Hi,i+1Gr,L(i+1)
i+1,i+1 Hi+1,i

]−1
. (A3b)

In the above formulas, Gr
ii is the ith slice’s Green’s function of

the whole system. Gr,R(L)(i)
ii is the ith slice’s Green’s function

of the first i slices (i < Lz). R (L) means the iteration is along
the z (−z) direction. All the diagonal elements of the retarded
Green’s function of the system Gr

ii can be evaluated. Then the
DOS of the system is

ρ(E ) = − 1

πLxLyLz

Lz∑
i=1

Im
[
Tr

(
Gr

ii

)]
. (A4)

APPENDIX B: BORN APPROXIMATION

In this Appendix, we give the detailed calculating process
of the self-energy, which is given by

Σ = W 2

12

(
a

2π

)3 ∫
BZ

dk3{σi[E − h(k) − Σ]−1σi}. (B1)

The self-energy and the Hamiltonian can be expressed with
Pauli matrices

Σ = Σ0σ0 + Σxσx + Σyσy + Σzσz, (B2a)

h(k) = d0σ0 + dxσx + dyσy + dzσz. (B2b)

We substitute these terms into Eq. (B1),

[E − h(k) − Σ]−1 = Ẽ + ∑
μ d̃μσμ

Ẽ2 − ∑
μ d̃2

μ

, (B3)

where

E − h(k) − Σ= E −
∑

μ

dμσμ−
∑

μ

Σμσμ= Ẽ −
∑

μ

d̃μσμ,

with Ẽ = E − (d0 + Σ0) and d̃μ = dμ + Σμ. To simplify we
only discuss σ0 disorder. Substituting Eq. (B3) into Eq. (B1),
we can obtain the z component of the self-energy

Σz = W 2
0

12

(
a

2π

)3 ∫
BZ

d3k
dz + Σz

Ẽ2 − ∑
μ d̃2

μ

. (B4)

We expand the Hamiltonian at (0,0,0) to k2 order,

h1(k) ≈ 1

2

(
k2

y − k2
x

)
σx + kxkyσy

+
[

mz + 1

4

(
2k2

y + 2k2
x + k2

x

) − 5

2

]
, (B5)

and substitute h1(k) into Eq. (B4). In order to get the zero-
order Born approximation, we need to neglect the Σz term
on the right-hand side of Eq. (B4). Then we get the integral
expression

Σz = −W 2
0

12

(
a

2π

)3 ∫
d3k

mz + 1
2

(
k2

x + k2
y

) + 1
4 k2

z − 5
2

1
4

(
k2

y − k2
x

)2 + (kxky)2 + [
mz + 1

2

(
k2

x + k2
y

) + 1
4 k2

z − 5
2

]2 . (B6)

The integrand only depends on k2, so we can transform it to
polar coordinates, namely

∫
d2k = ∫

dθ
∫

k dk = 2π
∫

k dk.
By using this transformation, Σz can be further simplified as

Σz = −W 2
0 a3

48π2

∫
dkz

∫
2π dk//

k3
// + 2λ(kz )k//

k4
// + 2λ2(kz ) + 2λ(kz )k2

//

,

with

λ(kz ) = 1

4
k2

z + mz − 5

2
.

The integral we need to solve is of the form∫ Λ

0
dk

Ak − k3

B + ck2 + k4
≈ −1

4
ln

∣∣∣∣Λ4

B

∣∣∣∣,
with Λ = π/a. Eventually we obtain the zero-order Born
approximation expression

Σz = − W 2
0 a3

192π2

∫ π

−π

ln

∣∣∣∣∣
(

π

a

)4 8(
k2

z + 4mz − 10
)2

∣∣∣∣∣dkz. (B7)

This integral is difficult to be further calculated analytically,
so we use this expression to qualitatively analyze the disorder
effect.
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