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Nodal vacancy bound states and resonances in three-dimensional Weyl semimetals
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The electronic structure of a cubic T -symmetric Weyl semimetal is analyzed in the presence of atomic-sized
vacancy defects. Isolated vacancies are shown to generate nodal bound states with r−2 asymptotic tails, even
when immersed in a weakly disordered environment. These states show up as a significantly enhanced nodal
density of states which, as the concentration of defects is increased, reshapes into a nodal peak that is broadened
by intervacancy hybridization into a comb of satellite resonances at finite energies. Our results establish point
defects as a crucial source of elastic scattering that leads to nontrivial modifications in the electronic structure of
Weyl semimetals.

DOI: 10.1103/PhysRevB.106.184201

I. INTRODUCTION

With the advent of three-dimensional (3D) topological
insulators [1,2], the search for topological semimetals emerg-
ing at the transition between gapped phases of matter has
flourished. Rather than being a fine-tuned situation, it was
envisaged by Murakami [3] that, without inversion symme-
try, topological phase transitions can proceed through an
intermediate stage, in which a pair of twofold-degenerate
band-crossing points moves around the first Brillouin zone
until it finally merges together and gives rise to a new
gapped phase. Such a stable gapless state was dubbed a
Weyl semimetal (WSM) [4,5] because low-energy excitations
around these band crossings are described by a decoupled
pair of (3 + 1)-dimensional Weyl equations of opposite chi-
rality [6]. Later on, such a topological gapless phase was
also shown to be possible in centrosymmetric crystals, so
long as time-reversal symmetry is broken [7–10] (magnetic
WSM). Crucially, in all cases, the band crossings form pairs of
pointlike sources (or sinks) of Berry flux in momentum space,
analogous to the well-known “diabolical points” described by
Berry [11] in a generic two-level quantum system. Therefore,
isolated Weyl nodes are topologically protected degeneracies
in the electronic band structure that are robust to parametric
changes of the Hamiltonian.

The topological character of WSMs yields important phys-
ical consequences, from the existence of surface Fermi arcs
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[7,12–15] that connect Weyl nodes in the surface-projected
first Brillouin zone (FBZ), to the remarkable condensed
matter realization of QED’s chiral anomaly [16,17]. The lat-
ter drives distinctive unconventional transport effects, such
as a negative longitudinal magnetoresistance [18,19], a giant
in-plane Hall effect [20,21], and the chiral magnetic effect
[22]. Nonetheless, perhaps the most remarkable property of
a WSM is its resilience to the effects of unavoidable pertur-
bations, such as disorder or crystal defects. From a theoretical
standpoint, the disorder effects in both spectral [23–28] and
transport properties [29–33] of WSMs have been the subject
of intense research. A big focus was placed on the effects of
random potentials that can yield non-Anderson quantum crit-
icality at a finite disorder strength [29,34,35]. As the system
is driven through this critical point, the semimetallic character
of the nodal single-electron states gets destroyed long before
they become exponentially localized at the Anderson transi-
tion [24].

In contrast to conventional Anderson transitions [36,37],
the disorder-averaged nodal density of states (NDOS) in dis-
ordered WSMs is deemed an appropriate order parameter
by field-theoretical calculations [30,38–40], as well as the
numerical observation of its sharp power-law growth above
some critical disorder strength [24,25,41]. However, recent
studies of nonperturbative instantonic effects have revealed
that rare disorder configurations lift the NDOS and round
out its critical behavior [28,42,43], thus challenging the con-
ventional scenario. A physical picture was then put forward
by Nandkishore et al. [42], who associated the NDOS lift to
smooth rare regions of a random potential landscape that can
sporadically bound eigenstates at the nodal energy, giving way
to an exponentially small but nonzero NDOS. Despite being a
controversial proposal [25–27,44–46], the avoided quantum
criticality due to rare events was eventually confirmed in
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subsequent numerical studies [25–27] and it is now believed
to be the most general scenario [28].

In spite of these numerous theoretical studies regarding the
effects of random potential disorder, very little is known about
the role played by point defects and other common disorder
sources. Currently, time-reversal-symmetric Weyl fermions
can be realized as low-energy quasiparticles in a myriad of
materials, most notably within the TaAs cubic family (also
including NbAs, TaP, and NbP) [47], which can be grown
as single crystals using chemical vapor transport techniques
[48]. In the growth process, lattice defects are likely to
form [49,50] and, as demonstrated in previous experimental
studies based on transmission electron microscopy [51] and
Raman scattering [52], even high-quality samples generally
host a considerable density of defects, mostly vacancies and
stacking faults. Adding to their natural occurrence, vacancy
defects can also be artificially induced by means of particle
irradiation [53,54], a well-tested technique previously used
to generate defects in graphene [55] and two-dimensional
semiconductors [56,57]. Since point defects can significantly
change the electronic structure of materials, a study of their
impact as a source of disorder in WSMs opens up interesting
possibilities. Promising results were reported by Xing et al.
[58], where atomic vacancies hosted by the (magnetic) WSM
Co3Sn2S2 were linked to the presence of exotic localized
spin-orbit polaron states on its surface. In this paper, we
push this line forward by theoretically analyzing the elec-
tronic properties of Weyl fermions in the presence of point
defects. More specifically, we characterize the electronic wave
functions and corresponding density of states (DOS) of a
lattice T -symmetric Weyl semimetal with finite concentra-
tions of randomly distributed atomic-sized vacancies with one
(half-vacancy) or two (full-vacancy) orbitals missing from the
defect sites.

The remainder of this paper is organized as follows. In
Sec. II, we introduce our working model and a projected
Green’s function formalism (PGF) that is used to calculate
the vacancy-induced DOS deformation and show that alge-
braically decaying nodal bound states appear for isolated
half and full vacancies. In Sec. III, the existence of nodal
bound states is further verified by Lanczos diagonalization
(LD) [59–61] of lattices containing an isolated vacancy. The
robustness of these states to an additional weakly disordered
environment is also discussed. In Sec. IV, we analyze the
averaged DOS of a WSM with a finite concentration of va-
cancies, employing a combination of LD and spectral methods
[62–64]. While confirming that localized eigenstates still ap-
pear and enhance the value of the DOS around the Weyl
node, our results further show that intervacancy hybridization
quickly broadens the nodal peak in the DOS, forming a comb
of symmetrically placed subsidiary sharp resonances for a
moderate concentration of defects. Finally, Sec. V summa-
rizes our key results and gives an outlook.

II. MODELING AN ISOLATED VACANCY
IN A WEYL SEMIMETAL

A lattice vacancy is a common crystalline defect [65].
When a crystal is formed some sites are not properly occupied
by the corresponding atoms, creating a proportion of vacant

FIG. 1. Band structure of the clean lattice WSM model along
the k-space path indicated in the inset. The locations of the eight
nonequivalent Weyl cones are represented as well.

sites [66,67] that act as a source of disorder. In the language of
tight-binding Hamiltonians, a vacancy can be modeled by re-
moving one or more Wannier orbitals from a randomly chosen
lattice site. We start by determining the effects of introducing
a single lattice half or full vacancy in a two-band model of
a WSM. We employ a particle-hole-symmetric model that
lives in a simple cubic lattice (L) and features a low-energy
dispersion relation with eight isotropic Weyl nodes pinned to
the time-reversal-invariant momenta of the cubic FBZ (see
Fig. 1). The lattice Hamiltonian [28] may be written as

H0 = h̄v

2ia

∑
R∈L

∑
j=x,y,z

[�†
R · σ j · �R+ax̂ j − H.c.], (1)

where a is the lattice parameter, v is the Fermi velocity,
x̂ j = (x̂, ŷ, ẑ) are Cartesian unit vectors, σ is the vector of
2 × 2 Pauli matrices, and �

†
R = [c†

R,1, c†
R,2] is a local two-

orbital fermionic creation operator. Equipped with this lattice
description, the vacancy defects are implemented in two dis-
tinct ways. In our PGF calculations below, lattice vacancies
are created by canceling all hoppings at the defect site, which
leaves behind uncoupled zero-energy Wannier states. In con-
trast, when the system is analyzed using spectral methods
or LD (Secs. III and IV), the Hilbert space’s dimension is
effectively reduced by iterating with vectors orthogonal to the
removed orbitals.

A. Clean lattice Green’s function and nodal point symmetries

Before diving into the analysis of the electronic structure
of WSMs with vacancy defects, we first establish some basic
results. The Bloch Hamiltonian of the clean system admits the
simple representation

H0(k) = h̄vσ · sin ak, (2)

with sin ak ≡ (sin akx, sin aky, sin akz ), and which yields the
dispersion relation represented in Fig. 1. The clean re-
tarded lattice Green’s function (LGF), defined formally as
G0(E , R j − Ri ) = [E + i0+ − H0]−1

R j ,Ri
, can be written, in

terms of dimensionless quantities, as

G0(ε,�R) =
∫

[−π,π]3

d (3)k
8π3

ε + σ · sin k

ε2 − |sin k|2 e−ik·�R, (3)

where ε = Ea/h̄v + iη is the dimensionless energy (shifted
by an imaginary amount η), k is the crystal momentum (in
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units of a−1), �R = (nx, ny, nz ), and ni ∈ Z are indices that
label particular sites. Equation (3) can be expressed in terms
of four basic integrals over the domain [−π, π ]3, i.e.,

G0(ε,�R) = I0
ε (�R) +

∑
j=x,y,z

σ j I j
ε (�R), (4)

where the complex-valued integrals are

I0
ε (�R) =

∫
[−π,π]3

d (3)k
ε eikxnx eikyny eikznz

8π3(ε2 − |sin k|2)
, (5a)

Ix
ε (�R) = −

∫
[−π,π]3

d (3)k
sin kxeikxnx eikyny eikznz

8π3(ε2 − |sin k|2)
, (5b)

with Iy,z
ε (�R) being obtained from Ix

ε (�R) by a cyclic
permutation of the set (nx, ny, nz ). These integrals can be
numerically evaluated with high precision (see Appendix A)
and display useful symmetry properties. First, the parity of
the integrand dictates that G0(E ,�R) = 0 whenever the set
(nx, ny, nz ) contains more than one odd integer. This small-
scale property of the LGF can be traced back to the existence
of eight nonequivalent valleys which are specific to this lattice
model. Additionally, there are nonspatial symmetries which
can be deduced from Eqs. (5a) and (5b), most notably

I0
ε (�R) = [

I0
ε∗ (�R)

]∗
, (6a)

I j
ε (�R) = −[

I j
ε∗ (�R)

]∗
, (6b)

and also

Re
[
I0

i0+ (�R)
]= lim

η→0+

∫
[−π,π]3

d (3)k
η sin (k · �R)

8π3(η2 + |sin k|2)
= 0,

(7)

by employing the cubic symmetry of the FBZ. Together, these
three properties imply that the LGF at E = 0 can be repre-
sented in the simple form

G0(0,�R) = i
∑

j=x,y,z

σ jIm
[
I j

i0+ (�R)
]
, (8)

which is nonzero if and only if �R = (nx, ny, nz ) features a
single odd integer.

B. Projected Green’s function for a lattice vacancy

Within a lattice description, a vacancy can be modeled by
removing hoppings connecting one (or several) orbitals within
a unit cell to its neighbors. With no loss of generality, let us
consider a vacancy at the origin, R = 0. The Hamiltonian is
then H = H0 + V with

V = − h̄v

2ia

∑
j=x,y,z

[�†
0 · σ j · �0+ax̂ j − �

†
0 · σ j · �0−ax̂ j − H.c.].

(9)

This operator has the advantage of having a finite support;
i.e., it acts only on sites � = {0,±ax̂1,±ax̂2,±ax̂3} that form
the octahedron shown in Fig. 2. Such local perturbations to a
lattice model can be conveniently studied by using the PGF
method. Treating V as a perturbation, we obtain a set of

�

H0

�

H0 + V
FIG. 2. Scheme of the local perturbation defined in Eq. (9).

Dyson’s equations for the system’s Green’s function, G(ε),
in the presence of the vacancy, i.e.,

G(ε) = G0(ε) + G(ε) · V · G0(ε), (10a)

G(ε) = G0(ε) + G0(ε) · V · G(ε), (10b)

where · denotes the matrix product defined in the full Hilbert
space. To solve these equations, we proceed in two steps:

(i) By projecting them into �, we can solve for those
entries of the full G(ε), i.e.,

G(ε) = [I − G0(ε) · V]−1 · G0(ε), (11)

where G0(ε) is the clean lattice Green’s function restricted to
�, with I − G0(ε) · V defined within the (finite-dimensional)
Hilbert subspace of �.

(ii) The continuation of G(ε) to the exterior of � is ob-
tained via

G(ε) = G0(ε) + G0(ε) · Tε · G0(ε), (12)

where

Tε = V + V · G(ε) · V
= V · [I − G0(ε) · V]−1 (13)

is the projected T matrix of the vacancy.
The PGF method provides access to the electronic structure

of an isolated impurity or defect embedded in an otherwise
perfect infinite crystal [45,68]. In the present section, we are
interested in (i) the DOS change induced by a vacancy and
(ii) the possibility that a WSM can host nodal bound states
around the vacancy. The emergence of zero-energy modes
due to disorder is not obvious given the absence of nonspatial
symmetries in our model; note that H0 belongs to the orthog-
onal Wigner-Dyson class (class AI in the Altland-Zirnbauer
tenfold classification [28]). This is to be contrasted to the
well-studied case of graphene (chiral orthogonal BDI class
[69,70]), which supports zero-energy states localized around
point defects whose peculiar spectral and transport properties
have been linked to the underlying chiral symmetry of that
model [63,71].

One of the most readily available observables from the
PGF formalism is the change in the (extensive) DOS due to
the vacancy, δν(ε). This can be evaluated by means of the
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equation

δν(ε) = 1

πnb
Im(Tr[G0(ε) − G(ε)])

= − 1

πnb
Im(Tr[V · [I − G0(ε) · V]−1 · (G0(ε))2])

= 1

πnb
Im

(
tr

[
Tε · d

dε
G0(ε)

])
, (14)

where Tε is the projected T matrix, Tr[· · · ] is the trace op-
eration over all degrees of freedom, tr[· · · ] is a trace over
the support of V , �, and nb is the number of orbitals per
unit cell (nb = 2 in the WSM model). In the last step to
obtain Eq. (14), we have used Eq. (13) as well as the identity
dG0(ε)/dε = −(G0(ε))2.

Next, we discuss briefly how to extract information on
bound states within the PGF framework. We start by writing
the Lippmann-Schwinger equation for a scattering state |�ε〉,

|�ε〉 = ∣∣�0
ε

〉 + G0(ε) · V|�ε〉, (15)

where |�0
ε 〉 is an eigenstate of the unperturbed system, which

is the parent extended state of |�ε〉. In contrast, a bound state
can exist without any parent eigenstate of the clean Hamilto-
nian. Thus, an eigenstate bound by V at an energy εb must be
a solution of

|�εb〉 = G0(εb) · V|�εb〉. (16)

Since the perturbation V has a finite support, one can once
again consider the projected version of Eq. (15),

|ξε〉 = G0(ε) · V|ξε〉, (17)

where |ξεb〉 is the restriction of |�εb〉 to the support �.
Thereby, any bound state must obey the condition

[I − G0(εb) · V]
∣∣ξ b

εb

〉 = 0, (18)

which means that its projected wave function must belong to
the kernel of the operator, I − G0(εb) · V . Outside the support
of V the wave function may be reconstructed using

�b
α (R) = 〈

R, α | �b
εb

〉 = 〈R, α|G0(εb) · V∣∣ξ b
εb

〉
, (19)

which may or may not amount to a normalizable state, de-
pending on the asymptotic behavior of the clean LGF. In this
context, since we are looking for zero-energy modes (εb = 0),
any state obeying Eq. (18) is guaranteed to be square normal-
izable in 3D space with an algebraic tail ∝ r−2. The latter is
the long-distance behavior of G0(0,�R), as obtained in the
continuum limit.

1. Full vacancies in a Weyl semimetal

We now apply the general formalism described above
to the case of a full vacancy where both orbitals are
removed from a particular lattice cell. To perform the cal-
culation, it comes in handy to order the sites of � as
{0, ax̂, aŷ, aẑ,−ax̂,−aŷ,−aẑ}. With this ordering, one ob-
tains V as the matrix

V = h̄v

2ia

⎡
⎣O2×2 −σ σ

σT O6×6 O6×6

−σT O6×6 O6×6

⎤
⎦, (20)

within the projected subspace, while, by exploiting the sym-
metries of G0 [Eqs. (6a) and (6b)], we are able to further
express the PGF as

G0(0) = a

h̄v

⎡
⎣ O2×2 g0σ −g0σ

−g0σ
T O6×6 O6×6

g0σ
T O6×6 O6×6

⎤
⎦, (21)

where g0 = Ix
i0+ (1, 0, 0). These simple matrices can then be

used to build the operator I − G0(0) · V , whose determinant
takes the remarkably simple form,

det(I − G0(0) · V ) = (i − 3g0)4. (22)

Equation (22) has a clear physical interpretation: a fourfold-
degenerate root appears for g0 = i/3, corresponding to an
extra pair of nontrivial bound states extending into the lattice.
For consistency, det(I − G0(0) · V ) would have to display
a twofold-degenerate root, corresponding to the subspace of
both orbitals to be removed from the lattice. Surprisingly, the
degeneracy appears doubled here, which indicates that two
nodal bound states must exist as a mathematical property of a
full vacancy in our lattice model. In addition, a full diagonal-
ization of I − G0(0) · V yields the following projected wave
functions for these states:∣∣ξ b

1

〉 = 1√
6

[|x̂, 1〉 − i|ŷ, 1〉 − |ẑ, 2〉

− |−x̂, 1〉 + i|−ŷ, 1〉 + |−ẑ, 2〉], (23a)∣∣ξ b
2

〉 = 1√
6

[|x̂, 2〉 + i|ŷ, 2〉 + |ẑ, 1〉

− |−x̂, 2〉 − i|−ŷ, 2〉 − |−ẑ, 1〉], (23b)

where |R, α〉 are the local Wannier states (here, α indexes the
orbital). Upon a reconstruction, these states have the following
real-space wave function outside �:

�b
1 (R) = it

√
6

2

[
G12

0 (0, R)
G22

0 (0, R)

]
, (24a)

�b
2 (R) = it

√
6

2

[
G11

0 (0, R)
G21

0 (0, R)

]
, (24b)

where Gαβ

0 are spinor components of G0.
In a similar manner, we can determine the DOS change

caused by a vacancy defect. To do this, we require the clean
PGF at all energies, which has the following matrix structure,

G0(ε) = a

h̄v

⎡
⎣ fεI2×2 gεσ −gεσ

−gεσ
T fεI6×6 hεI6×6

gεσ
T hεI6×6 fεI6×6

⎤
⎦, (25)

as imposed by the aforementioned symmetries of our WSM
model. In Eq. (25), fε = I0

ε (0, 0, 0), gε = Ix
ε (1, 0, 0), and

h(ε) = I0
ε (2, 0, 0) are dimensionless functions of the energy

variable. Having the PGF, we can now build the T matrix of
an isolated full vacancy and employ Eq. (14) to obtain

δν(ε) = 3a

π h̄v
Im

[
fε(h′

ε − 2 f ′
ε ) + f ′

εhε + 4g′
ε(i − 3gε )

3 f 2
ε − 3 fεhε + 2(i − 3gε )2

]
.

(26)
The functions fε, gε, and hε and their derivatives were calcu-
lated numerically (see Appendix A) and the resulting DOS is
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FIG. 3. DOS correction due to a single (full) vacancy in an in-
finite lattice (calculated with numerical differentiation of the LGF).
The unperturbed bandwidth of the model is marked by the outermost
vertical dashed lines and, unlike the conventional case, integrating
δν(E ) over the entire band yields −2 instead of zero.

shown in Fig. 3. As expected, a single (full) vacancy causes a
negative correction to the DOS across the entire band, which
is consistent with an overall transfer of spectral weight to the
emergent bound states around the vacant site. The integral of
this curve is exactly −2, as the number of continuum states is
not conserved, i.e., two states (per orbital) appear as vacancy
bound states and other two are removed from the Hilbert
space.

2. Half vacancies in Weyl semimetals

We now consider the effects of an isolated half vacancy in
which only one orbital is removed from each cell. If orbital 1
is vacant, the perturbation reads

V1 = − h̄v

2ia

[(
ψ1

0

)†
ψ2

ax̂ − i
(
ψ1

0

)†
ψ2

aŷ + (
ψ1

0

)†
ψ1

aẑ

− (
ψ1

0

)†
ψ2

−ax̂ + i
(
ψ1

0

)†
ψ2

−aŷ − (
ψ1

0

)†
ψ1

−aẑ − H.c.
]
,

(27)

while in the opposite case, it reads

V2 = − h̄v

2ia

[(
ψ2

0

)†
ψ1

ax̂ + i
(
ψ2

0

)†
ψ1

aŷ − (
ψ2

0

)†
ψ2

aẑ

− (
ψ2

0

)†
ψ1

−ax̂ − i
(
ψ2

0

)†
ψ1

−aŷ + (
ψ2

0

)†
ψ2

−aẑ − H.c.
]
.

(28)

In either situation, the presence of bound states and DOS de-
formations can be investigated along the same lines as the full
vacancy, the only difference being the projected perturbation
matrix. More specifically, we write

V1/2 = h̄v

2ia

⎡
⎣ O2×2 −�1/2 �1/2

�T
1/2 O6×6 O6×6

−�T
1/2 O6×6 O6×6

⎤
⎦, (29)

where the (2 × 6)-dimensional � matrices are

�u =
[

0 1 0 −i 1 0
0 0 0 0 0 0

]
, (30a)

�l =
[

0 0 0 0 0 0
1 0 i 0 0 −1

]
. (30b)

The clean PGF is exactly the same as in Eq. (25), and therefore

det(I − G0(0) · V1/2) = −(i − 3g0)2, (31)

which has a double root for g0 = i/3. The diagonalization of
this operator confirms that its null space is a two-dimensional
subspace generated by the removed orbital, plus a nontriv-
ial bound state that surrounds the vacant site. Similarly, the
correction to the DOS is exactly the same as Eq. (26) but
with an added factor of 1/2. The similar behavior between half
and full vacancies could have been anticipated by looking
at a full vacancy as a pair of half vacancies placed within
the same unit cell. In the PGF formalism, these correspond
to local perturbations (V1 and V2) that act in disjoint Hilbert
subspaces not connected by the clean lattice propagator. This
prevents the two half vacancies from hybridizing and their
resulting effects in the spectrum will be simply cumulative.
For this reason, we focus exclusively on full vacancies in the
remainder of this paper.

III. MICROSCOPIC ROBUSTNESS OF THE VACANCY
BOUND STATES

After establishing the existence of vacancy-induced nodal
bound states, we move on to assess their robustness against
additional disorder sources. For that, we model the additional
disordered landscape as an uncorrelated scalar potential,
Vd (R). The Hamiltonian now reads

Hd = H0 + V +
∑
R∈L

Vd (R)�†
R · �R. (32)

To tackle this problem, we numerically diagonalize Hd

around E = 0 using the SCIPY implementation of the im-
plicitly restarted Lanczos method [59–61]. Since the method
converges better to non-clustered eigenpairs in the borders of
the spectrum, we apply it to H2

d instead and restrict the anal-
ysis to low-lying eigenstates. Additionally, we consider cubic
samples of side L, with a single (full) vacancy at the center of
each sample, supplemented by fixed phase-twisted boundaries
that open a finite-size gap (� f ∝ L−1) in the spectrum of
extended states. The nodal bound states will lie inside this
finite-size gap, as they are weakly affected by the boundary
conditions.

In Fig. 4(a), we represent the radial distribution of the
vacancy bound states for different simulation sizes, in the
absence of any additional disorder. The results confirm the
predicted zero-energy states with tails decaying as r−2. We
note that the degeneracy of these states gets slightly lifted
by the boundary conditions but the corresponding eigenvalues
still tend to zero as L− 3

2 , i.e., faster than � f . Furthermore,
the vacancy defect perturbs slightly the extended states (now
scattering states), which further expands the finite-size gap
[72].

Next, we present an identical analysis with the vacancy’s
surroundings endowed with an uncorrelated random scalar
potential uniformly drawn from [−W

2 , W
2 ]. In principle, this

alteration dresses the LGF of the clean model, thus destroying
most model-specific symmetries. In Fig. 4(b), we present the
radial wave functions of the two eigenstates closest to zero
energy obtained from the diagonalization of three randomly
generated disorder configurations. In all three cases, the states
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(a)

(b)

FIG. 4. Probability density, |�(R)|2 = |�1(R)|2 + |�2(R)|2, of
the eigenstate closest to zero averaged over spherical shells of width
a centered on the vacancy. (a) Single central vacancy with no ad-
ditional disorder. Inset: The eigenvalues obtained near E = 0 for
finite samples come in two flavors: those which scale to zero energy
as L−1 (orange), akin to the predicted mean-level spacing scaling
around a clean Weyl node, and eigenvalues which scale faster (as
∝ L−3/2) due to the more localized character of the corresponding
eigenstate (magenta). (b) Vacancy within three random disordered
environments.

feature the same normalizable power-law tail found in the
clean case, indicating that the vacancy bound states are indeed
robust.

To further understand the effects of an uncorrelated dis-
order landscape, we diagonalized 104 systems with randomly
generated disorder samples around a single central vacancy,
focusing on determining the four eigenpairs whose energies
are the closest to the node. In addition to the eigenenergies, we
used the eigenfunctions to determine the inverse participation
ratio (IPR),

IPR� =
∑

R

(∣∣�1
R

∣∣2 + ∣∣�2
R

∣∣2)2

∑
R

∣∣�1
R

∣∣2 + ∣∣�2
R

∣∣2 , (33)

a simple quantity that allows one to distinguish well-
localized, IPR ∼ O(1), from delocalized states, for which
IPR ∼ O(L−3 ). In Figs. 5(a) and 5(b), we show histograms
of the eigenenergies for three system sizes and two disorder
strengths, using twisted boundary conditions with a fixed
twist angle of π

3 in all directions. These histograms bore
out two well-separated clusters formed by (a) the two eigen-
states closest to zero energy which are broadened by disorder
around E = 0, but remain firmly inside the finite-size gap,
and (b) the ones corresponding to the largest eigenvalues,
being Bloch states that get perturbatively shifted towards the

node and broadened by disorder [28]. As confirmed by the
corresponding IPRs, the (a)-class states are strongly localized
states which are still bound to the central vacancy, while the
(b)-class states are disorder-dressed extended Weyl states.

IV. QUANTUM INTERFERENCE AND FINITE
CONCENTRATION EFFECTS

The previous results established that a single (full) vacancy
defect gives rise to a pair of zero-energy bound states with
power-law-localized wave functions. We now discuss the ef-
fect of coherent multiple scattering events in realistic systems
[51] which have a finite (nonzero) concentration of point de-
fects. The main question we ask here is whether the essential
IPR features of zero-energy states survive the unavoidable
intervacancy hybridization effects.

Our starting approach to this problem is based upon the
exact diagonalization of small systems. We consider WSM
lattices with linear sizes up to L = 35 and a concentration (n)
of randomly placed full vacancies. By means of the twisted
boundary conditions, we open a finite-size gap that separates
nodal bound states from extended ones. The 2nL3 + 4 eigen-
pairs [73] closest to E = 0 are then extracted using LD. In
Fig. 5(c) we represent a scatterplot of the energies and corre-
sponding IPRs of every eigenpair determined for 2500 random
arrangements of vacancies with concentrations ranging from
0.1% to 1% (per unit cell). The results clearly demonstrate
that, in spite of the proximity between vacancies, the system
still features a large number of high-IPR eigenstates which
are flanked by a region of extended states. Such a physical
interpretation is clear from Fig. 5(d), where a 3D bubble chart
of |�(R)|2 is depicted for two eigenstates randomly chosen
from each of the regions.

Average density of states

The LD study gives a qualitative picture of the structure of
the eigenstates surrounding a Weyl node, but its utility can be
severely limited by loss of spectral resolution, the finite num-
ber of eigenstates that are accessible, and, last, the attainable
system sizes. Therefore, we now complement the LD analysis
with full-spectral simulations of the DOS of large systems by
means of the kernel polynomial method (KPM) [62]. As a first
step, we present results on the ensemble-averaged DOS for
a large system with a linear size L = 512. This observable
gives us information on how the spectrum is modified by
intervacancy hybridization effects, yielding a numerically ex-
act picture of the vacancy-induced resonances [27,45] around
the node. The KPM calculations are carried out with domain
decomposition and stochastic trace evaluation techniques as
implemented in KITE [64]. The calculation employs M = 216

Chebyshev moments (corresponding to a spectral resolution
η = 10−4h̄v/a), a Jackson kernel, and a sufficiently large
number of random vectors to yield highly converged results.
Finally, the results are averaged over random twisted bound-
ary conditions, which eliminates the finite-size mean-level
spacing.

The average DOS obtained through the KPM is shown
in Fig. 6. These high-resolution results disclose a prominent
spectral enhancement in and around the node which indi-
cates that, unlike what happens for ordinary on-site disorder
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FIG. 5. (a) Histograms of the four energies closest to the Weyl node for a vacancy surrounded by a random Anderson potential of strength
W = 0.01h̄v/a (right) and W = 0.04h̄v/a (left), represented for systems with different linear sizes [L = 15 (red), L = 25 (blue), and L = 35
(red)]. Black dashed lines indicate the clean energy levels and, thus, the corresponding finite-size gaps. (b) Scatterplot of the energies and IPRs
of the calculated eigenpairs. The two eigenstates closest to zero energy are very localized in real space, while the remaining pair is clearly
delocalized. (c) Energy-IPR scatterplot for the eigenstates closest to the node obtained for 25 000 samples of a WSM with four concentrations
of randomly placed full vacancies. Histograms of the IPRs are presented for each total number of vacancies along the vertical axis. Different
colors label different vacancy numbers (here, the simulated cell size is adjusted to guarantee that n is constant in all four cases presented).
(d) Bubble chart representation of the (squared) wave functions for two eigenstates picked at random from the indicated regions: a heavily
localized state around a few vacancies (left) and an extended state (right).

[23–28,42,44–46], the DOS at E = 0 gets quickly lifted to a
large value as n increases. This pronounced effect is consistent
with the presence of robust nodal bound states, and validates
the conclusions of Sec. IV. Moreover, as the central DOS peak
grows in height with increasing n, a much wider symmetrical
profile begins to emerge at its base. As shown in Appendix B,
the integral of this DOS correction is proportional to n, which
indicates that intervacancy hybridization is simply turning the
bound states of isolated (full) vacancies into scattering reso-
nances within the continuum. In Fig. 6(b), a close-up of this
structure is shown, revealing a finer comblike structure of sub-
sidiary peaks (sharp scattering resonances) around the node
for moderate defect concentrations (n � 1%). These peaks
are more visible in Fig. 6(c), where their displacement as a
function of n is also shown. The modulated structure in the
DOS reported in this work is a unique feature of 3D WSMs,
which is absent in the analogous two-dimensional problem
[63,69] [see inset to Fig. 6(a)]. The subsidiary peaks in the
DOS are robust to an additional weakly disordered potential,
as is discussed in Appendix B.

V. CONCLUSION AND OUTLOOK

A combination of exact diagonalization and large-scale
spectral methods allows us to resolve the impact of point

defects on the real-space electronic structure of 3D T -
symmetric Weyl semimetals. Our results for a lattice WSM
model show that dilute concentrations of vacancies, a com-
mon crystal imperfection, have a strong impact on the
electronic properties in stark contrast with uncorrelated on-
site disorder models [23–28,31,34,42,44–46,74], which have
been found to produce a minute effect on the low-energy
properties of Weyl systems. In fact, random vacancies were
shown to efficiently lift the nodal DOS, thereby destabilizing
the semimetallic phase even at very low concentrations. More-
over, we have also demonstrated that quantum-interference
effects between vacancies can yield a peculiar modulated
energy dependence of electronic observables which has no
analog in two-dimensional Dirac systems [29,63,70]. While
the average DOS displays a comb of subsidiary resonance
peaks at finite energies, we show in a companion paper [75]
that the bulk dc conductivity mirrors this behavior through
a series of sudden dips as the Fermi level is varied. There-
fore, upon tuning the carrier density in real samples [76] (or
even the defect concentration using H/He [53] or light-ion
irradiation [54]), we predict that bulk transport measurements
will allow the observation of interesting signatures of native
point defects. These are expected to assume chief importance
in WSMs of the TaAs family, whose concentration of point
defects in high-quality crystals grown by chemical vapor
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FIG. 6. DOS of a WSM lattice of linear size L = 512 for selected
defect concentrations. (a) Bird’s-eye view of the DOS. The inset
shows the two-dimensional case for comparison. (b) Close-up of
average DOS around ε = 0. (c) Subsidiary peaks in the DOS at low
vacancy concentration. Inset: Evolution of the the peak height (P1,
P2, and P3) with n.

transport is experimentally known to be large [51]. At last,
in Ref. [75] the authors present a thorough investigation of
physical consequences from these effects of vacancy disorder
in electronic structure of the Weyl nodes, with a particular
focus on experimentally accessible signatures from standard
transport and optical response measurements. The optical sig-
natures have a particular practical importance, as they do not
rely on an external control over the system’s Fermi energy.
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APPENDIX A: LATTICE GREEN’S FUNCTION

Here, we outline the semianalytical method employed to
obtain the LGF with arbitrary spectral resolution. As indicated
in the main text, Eqs. (3) and (4), the clean LGF is a 2 × 2
matrix that can be written as

G0(ε,�R) = I0
ε (�R) +

∑
j=x,y,z

σ jI j
ε (�R), (A1)

with I0,x,y,z
ε (nx, ny, nz ) being four position- and energy-

dependent integrals over the cubic FBZ. These integrals are
given by

I0
ε (�R) =

∫
[−π,π]3

d (3)k
ε eikxnx eikyny eikznz

8π3(ε2 − |sin k|2)
, (A2a)

Ix
ε (�R) = −

∫
[−π,π]3

d (3)k
sin kxeikxnx eikyny eikznz

8π3(ε2 − |sin k|2)
. (A2b)

For a single-vacancy calculation in the lattice WSM, the finite
support of the perturbation dictates that only three of these
integrals are required, namely,

I0
ε (0, 0, 0) =

∫
[−π,π]3

d (3)k
ε

8π3(ε2 − |sin k|2)
, (A3a)

Ix
ε (1, 0, 0) = −

∫
[−π,π]3

d (3)k
sin kxeikx

8π3(ε2 − |sin k|2)
, (A3b)

I0
ε (2, 0, 0) =

∫
[−π,π]3

d (3)k
εe2ikx

8π3(ε2 − |sin k|2)
, (A3c)
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which define three complex-valued functions fε, gε, and hε,
respectively. In all previous integrals ε is to be taken as a
complex number with a positive infinitesimal imaginary part
(guaranteeing that the LGFs are retarded). In all three cases,
analytical progress can be made by first considering the one-
dimensional integral

I1(z) =
∫ π

−π

du
1

2π (z + sin2 u)
, (A4)

where z ∈ C. This integral can be solved by standard contour
integration in the complex variable w = exp(iu), yielding

I1(z) = 1√
z
√

z − 1
. (A5)

Therefore,

I±
1 (x) = lim

η→0±
[I1(x + iη)] =

{
sgn(x)√
x(x−1)

x /∈ [0, 1]

∓ i√
x(1−x)

x ∈ [0, 1].
(A6)

From Eqs. (A6), it is easy to recognize that all three integrals
in Eqs. (A3a)–(A3c) can be written as two-dimensional k-
integrals involving I±

1 (x). Hence, they read

fE±i0+

= − E

4π2

∫
[−π,π]2

d (2)k I±
1 (−E2 − sin2(kx ) − sin2(ky)),

(A7a)

gE±i0+

= 1

4π2

∫
[−π,π]2

d (2)k sin kxeikx I±
1 (−E2− sin2(kx ) − sin2(ky)),

(A7b)

hE±i0+

= − E

4π2

∫
[0,π]2

d (2)ke2ikx I±
1 (−E2 − sin2(kx ) − sin2(ky)),

(A7c)

where now E is the (real-valued) energy parameter and the
± denotes the sign of η. These two-dimensional integrals can
be numerically evaluated for an arbitrarily fine mesh of E .
As η was formally taken to zero, the spectral resolution is
only limited by the spacing of this mesh. Moreover, using
the symmetries— f−E±i0+ = − f ∗

E±i0+ , g−E±i0+ = g∗
E±i0+ , and

h−E±i0+ = −h∗
E±i0+—it is enough to evaluate the said inte-

grals for E > 0. The results are shown in Fig. 7.

APPENDIX B: ADDITIONAL NUMERICAL RESULTS

Here, we complement the KPM results shown in Sec. IV A
for the mean DOS in the presence of a finite concentration
of vacancies. These results serve as a support for some of the
claims made in the main text.

First, we analyze the region of enhanced mean DOS around
the nodal energy (E = 0). For a very low vacancy concen-

FIG. 8. (a) Full integral of the correction to the mean DOS as
a function of the vacancy concentration. Inset: Integral of δν(ε) =
ν(ε) − ν0(ε) within the region represented plotted in the main panel.
(b) Mean DOS calculated for two concentrations of vacancies and an
additional potential disorder.

tration, the sole feature is a sharp peak at the node, which
amounts to a cumulative contribution of all single-vacancy
bound states to the intensive DOS. As the concentration in-
creases, one starts to see more structure, in the form of a
broadened base of this peak [as highlighted in the main panel
of Fig. 8(a)]. We attribute this to a progressive hybridization
of states bound to nearby vacancies that lifts the degeneracies
away from the node, thus turning these states into long-living
resonances. To corroborate this idea, we analyze the depen-
dence of the integrated change in the DOS within this central
region. Broadly speaking, this quantity represents the number
of states introduced near the node by the vacancies, per unit
volume. In the inset to Fig. 8(a), we show that the inte-
grated DOS change induced by the vacancies scales exactly
as n/(100 − n). This is consistent with the picture in which
each missing Wannier state introduces exactly one eigenstate
in the node and one eigenstate around the node.

Another point concerns the robustness of the features of the
DOS to microscopic details of the underlying lattice model.
As we have done for a single (full) vacancy, here also we
probe this robustness by introducing an additional Anderson
potential (of strength W ). The KPM results for the mean DOS
are shown in Fig. 8(b). Clearly, the main features of the DOS,
i.e., the central enhancement and the subsidiary peaks, remain
untouched for suitably small W . This supports the claim that
our results will hold for a wide range of WSM systems.
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