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Modeling and experimental validation of dynamical effects in Bragg coherent x-ray diffractive
imaging of finite crystals
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Bragg coherent diffractive imaging (BCDI) is a noninvasive microscopy technique that can visualize the
shape and internal lattice deviations of crystals with nanoscale spatial resolution and picometer deformation
sensitivity. Its strain imaging capability relies on Fourier transform–based iterative phase retrieval algorithms,
which are mostly developed under the kinematical approximation. Such approximation prohibits the application
of BCDI on larger crystals, which are commonly seen in most emerging functional materials. Understanding
the dynamical effect in BCDI, as well as developing a validated method for modeling BCDI at the dynamical
diffraction limit, is crucial for applying BCDI to hierarchical systems that contain micron-sized crystals and
grains. Here we report a comparative study on the impact of dynamical diffraction effects by comparing the
reconstruction results from two measurements of the same crystal. Forward simulation is implemented to show
subtle changes of interference fringes in the diffraction pattern due to the dynamical diffraction, and is compared
directly with the experimental data.
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I. INTRODUCTION

Strain can strongly influence the mechanical, chemical, and
electronic properties of materials. Thus, precision measure-
ment of crystal strain is a key challenge for characterizing and
optimizing emergent functional materials. Hard x-ray Bragg
coherent diffractive imaging (BCDI) has been demonstrated
to be a very powerful tool for imaging lattice deformation
in crystalline materials [1–6]. It provides a full-field–type
imaging capability to map three-dimensional (3D) strain dis-
tribution in a micron-sized field of view with nanometer-scale
spatial resolution and picometer-scale deformation sensitivity.
In a typical BCDI measurement, a finite crystal is illuminated
by a coherent x-ray beam, and the far-field 3D diffrac-
tion pattern in the vicinity of a single Bragg reflection is
recorded with a spatial sampling rate beyond the Nyquist
limit. The acquired 3D diffraction pattern is inverted to a
complex object function using phase retrieval algorithms. Tra-
ditionally, the amplitude of the reconstructed object function
indicates the scattering density distribution of the crystal,
while the phase represents a projection of the deformation
field to the momentum transfer vector of the measured Bragg
peak.

Most BCDI phase retrieval algorithms [7–9] are developed
under the kinematical approximation, in which the dynami-
cal effects—-namely, multiple scattering and extinction—-are
neglected. With such simplification, the far-field diffraction
intensity from a finite crystal is the modulus square of the
3D Fourier transform (FT) of its effective electron density
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and deformation field, while the inverse FT of the far-field
intensity provides an autocorrelation of the object. Therefore,
the phase problem can be efficiently solved via FT-based
iterative optimization algorithms, using a priori knowledge
that the object being imaged is isolated. Such phase retrieval
algorithms have been successfully applied to various systems,
where sizes of measured crystals are typically in the range
from a few hundreds of nanometers to approximately 1 µm.
For larger crystals, those algorithms do not provide a simple
map of the electron density, since the kinematical approxi-
mation is not valid anymore. Applying established FT-based
algorithms on Bragg diffraction patterns from lager crystals
will cause significant artifacts in both amplitude and phase of
the reconstructed complex object functions [10].

Theoretically, the dynamical effects can be neglected if the
size of a crystal is smaller than the x-ray extinction length
[11,12]. However, in practice, it is difficult to predict whether
a crystal can be treated under the kinematical approximation,
since the extinction length of x-ray photons in a particular
crystal could change significantly due to the lattice deforma-
tion field. For example, the extinction length of [111] Bragg
diffraction at a photon energy of 9 keV is about 0.25 µm in a
perfectly ordered gold or lead crystal [13]. However, micron-
sized gold and lead crystals have been successfully imaged
without any significant artifacts, using BCDI and FT-based
phase retrieval algorithms [2,3,14]. The kinematical approxi-
mation is still valid in those large crystals, because of residual
lattice deformations associated with the sample preparation.
Without knowing the ground truth, one could easily confuse
the artifacts from dynamical effects with actual features in a
crystal far from equilibrium with its environment. Therefore,
developing a wave propagation method that accommodates
dynamical effects, as well as the corresponding phase retrieval
approach, is crucial for applying BCDI on large crystals.
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FIG. 1. Reconstruction from the [002] peak at 7.5 keV. The diffraction data were first inverted using an intentionally loosened support
(a) and then using a fixed support (b). The scale bar is 250 nm. For both (a) and (b), slices of amplitude (top row) and phase (bottom row)
are plotted, where the left, middle, and right columns are the slices along x-y, x-z, and y-z planes, respectively. The definition of diffraction
geometry is shown in (c). ki and k f are the wavevectors of incident and diffracted x-ray photons, respectively. The laboratory coordinate is
right-handed, where y is upward, and z is the propagation direction of the incident x-ray beam. δ and γ are the detector angles. (d) Error
metrics during the iterative phase retrieval. χ 2 of the first (blue) and second (amber) trials, as well as the corresponding η2 (green and red,
respectively), are plotted in logarithmic scale.

Dynamical effects can be described in the frame of x-
ray dynamical diffraction theory, which has been extensively
developed for decades [11,15–17]. Works have been done
to investigate the impact of dynamical diffraction effects on
transmitted beams [18,19] and extended samples [20]. More
recently, Yan and Li [21] and Shabalin et al. [22] have ap-
plied the theory on finite crystals to simulate the coherent
diffraction patterns. The latter group also simulated BCDI on
a hemispherical lead particle using the same diffraction ge-
ometry and a similar crystal dimension described in Ref. [3].
While both works provide valuable insight into the impact of
dynamical effects on BCDI, none of them has validated the
simulations against experimental data. In this work, we per-
form BCDI measurements of the same crystal at two energy
points to illustrate the impact of dynamical diffraction effects
in the reconstruction, and use forward simulation to validate
subtle changes observed in the diffraction pattern associated
with different diffraction modes against experimental data.

II. BCDI DATA COLLECTION AND PHASING

A. BCDI sample preparation and data collection

The gold crystal sample was prepared by dewetting evapo-
rated gold films at a temperature just below melting [1]. The
target crystal was selected based on its dimension and the
estimated x-ray extinction length. According to the database
[13], the extinction length in a perfectly ordered gold crys-
tal is about 0.25 µm for [002] reflection and approximately

0.70 µm for [004] reflection. The extinction length is cal-
culated assuming a sigma-polarized incident wave. Details
about estimation of the extinction length are discussed in
Appendix A. Considering the presence of deformation, these
numbers could be larger in a real crystal. Therefore, we se-
lected a crystal that has a size of approximately 700 nm in
diameter and 350 nm in height. Given its dimensions, the
[004] diffraction patterns measured from this crystal should
be inverted correctly using algorithms developed under the
kinematical approximation, while reconstructions from [002]
datasets are expected to show significant artifacts due to
dynamical diffraction effects. In a later section, the recon-
struction from [004] reflection serves as the crystal model to
perform forward simulation, while the [002] reflection is used
as the reference to validate the simulation results.

The BCDI experiment was conducted at beamline 34-
ID-C of the Advanced Photon Source, Argonne National
Laboratory. The dataset of [002] reflection was collected at
a photon energy of 7.5 keV, and [004] reflection was col-
lected at 15 keV. The two reflections were measured using
identical diffraction geometry, where a pixelated detector
with 55μm × 55μm pixels was orientated at δ = 41.40◦ and
γ = 26.55◦ (as shown in Fig. 1). The crystal was rotated
around the y-axis during rocking scans using a rocking step of
6 mdeg for [002] reflection and 3 mdeg for [004] reflection.
The sample–detector distance was fixed at 1.5 m. As a result,
the sampling rate of [004] reflection is slightly below the ideal
condition, while the spatial resolution of reconstructions from
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the [002] reflection is reduced due to the limitation in the
largest scattering angle.

B. BCDI phase retrieval

The collected diffraction data sets were inverted using
the established error reduction (ER) and hybrid input–output
(HIO) algorithms [7]. All the phasing processes were initial-
ized using random seeds and a support size of 80% of the
input array. A total of 4500 iterations were carried out for
each phasing trial. The first 3600 iterations were switched
between 50 iterations of ER and 250 iterations of HIO to
approach the global minimum. The following 900 iterations
were performed with ER only to refine the converged solution.
Considering the large crystal size and limited beam coherence
length, an iterative blind deconvolution method—namely the
Richardson-Lucy (RL) algorithm [23,24]—was adopted to
separate the beam coherence function from the estimate of
the diffracted wavefield [25]. The coherence function was
updated every 50 iterations starting with the 1200th iteration,
with RL algorithm runs for 20 iterations per update. The final
object was obtained by averaging over the estimated objects
resulting from every other iteration in the last 100 iterations.

Due to the absorption and extinction effects, part of the
reconstructed complex object may have a much weaker ampli-
tude, which has been discussed in previous theoretical studies
[10,22]. Therefore, the regular shrink-wrap [26] method often
cannot constrain the support correctly, resulting in a cavity-
or pit-like artifact in the final reconstruction. To avoid this
problem, we used an alternative approach to shrink the support
at a controlled speed. In this approach, the 3D dimensions
of support are reduced by a certain number of voxels with a
specified interval of iterations, and the shrinking stops where
the boundary of the support touches the boundary of the
estimated object, determined by a predefined threshold. This
method allows the algorithms to find the correct solution
before stagnating around a local minimum due to an overtight-
ened support.

Figure 1 demonstrate the reconstruction and the corre-
sponding error metrics of 7.5-keV data. To avoid the potential
risk of overtightening the support, the threshold for determin-
ing the edge of crystal was set to approximately 5% in the first
trial of phase retrieval. The resultant amplitude and phase of
the retrieved object function are shown in Fig. 1(a). Although
the boundary of the crystal can be easily distinguished by
eye, the region between the edge of the intentionally loosed
support and the edge of the crystal contains voxels with
relatively large amplitudes. To get a clean morphology of
the crystal, we conducted a second trial of phase retrieval
using a fixed support that was obtained by thresholding the
first reconstruction followed by manual modification. The
fixed-support phase retrieval gave a reconstruction with a
well-defined crystal boundary. Figure 1(b) shows slices of
amplitude of the retrieved object function along the three axes
of the lab frame Cartesian coordinate. As the x-ray wave
was incident along +z-axis and diffracted in the outboard–
upward direction, the downstream part of the crystal has
a lower amplitude compared to the remaining part. The
corresponding slices of the phase demonstrate nonphysical
artifacts that are spatially correlated to the low-amplitude part,

suggesting that they originated from the absorption and ex-
tinction effects of the x-rays. It is also worth noting that the
phase artifacts are not linearly proportional to the optical path
of the x-ray inside the crystal, indicating the presence of the
extinction effect [10]. Two error metrics were used to monitor
the convergence of the phase retrieval algorithm. Besides the
traditional reciprocal-space χ2 error metric, an η2 error metric
was used to measure the iteration-to-iteration variation. η2 is
defined as

η2 = |F (on) − F (on−1)|2
|F (on−1)|2 ,

where on is the estimate of the complex object on the nth
iteration. Figure 1(d) demonstrates the error metrics during
two phase retrieval trials. Both trials have final χ2 values
below 10−2, suggesting a reliable phase retrieval result. The
second trial ends at a slightly higher χ2 value, which is likely
due to fixing the support. As for the η2 values, the first trial
stagnates around 10−3 during the last 900 iterations of ER,
indicating the algorithm was trapped in a local minimum
due to the intentionally loosed support. As a comparison, the
second trial was able to converge to a consistent result, with a
final η2 value below 10−8.

The same phase retrieval procedure was used for the
15-keV dataset, i.e., a loosed-support phase retrieval followed
by a fixed-support one. As mentioned previously, the ex-
tinction length of [004] diffraction from a perfectly ordered
gold crystal is about 0.70 µm, similar to or larger than the
dimensions of the crystal we measured. Therefore, we esti-
mated that the kinematical approximation is still valid for the
15-keV dataset. The result of phase retrieval confirmed this
estimation. Figure 2(a) shows only the amplitude and phase
of the object reconstructed using a fixed support. Comparing
with the 7.5-keV dataset, the reconstruction from 15-keV
dataset has an almost identical morphology, with a relatively
smooth amplitude distribution inside the crystal boundary, as
expected. The corresponding phase maps show a smooth dis-
tribution in the center part of the crystal, while the region near
the boundary has an approximately 1.2-radian phase ramp
relative to the center. This indicates the presence of lattice
displacement in the surface layers of the crystal, which has
been discussed in previous studies [2,14]. The corresponding
χ2 and η2 error metrics [see Fig. 2(b)] have final values below
10−2 and 10−8, respectively, which are as good as the second
trial of 7.5-keV case.

III. FORWARD SIMULATION OF DYNAMICAL
DIFFRACTION

In the first part of this section, we briefly describe the
formulism used for propagating the x-ray wave field through a
crystal in the dynamical diffraction regime. Then, the crystal
model reconstructed from the 15-keV dataset is used as the
ground truth to simulate the far-field diffraction patterns of
two Bragg peaks at corresponding photon energies. The sim-
ulation results are validated by a direct comparison with the
experimental data.

184111-3



GAO, HUANG, HARDER, CHA, WILLIAMS, AND YAN PHYSICAL REVIEW B 106, 184111 (2022)

FIG. 2. Reconstruction from the [004] peak at 15 keV. The
diffraction data were inverted following the same two-step proce-
dure. The result using a fixed support is shown in (a). The scale bar
is 250 nm. Slices of amplitude (top row) and phase (bottom row)
are demonstrated, where the left, middle, and right columns are the
slices along x-y, x-z, and y-z planes, respectively. Error metrics—χ2

(blue) and η2 (amber)—during the phase retrieval with fixed support
are plotted in logarithmic scale in (b).

A. Dynamical diffraction formulism

The simulation method used in this work is developed
based on the study conducted by Yan and Li [21], with
some modifications inspired by Ref. [22]. The propagation
and interaction of wavefields inside a crystal, as well as the
absorption and refraction effects, are described by the Takagi-
Taupin equations [15,16]. Following Refs. [21], [22], and
[27], the crystal wave with two-beam approximation can be
written as

∂D0

∂s0
= ik

2
(χ0D0 + χh̄Dh)

∂Dh

∂sh
= ik

2

{
χhD0 +

[
1 + χ0 − k2

h

k2
+ 2

k

∂ (h · u)

∂sh

]
Dh

}
, (1)

where ŝ0 and ŝh are the unit vectors along the trans-
mitted wave, D0(r) exp(ik0 · r), and diffracted wave,
Dh(r) exp(ikh · r − ih · u), respectively; k = 2π

λ
is the

wavevector of the x-ray, and k0 = kŝ0, kh = k0 + h = khŝh;
h is the reciprocal lattice vector of the unstrained crystal; u
is the displacement vector; and χ0, χh, and χh̄ are Fourier
coefficients of the susceptibility function of the crystal.

Equation (1) includes coupled partial–differential equa-
tions and can only be solved analytically in some particular
cases [12]. For a general case, it is necessary to integrate
the equations numerically. An iterative process is devel-
oped to solve Eq. (1) numerically. For an incident wave

FIG. 3. Forward simulation of the [004] peak at 15 keV. (a)
Schematic of x-ray diffraction from an arbitrary crystal. s0, sh repre-
sent the directions of transmitted and diffracted waves, respectively.
Boundary conditions must be satisfied on 	 (blue) for the transmitted
wave and on 
 (purple) for the diffracted wave. The wavefield at an
arbitrary voxel P inside the crystal is integrated from all upstream
voxels, as marked by red and green arrows. (b) 3D diffraction inten-
sity of experimental data (left) and forward simulation from the DM
(right), plotted in the detector frame. (c) Line intensity variations
across the center of 3D diffraction intensity: along the y-axis (top)
and x-axis (middle) of the detector, and the rocking axis (bottom).
Simulation results from the DM (amber), AR (green), and KA (red)
are normalized to the experimental data (blue) by integrated intensity,
and then aligned using cross-correlation. Black error bars represent
the Poisson noise of the DM simulation at ±50 and ±70μm−1,
respectively.

ψ0(r) exp(ik0 · r), at the nth iteration, the transmitted and
diffracted waves at an arbitrary point (s0, sh) on an ŝ0, ŝh slice
of the crystal [see Fig. 3(a)] can be obtained,

D(n)
0 (s0, sh) = D0

(
s	

0 , sh
)

exp
[
ic0

(
s0 − s	

0

)]

+ ich̄

∫ s0

s	
0

D(n−1)
h (s

′
0, sh) exp[ic0(s0 − s

′
0)]ds

′
0

(2)

and

D(n)
h (s0, sh) = ich

∫ sh

s

h

D(n)
0 (s0, s

′
h) exp{ih · [u(s0, sh)

− u(s0, s
′
h)] + icw(sh − s

′
h)}ds

′
h, (3)

where c0,h,h̄ = 1
2 kχ0,h,h̄ and cw = 1

2 k(1 + χ0 − k2
h/k

2). The in-
tegrations use boundary conditions D0(s	

0 , sh) = ψ0(s	
0 , sh)

and Dh(s0, s

h ) = 0, where ψ0 is the incident x-ray wave. As

shown in Fig. 3(a), 	 and 
 are the upstream crystal bound-
aries of the transmitted and diffracted waves, respectively; s	

0
is the s0 coordinate of 	 at sh, and s


h is the sh coordinate of 


at s0. The iteration starts by assuming D(0)
h = 0, and continues

until a converged solution emerges. The mathematical proof
of convergence is detailed in Ref. [22].

For a specific diffraction geometry, Eqs. (2) and (3) are
numerically solved for each ŝ0, ŝh slice of the crystal to
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obtain Dh at the exit boundary of the crystal, yielding a two
dimensional (2D) wavefront at the exit crystal surface of the
diffracted beam. Such an exit wavefront is propagated to the
far field using 2D FT, and the resultant modulus represents
the diffraction pattern recorded by a pixelated detector. To
simulate a rocking curve scan, the process just described is
repeated at each rocking angle.

It is worth mentioning that Eqs. (2) and (3) can also ac-
commodate diffraction with only the absorption and refraction
effects—i.e., ignoring the extinction effect—and the situation
at the kinematic limit. One can easily see that the extinction
effect is described by the second term on the right-hand side
of Eq. (2): the D0 propagated from the incident surface 	 to
a point (s0, sh) is further attenuated due to the presence of
nonzero Dh on the propagation path. To neglect this effect,
we can simply take the Dh obtained from the first iteration
and propagate it to the far field. As for the situation at the
kinematic limit, not only is the extinction effect neglected, but
also the susceptibilities χ0,h,h̄ are set to very small nonzero
values. In this case, Dh in Eq. (3) is simply a function of
∫ D0(r) exp[ih · u(r)]dr, which is the well-known formula of
kinematical diffraction.

B. Forward simulation of the [004] peak

As mentioned earlier, the [004] diffraction should not see
a significant dynamical effect, since the estimated extinction
length is comparable to or even larger than the dimension of
the crystal. Therefore, we start with the simulation of the [004]
diffraction at 15 keV to establish the baseline.

The reconstruction from the 15-keV dataset was used as
the model for forward simulation. As shown in Fig. 2(a),
the amplitude of the reconstructed object contains obvious
modulations. These modulations are commonly seen in BCDI
and are usually attributed to numerical errors induced by the
FT-based iterative phase retrieval. To remove such nonphys-
ical features, the amplitude inside the crystal was set to one,
where the crystal boundary was determined by an isosurface
level of 20%.

Three types of far-field diffraction patterns were calcu-
lated: a dynamical diffraction model (DM), a kinematical
diffraction model with absorption and refraction effects (AR),
and a pure kinematical diffraction model (KA). The sim-
ulations were normalized using integrated intensity of the
experimental data. All simulated diffraction patterns were
aligned to the data by minimizing the cross-correlation co-
efficient between each pair of 3D diffraction patterns.

Figure 3 demonstrates the experimental data and results of
all three models. Logarithmic-scale line intensity variations
across the center of the Bragg peak are plotted along the three
axes of diffraction patterns in the detector frame, as shown in
Fig. 3(c). As expected, simulations from three models show
very similar intensity profiles, since the effects of absorption,
refraction, and extinction are negligible for this particular
reflection. Compared to the data, all three models correctly
reproduce the measured intensity distribution down to the
order of 10−4, with well-matched interference fringes. The
simulations slightly differ from the data in the high-q region,
especially for where the relative intensity is less than 10−4 of

the center of the Bragg peak. This phenomenon is discussed
later.

Besides the inconsistency in the high-q region, simulations
also show better fringe visibility when compared with the
data. This is likely an effect of the limited coherence of the
incident x-ray beam, since the simulations were conducted
assuming the crystal is illuminated by a fully coherent beam.
Although this partial coherence effect has been separated from
the reconstructed object via blind deconvolution during the
phase retrieval process, it cannot be added back by a sim-
ple convolution in the forward simulation. Technically, the
diffraction with a partially coherent beam should be simulated
by considering all major coherent modes of the beam [28,29].
However, understanding the coherence property of source at
34-ID-C, as well as performing and validating the decompo-
sition of coherent modes, are out of the scope of this work.
Therefore, the partial coherent effect is not accommodated in
forward simulations presented herein.

C. Forward simulation of the [002] peak

Simulation of [002] diffraction at 7.5 keV was conducted
using the same method described earlier. Similarly, three
diffraction models were calculated. It is important to note
that the crystal model is retrieved from the [004] dataset
since it is more error free and closer to the ground truth. The
phase of the reconstructed complex object function represents
h[004] · u. When simulating [002] diffraction, the phase needs
to be divided by two to match the momentum transfer vector
h[002].

Simulations were normalized and aligned to the experi-
mental data using the procedure described in the previous
section. In Fig. 4, logarithmic-scale line intensity variations of
the simulated diffraction patterns are plotted against the mea-
sured diffraction data. Unlike [004], the KA result of [002]
is significantly different from those of DM and AR. Such
differences suggest that absorption, refraction, and extinction
effects play important roles in this reflection.

Compared to the data, all models accurately reproduce
the height and width of the center peak, but show different
performances in the side lobes. Along the horizontal axis of
the detector [Fig. 4(b)], results from all three models show
interference fringes with periodicities and relative intensities
similar to the data. The DM shows a slightly better consis-
tency, especially on the +�q side of the center peak. Like the
[004] case, the fringe visibilities of simulated results are better
than the data, which can be attributed to the effect of partial
coherence. Along the vertical axis of the detector [Fig. 4(a)],
different levels of consistency are observed on the +�q side
and −�q side. On the +�q side, the relative intensities of
side lobes from the DM and KA are very similar to those of
the data, except for the second and fifth orders. For the AR,
the first-order side lobe has a relative intensity that is 30%
lower than that of the experimental data, indicating it cannot
reproduce the relative intensity accurately. On the −�q side,
the relative intensities of the side lobes calculated from the
KA are significantly weaker than those of the data by 50% or
more. The first two side lobes of the AR have similar relative
intensities as the data, but the third order is as weak as the one
from the KA. As a comparison, the DM correctly reproduces
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FIG. 4. Forward simulation of the [002] peak at 7.5 keV. Line
intensity variations from experimental data (blue), DM (amber), AR
(green), and KA (red) are plotted across the center of 3D diffraction
intensity, along (a) y-axis and (b) x-axis of the detector, and (c) the
rocking axis. Black error bars represent the Poisson noise of the DM
simulation at ±50 and ±70μm−1, respectively. (d) Detail of the first
few orders of side lobes on the −�q side from data shown in (a).
Black error bars represent the Poisson noise of the DM simulation at
−20, −30, and −40μm−1, respectively.

the intensities of the first three orders of the side lobes, down
to a relative intensity as low as 10−4. Higher order side lobes
of the DM simulation do not match the data very well, which
is discussed in the next section.

Besides the visual inspection, we also calculated the χ2

error metric between the data and simulations. The χ2 values
are 0.047 for the DM, 0.064 for the AR, and 0.121 for the
KA. Both the DM and AR have significant lower χ2 values
than the KA, suggesting that most of the subtle changes in the
side lobes are caused by the absorption and refraction effects.
Meanwhile, the DM’s error is slightly better than the AR,
indicating that the extinction effect also plays an important
role in this reflection. As a comparison, for the [004] reflection
at 15 keV, the χ2 values are 0.081, 0.080, and 0.167 for the
DM, AR, and KA, respectively. While the absorption and
refraction effects are still important for [004] reflection, the
difference caused by the extinction effect is negligible.

IV. DISCUSSION

As mentioned earlier, simulations using the DM can accu-
rately reproduce the intensity distribution in the low-q region,
but a difference in the high-q region is still observed. This
is mostly caused by two factors. First, because of the well-
known Q−4 power law decay of the diffraction signal [30], the
measured diffraction data have many fewer photon counts in
the high-q region. Such low counts result in a much higher
uncertainty of measurement—namely, the Poisson noise—
as demonstrated by the error bars in Figs. 3(c) and 4. The
weak signal is also more susceptible to background noise like

scattering from alien scatterers [31]. Since we did not add any
noise to the simulated diffraction patterns, it is not surprising
that the simulations and data are inconsistent in the high-q
region. Second, we do not know the ground truth, and the
reconstructed crystal from the [004] dataset could still con-
tain artificial fine structures because of the noisy high-q data.
Forward simulations from such an imperfect crystal model
would inherently cause inconsistency in the high-q region
when compared with experimental data.

Besides the differences in high-q region, simulations also
show a mismatch at some specific momentum transfer values.
For example, as shown in Fig. 4(a), the second side lobe on the
+�q side always has a much higher relative intensity when
comparing simulations to the data. Although the actual cause
is unclear, a mismatch at a specific momentum transfer value
usually indicates the real space object contains artifacts with
the corresponding spatial frequency. Our hypothesis is that the
FT-based phase retrieval process introduces numerical errors
with certain spatial frequencies. As shown in Fig. 2(a), not
only the amplitude of the reconstructed object function con-
tains unphysical modulations, but also the phase term shows
visible modulations that are spatially correlated to those in
amplitude. The modulations in amplitude have been removed
before performing forward simulations, based on a physical
assumption that the effective electron density of the crystal
is uniform. The phase artifacts, however, cannot be corrected
without knowing the ground truth. A potential solution to
this problem is performing phase retrieval with constrained
amplitude variation. Such an additional constraint might force
the algorithm to find a solution with uniform amplitude distri-
bution and eliminate the nonphysical modulations in phase.

From the reconstruction of [002] shown in Fig. 1(a) and
(b), as well as the previous theoretical studies [10,22], we
can see that both the absorption/refraction effect and the
extinction effect can cause the low-intensity region in the
amplitude map and the corresponding phase artifacts. How-
ever, these two effects have different impacts in practice. The
absorption/refraction effect induces artifacts that are linearly
proportional to the optical path of x-ray inside the crystal.
Such artifacts can be identified and corrected numerically
after the phasing process, since the FT-based mathematical
model is still valid [10]. As a comparison, extinction ef-
fects usually induce nonlinear artifacts due to the fact that
3D Fourier transform is no longer sufficient to describe the
physical process. Without knowing the ground truth, it is very
difficult or almost impossible to distinguish the extinction-
induced artifacts from actual deformations in the crystal. The
forward simulation method described herein can serve as a
validation tool to evaluate the severity of the issue. By com-
paring simulated diffraction patterns from kinematical and
dynamical models with measured ones, as well as the recon-
structions from various models and measured data (as shown
in Appendix B), we can verify whether the reconstruction
result is free from dynamical artifacts.

V. CONCLUSION

In summary, we performed BCDI measurements at two en-
ergy points on the same gold crystal to evaluate the impact of
dynamical diffraction in the reconstruction. They correspond
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to two scenarios: one where the extinction length is much less
than the dimension of crystal, and the other where the extinc-
tion length is comparable to the dimension of crystal. For the
former scenario, both dynamical and kinematical models pro-
duce similar 3D diffraction intensity consistent with measured
data, suggesting that the dynamical effects are negligible. For
the latter scenario, simulation using the dynamical diffraction
model reproduces more accurately the subtle changes of the
interference fringes in the experimental data, which cannot be
achieved using the kinematical approach. We show that these
subtle changes in the diffraction pattern can lead to an erro-
neous reconstruction result with an FT-based phase retrieval
algorithm. To alleviate the dynamical artifact, a high-index
reflection with a bigger extinction depth would be preferred.
The forward reconstruction simulation method proposed here
can be used as a cross-validation tool to assess the correctness
of FT-based models. Although at the current stage a quantita-
tive correction removing the dynamical artifacts has not been
achieved, the iterative nature of the forward modeling makes
it possible to be incorporated into the iterative optimization
algorithm in the future to accommodate dynamical diffraction
effects in BCDI phase retrieval. Such an algorithm will enable
BCDI on hierarchical systems that contain large crystalline
grains and domains, which are commonly seen in emerg-
ing functional materials like additive manufactured metals,
single-crystal cathode materials, and photonic nanostructures.
Quantitively mapping strain in these systems is essential for
understanding and optimizing their functional properties.
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APPENDIX A: ESTIMATION OF EXTINCTION LENGTH
IN A FINITE CRYSTAL

In this work, the extinction length in a finite crystal is
estimated by calculating the extinction depth in a perfectly
ordered crystal, considering the symmetric case of Bragg ge-
ometry. The extinction depth is defined as the depth along the
normal direction of the surface at which the transmission in-
tensity decreased to 1/e. According to Ref. [12], the extinction
length in Bragg geometry is

LBragg
ext = λ

√
γ0|γh|

Re(
√

χhχh̄)
,

where γ0,h are the direction cosines and χh,h̄ = χrh,rh̄ + iχih,ih̄
are the Fourier components of the dielectric susceptibility.

TABLE I. Extinction depths of [002] and [004] reflections at 7.5
keV and 15 keV, respectively.

Symmetric, Bragg geometry
extinction depth (µm)

Au Reflection σ -polarized π -polarized

7.5 keV [002] 0.251 0.374
[004] 0.706 2.245

15 keV [002] 0.251 0.273
[004] 0.703 1.047

Considering the symmetric case, the extinction depth is

LBragg
ext = λsinθB

Re(
√

χhχh̄)
,

where θB is the Bragg angle. Also from Ref. [12], there is

Re(
√

χhχh̄) = |χrh| = Rλ2Frh

πV
,

where R is the classical radius of the electron, Fh = Frh + iFih

is the structure factor, and V is the volume of the unit cell.
Combining these two equations, we have

LBragg
ext = λsinθB

Re(
√

χhχh̄)
= πV sinθB

λRFrh
∼ 1

d
,

where Bragg’s law λ = 2dsinθB is used. From this equation,
we can see that for the symmetric case in Bragg geometry, if
the photon energy is not very close to the absorption edge, the
extinction depth has a linear dependence to 1/d .

The extinction depths of the [002] and [004] reflections
at two photon energies in a perfectly ordered gold crystal
are listed in Table I. We can see that the [002] reflection at
7.5 keV and the [004] reflection at 15 keV have the identi-
cal diffraction geometry but significantly different extinction
depths. Therefore, we are able to tune the ratio between the
extinction depth and the crystal size, without changing the
sample crystal or the diffraction geometry.

APPENDIX B: PHASE RETRIEVAL OF SIMULATED DATA
WITH DIFFERENT MODELS

To understand more fully the impact of absorption, re-
fraction, and extinction effects on a reconstruction from
diffraction data, we performed phase retrieval on diffraction
data simulated using three models. The results are demon-
strated in Fig. 5. For all phasing processes, 4500 iterations
were carried out, while the first 3600 iterations alternated
between 50 iterations of ER and 250 iterations of HIO, and
the remaining 900 iterations were ER only.

Figures 5(a)–5(c) demonstrate reconstructed objects from
the KA, AR, and DM, respectively, using the regular shrink-
wrap approach with a Gaussian blurry function with a 1.0
pixel width and a 20% cutoff threshold. As a comparison,
results shown in Figs. 5(d)–5(f) were retrieved using the
two-step approach described in Sec. II B. Apparently, both
approaches were able to invert the diffraction from the KA
correctly, resulting in reconstructions very similar to the crys-
tal model used for forward simulation [as shown in Figs. 5(a)
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FIG. 5. Reconstructions from diffraction data simulated using different models. (a) and (d) are retrieved from KA, (b) and (e) are from
AR, and (c) and (f) are from DM. The traditional shrink-wrap algorithm was used when inverting (a), (b), and (c), while (d), (e), and (f) were
inverted using the two-step approach described in Sec. II B.

and 5(d)]. However, it is worth noting that both recon-
structions contain amplitude modulations, while the crystal
model has a flat amplitude distribution inside the crystal
boundary.

Reconstructions from the AR simulation, as shown in
Figs. 5(b) and 5(e), have a nonuniform amplitude distri-
bution inside the crystal boundary due to the attenuation
of the transmitted x-ray beam. The retrieved crystals are
slightly different in shape. Specifically, the xz cross-section
of the crystal inverted via the regular shrink-wrap approach
[Fig. 5(b), middle] has an asymmetric, hexagonal shape,
which is different from the crystal model used for the
simulation. This can be attributed to the support that was
overtightened by the shrink-wrap approach. While tweak-
ing the parameters of the Gaussian blurry function might

correct this problem, one could easily overlook such an
inconsistency without knowing the ground truth. As a com-
parison, the two-step approach correctly retrieved the crystal
shape.

For the DM simulation, phasing with the shrink-wrap ap-
proach was not able to obtain a reasonable crystal shape
due to stagnation. The two-step approach, however, was still
able to get the correct shape. Meanwhile, compared with
the reconstruction of the AR simulation, which shows a rel-
atively smooth phase, reconstruction of the DM simulation
contains significant phase artifacts that are spatially correlated
with the artifacts in amplitude distribution. In practice, such
phase artifacts are likely to be interpreted as localized de-
fects, while the ground truth or complementary information is
lacking.
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