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Observation of Floquet topological phases with large Chern numbers
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Floquet engineering offers a powerful approach to the generation of nonequilibrium topological phases with
large topological invariants and hence a proliferation of topological edge modes. It is thus of importance to
develop feasible experimental approaches to detect such topological phases. Using the nitrogen-vacancy center in
diamond and its synthetic dimensions, here we experimentally demonstrate how Floquet Chern insulator phases
can be clearly detected through imaging the static and dynamic spin textures in momentum space. In particular,
we simulate a periodically quenched generalized Haldane model and observe different topological phases with
Chern numbers C = 1, 2, 4. In addition to confirming the versatility of Floquet driving in generating phases with
large Chern numbers, this work clearly establishes an experimental method to detect Floquet topological phases
in two and higher spatial dimensions.
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I. INTRODUCTION

Floquet systems can host rich nonequilibrium topolog-
ical phases induced by time-periodic driving fields [1–4].
They feature large topological numbers [5–8], unique sym-
metry classifications [9–11], and anomalous edge states with
no static analog [12–14]. The experimental observation of
Floquet topological matter in cold atoms [15–17], photonic
setups [18–20], solid state systems [21–23], etc., further stim-
ulated considerable research activities to realize, engineer,
control, and detect quantum materials from a dynamical per-
spective [24].

Given that the range of achievable topological invariants
may become large in Floquet systems, it is important to
develop experimental capabilities to reliably detect multi-
ple Floquet topological phases. One promising route is to
connect measurements of spin textures in momentum space
with various phases with different topological invariants. As
a proof-of-principle demonstration, in this paper we first ex-
perimentally realize a (periodically modulated) generalized
Haldane model (GHM) on a single spin quantum system in
diamond and then observe its large-Chern-number Floquet
phases by imaging the spin textures.

We choose a driven version of the Haldane Chern insulator
model for a number of reasons. First of all, the Haldane
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model originally describes noninteracting particles hopping in
a honeycomb lattice and subject to staggered magnetic flux
that breaks the time-reversal symmetry without introducing
net magnetic fields [25]. Indeed, the Haldane model serves
as a cornerstone in the conceptualization of topological insu-
lators. Second, Floquet driving played a key role in the first
realization of the Haldane model using ultracold atoms [15].
However, in cases of high-frequency drivings [26], the exper-
imentally realized Haldane model only exhibits phases with
Chern numbers C = ±1. The high-frequency driving used did
not unleash the full power of Floquet driving in realizing
topological phases with large topological invariants. Clearly
then, to obtain Floquet Chern insulators with large Chern
numbers, near-resonant periodic modulation is more suitable
because it can reshape the band structure in a nonperturbative
manner [5,27–31]. We are thus motivated to start with a real-
ization of the Haldane model using the synthetic dimensions
available in a nitrogen-vacancy (NV) system, with its system
parameters periodically quenched with time. Note, however,
that the focus of this work is on the successful detection of the
obtained Floquet topological phases by a scheme adaptable to
true condensed-matter systems.

II. THEORY

A Floquet quantum system is described by a Hamiltonian
H (t ) that is time periodic, i.e., H (t ) = H (t + T ), with T
being the driving period. As we are concerned with the stro-
boscopic physics of the system, we can focus on its evolution

2469-9950/2022/106(18)/184106(6) 184106-1 ©2022 American Physical Society

https://orcid.org/0000-0003-3312-5566
https://orcid.org/0000-0001-8085-8012
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.184106&domain=pdf&date_stamp=2022-11-21
https://doi.org/10.1103/PhysRevB.106.184106


KAI YANG et al. PHYSICAL REVIEW B 106, 184106 (2022)

operator U over a single driving period, which is called the
Floquet operator and defined formally as the time-ordered
integral U = T e−(i/h̄)

∫ T
0 H (t )dt . The eigenvalue equation of U

is U |ψ〉 = e−iE |ψ〉, which defines the Floquet eigenstate |ψ〉
and its quasienergy E ∈ [−π, π ). If H (t ) possesses a discrete
translational symmetry in space, U will carry the same sym-
metry and its eigenvalues E could group into bands, which
are analog to the energy bands of static periodic systems
and are usually dubbed Floquet quasienergy (or Floquet-
Bloch) bands. These bands and their Floquet eigenstates could
possess topological features that are usually richer than or
sometimes go totally beyond the system described by H (t )
in its static limit.

Floquet Chern insulators constitute a unique class of
nonequilibrium topological matter in Floquet systems. In
two dimensions, they are characterized by a set of Floquet
quasienergy bands that is gapped from the other bands and
possesses a nonvanishing first Chern number. The first Chern
number is a topological invariant that can only take quan-
tized integer values. In the case that a single isolated Floquet
band is filled, this Chern number can be found by integrating
the Berry curvature of Floquet eigenstates in this band over
the first Brillouin zone (BZ), a procedure that is similar
to how the Chern number is obtained for a static energy
band [32]. To be concrete, we now concentrate on a generic
two-dimensional two-band lattice model described by the
Hamiltonian H = ∑

k∈BZ |k〉H (k)〈k| in momentum space,
with H (k) = h(k) · σ = hxσx + hyσy + hzσz. Here, h(k) =
(hx, hy, hz ) is a three-component vector, σ = (σx, σy, σz ) are
Pauli matrices, and k = (k1, k2) is the quasimomentum. The
Floquet operator of the system describes its evolution over a
driving period T (e.g., from t = 0 to T ), which is given by

U =
∑
k∈BZ

|k〉U (k)〈k|, U (k) = e−iT2h2(k)·σe−iT1h1(k)·σ . (1)

Here, we set the Planck constant h̄ = 1 and utilize a piece-
wise quench protocol with the period T = T1 + T2, in which
h = h1 (h = h2) for t ∈ [0, T1] (t ∈ [T1, T ]). The Floquet
spectrum of the system is obtained by solving the eigen-
value equation U (k)|ϕ〉 = e−iE (k)|ϕ〉, where the quasienergy
E (k) ∈ [−π, π ). In general, there are two quasienergy bands
separated by gaps at E = 0, π . Performing Taylor expansions
for each of the exponential terms in U (k) and recombining the
relevant terms, the quasienergy dispersions are found to be
E±(k) = ± arccos[cos(T1|h1(k)|) cos(T2|h2(k)|)]. In the ab-
sence of the time-reversal symmetry, each gapped phase of
the system could represent a Floquet Chern insulator (FCI)
characterized by the Chern number [31]

C =
∫

BZ

d2k
4π

d(k) · [∂k1 d(k) × ∂k2 d(k)]

|d(k)|3 . (2)

Here, d(k) = (dx, dy, dz ) is a vector formed by the compo-
nents of the Floquet effective Hamiltonian H(k) = d(k) · σ =
dxσx + dyσy + dzσz, with H(k) ≡ i

T ln U (k). In general these
components can be obtained from U (k) numerically. When
the gap between the two Floquet bands E±(k) closes or
reopens at E = 0 or E = ±π , the system may undergo a
topological phase transition followed by the quantized jump
of C from one integer to another. Periodic driving fields could

further induce many such transitions and yield Floquet bands
with large Chern numbers [31].

In experiments, we detect the Floquet Chern number of
the system by imaging its spin texture in k space. Consider
a general normalized state |ψ (k)〉 = ∑

s=± cs(k)|us(k)〉 with
the quasimomentum k, where |u±(k)〉 are Floquet eigenstates
of U (k) or H(k) with the quasienergies E±(k). Solving the
eigenvalue equation H(k)|u±(k)〉 = E±(k)|u±(k)〉, we can
find the explicit form of |u±(k)〉 as

|u±(k)〉 = 1√
2E±(k)[E±(k) − dz]

(
dx − idy

E±(k) − dz

)
. (3)

The expectation value of spin σ j over the state |ψ (k)〉 is ob-
tained as 〈σ j〉k = [|c+(k)|2 − |c−(k)|2]d j (k)/E+(k) for j =
x, y, z. The spin texture is then formed by the configuration
of (〈σi〉k, 〈σ j〉k, 〈σl〉k ) in k space for any i, j, l = x, y, z with
i �= j �= l . Under the condition |c+(k)|2 �= |c−(k)|2, the static
winding angle (SWA) of the spin texture at each k is defined
as [33]

θ jl (k) ≡ arctan

( 〈σ j〉k

〈σl〉k

)
= arctan

(
d j

dl

)
. (4)

Assuming |c+(k)|2 > |c−(k)|2 without loss of generality,
we can extract the Chern number C from the spin texture
(〈σi〉k, 〈σ j〉k, 〈σl〉k ) through the relation [33,34]

C = 1

2

∑
k0∈SPs

sgn(〈σi〉k0 )w(k0), (5)

where SPs stands for singularity points. Here, each quasimo-
mentum k0 resides at a phase singularity of θ jl in k space,
which appears under the condition 〈σ j〉 = 〈σl〉 = 0. w(k0)
is an integer-quantized winding number defined along an in-
finitesimal clockwise path Sk0 around k0, i.e.,

w(k0) =
∮

Sk0

dk
2π

∂kθ jl (k). (6)

By preparing the system in the state |ψ (k)〉 and measuring
the spin texture (〈σi〉k, 〈σ j〉k, 〈σl〉k ) in k space, the Chern
numbers of different FCI phases in the periodically quenched
model can be obtained in experiments.

We can also extract the Chern numbers of FCIs
from the dynamical spin textures [33,35,36]. To this
end, let the state of the system be prepared generally
in |ψ (k)〉 = ∑

s=± cs(k)|us(k)〉. After the evolution over
� driving periods guided by U (k), it reaches the state
|ψ (k, �T )〉 = ∑

s=± cs(k)e−i�Es (k)|us(k)〉 following the Flo-
quet eigenvalue equation U (k)|us(k)〉 = e−iEs (k)|us(k)〉 with
s = ±, yielding the spin expectation value σ j (k, �T ) ≡
〈ψ (k, �T )|σ j |ψ (k, �T )〉 for j = x, y, z. The long-time strobo-
scopic average of σ j (k, �T ) is then given by

σ j k = 1

NT

N∑
�=1

σ j (k, �T ) (7)

for N ∈ Z and N � 1, from which we obtain the dynamic
winding angle

η jl (k) = arctan

(
σ j k

σl k

)
. (8)
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(a) (b) (c)

FIG. 1. Quasienergy spectrum of the periodically quenched GHM under periodic boundary conditions. (T1, T2) are set as (0.3,0.3),
(0.9,0.8), and (0.9,1.2) in (a)–(c), with Chern numbers marked on the two Floquet bands. Other parameters are (t1, t2) = (1, 0.8).

In the limit N → ∞ and under the condition |c+(k)|2 >

|c−(k)|2, it can be shown that η jl (k) = θ jl (k) and
sgn(〈σi〉k ) = sgn(σik) [35], with i, j, l = x, y, z and
i �= j �= l . This finally allows us to obtain the Chern number C
in Eq. (5) from the long-time averaged dynamic spin texture
(σik, σ j k, σl k ) in k space. In experiments, the dynamic
approach allows one to probe the nonequilibrium Floquet
Chern topology without having the complete knowledge
about the Floquet Hamiltonian and the initial state.

III. MODEL AND EXPERIMENT

To apply our scheme to the detection of Floquet band
Chern numbers in experiments, we start with the Bloch
Hamiltonian of a generalized Haldane model and apply time-
periodic quenches to its hopping parameters. Expressing
the Bloch Hamiltonian of the GHM in the form H (k) =
h(k) · σ, the components in h(k) = (hx, hy, hz ) are explicitly
given by hx = t1(1 + cos k1 + cos k2) + t3[2 cos(k1 − k2) +
cos(k1 + k2)], hy = t1(sin k1 + sin k2) + t3 sin(k1 + k2), and
hz = 2t2 sin φ[sin k1 − sin k2 − sin(k1 − k2)]. Here, t1, t2, and
t3 represent the first-, second-, and third-neighbor hopping
amplitudes of the GHM. φ ∈ [−π, π ) is a phase factor
accompanying the second-neighbor hopping. In the static
limit, this GHM admits topological phases with a maximal
Chern number C = 2 [37,38]. Meanwhile, much richer Chern
topology could emerge via applying time-periodic quenches
to the GHM [31]. In this paper, we realize piecewise pe-
riodic quenches of the system parameters (t3, φ), so that
(t3, φ) = (0.75,−π/6) for t ∈ [nT, nT + T1) and (t3, φ) =
(−0.75,−π/2) for t ∈ [nT + T1, nT + T1 + T2). Here, t de-
notes time, n ∈ Z, and T = T1 + T2 represents the driving
period. The system Hamiltonians in the time duration T1 and
T2 have the form of H (k) and differ only in their parameters
(t3, φ). Typical spectra of the periodically quenched GHM
are shown in Fig. 1, where we observe two Floquet bands
E±(k) separated by quasienergy gaps at E = 0 and ±π . The
two bands could touch when E±(k) = 0 or ±π , yielding the
following gap-closing conditions [31]:

h1(k)/|h1(k)| = ±h2(k)/|h2(k)|,
|h1(k)T1| ± |h2(k)T2| = nπ for n ∈ Z. (9)

In Fig. 2(a), we report the topological phase diagram of
the periodically quenched GHM for different quench dura-
tions (T1, T2) [31]. Distinct FCI phases carry different Chern

numbers C as defined in Eq. (2), and phases with large C
(= ±4,±5,±7) are observed, which go markedly beyond
the allowed Chern insulator phases in the nondriven Haldane
model [25,37,38].

FIG. 2. Topological phase diagram of the periodically quenched
GHM and the experimental system. (a) The topological phase di-
agram in (T1, T2) space. Each area of the same color shares the
same Chern number as marked therein. The three polygonal markers
correspond to the three groups of parameters in our experiments.
Other system parameters are (t1, t2) = (1, 0.8). (b) Magnetic field
dependence of the NV’s energy levels in the ground state. A magnetic
field of around 510 G parallel to the NV axis is selected in the
experiment. MW, microwave. (c) The structure of an NV center in
the diamond lattice. The magnetic field is adjusted to be along the
NV axis.
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We simulate the the periodically quenched GHM by a sin-
gle spin system and measure its Floquet band Chern number
in experiments based on a nitrogen-vacancy (NV) center in
diamond [39]. As shown in Fig. 2(c), the NV center [40–42]
is a kind of impurity in the diamond crystal lattice. It has
emerged as one of the most promising systems for implement-
ing quantum technologies due to its superior optical and spin
properties [43,44]. We use the spin state of NV to simulate the
Floquet Hamiltonian of GHM in k space. The NV center is
addressed by a home-built confocal microscope. The 532-nm
laser which can be switched by an acousto-optic modulator
(AOM) is focused into the diamond by an oil objective, and
the excited fluorescence can be collected by the same objec-
tive and finally detected by an avalanche photodiode with a
counter card. In our experiment, an external static magnetic
field of around 510 G parallel to the NV symmetry axis [see
Fig. 2(b)] is used for polarization of the host 14N nuclear spin,
owing to resonant polarization exchanges with the electronic
spin in the excited state [45]. The magnetic field is adjusted
by a permanent magnet mounted on a three-axis translation
stage.

The Hamiltonian of the NV center’s electronic ground state
with a magnetic field B applied along the NV axis is HNV =
DS2

z + γ BSz, where Sz is the angular momentum operator for
spin 1, D = 2π × 2870 MHz is the zero-field splitting, and
γ = 2π × 2.8 MHz/G is the electron’s spin gyromagnetic
ratio. Here the NV axis is chosen to be the z axis. We can
choose an eigenstate |ms = +1〉 or |ms = −1〉 to form a well-
defined qubit with |ms = 0〉. The qubit state |0〉 is selected
as |ms = 0〉, which is easier to be initialized by laser. Driven
by a designed microwave pulse sequence, the Hamiltonian of
this subspace, which was employed for the simulation, can
then be built using spin-1/2 operators. Here the microwaves
driving the evolution of NV spin are generated from an ar-
bitrary waveform generator (AWG), then enhanced by the
power amplifier, and finally radiated to the NV center from a
coplanar waveguide. All these microwave manipulations and
qubit states are described in the rotating frame.

In the SWA experiments shown in Fig. 3, we run the pulse
sequence at each pixel in k space separately. Figure 3(a)
shows the pulse sequence used in these experiments. This
sequence is composed of three sections: preparation, evolu-
tion, and measurement. After going through the preparation
section, the qubit state is initialized to |0〉 by a laser pulse.
Then a resonant microwave pulse is applied to drive the state’s
evolution until the final state becomes an eigenstate of H(k).
To derive the required driving pulse, we take every k as a
control parameter to obtain the Hamiltonian H(k) and its
eigenstates. The shape and duration of the pulse are denoted
by R(k) and τ (k) in Fig. 3(a). The final section is used to
measure σx, σy, or σz. For the measurement of σx and σy, a
π/2 rotation around the direction of −y and x, respectively, is
implemented before the optical readout of the NV spin state.
This rotation pulse is not needed for σz. The final readout of
the qubit is obtained by calculating the contrast of the photon
count obtained by two counting windows, which correspond
to the signal and reference detections. After repeating the
sequence 200 000 times and taking the average, we get the
value of 〈σi〉k (i = x, y, z) at each k. Then we figure out the
value of the SWA following Eq. (4).

FIG. 3. Static winding angle (SWA). (a) Pulse sequence used for
qubit control and measurement in SWA experiments. (b)–(d) show
the distributions of SWAs in k space, with the left and right panels
obtained from theory and experiment, respectively. Each singularity
point is circled in red and marked with the corresponding winding an-
gle. The parameters in (b), (c), and (d) are set as (T1, T2) = (0.3, 0.3),
(0.9,0.8), and (0.9,1.2), respectively. Other parameters are the same
as those in Fig. 2(a). (e) The SWA distribution on a closed square
shown in the right panel in (c). Black circles and the red curve
represent experimental and theoretical results, respectively.

In the experiments, we select three representative sets
of parameters corresponding to different topological num-
bers in the phase diagram of the periodically quenched
GHM, and detect the distributions of the SWA in k space,
respectively. These selected parameters are marked in
Fig. 2(a) and correspond to the three spectra in Fig. 1. Fig-
ures 3(b)–(d) show the SWA distributions in k space obtained
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FIG. 4. Dynamical winding angle (DWA). (a) Pulse sequence
employed for qubit control and measurement in DWA experiments.
(b) The distribution of the DWA in k space obtained from theoretical
calculation. Here the system is evolved over N = 64 driving periods
under the time-periodic Hamiltonian whose parameters are chosen
as (T1, T2) = (0.9, 0.8). The rest of the parameters are the same as
those chosen for other experiments. (c) Experimental demonstration
of the DWA. The value of k is selected from the marked boxed area
in (b). (d) DWA distribution on a closed loop depicted by the square
boundary in (c). Black circles represent experimental values, and the
red curve shows the theoretical result from the SWA calculations,
which are coincident with the DWA in the limit N → ∞. The loop
is the same as that used in Fig. 3(c).

theoretically and experimentally. Comparing the left and right
panels in Figs. 3(b)–(d), it is clear that our experimental re-
sults match the theoretical expectations. The detection of the
SWA near each singularity point is crucial to determine the
Chern numbers of Floquet bands. In Fig. 3(e), we show the
SWA distribution along a closed square marked in Fig. 3(c)
to demonstrate the typical singularity with winding number
+1. Following Eqs. (5) and (6), one can calculate the Chern
number using the winding numbers of all singularity points.
The weight of each winding number is determined by the sign
of 〈σi〉k which is not used in the calculation of θ jl (k). The
Chern numbers of H(k) are found to be 1, 2, and 4 in the
three groups of experiments.

Beyond the SWA, one can also obtain the Chern number
of the system by probing the dynamic winding angle (DWA),
which is robust to initial state preparations. We theoretically
calculate the distribution of the DWA and show it in Fig. 4(b).
The experimental results are shown in Fig. 4(c), and the scan-
ning region of the experiment is the area marked in Fig. 4(b).
We show the DWA distribution on the anticlockwise boundary
of this area in Fig. 4(d), in order to illustrate the singularity

with winding number +1. The parameters adopted here are
consistent with those in Fig. 3(c), and the state is evolved over
N = 64 driving periods. The pulse sequence for measuring
spin expectation values σ j (k, �T ) ( j = x, y, z) is shown in
Fig. 4(a). In the preparation, the spin can be initialized to
an arbitrary state. For convenience, the initial state of each
experiment is set to |0〉. During the evolution, the spin state
is continually driven for up to N = 64 periods, each of which
includes two parts that corresponded to parameters T1 = 0.9
and T2 = 0.8, respectively. The measurement section of the
experiment is the projection readout of the spin state on the
three coordinate axes, which is the same as the last section in
Fig. 3(a). Spin expectation values are calculated by averag-
ing all the measurement results after repeating the sequence
200 000 times. After all the data are obtained, we use Eq. (7) to
calculate σ j k ( j = x, y, z) and get the further calculated η jl (k)
in Fig. 4(c).

IV. SUMMARY

In this paper, we experimentally realized a periodically
quenched generalized Haldane model on an NV center in
diamond and observed FCI phases therein with large Chern
numbers by imaging the static and dynamic spin textures in
the momentum space. Our approach is generic, insensitive to
the initial state preparation, and in principle extendable to the
realization and detection of FCI phases following arbitrary
driving schemes in two-band models. In future work, it would
be interesting to consider generalizing our strategy to realize
and detect Floquet topological phases in multiband systems,
higher spatial dimensions, and other symmetry classes. A par-
ticularly interesting class of Floquet matter is the anomalous
Floquet topological insulator with winding chiral edge states
and unique spatiotemporal topology [12,17,36]. There, the
topological invariants are (2 + 1)-dimensional winding num-
bers defined for quasienergy gaps, instead of the Floquet band
Chern numbers measured in this paper. An extension of our
scheme to realizing and detecting anomalous Floquet phases
also forms an intriguing future direction of study.
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