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Physics of phonons in systems with approximate screw symmetry
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The properties of systems with exact n-fold screw symmetry (n = 2, 3, 4, 6) have been well-studied because
they can be understood in terms of space groups. On the other hand, the existence of materials with approximate
screw symmetries, such as sevenfold and tenfold screw symmetries, has been predicted. In this paper, we study
the properties of phonons in crystals with approximate screw symmetries, which will lead to unique and new
physical phenomena. In a crystal with an approximate screw symmetry, we propose a method to extract infor-
mation on the pseudoangular momentum of phonons, which is a quantum number characterizing the properties
of phonon modes under screw symmetry, based on the fact that the information of the quantum numbers defined
under exact screw symmetry partially remains in the eigenvectors of approximate screw symmetric systems. As a
preparation, we study a one-dimensional crystal with partially broken translation symmetry that has an enlarged
unit cell, and we show how to extract information on a quantum number corresponding to the pseudoangular
momentum by studying a relative phase between neighboring atoms. We also extend this method to systems with
an approximate screw symmetry, and we discuss the properties of the pseudoangular momentum. We apply this
method to the results of our first-principles calculations on candidate materials with an approximate translational
symmetry or with an approximate screw symmetry, and we show how this approximate symmetry is reflected in
the phonon wave functions.

DOI: 10.1103/PhysRevB.106.184104

I. INTRODUCTION

A phonon is a quasiparticle of quantized lattice vibrations,
and it has long been studied to account for various physical
properties such as specific heat, transport, and electric resis-
tance. Recently, chiral phonons, in which atomic motions have
rotational components with chirality, have been predicted the-
oretically [1] and observed experimentally [2]. In addition,
chiral phonons are expected to have a variety of applications,
and they have been studied extensively [3–20]. Furthermore,
the concept of chiral phonons has been studied in crystals
with screw symmetry, and interactions with other particles
with chirality and experimental methods have been proposed
[21–37].

So far, the properties of chiral phonons have been stud-
ied in materials with exact rotational and screw symmetries.
In this case, chiral phonons are characterized by a quan-
tity known as pseudoangular momentum [1,25,38], which is
used to discuss interactions with other particles. The def-
inition of pseudoangular momentum is based on rotation
or screw symmetry. As crystallographic symmetries, those
symmetries are limited to n-fold rotation and screw rotation
symmetries with n = 2, 3, 4, 6. On the other hand, materi-
als with approximate screw symmetries such as 72 screw
and 107 screw symmetries are predicted. Since pseudoangu-
lar momentum cannot be defined for the approximate screw
symmetry, it cannot be defined directly in such systems.
However, we can expect that materials with approximate sym-
metries have the same pseudoangular momentum information
as those with strict screw symmetries. Therefore, in this

paper, we discuss how to extract information on pseudoan-
gular momentum for phonons in systems with approximate
symmetry, starting with approximate translation symmetry
and then extending to approximate screw rotation symmetries.
Furthermore, we also discuss the characteristic behaviors of
phonon eigenmodes in these materials with approximate sym-
metries. Such properties under approximate symmetry affect
physical processes involving various particles/quasiparticles,
such as electronic processes involving multiphonons/photons
and exciton scattering processes. In systems with exact sym-
metry, the symmetry restricts such processes as selection
rules, and even when the symmetry is not exact but ap-
proximate, selection rules remain valid. While exact screw
rotation symmetries are limited in crystals to twofold, three-
fold, fourfold, and sixfold symmetries due to the restriction
of translational symmetry, an approximate screw symmetry
leads to a richer variety of multifold screw symmetries, such
as sevenfold and tenfold symmetries, and they will lead to
selection rules that are absent for exact screw symmetries.
Furthermore, anisotropy in transport properties involving chi-
ral phonons will also be reflected in the approximate screw
symmetry. Thus, the approximate screw symmetries affect
phonon-related transport phenomena.

This paper is organized as follows. In Sec. II, we study
phonons in a one-dimensional crystal with approximate trans-
lation symmetry, i.e., slightly broken translation symmetry
resulting in an enlarged unit cell. From the relative phases
between neighboring atoms in the case with exact translation
symmetry, we show how to obtain the quantum num-
ber, which corresponds to the pseudoangular momentum in
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three-dimensional (3D) systems, for crystals with approxi-
mate translation symmetry. In Sec. III, we show how to extract
the phonon pseudoangular momenta for crystals with approx-
imate screw symmetries, which are also obtained from the
exact screw symmetries, and we discuss their properties. In
Sec. IV, we apply this method to first-principles calculations
on phonon modes in candidate materials, and we show that the
approximate symmetries are well-reflected in phonon wave
functions. In Sec. V, we summarize the paper.

II. ONE-DIMENSIONAL PHONON

In this section, we study a phonon quantum number in
one-dimensional crystals with partially broken translational
symmetry, i.e., approximate translation symmetry, such that
the unit cell is enlarged by a factor n (n is an integer), and
we discuss the phase properties of the phonon eigenvectors.
We consider a one-dimensional chain of atoms with equal
spacing a/n (a is a constant, n is an integer), and the atoms
can oscillate only along the chain direction. We begin with
the case with all the atoms being equivalent, leading to a
translation symmetry by a/n [Fig. 1(a-1)].

Then we perturb the system while preserving a translation
symmetry by a [Fig. 1(a-2)]. Thus, the size of the resulting
unit cell becomes a, having n atoms. The Hamiltonian of the
one-dimensional phonon system is

H =
∑
l,l ′

(
1

2
pT

l plδl.l ′ + 1

2
uT

l Kl,l ′ul ′

)
, (1)

where ul = (ul,1, ul,2, . . . , ul,n)T, ul,i is a displacement of the
ith atom in the lth unit cell multiplied by the square root
of the mass of the atom, and pl,i is a conjugate momentum
corresponding to ul,i. The atoms are mutually connected by
springs, and Kl,l ′ is a mass-weighted force constant matrix.

Because of the translation symmetry by a, the Hamilto-
nian H commutes with a translation operator T̂a by length a:
[H, T̂a] = 0. Therefore, from Bloch’s theorem, the eigenfunc-
tion ψ (x) of the Hamiltonian H satisfies T̂aψ (x) = e−ikaψ (x)
(−π

a < k � π
a ), where k is the Bloch wave number corre-

sponding to the translation T̂a. Furthermore, if the system
preserves the translation symmetry by length a/n represented
by T̂a/n, [H, T̂a/n] = 0 holds and the eigenfunction ψ (x) sat-
isfies T̂a/nψ (x) = e−ik′a/nψ (x) (− nπ

a < k′ � nπ
a ), where k′ is

the Bloch wave number corresponding to the translation T̂a/n.
By using (T̂a/n)n = T̂a, we can relate k and k′ as eika = eik′a,
i.e., k′ = k + 2mπ

a , (m is an integer). Therefore, we have

Ta/nψ (x) = e−i(ka+2πm)/nψ (x)
(−π

a
< k � π

a

)
, (2)

where m is given by

m ≡
{

0,±1, . . . ,±(n − 1)/2 for n odd
0,±1, . . . ,±(n − 2)/2, n/2 for n even (mod n).

(3)

This integer m is regarded as a quantum number having infor-
mation of the chain with exact T̂a/n symmetry, and it is defined
in terms of modulo n, as we discuss in the following. From
now on, in this section, we discuss how the information of
the quantum number m remains in the eigenfunction when the

FIG. 1. Phase differences between neighboring atoms for the
one-dimensional phonon system. (a) Schematic picture of the system
(a-1) with and (a-2) without T̂a/n translation symmetry. (b-1),(b-2)
Band dispersions ωk for the systems with (b-1) exact translational
symmetry T̂a/3 (c1 = c2 = c3 = 1) and (b-2) broken translational
system T̂a/3 (c1 = 1, c2 = 1.1, c3 = 1.2). (c-1),(c-2) Relative phase
θ

(σ=2)
i (k) of the second band from the bottom, and (d-1),(d-2) tra-

jectory of the complex number zi(k) of the second band from the
bottom (σ = 2). Parts (c-1),(d-1) correspond to the case with exact
translational symmetry in (b-1), and (c-2),(d-2) correspond to the
case with broken translation symmetry T̂a/3 in (b-2).

translational symmetry T̂a/n is slightly broken while keeping
the translational symmetry T̂a.

We label the atoms in the unit cell of the one-dimensional
system to be 1, 2, . . . , n, and we assume that the springs
exist only between neighboring atoms [Fig. 1(a-2)]. Then, the
phonon dynamical matrix D(k) for the system is written as

D(k) =

⎛
⎜⎜⎜⎝

c1 + cn −c1 · · · 0 −cne−ika

−c1 c1 + c2 · · · 0 0
...

...
. . .

...
...

0 0 · · · cn−2 + cn−1 −cn−1
−cneika 0 · · · −cn−1 cn−1 + cn

⎞
⎟⎟⎟⎠, (4)

where k is the Bloch wave number corresponding to the
translation T̂a, and it has a value in range −π

a < k � π
a . Let

ci (i = 1, . . . , n − 1) denote the spring constant between atom
i and atom i + 1, and let cn denote the spring constant between
atom n and atom 1 of the neighboring unit cell. The crystal
has the translational symmetry Ta/n when the spring constants
ci (i = 1, . . . , n) are all equal, in which case the eigenvector
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of the dynamical matrix D(k) for the σ th eigenmode is

ε
(σ )
k =

⎛
⎜⎜⎝

1
ei(ka+2mπ )/n

...

ei(n−1)(ka+2mπ )/n

⎞
⎟⎟⎠. (5)

Here the ith component of the eigenvector ε
(σ )
k of the dy-

namical matrix D(k) represents the displacement of atom i.
Therefore, to exact the information of the quantum number
m from this eigenvector for the mode σ , we define a relative
phase θ

(σ )
i (k) between atom i and atom i + 1 as

z(σ )
i (k) =

{
ε

(σ )
k,i+1/ε

(σ )
k,i , i = 1, . . . , n − 1,

ε
(σ )
k,1 eika/ε

(σ )
k,n , i = n,

(6)

θ
(σ )
i (k) = arg z(σ )

i (k), (7)

where we take the branch −π < θ
(σ )
i (k) � π . When the

system has the exact translational symmetry T̂a/n, from the
eigenvector Eq. (5), the values of z(σ )

i (k) and θ
(σ )
i (k) are

z(σ )
i (k) = ei ka+2mπ

n , (8)

θ
(σ )
i (k) = ka + 2mπ

n
(9)

for i = 1, . . . , n, and the relative phase is a linear function
with an intercept equal to 2mπ/n. On the other hand, when
the translational symmetry T̂a/n is broken by slightly changing
the value of the spring constant ci, we can also define the rela-
tive phases for the eigenvector. Therefore, we can calculate the
relative phases for the case with broken symmetry and extract
the information of the quantum number m.

As an example, we calculate the relative phase θ
(σ )
i (k) in a

specific model when we break the translational symmetry Ta/n

while keeping the translational symmetry Ta, corresponding
to the change from Figs. 1(a-1) to 1(a-2). We take the number
of atoms in the unit cell to be n = 3. In this calculation, the
spring constants are varied from c1 = c2 = c3 = 1 to c1 =
1, c2 = 1.1, c3 = 1.2 in order to break the translational sym-
metry Ta/3 while keeping the translational symmetry Ta. Then,
the phonon dispersion changes from Figs. 1(b-1) to 1(b-2)
and the relative phase θ

(σ )
i (k) of the σ = 2 band [the blue

band in Figs. 1(b-1) and 1(b-2)] changes from Figs. 1(c-1) to
1(c-2), and z(σ )

i changes from Figs. 1(d-1) to 1(d-2). From the
results of Fig. 1, in the case with the translational symmetry
Ta/3, the relative phases θ

(σ )
i (i = 1, 2, 3) are independent of

i and linear in k, and the complex number z(σ )
i (k) is on the

unit circle in the complex plane [see Eq. (8)]. Next, when
the translational symmetry T̂a/3 is slightly broken, the relative
phase θ

(σ )
i (k) and the complex number z(σ )

i (k) remain almost
the same with the case with strict translational symmetry T̂a/3.
Therefore, by calculating the relative phase for the case of
slight symmetry breaking and comparing it with that for the
case of strict symmetry, we can extract the information on the
quantum number m for each mode. We show the results of the
values of m in Figs. 1(b-1) and 1(b-2).

We can naturally understand the behaviors of the quantum
number m using the extended Brillouin zone (BZ). When the
system has exact translational symmetry of a/3, the Brillouin
zone is extended to −3π/a � k � 3π/a. The band dispersion

FIG. 2. Phonon dispersions and relative phases between neigh-
boring atoms in the extended Brillouin zone. (a-1) Band dispersion
ωk,σ and (a-2) relative phase θi(k) for the system with translation
symmetry T̂a/3 (c1 = c2 = c3 = 1). In the extended Brillouin zone
(BZ), there is only one band with the quantum number m = 0. By
folding the BZ into the region −π/a � kπ/a (light yellow region),
the wave number k is shifted and the quantum number m changes
accordingly. The wave number k in the region “BZ(1)” (light green
region) is shifted by −2π , and the quantum number m changes by
+1. Similarly, the wave number k in the region “BZ(−1)” (light
blue region) is shifted by 2π , and the quantum number m changes
by −1. (b-1) Band dispersion ωk,σ and (b-2) relative phase θi(k) for
the system without translation symmetry T̂a/3 (c1 = 1, c2 = 1.1, c3 =
1.2). The relative phase holds the linear tendency before breaking
the symmetry T̂a/3, but it changes significantly at the time-reversal
invariant momenta k = lπ/a (l is an integer).

in the extended Brillouin zone for the systems with exact
translation symmetry T̂a/3 (c1 = c2 = c3 = 1) is shown in
Fig. 2(a-1). In this zone scheme, there is only the phonon
branch [solid line in Fig. 2(a-1)], and its relative phase is given
by

θi(k) = ka

n
, (10)

which corresponds to m = 0 in Eq. (9). This is seen from our
numerical result for the relative phase shown as a black line in
Fig. 2(a-2). When the unit-cell size is enlarged to a, the Bril-
louin zone becomes −π/a � k � π/a and the phonon bands
are folded into this new Brillouin zone. Copies of the original
phonon band appear as shown in broken lines in Fig. 2(a-1). In
this case, the right-neighboring Brillouin zone [BZ(1)] moves
to the center Brillouin zone [BZ(0)], which adds +1 to the
quantum number m, and the left-neighboring Brillouin zone
[BZ(−1)] moves to BZ(0), adding −1 to the quantum number
m. As a result, three branches appear within the new BZ.
From this argument, it shows that when k increases and goes
across the boundary of the Brillouin zone from k = π/a to
k = −π/a, the quantum number m (mod n) increases by +1,
which is consistent with the discussions in Ref. [25]. When
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TABLE I. Quantum numbers p(σ )
0,i , p(σ )

π,i , and w
(σ )
i of the model of

Fig. 1.

σ p(σ )
0,1 p(σ )

0,2 p(σ )
0,3 p(σ )

π,1 p(σ )
π,2 p(σ )

π,3 w
(σ )
1 w

(σ )
2 w

(σ )
3

1 0 0 0 1 0 0 1 0 0
2 1 1 0 0 0 1 1 1 −1
3 0 1 1 1 1 1 1 0 0

the T̂a/3 symmetry is broken, the crossings in Fig. 2(a-1) will
become anticrossings as shown in Fig. 2(b-1) for c1 = 1, c2 =
1.1, c3 = 1.2. Within the extended zone scheme, the relative
phases for the system with slightly broken translation symme-
try T̂a/3 behave similarly to Eq. (10), as shown in Fig. 2(b-2)
expect for k ∼ 0 and k ∼ π . From this we can interpret that
the band has quantum numbers like Figs. 1(b-1) and 1(b-2).

On the other hand, near the time-reversal invariant mo-
menta k = 0, π/a, the relative phase θ

(σ )
i (k) and the complex

number z(σ )
i (k) largely deviate from those in the system with

Ta/n symmetry. In particular, at k = 0, π/a, the relative phase
θ

(σ )
i (k) quantizes to 0 or π because of the time-reversal sym-

metry. To quantify this behavior, we define three quantum
numbers from the relative phase θ

(σ )
i (k):

p(σ )
0,i ≡ θ

(σ )
i (0)/π (mod 2), (11)

p(σ )
π,i ≡ θ

(σ )
i (π/a)/π (mod 2), (12)

w
(σ )
i = 1

2π

∫ k=π/a

k=−π/a

dθ
(σ )
i

dk
dk. (13)

Here, p(σ )
0,i , p(σ )

π,i take the values 0, 1, modulo 2 because θ
(σ )
i (0)

and θ
(σ )
i (π/a) quantize to 0 or π due to the time-reversal

symmetry. On the other hand, w
(σ )
i represents the number of

times the curve z(σ )
i (k) (−π/a < k � π/a) travels counter-

clockwise around the origin in the complex plane, and it is
an integer. The results of the calculation of these quantum
numbers in the model of Fig. 1 are shown in Table I. It is
straightforward to show

w
(σ )
i ≡ p(σ )

π,i − p(σ )
0,i (mod 2), (14)

because θ
(σ )
i is an odd function of k [i.e., θ

(σ )
i (−k) =

−θ
(σ )
i (k)], and indeed it holds in our results in Table I.
We discuss the properties of p(σ )

0,i and p(σ )
π,i with slightly

broken translational symmetry Ta/n in the following. First,
the eigenvector ε

(σ )
k with the translational symmetry Ta/n is

specified by the quantum number m and is given by

ε
(σ )
k =

⎛
⎜⎜⎝

1
ei(ka+2mπ )/n

...

ei(n−1)(ka+2mπ )/n

⎞
⎟⎟⎠. (15)

Meanwhile when Ta/n is slightly broken, the eigenvectors
should be real at time-reversal invariant momenta (k =
0, π/a). Therefore, a complex eigenvectors should be de-
generate with its complex conjugate. Let m1 and m2 be the
quantum numbers for the two bands degenerate at the time-
reversal invariant momentum (k = 0, π/a); εk,m1 = ε∗

k,m2
. As

seen in Fig. 2(a-1), this degeneracy exists in the systems with
exact Ta/n translation symmetry; it is due to the zone folding
from the larger Brillouin zone (−nπ/a � k � nπ/a), and it
is lifted by slightly breaking the translational symmetry Ta/n.
Let ε1 and ε2 be the eigenvectors at the time-reversal invariant
momentum when the translational symmetry Ta/n is broken.
Within the zeroth-order perturbation, they are linear combina-
tions of εk,m1 and εk,m2 (= ε∗

k,m1
). Since the eigenvectors ε1, ε2

are real vectors due to time-reversal symmetry, they are given
by

ε1 =

⎛
⎜⎜⎝

cos (φ)
cos (φ + ξ )

...

cos (φ + (n − 1)ξ )

⎞
⎟⎟⎠, ε2 =

⎛
⎜⎜⎝

sin (φ)
sin (φ + ξ )

...

sin (φ + (n − 1)ξ )

⎞
⎟⎟⎠,

(16)

within the zeroth-order perturbation, where φ is a constant de-
termined from the spring constant matrix Kl,l ′ and ξ = (m1 −
m2)π/n. Therefore, for both the eigenvectors ε1 and ε2 at
k(= 0, π/a), among n values of p(σ )

ka,i(= 0, 1) (i = 1, . . . , n),

the number of p(σ )
ka,i = 1 is |m1 − m2|, which is equal to the

number of times the sequence ( cos (φ), . . . , cos (φ + nξ ))
[or ( sin (φ), . . . , sin (φ + nξ ))] changes sign. One can easily
check this conclusion in Table I. For example, the anticrossing
at k = 0, ω ∼ 2 in Fig. 1(b-2) is between the bands with σ =
2, 3, having m = ±1. It corresponds to m1 = 1 and m2 = −1
leading to |m1 − m2| = 2. Thus, among the three values of
p(2)

0,i , two (i.e., i = 1 and 2) have the value of 1, in accordance

with Table I. A similar conclusion holds also for p(3)
0,i . We ex-

plain another example on the anticrossing at k = π , ω ∼ 1.1
in Fig. 1(b-2) between the bands with σ = 1 and 2, corre-
sponding to m1 = 0 and m2 = ±1, i.e., with |m1 − m2| = 1.
Thus, among the three values of p(1)

π,i (and similarly among the

three values of p(2)
π,i), only one has the value of 1, in accordance

with Table I.
To confirm the theory in this section, we calculate the

relative phase θ (k) for the material Li6B5 with approximate
translational symmetry T̂a/5, which is shown in Sec. IV.

III. PHONONS IN 3D SYSTEMS WITH APPROXIMATE
SCREW SYMMETRY

In this section, we extend the result in Sec. II for 1D sys-
tems with approximate translation symmetry to 3D systems
with approximate screw symmetry. In such 3D systems, the
pseudoangular momentum m plays the role of the quantum
number in Sec. II. Namely, we discuss a method to extract the
information of the pseudoangular momentum by calculating
the relative phases in phonon systems with approximate screw
symmetry in 3D systems.

We suppose the system has nl screw symmetry Cl
n in the z

direction, where n and l are positive integers with 1 � l < n.
The screw operation Cl

n is a combination of a rotation by an
angle 2π/n around the z axis, and a translation by (l/n)a
along the z axis, where a denotes the lattice constant along
the z axis. Then its nth power is equal to the translation
Tla by la: T̂la = (Ĉl

n)n. From Bloch’s theorem, an eigenfunc-
tion ψ (x) satisfies T̂aψ (x) = e−ikaψ (x), where k is the Bloch
wave number ( −π

a < k � π
a ) in the z direction. Since we
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need to consider eigenstates under Ĉl
n, the wave vector �k =

(kx, ky, kz ) should be invariant under this screw symmetry.
Here we choose (kx, ky) = (0, 0), and we write �k = (0, 0, k).
Therefore, when the nl screw symmetry Ĉl

n is preserved, the
eigenfunction ψ (x) can be characterized by an integer m′ and
satisfies Ĉl

nψ (�r) = ei(kla+2m′π )/nψ (�r), where

m′ ≡
{

0,±1, . . . ,±(n − 1)/2 for n odd
0,±1, . . . ,±(n − 2)/2, n/2 for n even (mod n).

(17)

In the following, we call m′ a pseudoangular momentum. We
note that this m′ corresponds to the quantized integer part of
the pseudoangular momentum defined in Ref. [25].

Next, we extend our theory in the previous section to 3D
systems with approximate screw symmetry, which needs to
define relative phases between neighboring atoms. In this
section, we restrict ourselves to the case in which n and l are
coprime for simplicity. The cases in which n and l are not
coprime can be studied similarly, as shown in Appendix A.
When n and l are coprime, the n atoms in the unit cell are
periodically located with a period a/n along the screw axis,
which we call the z axis. Now, we show that there exists a
symmetry operation Ô ≡ (Ĉl

n)p(T̂a)q (p, q are integers), which
relates between neighboring atoms. Since the difference in the
z-component between the neighboring atoms is a

n , the integers
p and q satisfy pla

n + qa = a
n , i.e., l p + nq = 1. Thanks to

Bézout’s lemma, this equation always has integer solutions for
p and q. Specifically, for l = 2 and n = 7, this equation has
a solution p = −3 and q = 1. Hence Ô = (Ĉl

n)p(T̂a)q is the
operator that rotates the system by 2pπ

n and translates it by
a/n. Therefore,

Ôψ (�r) = (
Ĉl

n

)p
(T̂a)qψ (�r)

= (e−i(lka+2m′π )/n)p(eika)qψ (�r) (18)

holds. Then, similarly to the definition of the pseudoangular
momentum, we set the eigenvalue of Ô equal to ei(ka+2mπ )/n

because Ôn = eika, where m is an integer representing the
relative phase between neighboring atoms displaced by a/n:

Ôψ (�r) = e−i(ka+2mπ )/nψ (�r). (19)

Then, from (18) and (19), m is given by m ≡ m′ p (mod n).
By using l p + nq = 1, we obtain

m′ ≡ ml (mod n). (20)

In particular, for n1 screw symmetry (i.e., l = 1), m′ ≡
m holds. Therefore, from this correspondence, the wave-
function information possessed by the integers m and m′ is
the same. In the following discussion, we consider assigning
the integer m instead of the pseudoangular momentum m′ for
phonon eigenmodes.

Let ε(σ )(k) = (�ε (σ )
1 (k), . . . , �ε (σ )

n (k))T denote the eigenvec-
tor of the dynamical matrix D(�k), where �ε (σ )

j (k) is the
displacement of the jth atom in the σ th phonon mode at
the wave number k along the z axis. Here the n atoms are
numbered in the increasing order of the z coordinate. This
means that the eigenvector of the dynamical matrix D(k) with

the screw symmetry Cl
n can be expressed in terms of the

pseudoangular momentum m as

ε(σ )(k) =

⎛
⎜⎜⎝

�v(σ )(k)
ei(ka+2mπ )/nAp�v(σ )(k)

...

ei(n−1)(ka+2mπ )/nAn−1
p �v(σ )(k)

⎞
⎟⎟⎠, (21)

Ap =
⎛
⎝cos 2pπ/n − sin 2pπ/n 0

sin 2pπ/n cos 2pπ/n 0
0 0 1

⎞
⎠, (22)

where �v(σ )(k) is a three-dimensional complex vector. Thus,
when the system has exact screw symmetry, the eigenvector is
characterized by the quantum number m. On the other hand,
without the screw symmetry, we cannot define the quantum
number m for the eigenvector. However, in the case with
approximate screw symmetry, the information of the quantum
number m defined under exact screw symmetry partially re-
mains in the eigenvector.

Based on Eq. (19), under the exact screw symmetry, we
define the relative phase to be

z(σ )
i,α (k) =

{
u(σ )

i+1,α (k)/u(σ )
i,α (k), i = 1, . . . , n − 1,

u(σ )
1,α (k)eika/u(σ )

n,α (k), i = n,
(23)

θ
(σ )
i,α (k) = arg z(σ )

i,α (k) (24)

for the σ th eigenvectors ε(σ )(k) of the dynamical matrix
D(k), where α = x, y, z and �u(σ )

i (k) = A−(i−1)
p �ε (σ )

i (k) (i =
1, 2, . . . , n). In the case of the exact screw symmetry, we can
use Eq. (21) to calculate the relative phase as

θ
(σ )
i,α (k) = (ka + 2mπ )/n (i = 1, . . . , n, α = x, y, z), (25)

namely, θ (σ )
i,α (k) is a linear function with an intercept of 2mπ/n

independent of the direction α. As an example, we calculate
phonon modes in a model that slightly breaks threefold screw
symmetry C1

3 . Here, because n = 3 and l = 1, the quantum
number m is equal to the pseudoangular momentum m′. We
consider a system with three atoms 1, 2, and 3 in a unit cell
shown in Figs. 3(a) and 3(b), arranged along a helix. The result
of the phonon calculation is shown in Figs. 3(c) and 3(d). In
this calculation, let K1, K2, and K3 denote the spring constant
matrices between atom 1 and atom 2, between atom 2 and
atom 3, and between atom 3 and atom 1 of the neighboring
unit cell, respectively. The spring constant matrix Ki consists
of longitudinal components with a spring constant KL,i = ci

and transverse ones with a spring constant KT,i = ci/4. In our
calculation, we change the parameter values from those with
the exact screw symmetry (c1 = c2 = c3 = 1) to those with
approximate screw symmetry (c1 = 1, c2 = 1.01, c3 = 1.02).
When the screw symmetry is slightly broken in this way, the
band dispersion relation changes slightly from Figs. 3(c-1) to
3(c-2), with a tiny gap opened at k = 0. Here, if we take the
σ = 8 band [blue lines in 3(c-1) and 3(c-2)] as an example,
the relative phase changes from Figs. 3(d-1) to 3(d-2). In
the case of exact screw symmetry, the relative phase is a
linear function, Eq. (25). Since the value of the relative phase
θ

(σ )
i,α (k) hardly changes even when the screw symmetry is

slightly broken, we can use this relative phase to assign the
pseudoangular momentum m(= m′) to all the bands, except
for the vicinity of band anticrossing. As shown in Fig. 3(c-1),
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FIG. 3. Phonon system with threefold 31 screw symmetry in the
z direction. (a),(b) Schematic picture of this model, and red dots
denote atoms. Part (a) shows that this is the 31 screw symmetry. Part
(b) shows the positions of the atoms within the xy plane. (c-1),(c-2)
Band dispersions ωk,σ with (c-1) exact screw symmetry and (c-2)
broken screw symmetry. (d-1),(d-2) Relative phases θσ

i,x (k) for the
σ = 8 band (blue line) in the band dispersions (c-1) and (c-2). Part
(d-1) corresponds to the case with exact screw symmetry, and (d-2)
corresponds to the case with broken screw symmetry.

when the wave number k along the z axis increases across the
Brillouin zone boundary from k = π/a to −π/a, the quantum
number m (mod n) increases by +1. This result is similar to
that of the one-dimensional model in Fig. 1, and it can be
interpreted by using the extended Brillouin zone method [25].
In addition, the relative phase θ

(σ )
i,α (k) with broken symmetry is

significantly different from that with exact symmetry near the
time-reversal invariant momenta k = 0, π/a, and it is quan-
tized to 0 or π on k = 0, π/a because its eigenvector is real.
In the one-dimensional system with broken Ta/n translation
symmetry (Fig. 1), the property that the number of θ

(σ )
i,α (k)

(i = 1, . . . , n) at k = 0, π/a going to π is equal to the differ-
ence |m1 − m2| of pseudoangular momentum m = m1, m2 of
the crossing bands holds as in the one-dimensional case. How-
ever, this property is not generally valid in three-dimensional
systems with slightly broken screw symmetry.

IV. FIRST-PRINCIPLES CALCULATION

In this section, we calculate the relative phases between
atoms in phonon modes in a material Li6B5 [39] with approx-
imate translational symmetry (discussed in Sec. II) and two

FIG. 4. Relative phase of the material Li6B5. (a) Schematic pic-
ture of the atomic positions. The boron atoms have the approximate
translational symmetry Tc/5. (b) Phonon band dispersion. The bands
(σ = 30, 31, 32, 33) shown in color in the figure are phonon modes
with displacements along the direction �ac = �a1 + �a2 + �a3. The band
structure is classified into two groups, the one with a wider band-
width (∼40 THz, shown in the light blue background) and the other
with a narrower bandwidth (∼15 THz, shown in the light yellow
background). (c)–(f) Relative phases between neighboring atoms of
the bands σ = (c) 31, (d) 30, (e) 32, and (f) 33, respectively.

materials SnIP [40] and S10 [41] with approximate screw sym-
metries by first-principles calculations (discussed in Sec. III).
By comparing their relative phases with the ones with exact
symmetry, we can extract the information of the quantum
number m. Li6B5, SnIP, and S10 are fully relaxed before
the phonon calculations. We calculate the force constants of
Li6B5, SnIP, and S10 with density functional perturbation
theory (DFPT) in a 3 × 3 × 3, 2 × 2 × 2, and 2 × 2 × 3 su-
percell with an equivalent k-mesh of 9 × 9 × 9, 6 × 6 × 4,
and 4 × 4 × 6 via VASP [42,43], respectively.

A. Li6B5: One-dimensional chain with approximate
translational symmetry

We discuss the results of the calculations for the material
Li6B5 shown in Fig. 4. Li6B5 contains a one-dimensional
chain of boron atoms with approximate translational
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symmetry T̂c/5, where c is the lattice constant along the z axis,
as shown in Fig. 4(a). The lattice is rhombohedral, and its
lattice vectors are

�a1 = (
√

3a/2, a/2, c/3), (26)

�a2 = (−
√

3a/2, a/2, c/3), (27)

�a3 = (0,−a, c/3), (28)

where a = 3.973 Å and c = 7.945 Å. The corresponding
primitive reciprocal vectors are

�b1 = (2π/(
√

3a), 2π/(3a), 2π/c), (29)

�b2 = ( − 2π/(
√

3a), 2π/(3a), 2π/c), (30)

�b3 = (0,−4π/3a, 2π/c). (31)

The unit cell contains five boron atoms B almost equally
spaced along the vector �ac = �a1 + �a2 + �a3 = (0, 0, c). Thus,
in this material the boron atoms have an approximate trans-
lational symmetry T̂c/5 by the vector (0, 0, c/5). Since this
lattice has a translational symmetry T̂i (i = 1, 2, 3) in the di-
rection of the lattice vectors �ai, the eigenfunctions ψ (x) satisfy
T̂iψ (x) = e−i�k·�aiψ (x) where −π < �k · �ai � π due to Bloch’s
theorem. By using this, under the translation symmetry T̂a in
the direction of �ac, T̂c = T̂1T̂2T̂3, ψ (x) satisfies

T̂cψ (x) = e−i�k·�acψ (x) (−3π < �k · �ac � 3π ). (32)

Furthermore, if the boron atoms preserve the translational
symmetry T̂c/5,

T̂c/5ψ (x) = e−i(�k·�ac+2mπ )/5ψ (x) (33)

holds with the quantum number m = 0,±1,±2.
Figure 4(b) shows the phonon band structure along the kz

direction. The band structure is classified into two groups, the
one with a wider bandwidth (∼40 THz) and the other with a
narrower bandwidth (∼15 THz). These two groups of bands
correspond to the phonon modes with displacements along the
z axis and these along the xy plane, respectively. In the former
group with displacements along the z axis, the motions of
the B atoms are well-decoupled from those of the Li atoms,
which is ideal for our purpose. Henceforth, we consider the
bands σ = 30, 31, 32, 33 having boron atoms vibrating only
in the z direction. Thus, when T̂a/5 translation symmetry is
preserved, we can write the eigenvector ε

(σ )
k for the phonon

eigenvectors with displacements along the z direction under
this assumption as

ε
(σ )
k =

⎛
⎜⎜⎜⎜⎜⎝

1
ei(�k·�ac+2mπ )/5

e2i(�k·�ac+2mπ )/5

e3i(�k·�ac+2mπ )/5

e4i(�k·�ac+2mπ )/5

⎞
⎟⎟⎟⎟⎟⎠, (34)

where m is the quantum number m = 0,±1,±2 (mod 5).
Here �k · �ac takes values within the range −3π < �k · �ac � 3π ,
so the wave number k = �k · �ac/c in the z direction takes the
range −3π

c < k � −3π
c . Therefore, as we showed in Sec. II,

the relative phase from this eigenvector is

θ (�k) = (kc + 2mπ )/5. (35)

However, the translational symmetry Tc/5 is slightly broken in
this material, so the relative phase is slightly deviated from
Eq. (35). But the deviation is small, and we can still extract
the information of the quantum number m. In particular, the
relative phase of the band σ = 31 is shown in Fig. 4(c),
which agrees well with the relative phase of the case with
exact symmetry [Eq. (35)]. Thus, we can extract the quantum
number m as shown in the figure. The results of the relative
phase calculations for the bands σ = 30, 32, 34 are shown in
Figs. 4(d)–4(f). Since the relative phase of σ = 30 agrees well
with the relative phase of the case with exact symmetry, we
can extract the quantum number m. On the other hand, the
relative phases of σ = 32 and 33 do not match those of the
exact symmetric case near k = 0. This is because the bands
are close to each other and thus hybridized. The results for the
quantum number m are summarized in Fig. 4(b). The behavior
of m for the bands σ = 32, 33 will be discussed later.

We can assign the quantum number m from the relative
phases as shown in Fig. 4(b). In this figure, when the wave
number increases across the boundary of the Brillouin zone
from k = 3π/c to −3π/c, the quantum number m (mod 5)
increases by +3. This is quite different from the increase by
+1 across the boundary of the Brillouin zone in Fig. 1. In the
following, we explain this difference using the extended band
scheme shown in Fig. 5.

Let us assume that the system is invariant under the trans-
lation by the vector �ac/5 = (0, 0, c/5), meaning that the five
atoms within the unit cell are equivalent under this symmetry.
Thus, the new primitive translation vectors become

�a′
1 = �a1 − 2�ac/5 = (

√
3a/2, a/2,−c/15), (36)

�a′
2 = �a2 − 2�ac/5 = (

√
3a/2, a/2,−c/15), (37)

�a′
3 = �a3 − 2�ac/5 = (0,−a,−c/15). (38)

Their sum is equal to −�ac/5, representing the T̂c/5 translation
symmetry. Because the translation vector along the z axis
becomes shorter, the Brillouin zone becomes longer. These
translation vectors lead to a virtual Brillouin zone given by
corresponding primitive reciprocal vectors

�b′
1 = (2π/(

√
3a), 2π/(3a),−10π/c), (39)

�b′
2 = ( − 2π/(

√
3a), 2π/(3a),−10π/c), (40)

�b′
3 = (0,−4π/3a,−10π/c). (41)

Figure 5(a) is a figure comparing the virtual Brillouin zone
(blue line) when the system is assumed to have translational
symmetry T̂c/5 and the actual Brillouin zone (red lines) when
it is not assumed. These Brillouin zones are of a similar shape,
consisting of 12 faces. Namely, the virtual Brillouin zone
(blue lines) for the case with the translational symmetry T̂c/5

is narrowed to the actual Brillouin zone (red line) by break-
ing the symmetry. Figure 5(b) shows five virtual Brillouin
zones along the kz axis and the accompanying actual Brillouin
zones in Fig. 5(a). Furthermore, we show the band dispersion
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FIG. 5. Extended Brillouin zone of Li6B5. (a) Comparison of Brillouin zones with and without the translational symmetry T̂c/5. The blue
line is the virtual Brillouin zone with T̂c/5, and the red line is the actual Brillouin zone without T̂c/5. (b) Extended Brillouin zone with actual
Brillouin zones on the kz axis in reciprocal-lattice space. (c) Band dispersion on the kz axis. The band shown by the thick green line is the
phonon mode with the quantum number m = 0.

relation along the kz axis in Fig. 5(c) to compare with the
Brillouin zones in Fig. 5(b). As a one-dimensional system, the
translation vector (0, 0, c/5) gives rise to the one-dimensional
reciprocal vector 10π/c, and the complex structure of the
colored bands in Fig. 4(b) is then mapped to a single band in
the extended BZ with the size 10π/c, shown as the light green
line in Fig. 5(c). This single band corresponds to the quantum
number m = 0, as we discussed in Sec. II. In this case, the
size of the actual Brillouin zone along kz is 6π/c because
�bc = �b1 + �b2 + �b3 = (0, 0, 6π/c), and the quantum number
m (mod 5) increases by +3 from Eq. (35) if we shift the wave
number by −6π/c. In this way, in folding the virtual BZ to the
actual BZ, if the phonon bands are shifted by (−6π/c) × m̄
(m̄ is an integer), the quantum number m characterizing the
relative phases between neighboring atoms is equal to m̄. The
value of m for the phonon bands completely agrees with that
obtained in Fig. 4(b). Thus the phonon wave functions retains
information for the case with Tc/5 symmetry.

Now we discuss in which cases the quantum number m
is well-defined and the screw symmetry is regarded as a
relatively good symmetry. In Figs. 4(c)–4(f), we can com-
pare the result for the quantum number m for the bands
σ = 30, 31, 32, 33. We see that the quantum number m is
well-defined in most cases, except for the bands σ = 32, 33
near k = 0 [Figs. 4(e) and 4(f)]. From the phonon dispersion
[Fig. 4(b)], the bands σ = 32, 33 are close to each other,
causing them to hybridize and to make the quantum num-
ber m relatively ill-defined. One may wonder why the bands
σ = 32, 33 are mutually close not only near k = 0 but also
around k = ±2π/c, but even near k = ±2π/c the quantum
number m is well-defined for σ = 32, 33, as seen in Figs. 4(e)
and 4(f). One can understand this difference between k ∼ 0
and k ∼ ±2π/c by the above scheme of the virtual Brillouin
zone. As mentioned in the present subsection, the size of the
reciprocal-lattice vector along the c-axis is 6π/c, which gives

rise to the folding of the Brillouin zone. This folding orig-
inates from the umklapp scattering of phonons by the wave
number ±6π/c. From Fig. 5(b), the near degeneracy at k ∼ 0
between the σ = 32, 33 bands is between the bands originally
at k ∼ 6π/c and k ∼ −6π/c via the second-order effect in the
umklapp scattering. On the other hand, the near degeneracy at
k ∼ 2π/c between the bands σ = 32, 33 is between the bands
originally at k ∼ 14π/c and k ∼ −4π/c, via the third-order
effect in the umklapp scattering. The near degeneracy at k ∼
−2π/c is treated similarly to the third order in the umklapp
scattering. Thus the near degeneracy around k ∼ ±2π/c is of
a higher order in the umklapp scattering than that around k ∼
0, and the hybridization is weaker. This is the reason why the
bands σ = 32, 33 near k ∼ ±2π/c do not hybridize so much
(and the quantum number m is well-defined), compared with
those near k ∼ 0, in agreement with the result in Figs. 4(e)
and 4(f).

B. SnIP and S10: Materials with approximate screw symmetry

First, we explain the calculations for SnIP shown in Fig. 6.
The atomic position in the unit cell is shown in Figs. 6(a) and
6(b), where the unit cell has two helical chains with opposite
chiralities and 42 atoms. One helical chain has approximate
72 screw symmetry shown in Fig. 6(b), and this chain is
transformed to the other one by glide reflection. Figure 6(c)
shows the phonon dispersions in SnIP, which has 126 bands.
In this paper, we analyze the approximate screw symmetry of
the helical chains formed by P atoms, and we focus on the
bands with indices σ = 85, . . . , 98 shown in Fig. 6(d). All of
these bands (σ = 85, . . . , 98) are almost doubly degenerate
because phonon modes in the two helical chains in the unit
cell are almost decoupled, and these two chains have the same
phonon eigenfrequencies due to the glide symmetry [44].
Therefore, we estimate the quantum number m by extracting
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FIG. 6. (a) Approximate screw symmetry of phonons in the ma-
terial SnIP (a). (b) Schematic pictures of atomic positions. Part
(a) shows that one helical chain has approximate 72 screw symmetry
in the �a1 direction. Part (b) shows the atomic positions as seen
from the �a1 direction. (c),(d) Band dispersions. In (c) we highlight
the focused bands (σ = 85, . . . , 92) in blue. The bands with σ =
85, . . . , 92 are shown in (d). We show the value of the quantum
number m for each band from the relative phase discussion. (e),(f)
Relative phases of the bands σ = 85 and 91, respectively.

one of the helical chains and calculating the relative phase.
Figures 6(e) and 6(f) show the calculations of the relative
phases for the σ = 85 and 91 bands, respectively. The cal-
culations for the other bands are given in Appendix B. By
comparing them with the relative phases for the case with ex-
act screw symmetry [Eq. (35)], we can assign the value of the
quantum number m for each band as shown in Fig. 6(d). The
value of the pseudoangular momentum m′ (associated with 72

symmetry) is calculated by m′ ≡ 2m (mod 7), which follows
from Eq. (20) for the case with mutually coprime n and l . We
can see that the quantum number m of the band σ = 85 is
0 and that of the band σ = 91 changes from 2 to −2 at the
� point. Similarly, we can assign the values of m for each
band as presented in Appendix B without ambiguity, and the
result is shown in Fig. 6(d). In agreement with our discussion
in Sec. III, the quantum number m (mod 7) increases by +1
across the Brillouin zone boundary. Thus, even when the 72

screw symmetry is broken in SnIP, the eigenvectors of the
system still have properties that well reflect the approximate

FIG. 7. (a) Approximate screw symmetry of phonons in the ma-
terial S10. (b) Schematic pictures of atomic positions. Part (a) shows
that one helical chain has approximate 107 screw symmetry in the
�a1 direction. Part (b) shows the atomic positions as seen from the �a1

direction. (c),(d) Band dispersions. In (c) we highlight the focused
bands (σ = 41, . . . , 60) in blue. The bands with σ = 41, . . . , 60 are
shown in (d). We show the value of the quantum number m for each
band from the relative phase discussion. (e),(f) Relative phases of the
bands σ = 41 and 48, respectively.

screw symmetry. Next, we explain the calculations for S10

shown in Fig. 7. The atomic positions in the unit cell are
shown in Figs. 7(a) and 7(b), and this material has approxi-
mate 107 screw symmetry, with two helical chains (A and B)
and 20 atoms in one unit cell. Thus, phonon spectra of S10

have 60 bands, as shown in Fig. 7(c). In this paper, we focus
on the bands with indices σ = 41, . . . , 60 shown in Fig. 7(d).
As seen in the band structure, every mode is nearly doubly de-
generate, reflecting the two chains in the unit cell. Figures 7(e)
and 7(f) show the calculations of the relative phases for the
σ = 41 and 48 bands, respectively. The results for the other
bands are shown in Appendix B. In these calculations, we use
the wave functions in chain A.

This material has been synthesized before, while the cal-
culated phonon spectra have an imaginary part, suggesting
that the material is unstable. In fact, our phonon calculation
has the following two limitations, by which the imaginary
part is unavoidable. First, the experimental structure is a high-
pressure and high-temperature one, while DFPT calculation
can only obtain the phonon spectra for atmospheric pressure
and zero temperature. Second, the S10 crystal structure used
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in our calculation is just 1/4 of the experimentally reported
one, which has 80 atoms per unit cell. Since each experimental
unit cell has four left-hand and four right-hand helical sulfur
chains, with each chain having 10 sulfur atoms, the calculation
on the phonon spectra will be very heavy. Here, the crystal
structure is approximately described by a smaller unit cell
containing only one left-handed chain and one right-handed
chain in our calculation, which has the same symmetry and the
same pseudoangular momentum as the experimental structure.
Thus we took the smaller unit cell, which does not affect our
analysis on the pseudoangular momentum.

By comparing with the case of exact symmetry, we can
assign the value of the quantum number m for the bands σ =
41, 42, . . . , 54 as shown in Fig. 7(d), while for the bands with
σ = 55, . . . , 60, the quantum number m is ill-defined. The
value of the pseudoangular momentum m′ (associated with
107 symmetry) is calculated by m′ ≡ 7m (mod 10), which
follows from Eq. (20) for the case with mutually coprime n
and l . These figures show that the quantum number is m = 5
for the σ = 40 band and changes from m = −3 to 3 at the �

point for the σ = 47 band. Similarly, we can assign the values
of m for each band as presented in Appendix B without ambi-
guity, and the result is shown in Fig. 7(d). In agreement with
our discussion in Sec. III, the quantum number m (mod 10)
increases by +1 across the Brillouin zone boundary. Thus,
even when the 107 screw symmetry is broken, the eigenvec-
tors have properties that well reflect the approximate screw
symmetry.

V. CONCLUSION AND DISCUSSION

In this paper, we studied how to extract the pseudoangular
momentum from the phonon eigenfunction with approximate
screw symmetry. In preparation for this, we considered a
one-dimensional system with partially broken translational
symmetry, and we showed how to assign the quantum number
to each band, which characterizes the relative phase between
neighboring atoms. We showed that the behavior of this quan-
tum number is naturally understood in the extended Brillouin
zone, and we identified several key properties of this quantum
number and the relative phase. We performed model calcu-
lations for a simple case, and we extended this method to
systems with approximate screw symmetry to extract infor-
mation about the pseudoangular momentum. By applying the
relative phase defined in this way to the material Li6B5 with
approximate translational symmetry and materials SnIP and
S10 with approximate screw symmetry, we confirmed that the
information on the quantum number and the pseudoangular
momentum can be extracted by exact screw symmetries. We
showed that the assigned pseudoangular momentum is natu-
rally understood in the extended scheme.

Through our theory and its applications to real materials in
this paper, we discuss when the screw symmetry becomes a
good symmetry and the pseudoangular momentum becomes
well-defined. One can say that the screw symmetry is a
good symmetry when the energy (or frequency) scale of the
symmetry-breaking perturbation is much smaller than the en-
ergy scale of the original band structure under exact screw
symmetry, which can be a gap size near the band gap, or a
bandwidth. Meanwhile, the calculations in this paper show

that it is not so simple to determine whether the screw symme-
try is a good symmetry, and the condition for the approximate
screw symmetry depends even on the wave number and the
band considered. This is because depending on the band and
the wave number, the effect of the symmetry-breaking term
works differently, as we discussed in Sec. IV. Whether the
screw symmetry becomes a good symmetry and the pseu-
doangular momentum becomes well-defined is not a simple
question in general, and that is why the method to calculate the
pseudoangular momentum in this paper is relevant for under-
standing phonon physics in systems with approximate screw
symmetry. From the analysis in this paper, hybridization be-
tween bands with different values of the quantum number m
(or the pseudoangular momentum) breaks the screw symmetry
and makes m ill-defined, especially at the band crossings.
The screw symmetry is largely broken when the hybridization
occurs at a lower degree in the umklapp scattering, and it may
depend on the wave vector.

As shown in this study, approximate symmetries can exist
in crystals, and they affect eigenmodes of the crystals, in
addition to exact symmetries indicated by space groups. For
example, in the case of screw symmetry, while only twofold,
threefold, fourfold, and sixfold screw symmetries are allowed
as exact symmetries in crystals, we show that approximate
sevenfold and tenfold screw symmetries can be realized,
which are also reflected in the phonon wave function. Since
such approximate symmetries are not included in the studies
on physical properties, the physics of such approximate sym-
metries is an interesting topic for further study. For example,
such an approximate symmetry is expected to affect physical
processes involving various particles/quasiparticles, such as
electronic processes involving multiphonons/photons and ex-
citon scattering processes. In systems with exact symmetry,
symmetry restricts such processes as selection rules, and even
when the symmetry is not exact but approximate, selection
rules remain valid. While exact screw rotation symmetries
are limited in crystals due to the restriction of translational
symmetry to twofold, threefold, fourfold and sixfold sym-
metries, an approximate screw symmetry leads to a wider
variety of multifold screw symmetries, such as sevenfold and
tenfold symmetries, and they will lead to selection rules that
are absent for exact screw symmetries, as has been studied in
the context of chiral phonons under exact symmetries. Fur-
thermore, anisotropy in transport properties involving chiral
phonons will also reflect the approximate screw symmetry.
The angular dependence of phonon transport will lead to n-
fold anisotropic behavior where n varies from 2, 3, 4, or 6.
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APPENDIX A: SCREW SYMMETRY nl WHERE n AND l
ARE NOT COPRIME

In this Appendix, we discuss definitions of the quantum
numbers m and m′ and their relationship under nl screw sym-
metry Ĉl

n, when n and l are not coprime. Here m represents
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TABLE II. Relationships between various operations in the
screw symmetry. The operators {Ĉl

n, T̂a} generate the screw symmetry
nl , and so do the operators {Ô, T̂a}.

Operator Rotation Translation
angle

Ĉl
n

2π

n
l ′
n′ a = (Ô)r (T̂ )s

Ô 2π p
n

1
n′ a = (

Ĉl
n

)p
(T̂ )q

Ĉg
2π

g 0 = (Ô)rn′
(T̂ )−r = (

Ĉl
n

)n′
(T̂ )l

a relative phase between neighboring atoms, while m′ is as-
sociated with an eigenvalue of the Ĉl

n screw operation. We
consider the system with screw symmetry Ĉl

n with respect to
the z axis and translational symmetry T̂a in the z direction,
where a denotes the lattice constant along z.

We consider here the case with n and l not being coprime.
Let g (�2) denote the greatest common divisor of n and l , and
we write

n = gn′, l = gl ′, (A1)

where n′ and l ′ are coprime integers. Then the system auto-
matically has g-fold rotation symmetry Ĉg [= (Ĉl

n)n′
(T̂a)−l ′ ].

The translation part of the screw operation Ĉl
n is by al/n =

al ′/n′, which means that the atoms are placed with a period
of a/n′ along the z direction. Namely, in systems with nl

symmetry, g atoms related by Ĉg symmetry share the same
z coordinate, and these groups of g atoms are placed along the
z axis with a spacing a/n′. Thus the number of atoms within
the unit cell related by symmetry is gn′ = n, as expected.

In the main text, we study the case with n and l being
coprime, and we show how to relate two quantum numbers m
and m′. In this Appendix, we establish the similar relationship
between them, when n and l are not coprime. To this end, we
show that there exists a symmetry operation Ô ≡ (Ĉl

n)p(T̂a)q

(p, q are integers) that relates between neighboring atoms,
mutually displaced by a

n′ along the z direction. Therefore,
integers p and q satisfy pla

n + qa = a
n′ , i.e., l ′ p + n′q = 1.

Since l ′ and n′ are coprime, thanks to Bézout’s lemma, this
equation always has integer solutions for p and q. Hence,
Ô = (Ĉl

n)p(T̂a)q is an operator that rotates the system by 2pπ
n

and translates it by a/n′.
We note here one important point; there are various choices

for integers p and q, and not all the choices are appropriate
for our purpose. In the cases with coprime n and l , discussed
in the main text, there exists a one-to-one correspondence
between m and m′. In contrast, if they are not coprime, we
need to choose p and q properly to guarantee their one-to-one
correspondence. For this purpose, we impose a condition that
(Ô)r be equal to Ĉl

n modulo translation symmetry, i.e.,

(Ô)r (T̂a)s = Ĉl
n (r, s are integers), (A2)

which guarantees that the operators {Ô, T̂a} are generators of
the screw symmetry nl . This means

r

n′ + s = l

n
, pr ≡ 1 (mod n). (A3)

FIG. 8. Schematic figure for the case with 64 screw symmetry,
which corresponds to n = 6 and l = 4 being non-coprime. The
orange dots represent the positions of atoms, and the red arrow
represents the screw operation Ĉ4

6 . The green arrow represents the
operation Ô, which connects between atoms in the neighboring lay-
ers. It seems that there are two choices for the operator Ô that relate
neighboring atoms displaced by a/3 along the z axis, but we cannot
choose the blue arrow as the operator Ô because it does not generate
all the screw operations; in other words, the operation by the blue
arrow does not connect all the atoms in the unit cell.

The second equation leads to pr + nt = 1 for integers r and t .
The condition for this equation to have solutions for r and
t is that p and n are coprime. As noted earlier, there are
various choices for p, and not all the possible values of p
are coprime with n. Meanwhile, we can show that among
the various possible values of p, there always exists a value
of p that is coprime with n. To show this, we note that p
and q are solutions of l ′ p + n′q = 1, which has solutions of
the form (p, q) = (p0 + n′κ, q0 − l ′κ ) (κ is an integer). Here
we note that p0 and n′ are coprime because l ′ p0 + n′q0 = 1.
Thus the set of possible solutions for p forms an arithmetic
series, p = p0 + n′κ (p0, n′ are coprime integers), and it con-
tains prime numbers from Dirichlet’s theorem on arithmetic
progressions. Thus by choosing p to be a prime number, p
and n are coprime. We can also show, therefore, that the first
equation of (A3) is satisfied.

With such a choice of the integers p and q, our theory is
similar to the case with coprime n and l in the main text.
The pseudoangular momentum m′ is defined as Ĉl

nψ (�r) =
ei(kla+2m′π )/nψ (�r) for the wave function ψ (�r) of this system,
where

m′ ≡
{

0,±1, . . . ,±(n − 1)/2 : n odd,

0,±1, . . . ,±(n − 2)/2, n/2 : n even.
(mod n)

(A4)

Then we have

Ôψ (�r) = (
Ĉl

n

)p
(T̂a)qψ (�r)

= (ei(lka+2m′π )/n)p(eika)qψ (�r). (A5)
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FIG. 9. Relative phase of SnIP. Parts (a), (b), (c), (d), and (e) correspond to the relative phases of the bands σ = 87, 89, 93, 95, and 97 in
Fig. 6(d), respectively.

Meanwhile, we put the eigenvalue of Ô to be equal to
ei(gka+2mπ )/n because (Ô)n = (T̂a)g = eigka, where m is an inte-
ger representing the relative phase between neighboring atoms
displaced by a/n′ along the z axis. Then, from (A5), m is
given by m ≡ m′ p (mod n). By using pr ≡ 1 (mod n), we
get m′ ≡ mr (mod n). Therefore, we have successfully estab-
lished a one-to-one correspondence between the integers m
and m′. In this case, the operators {Ô, T̂a} are generators of the
screw symmetry, and in particular, g-fold rotation symmetry
Cg is expressed in terms of Ô as (Ô)rn′

(T̂a)−r = Ĉg. We sum-
marize the properties of these operators in Table II.

We show an example of n = 6, l = 4 in Fig. 8. Here we
have n′ = 3 and l ′ = 2, and two solutions of l ′ p + n′q = 1
are (p, q) = (−1, 1), (2,−1), and the operator Ô defined by
these choices of (p, q) is shown by the green arrow and the
blue arrow, respectively. In our discussion above, we need
to take p to be coprime with n, so only the former choice
of (p, q) = (−1, 1) (green arrow) is allowed. By this proper
choice of Ô, all the atoms are related by Ô. On the other hand,
if we take the other choice of (p, q) = (2,−1), not all the
atoms are related by Ô. Thus the eigenvalue of Ô does not
possess the same information as that of Ĉl

n.

With such a proper choice of Ô, we name the atoms
in the unit cell like (i, j) (i, j are integers) in the follow-
ing way. Within the unit cell (e.g., Fig. 8), we begin with
the g atoms with the smallest z coordinate, and we name
them (1, 1), (1, 2), . . . , (1, g), in such a way that the (1, j)
atom is transformed to (1, j + 1) by the g-fold rotation Ĉg.
Then we name other atoms so that the operator Ô trans-
forms the (i, j) atom to (i + 1, j). Then, we express the
eigenvectors ε of the dynamical matrix in the form ε =
(�ε1,1, . . . , �ε1,g, . . . , �εn′,1, . . . , �εn′,g)T, where �εi, j is the displace-
ment of the atom (i, j) (1 � i � n′, 1 � j � g). We define the
relative phase for this eigenvector ε and explain how to use it
to extract the pseudoangular momentum m′.

In this case, for the eigenvector ε(σ ) for the σ th band, we
define the relative phase θi, j,α as

z(σ )
i, j,α (k) =

{
u(σ )

i+1, j,α/u(σ )
i, j,α (i = 1, . . . , n′ − 1),

u′(σ )
1, j+p,αeika/u(σ )

n′, j,α (i = n′),
(A6)

θ
(σ )
i, j,α (k) = arg z(σ )

i, j,α (k), (A7)
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FIG. 10. Relative phase of S10. Parts (a), (b), (c), (d), (e), (f), (g), (h), and (i) correspond to the relative phases of the bands σ = 43, 45, 47,
49, 51, 53, 55, 57, and 59, respectively, in Fig. 7(d).

where α = x, y, z, �u(σ )
i, j = Ai−1

p �εi, j , �u′(σ )
1, j,α = An′

p �ε1, j , and Ap is a
2pπ/n rotation matrix (22).

This relative phase is given by θi(k) = (gka + 2mπ )/n
when the system has exact nl screw symmetry. Then, even
in the case in which the nl screw symmetry is slightly broken,
we can extract the information of the quantum number m and
the pseudoangular momentum m′ from the eigenvector ε(σ ).

APPENDIX B: RELATIVE PHASE OF THE OTHER BANDS
FOR TWO MATERIALS, SnIP AND S10

In this Appendix, we show the results of calculations for
the relative phases of SnIP and S10 for bands not shown in the
main text.

First, we show the relative phase of SnIP in Fig. 9. Fig-
ures 9(a)–9(e) correspond to the relative phases of the bands
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FIG. 11. Norm of the phonon modes within the chains A and B
for the phonon modes with (a) σ = 47 and (b) σ = 48 in the material
S10. At the wave numbers k ∼ ±0.6π (red circles), the modes are
localized only in one chain.

(σ = 87, 89, 93, 95, and 97) in Fig. 6(d) in the main text,
respectively. From this result, we can extract the quantum
number m, summarized in Fig. 6. We note that the relative
phase for the σ = 97 band in Fig. 9(e) shows a crossover of
the value of m as 0 → −3 → 3 → 0. This is due to hybridiza-
tion between the bands with m = ±3 and that with m = 0 at
their anticrossings, as seen around 8 THz in Fig. 6(c). Thus
at the anticrossing between bands, the properties of the wave
function of the bands are exchanged.

Finally, we show the relative phase of S10 in Fig. 10. Fig-
ures 10(a)–10(i) correspond to the relative phases of the bands
(σ = 43, 45, 47, 49, 51, 53, 55, 57, and 59, respectively) in
Fig. 7(d) in the main text. From this result, we can extract the
quantum number m for σ = 41, 42, . . . , 54, summarized in
Fig. 7, while for the bands with σ = 55, . . . , 60 the quantum
number m is ill-defined.

By comparing the results for the two bands σ = 48
[Fig. 7(f)] and σ = 47 [Fig. 10(c)], which are almost de-
generate in the band structure, we notice that the latter has
an anomalous behavior near k = ±0.6π , while the former
does not. One might think that this anomaly comes from
anticrossing between bands, but it is not the case since such
an anomaly from anticrossing should appear simultaneously
in the two bands σ = 47, 48. Instead, this anomaly comes
from an anomalous behavior of hybridization between phonon
modes in the two chains A and B, as we explain in the fol-
lowing. In fact, at the wave number k = ±0.6π , the σ = 47
band is localized only in the chain B, while the σ = 48 band
is localized only in the chain A. This is seen in Fig. 11, where
the sum of the squares of the phonon amplitudes from the
normalized eigenvalues within each chain is plotted for the
two bands. It is noted that in our calculation of the quantum
number m for S10, we used the wave functions in the chain A.
Then in the phonon mode σ = 47 in Fig. 10(c), the phonon
amplitudes in the chain A are almost zero, which gives rise
to the anomaly around k = ±0.6π , because at this point the
result becomes highly sensitive to details of the system and to
numerical errors. We also checked that if we use the phonon
amplitude in the chain B instead, an anomaly appears in the
σ = 48 band. Thus, this anomaly in the relative phases is

attributed to the localization of the eigenmodes into a single
chain.

Here, one may wonder why this localization of eigenmodes
into a single chain happens in this case. In general, even
when two chains exist within the unit cell, the phonon modes
within the two chains are hybridized and they are never lo-
calized within a single chain. In the present case, we find
that it is allowed from the C2xT symmetry, where C2x is the
twofold rotation symmetry with respect to the axis along �a2

perpendicular to the chains [see Figs. 7(a) and 7(b)], and T is
the time-reversal symmetry. In the present material with two
chains, A and B, this C2xT symmetry is preserved within each
chain, and the N × N phonon dynamical matrix Di(k) satisfies

MDi(k)M† = Di(k)∗, (B1)

where N (= 10) is the number of atoms within the unit cell
in one chain, i = A, B indicates the chains A and B, k is the
wave number along the chain, and M is an N × N matrix
representing the C2x operation. For example, in the present
case, for the phonons with atomic displacements along the z
axis, M is given by

M =

⎛
⎜⎜⎜⎝

−1
−1

· · ·
−1

−1

⎞
⎟⎟⎟⎠. (B2)

Under this symmetry, when ui(k) is an eigenvector at the wave
number k, the vector [Mui(k)]∗ is also an eigenvector having
the same eigenfrequency, and therefore they are proportional
to each other: ui(k) ∝ [Mui(k)]∗. By properly choosing the
phase of ui(k), one can always make ui(k) satisfy ui(k) =
[Mui(k)]∗. Thereby, the dynamical matrix Di(k) is diagonal-
ized by an N × N unitary matrix Ui(k), Ui(k)†Di(k)Ui(k) =
εi(k), satisfying Ui(k) = [MUi(k)]∗, where εi(k) is a diagonal
matrix with the eigenfrequencies as diagonal elements. Next,
if we combine the two chains without hybridization, the dy-
namical matrix for the entire system

D(k) =
(

DA(k)
DB(k)

)
(B3)

is diagonalized by a 2N × 2N unitary matrix U (k) satisfying

U (k) =
(

UA(k)
UB(k)

)
, (B4)

Ui(k)†Di(k)Ui(k) = εi(k), (B5)

Ui(k) = [MUi(k)]∗ (i = A, B). (B6)

Next, we introduce an interchain coupling preserving C2xT
symmetry. Then the dynamical matrix becomes

D′(k) =
(

DA(k) V (k)
V (k)† DB(k)

)
, (B7)
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where V (k) is an N × N matrix satisfying MV (k)M† =
V (k)∗. Then, after unitary transformation by U (k), the dynam-
ical matrix becomes

U (k)†D′(k)U (k) =
(

εA(k) V ′(k)
V ′(k)† εB(k)

)
≡ d (k), (B8)

where V ′(k) = UA(k)†V (k)UB(k). Then from the C2xT sym-
metry, we get V ′(k) = V ′(k)∗. Therefore, the matrix d (k)
is a real matrix with its diagonal elements representing the
eigenfrequencies in each chain, and the off-block-diagonal el-
ements in V ′(k) represent a hybridization between the modes
in the chains A and B. In the present case, the spectra of the
chains A and B are the same, and we focus on the particular
eigenmodes with the frequency ωn. Then we can approximate
the dynamical matrix by retaining only the matrix elements
involving these modes with the frequency ωn, and the reduced

dynamical matrix is

d̄ (k) =
(

ωn(k) v′(k)
v′(k) ωn(k)

)
, (B9)

where v′(k) is a real parameter, representing the interchain
hybridization. Only when v′(k) = 0 are the two chains de-
coupled. Because v′(k) is real, if v′(k) has a different sign
between k = 0 and k = π , it necessarily goes across zero,
where the two chains are decoupled and the phonon modes
are localized only in a single chain, either A or B. This ex-
plains the anomalous behavior shown in Fig. 11. We note that
without this C2xT symmetry, the hybridization v′(k) becomes
complex in general, and it cannot be zero when changing only
one parameter k. Thus, to summarize, under C2xT symmetry it
can happen at a certain value of k that an interchain hybridiza-
tion becomes zero and the eigenmodes are localized only in a
single chain. Among the bands considered, the same behavior
is seen also in the bands σ = 41, 42 around k = ±0.8π and in
the bands σ = 45, 46 around k = 0.6π , but not in other bands,
and this is consistent with our scenario.
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