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Classical-quantum correspondence of special and extraordinary-log criticality: Villain’s bridge
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There has been much recent progress on exotic surface critical behavior, yet the classical-quantum corre-
spondence of special and extraordinary-log criticality remains largely unclear. Employing worm Monte Carlo
simulations, we explore the surface criticality at an emergent superfluid-Mott insulator critical point in the
Villain representation, which is believed to connect classical and quantum O(2) critical systems. We observe
a special transition with the thermal and magnetic renormalization exponents yt = 0.58(1) and yh = 1.690(1),
respectively, which are close to recent estimates from models with discrete spin variables. The existence of
extraordinary-log universality is evidenced by the critical exponent q̂ = 0.58(2) from two-point correlation and
the renormalization-group parameter α = 0.28(1) from superfluid stiffness, which obey the scaling relation of
extraordinary-log critical theory and recover the logarithmic finite-size scaling of critical superfluid stiffness in
open-edge quantum Bose-Hubbard model. Our results bridge recent observations of surface critical behavior in
the classical statistical mechanical models [Parisen Toldin, Phys. Rev. Lett. 126, 135701 (2021); Hu et al., ibid.
127, 120603 (2021); Parisen Toldin et al., ibid. 128, 215701 (2022)] and the open-edge quantum Bose-Hubbard
model [Sun et al., arXiv:2205.00878 (2022)].
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I. INTRODUCTION

Surface criticality (SC) refers to the critical behavior occur-
ring on open surfaces of a critical system. For decades, SC has
been a fundamental topic for modern critical theory [1–15].
Direct relevance has been established from SC to state-of-the-
art topics including the surface effects of symmetry-protected
topological phase [16–18], critical Casimir effects [19],
boundary conformal field [20,21], numerical conformal boot-
strap [22], and logarithmic critical scaling [23–25].

The O(N) systems—including the self-avoiding random
walk (N = 0), Ising (N = 1), XY (N = 2), and Heisenberg
(N = 3) models—serve as a prototypical platform for the
ubiquity of criticality. Indeed, they host nontrivial SC such
as the special transition and extraordinary critical phase asso-
ciated with the ordinary critical phase [4–6,9,15,22–24]. The
characteristics of SC depend on N and the space-time dimen-
sion D = d + z, with d the spatial dimension and z the dy-
namic critical exponent. The present work focuses on D = 3.

Figure 1(a) displays the phase diagram of SC for N = 2,
where the special transition is a multicritical point terminating
the Kosterlitz-Thouless-type surface transition line and sepa-
rating the ordinary and extraordinary critical phases [6,24].
The phase diagram is therefore divided into order and disor-
der regimes for both surface and bulk, as well as a regime
of a quasi-long-range ordered surface in the presence of a
disordered bulk. Recently, O(2) special transitions were also
found in the classical three-state Potts antiferromagnet [26]
and six-state clock model [27] as well as the two-dimensional
quantum Bose-Hubbard model [28]—each of them can be
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accounted for by an emergent bulk O(2) criticality. As summa-
rized in Table I, however, the estimates for the magnetic renor-
malization exponent yh from different contexts are not fully
consistent. The critical behavior of the extraordinary phase
at N = 2 has been a long-standing controversy [6,15]. The
theory of extraordinary-log universality (ELU) was recently
proposed for 2 � N < Nc [15], with Nc an unknown upper
bound. In this scenario, the surface two-point correlation g(r)
decays logarithmically with the spatial distance r as [15]

g(r) ∼ (lnr)−η̂, (1)

where the exponent η̂ merely depends on N . Numerical
evidence for the existence of ELU has been obtained from
critical Heisenberg [23] and XY [24,25] models. Motivated
by the Fourier-mode-dependent finite-size scaling (FSS) of
magnetic fluctuations [29,30] and the two-length scenarios
in different contexts of bulk criticality [31–36], an alternative
scaling form of g(r) was conjectured [24] for ELU. This
conjecture is based on the L dependence (L is the linear size)
of critical magnetic fluctuations at zero and smallest nonzero
modes, which scale as L2(lnL)−q̂ and L2(lnL)−η̂ with the
exponents q̂ and η̂ = q̂ + 1, respectively. The critical scaling
behavior of g(r) is described by [24]

g(r) ∼
{

(lnr)−η̂, lnr � O[(lnL)q̂/η̂],
(lnL)−q̂, lnr � O[(lnL)q̂/η̂].

(2)

For the N = 2 case, the first result of q̂ is q̂ = 0.59(2) [24].
The coexistence of the exponents q̂ and η̂ was confirmed in the
context of the ELU in a three-state Potts antiferromagnet [26].
Table I lists the results of q̂ from different contexts [25–27].
Recall the scaling formula proposed [15] for the helicity mod-
ulus ϒ , which measures the response of a system to a twist in
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TABLE I. Universal information for the O(2) surface criticality, including the renormalization exponents yt (thermal) and yh (magnetic)
for the special transition, as well as the critical exponent q̂ and the renormalization-group parameter α for the extraordinary-log critical phase.

Special transition

Reference Year Model yt yh

[6] 2005 XY model 0.608(4) 1.675(1)
[26] 2022 three-state antiferromagnetic Potts model 0.59(1) 1.693(2)
[27] 2022 six-state clock model 0.61(2) 1.688(1)
present work 2022 Villain model 0.58(1) 1.690(1)

Extraordinary-log critical phase

Reference Year Model q̂ α

[24] 2021 XY model 0.59(2) 0.27(2)
[25] 2021 improved O(2) φ4 model 0.300(5)
[26] 2022 three-state antiferromagnetic Potts model 0.60(2)
[27] 2022 six-state clock model 0.59(1), 0.60(3), 0.59(3) 0.26(2), 0.24(4), 0.30(3)
present work 2022 Villain model 0.58(2) 0.28(1)

boundary conditions [37]. The FSS of ϒ is written as

ϒL ∼ 2α(lnL) (3)

with the universal renormalization-group parameter α.
Further, the scaling relation between q̂ and α reads [15]

q̂ = N − 1

2πα
. (4)

This relation has been verified for critical Heisenberg [23]
and XY [24] models as well as an emergent O(2) critical point
[27] (Table I).

Despite the complementary evidence for classical ELU
and the numerous efforts toward a quantum counterpart, the
self-contained picture for classical-quantum correspondence
remains badly awaited [15]. Motivated by the exotic sur-
face effects of symmetry-protected topological phases, SC
has been extensively studied in dimerized antiferromagnetic
quantum Heisenberg and XXZ models [10–14,38–40], yet the
existence of quantum ELU is still controversial. Very recently,
quantum O(2) SC was explored in an open-edge Bose-
Hubbard model of interacting soft-core bosons, where a quan-
tum special transition and quantum ELU were observed [28].

To establish a direct classical-quantum correspondence of
O(2) SC, we formulate an open-surface Villain (OSV) model
and study the special transition and extraordinary-log critical
phase. Such a methodology was applied to the linear-response
dynamics at a quantum O(2) critical point [41]. The Villain
model can be viewed as a variant of the quantum phase model,
which is connected with the unit-filling Bose-Hubbard model.
The Hamiltonian of the Bose-Hubbard model reads [42]

HBH = −t
∑
〈rr′〉

(�̂†
r�̂r′ + �̂r�̂

†
r′ ) + U

2

∑
r

n̂2
r, (5)

where �̂†
r and �̂r are the bosonic creation and annihilation

operators at site r, respectively, n̂r = �̂†
r�̂r is the particle

number operator, t represents the strength of nearest-neighbor
hopping, and U denotes on-site repulsion. The superfluid-
Mott insulator transition of the unit-filling Bose-Hubbard
model belongs to emergent O(2) criticality [43]. By integrat-

ing out amplitude fluctuations, the quantum phase model is
formally [44]

HQR = −t
∑
〈rr′〉

cos(φ̂r − φ̂r′ ) + U

2

∑
r

n̂2
r, (6)

where n̂r is now the deviation from mean filling, and t is a
multiple of that in Eq. (5). φ̂r is conjugate to n̂r by n̂r =
(1/i)(∂/∂φ̂r ). Hence, the quantum phase model is rewritten
in angle representation as [45]

HQR = −t
∑
〈rr′〉

cos(φr − φr′ ) + U

2

∑
r

(
1

i

∂

∂φr

)2

. (7)

Using standard Suzuki-Trotter decomposition, the inverse
temperature β is divided into slices with width 
τ , and a
path-integral representation can be established [45]. Further,
the Villain approximation is performed for cos(φ) term, which
is reexpressed by periodic Gaussians as exp (t
τ cos(φ)) →
exp(t
τ )

∑
n exp (− 1

2 t
τ (φ − 2πn)2), with n an integer,
hence the periodicity in φ is unaffected [46]. Finally, by
employing Poisson summation, it can be shown that the
ground-state energy equals the free energy of the classical
Hamiltonian [45,47],

HV = 1

2K


J=0∑
〈rr′〉

J 2
rr′ , (8)

where the parameter K relates to the ratio t/U . Jrr′ ∈
{. . . ,−2,−1, 0, 1, 2, . . . } parametrizes the integer-valued di-
rected flow between nearest-neighbor sites r and r′. 
J = 0
denotes the absence of source and sink for flows—∀ r, Dr =∑

r′ Jrr′ = 0. The model (8) harbors the superfluid-Mott
insulator transition [41,45,48–51], while a rigorous analysis
for a massless bulk phase became available recently [52].

Recall the hopping enhancement on open edges of the
quantum Bose-Hubbard model [28]. Here, we formulate an
OSV model, where the parameter K becomes tunable on open
surfaces. Hence, the OSV model is a classical counterpart of
the open-edge quantum Bose-Hubbard model and a possible
testbed for classical-quantum correspondence. In addition, the
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(a) (b)

FIG. 1. (a) The phase diagram of O(2) surface criticality in terms
of the bulk interaction K and the ratio κ of surface interaction
enhancement [6,15,28]. (b) Illustration for the open-surface Villain
model, displaying two closed loops of directed flows. The directed
flows on open surfaces have a distinct statistical weight from that in
bulk.

OSV model admits state-of-the-art worm Monte Carlo simu-
lations, by which the correlation function and superfluid (SF)
stiffness can be efficiently sampled.

II. MODEL

The Hamiltonian of the OSV model reads

HOSV =

J=0∑
〈rr′〉

J 2
rr′

2Krr′
, (9)

where the parameter Krr′ is for the nearest-neighbor sites r and
r′ on simple-cubic lattices. We impose open boundary condi-
tions along the [001] (z) direction as well as periodic boundary
conditions along the [100] (x) and [010] (y) directions. Hence,
there are a pair of open surfaces. We set Krr′ = K ′ if r and r′
are on the same open surface, and Krr′ = Kc = 0.333 067 04
for other situations, with Kc the bulk critical point of model
(8) determined previously by two of us and co-workers [53].
The surface enhancement of Krr′ is parametrized by κ =
(K ′ − Kc)/Kc. A directed-flow state for model (9) is illustrated
by Fig. 1(b).

III. METHODOLOGY BASED ON A WORM MONTE
CARLO ALGORITHM

We simulate model (9) with the side length L of a simple-
cubic lattice ranging from L = 4 to 256. To this end, we
formulate a worm Monte Carlo algorithm along the lines of
Ref. [54]. Similar formulations of Monte Carlo algorithms
have been applied to the Villain model [49,53,55] and other
lattice models [56–58]. Here, the methodology contains three
components: extending state space (Sec. III A), an update
scheme (Sec. III B), and a sampling of quantities (Sec. III C).

Conclusions of the present work are drawn on the basis
of FSS analyses of Monte Carlo data, for which we employ
least-squares fits. In the fits, we analyze the dependence of
the residuals chi2 on the cutoff size Lmin. In principle, the
reasonable fit corresponds to the smallest Lmin for which chi2

per degree of freedom (DoF) obeys chi2/DoF = O(1) and for
which subsequently increasing Lmin does not induce a decre-
ment of chi2/DoF over a unit. Practically, by “reasonable” one
means that chi2/DoF ≈ 1.

A. Extending state space

The partition function of model (9) reads

ZOSV =
∑


J=0

∏
〈rr′〉

e
− J 2

rr′
2Krr′ , (10)

where the summation runs over states in the directed-flow
state space. For later convenience, ZOSV is unbiasedly refor-
mulated in an extended state space as

Z ′
OSV = 1

L3

∑

J=0; {I,M}3d

δI,M

∏
〈rr′〉

e
− J 2

rr′
2Krr′ (11)

or

Z ′′
OSV = 1

L2

∑

J=0; {I,M}2d

δI,M

∏
〈rr′〉

e
− J 2

rr′
2Krr′ (12)

by including two additional degrees of freedom—in a state,
the sites I and M are specified on the whole lattice [Eq. (11)]
or an open surface [Eq. (12)]. The summations run over the
states in extended state spaces. δ denotes the Kronecker delta
function.

The simulated partition functions in extended state space
read

Z ′
sim = Z ′

OSV + λG ′ (13)

and

Z ′′
sim = Z ′′

OSV + λG ′′ (14)

with

G ′ = 1

L3

∑

J=0; {I,M}3d

(1 − δI,M )
∏
〈rr′〉

e
− J 2

rr′
2Krr′ (15)

and

G ′′ = 1

L2

∑

J=0; {I,M}2d

(1 − δI,M )
∏
〈rr′〉

e
− J 2

rr′
2Krr′ , (16)

respectively, where λ is tunable. The subspaces with I 
= M,
denoted in the following by S′ and S′′, contribute to G ′ and G ′′,
respectively.

B. Update scheme

To simulate partition function (13), an update scheme can
be designed through a biased random walk that obeys detailed
balance by moving I and M on a simple-cubic lattice. The
procedure starts with I = M in original state space. As I (M)
moves to a neighbor In (Mn), the flow on edge IIn (MMn) will
be updated by adding a unit-directed flow from I to In (Mn

to M). Such a movement continues. When I 
= M, the flows
passing I and M are not conserved, i.e., DI 
= 0 and DM 
= 0,
and S′ space is hit. When I = M, the original state space is hit
again. Thus, a movement of I or M is either a step of random
walk in S′ space or between S′ and original spaces. More pre-
cisely, a Monte Carlo microstep is described in Algorithm 1.

In line with partition function (14), we formulate a sup-
plementary procedure to Algorithm 1 by the random walk
of I and M on a specified open surface, which is described
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Algorithm 1. Global update.

1. If I = M, randomly and uniformly choose a new site I ′ and
set I = M = I ′, sgn(I ) = 1, sgn(M ) = −1.

2. Interchange I ↔ M and sgn(I ) ↔ sgn(M ) with probability
1/2.

3. If I is on an open surface, exit present micro Monte Carlo
step with the probability 1/6 [59].

4. Randomly and uniformly choose a neighbor In of I .
5. Propose to move I → In by updating the flow JIIn to J ′

IIn
:

J ′
IIn

= JIIn + sgn(I → In)sgn(I ),

where sgn(I → In) = ±1, permanently parametrizing the
flow direction along edge-IIn.

6. Accept the proposal with probability

Pacc = min

[
1, e

−(J ′2
IIn

−J 2
IIn

)

2K ′
]

if I and In are on an open surface, and, for other situations,
with

Pacc = min

[
1, e

−(J ′2
IIn

−J 2
IIn

)

2K

]
.

in Algorithm 2. We emphasize that Algorithm 2 itself is not
ergodic.

A closed loop of directed flow is superposed once I meets
M, and closed loops can be consecutively superposed. The
update scheme switches between Algorithms 1 and 2, when a
fixed number of closed loops is generated.

Practically, parallel simulations are carried out and a large
number of closed loops are created. Around the special tran-
sition point (0.44 � κ � 0.4428), the number of generated
closed loops ranges from 2.03 × 1010 to 5.42 × 1011 for 8 �
L � 128 and increases to 5.06 × 1011 at L = 256. In the
deep extraordinary critical regime (κ = 5 and 10), the num-
ber ranges from 4.95 × 109 to 7.93 × 1010 for 8 � L � 128
and reaches 5.28 × 1010 at L = 256. For each independent
simulation, the initial one-sixth of closed loops are used for
thermalization.

Algorithm 2. Restricted update.

1. If I = M, randomly and uniformly choose a new site I ′ on
a specified open surface and set I = M = I ′, sgn(I ) = 1,
sgn(M ) = −1.

2. Interchange I ↔ M and sgn(I ) ↔ sgn(M ) with
probability 1/2.

3. Randomly and uniformly choose a neighbor In on the same
open surface of I .

4. Propose to move I → In by updating the flow JIIn to J ′
IIn

:

J ′
IIn

= JIIn + sgn(I → In)sgn(I ).

5. Accept the proposal with probability

Pacc = min

[
1, e

−(J ′2
IIn

−J 2
IIn

)

2K ′
]
.

C. Sampling of quantities

1. Extended state space

Using Algorithm 2, we sample the probability distribution
of the distance between I and M, which is an unbi-
ased estimator for the surface two-point correlation g(r1, r2)
[g(0, 0) ≡ 1]. In particular, we define

G1 = [g(0, L/4) + g(L/4, 0)]/2 (17)

and

G2 = [g(0, L/2) + g(L/2, 0)]/2. (18)

The surface susceptibility χ can be evaluated by the number
ns of worm steps between subsequent hits to the original state
space. Accordingly, χ is defined by

χ = 〈ns〉. (19)

2. Original state space

The following quantities are sampled in original state
space. First, the winding probabilities are given by

Rx = 〈Rx〉 = 〈Ry〉, (20)

Ra = 〈1 − (1 − Rx )(1 − Ry)〉, (21)

R2 = 〈RxRy〉, (22)

for which Rα = 1 (Rα = 0) corresponds to the event that
directed flows wind (do not wind) in the α direction of a
simple-cubic lattice. Hence, Rx, Ra, and R2 define the prob-
abilities that the winding of directed flows exists in the x
direction, in at least one direction, and in both the x and y
directions, respectively. More or less similar dimensionless
quantities can also be defined for geometric percolation tran-
sitions [60–66]. The SF stiffness relates to winding number
fluctuations as

ρ = 〈
W2

x + W2
y

〉
/(2L), (23)

with Wx and Wy the winding numbers in the x and y direc-
tions, respectively.

Further, for an observable (say O), we define its covariance
with the surface energy εs as

CO = 1

K ′2 (〈Oεs〉 − 〈O〉〈εs〉) (24)

with

εs = 1

2

∑
〈rr′〉s

J 2
rr′ , (25)

where the summation runs over edges on an open surface.
Accordingly, CO is equal to the derivative of O = 〈O〉 with
respect to K ′.

IV. SPECIAL TRANSITION

A. Location

We locate the special transition by varying κ . Recall the
application of dimensionless winding probabilities in flow
representation for O(2) criticality [53,55] as well as an analog
in world-line representation for the quantum special transition
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FIG. 2. The winding probabilities Rx (a) and Ra (b) and the scaled
SF stiffness ρL − b1L−1 (c) vs κ , where b1 = −0.329 is taken from a
preferred least-squares fit to Eq. (29). In panels (a)–(c), the symbols
stand for Monte Carlo data and the lines are drawn according to
preferred fits. In panels (d)–(f), the horizontal coordinates are set to
be (κ − κc )Lyt , with κc = 0.441 40 and yt = 0.58.

of the Bose-Hubbard model [28]. When a special transition
occurs at κc, R (R = Rx, Ra) is assumed to scale as

R = R̃(εLyt ) (26)

around κc, where ε equals κ − κc, yt denotes the thermal
renormalization exponent, and R̃ is a scaling function. Fig-
ures 2(a) and 2(b), respectively, show Rx and Ra versus κ

for L = 32, 48, 64, 96, 128, and 256. Scale invariance is
observed at κc ≈ 0.441. A more precise result comes from
least-squares fits of the Monte Carlo data to the expansion
of Eq. (26),

R = R∗ + a1εLyt + a2ε
2L2yt + b1L−ω1 + · · · , (27)

where R∗ is a critical value, a1, a2, and b1 are nonuniversal
constants, and b1L−ω1 represents the leading finite-size cor-
rections with correction exponent ω1. For Rx, when the four
terms on the right-hand side of Eq. (27) are all included,
preferred fits with chi2/DoF ≈ 0.7 are achieved and yield
0.441 41(5) and 0.441 40(8) for Lmin = 8 and 16, respectively.
Meanwhile, we obtain the estimates of ω1 as ω1 = 1.06(9)
and 1.1(3). A close value of leading correction exponent—
ω1 = 1 from irrelevant surface fields—has been applied to the
special transitions with N = 1 [9] and N = 3 [23]. Despite
these observations, for caution, we should be aware of the
correction exponent ω1 ≈ 0.789 originating from O(2) bulk

TABLE II. Fits of the winding probabilities Rx and Ra to Eq. (27)
and the SF stiffness ρ to Eq. (29) for the special transition. “Q” is
the abbreviation of the sampled quantity, and “–” indicates that the
corresponding term is not included in fitting.

Q Lmin chi2/DoF κc yt R∗ or a0 ω1

Rx 8 23.81/33 0.44141(5) 0.59(1) 0.5687(2) 1.06(9)
16 18.49/28 0.44140(8) 0.58(1) 0.5686(4) 1.1(3)
8 24.23/34 0.44144(3) 0.59(1) 0.56884(8) 1

16 18.61/29 0.44143(4) 0.58(1) 0.5688(1) 1
32 17.35/24 0.44141(5) 0.58(2) 0.5687(2) 1
48 11.19/19 0.44142(7) 0.59(2) 0.5687(3) 1
64 9.87/14 0.44143(9) 0.60(2) 0.5688(4) 1

Ra 32 25.48/25 0.44132(3) 0.58(2) 0.79966(7) –
48 14.99/20 0.44137(3) 0.58(2) 0.79980(9) –
64 7.30/15 0.44139(4) 0.61(2) 0.7999(1) –
96 5.27/10 0.44138(5) 0.62(3) 0.7998(2) –

128 3.98/5 0.44140(6) 0.61(4) 0.7999(2) –
ρ 8 45.76/34 0.44132(2) 0.59(1) 1.0235(3) 1

16 20.35/29 0.44141(3) 0.58(1) 1.0248(4) 1
32 16.40/24 0.44144(5) 0.58(1) 1.0253(7) 1
48 9.41/19 0.44146(6) 0.57(2) 1.026(1) 1
64 8.69/14 0.44146(8) 0.57(2) 1.026(2) 1

irrelevant field [67]. A useful procedure is to increase Lmin

gradually and monitor the stability of fitting results. In this
process, the finite-size corrections become more and more
negligible. When ω1 = 1 is fixed, we obtain κc = 0.441 44(3),
0.441 43(4), 0.441 41(5), 0.441 42(7), and 0.441 43(9) with
Lmin = 8, 16, 32, 48, and 64, respectively. In Fig. 2(b), the
finite-size corrections for Ra are relatively weak; hence, we
perform fits without incorporating any finite-size correction.
Stable results are achieved for large Lmin. In particular, we ob-
tain κc = 0.441 32(3), 0.441 37(3), 0.441 39(4), 0.441 38(5),
and 0.441 40(6) for Lmin = 32, 48, 64, 96, and 128, respec-
tively, with 0.5 � chi2/DoF � 1.0.

Assume that the SF stiffness scales as

ρ = L2−Dρ̃(εLyt ) (28)

with D = 3, which relates to the FSS of SF stiffness for a
quantum special transition [28] by D = d + z (d = 2, z = 1).
We perform fits according to the scaling ansatz

ρ = L−1(a0 + a1εLyt + a2ε
2L2yt + b1L−ω1 + · · · ) (29)

with a0 a constant. From Table II, one finds that the estimates
of κc are close to those from Rx and Ra. This finding is illus-
trated by Fig. 2(c) demonstrating the (ρL)–κ relation, where
a scale invariance point can be located at κc ≈ 0.441, after
properly handling finite-size corrections.

From the fitting results for Rx, Ra, and ρ, the final estimate
of κc is given as κc = 0.441 40(9). Meanwhile, the estimate
of yt is yt = 0.59(4), which agrees with the results 0.608(4)
[6], 0.59(1) [26], and 0.61(2) [27] from various contexts of
O(2) special SC, yet it suffers from larger uncertainty. A more
precise determination of yt will be given in the following
subsection.
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FIG. 3. The dependence of quantities on L at the special transi-
tion. (a) Log-log plot of the covariances CRx , CRa , CR2 and CρL vs L.
The slope of dashed lines stands for yt = 0.58. (b) Log-log plot of the
scaled quantities G1L4, G2L4, and χL2 vs L. The slope of the dashed
line stands for 2yh = 3.380.

B. Universality class

We explore the universality class for the special transition
by computing yt and yh. We turn to FSS analyses right at κc =
0.441 40, which have a reduced number of fitting parameters.

To estimate yt , we consider the covariances CO for di-
mensionless quantities (O = Rx, Ra, R2, ρL). According to
Eq. (26), CO scales as

CO = Lyt C̃O(εLyt ) (30)

around κc. A fitting ansatz at κc reads

CO = Lyt (a0 + b1L−ω1 ), (31)

where b1L−ω1 is the leading term for finite-size corrections.
Log-log plots of critical covariances versus L are shown in
Fig. 3(a), which indicates the power-law scaling Lyt . We
perform fits to formula (31), considering the situations with
leading correction term (ω1 = 1) or without finite-size cor-
rection. The results are presented in Table III. For each of the
covariances, we obtain reasonable fits in the large-size regime,
even when the correction term is absent. At Lmin = 32, we
obtain yt = 0.573(2), 0.572(2), 0.574(3), and 0.580(2) with
chi2/DoF ≈ 0.5, 0.3, 0.9, and 1.1 for CRx , CRa , CR2 , and CρL,
respectively. Finally, from Table III, our estimate of yt is
yt = 0.58(1).

With yt = 0.58 and κc = 0.44140, Figs. 2(d)–2(f) display
dimensionless quantities versus (κ − κc)Lyt . According to
Eqs. (26) and (28), the data collapses in the plots are indicators
of reasonability for the estimated yt and κc.

We perform FSS analyses for the surface quantities G1,
G2, and χ , from which yh is estimated. The special transi-
tion features the power-law scaling, and the critical two-point

TABLE III. Fits of the covariances CRx , CRa , CR2 , and CρL to
Eq. (31) at the special transition.

Q Lmin chi2/DoF a0 yt b1 ω1

CRx 4 11.22/6 0.623(3) 0.570(1) −0.13(1) 1
8 6.68/5 0.611(6) 0.574(2) −0.08(3) 1

16 0.79/4 0.64(1) 0.566(4) −0.28(9) 1
16 10.84/5 0.600(3) 0.578(1) – –
32 2.06/4 0.612(5) 0.573(2) – –
48 0.42/3 0.619(8) 0.570(3) – –

CRa 4 24.58/6 0.642(4) 0.563(1) −0.25(1) 1
8 4.57/5 0.615(7) 0.572(3) −0.11(3) 1

16 1.07/4 0.64(1) 0.565(4) −0.3(1) 1
16 9.57/5 0.599(3) 0.577(1) – –
32 1.06/4 0.614(6) 0.572(2) – –
48 1.00/3 0.615(9) 0.571(3) – –

CR2 4 6.91/6 0.602(4) 0.577(2) −0.01(1) 1
8 6.69/5 0.605(7) 0.576(3) −0.03(3) 1

16 1.99/4 0.63(1) 0.568(5) −0.2(1) 1
16 7.43/5 0.599(3) 0.578(2) – –
32 3.40/4 0.609(6) 0.574(3) – –
48 0.29/3 0.62(1) 0.570(4) – –

CρL 4 8.61/6 2.22(1) 0.576(1) −0.94(3) 1
8 8.48/5 2.23(2) 0.576(2) −0.97(9) 1

16 1.60/4 2.31(4) 0.569(3) −1.7(3) 1
16 39.32/5 2.097(9) 0.588(1) – –
32 4.47/4 2.17(2) 0.580(2) – –
48 0.30/3 2.21(3) 0.576(3) – –

correlation obeys

g(r) ∼ r2yh−4 (32)

at κc. Hence, the FSS for G1 and G2 is described by

G = L2yh−4(a0 + b1L−ω1 ). (33)

Since χ scales as χ = L2yh−2χ̃ (εLyt ), its FSS at κc is written
as

χ = L2yh−2(a0 + b1L−ω1 ). (34)

The L2yh divergence for scaled quantities G1L4, G2L4, and
χL2 is illustrated by Fig. 3(b). According to Eqs. (33) and
(34), the fits for G1, G2, and χ are performed. The results are
given in Table IV. The estimates for ω1 are close to ω1 = 1, as
found in Sec. IV A. We note that, from each of the quantities
G1, G2, and χ , the fitting results of yh by letting ω1 be free (for
smaller Lmin, namely Lmin = 8) and letting ω1 = 1 be fixed
(for larger Lmin, namely Lmin = 48) are all compatible with
yh ≈ 1.690. For G1 and χ , preferred fits are found with the
cutoffs Lmax = 128 and 256. For G2, precluding input data at
L = 256, which suffers from large relative statistical errors, is
useful for improving the quality of fits. As a result, for Lmax =
128, we obtain yh = 1.690(1), 1.6901(2), and 1.6900(4) with
chi2/DoF ≈ 1.7, 1.3, and 1.7, respectively. By comparing the
fits in Table IV, the final estimate of yh is yh = 1.690(1).

174516-6



CLASSICAL-QUANTUM CORRESPONDENCE OF SPECIAL … PHYSICAL REVIEW B 106, 174516 (2022)

TABLE IV. Fits of the two-point correlations G1 and G2 to
Eq. (33) and the susceptibility χ to Eq. (34) at the special transition.

Q Lmin Lmax chi2/DoF a0 yh ω1

G1 8 256 2.55/4 1.54(2) 1.6888(9) 0.82(9)
8 256 6.45/5 1.513(2) 1.6903(1) 1

16 256 4.03/4 1.519(5) 1.6899(3) 1
32 256 0.47/3 1.54(1) 1.6887(7) 1
48 256 0.11/2 1.55(2) 1.688(1) 1

8 128 1.73/3 1.53(2) 1.689(1) 0.9(1)
8 128 3.78/4 1.512(2) 1.6904(1) 1

16 128 2.46/3 1.517(5) 1.6900(4) 1
32 128 0.18/2 1.53(1) 1.6889(8) 1
48 128 0.05/1 1.54(3) 1.688(2) 1

G2 8 256 14.01/4 1.27(2) 1.689(1) 0.9(1)
8 256 14.60/5 1.261(2) 1.6901(2) 1

16 256 14.20/4 1.264(5) 1.6899(4) 1
32 256 13.50/3 1.27(1) 1.689(1) 1
48 256 13.12/2 1.26(3) 1.690(3) 1

8 128 4.95/3 1.27(1) 1.690(1) 0.9(1)
8 128 5.16/4 1.261(2) 1.6901(2) 1

16 128 4.98/3 1.263(5) 1.6900(4) 1
32 128 4.73/2 1.27(1) 1.689(1) 1
48 128 3.33/1 1.23(3) 1.692(3) 1

χ 8 256 3.28/4 1.45(1) 1.6894(7) 0.92(5)
8 256 5.42/5 1.431(1) 1.6903(1) 1

16 256 3.88/4 1.436(4) 1.6900(3) 1
32 256 2.45/3 1.45(1) 1.6893(7) 1
48 256 2.45/2 1.45(2) 1.689(2) 1

8 128 0.75/3 1.44(1) 1.6895(7) 0.93(5)
8 128 2.36/4 1.431(1) 1.6903(1) 1

16 128 1.12/3 1.435(4) 1.6900(3) 1
32 128 0.13/2 1.44(1) 1.6894(7) 1
48 128 0.02/1 1.44(3) 1.690(2) 1

V. EXTRAORDINARY-LOG CRITICAL PHASE

A. Two-point correlation

To probe ELU, we perform extensive simulations in the
deep extraordinary regime with κ = 5 and 10, and we obtain
precise Monte Carlo data for G1 and G2. According to Eq. (2),
the FSS formula of G1 and G2 is written as

G = a[(lnL) + c]−q̂ (35)

with c a nonuniversal constant. We perform fits for G1 and G2,
with the results being summarized in Table V. At κ = 5, the
fits for G1 are stable if Lmin � 16, producing q̂ = 0.586(2) and
0.583(3) with chi2/DoF ≈ 0.8 and 0.6, respectively. Com-
paratively, the finite-size G2 data are more compatible with
Eq. (35) for Lmin = 8. Preferred fits with chi2/DoF ≈ 1 yield
q̂ = 0.590(2), 0.587(3), and 0.582(5) for Lmin = 8, 16, and 32,
respectively. At κ = 10, we obtain q̂ = 0.561(4), 0.566(8),
0.57(1), and 0.59(2) for G1, as well as q̂ = 0.566(4), 0.564(6),
and 0.56(1) for G2. These estimates agree within error bars
with the previous estimate q̂ = 0.59(2) from the classical XY
model [24], providing strong evidence for the existence of
ELU in the OSV model.

From Eq. (2), we obtain a FSS formula for χ , which reads

χ = aL2[(lnL) + c]−q̂, (36)

TABLE V. Fits of the two-point correlations G1 and G2 to
Eq. (35) for the extraordinary critical phase.

Q κ Lmin chi2/DoF a c q̂

G1 5 8 31.45/5 2.74(1) 5.52(2) 0.579(1)
16 3.08/4 2.80(2) 5.65(3) 0.586(2)
32 1.76/3 2.77(3) 5.59(6) 0.583(3)
48 0.13/2 2.72(5) 5.50(9) 0.578(5)
64 0.11/1 2.72(7) 5.5(1) 0.577(8)

10 8 43.83/5 3.60(4) 10.60(8) 0.541(3)
16 2.61/4 3.87(6) 11.1(1) 0.561(4)
32 1.93/3 4.0(1) 11.3(2) 0.566(8)
48 1.54/2 4.0(2) 11.5(4) 0.57(1)
64 0.46/1 4.3(3) 11.9(6) 0.59(2)

G2 5 8 6.22/5 2.84(2) 6.09(3) 0.590(2)
16 3.15/4 2.81(2) 6.02(5) 0.587(3)
32 1.38/3 2.76(4) 5.93(8) 0.582(5)
48 0.24/2 2.71(7) 5.8(1) 0.576(7)
64 0.15/1 2.7(1) 5.8(2) 0.57(1)

10 8 5.46/5 3.95(6) 11.6(1) 0.566(4)
16 5.27/4 3.92(8) 11.6(2) 0.564(6)
32 5.16/3 3.9(1) 11.5(3) 0.56(1)
48 4.13/2 4.1(2) 11.9(4) 0.57(2)
64 0.12/1 4.6(5) 12.9(7) 0.61(3)

due to χ ∼ ∫
g(r)rdr. Table VI displays the existence of

preferred fits to Eq. (36) for κ = 5 and 10. For κ = 5, we
have the fitting results q̂ = 0.586(4), 0.580(5), and 0.579(8)
with chi2/DoF ≈ 1.1, 0.7, and 1.4 for Lmin = 32, 48, and 64,
respectively. For κ = 10, we obtain q̂ = 0.580(5), 0.574(8),
and 0.59(1) with chi2/DoF ≈ 1.3, 1.5, and 1.3 for Lmin = 16,
32, and 48, respectively. Therefore, the estimates of q̂ from χ

are compatible with the results from G1 and G2.
Generally speaking, the FSS analysis involving lnL is dif-

ficult. Hence, the stability of fits is examined by varying Lmin

and we do not trust any single fit even though the chi-squared
criterion is satisfied. The estimates of fitting parameters (in-
cluding q̂) arise from a comparison of the fits with different
Lmin. Moreover, to monitor the corrections to scaling, we
systematically compare the estimates of q̂ from various quan-
tities. We also compare the results from different interaction
strengths in the extraordinary-log regime. A similar procedure
was applied in a previous study [24], of which the estimate
of q̂ has been confirmed by independent studies in various

TABLE VI. Fits of the susceptibility χ to Eq. (36) for the ex-
traordinary critical phase.

κ Lmin chi2/DoF a c q̂

5 16 23.43/4 2.93(2) 6.06(3) 0.600(2)
32 3.35/3 2.80(3) 5.82(6) 0.586(4)
48 1.45/2 2.75(5) 5.7(1) 0.580(5)
64 1.39/1 2.74(8) 5.7(1) 0.579(8)

10 16 5.16/4 4.17(7) 11.9(1) 0.580(5)
32 4.35/3 4.1(1) 11.7(2) 0.574(8)
48 2.68/2 4.3(2) 12.1(4) 0.59(1)
64 0.002/1 4.7(4) 12.7(6) 0.61(2)
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FIG. 4. Log-log plot of G1 (a), G2 (b), and χL−2 (c) vs (lnL) + c.
The dashed lines stand for the critical scaling (lnL)−q̂ with q̂ = 0.58.
The constant c is nonuniversal and comes from the preferred least-
squares fits of G1 and G2 to Eq. (35) or χ to Eq. (36).

contexts (Table I). Here, by comparing the preferred fits for
G1, G2, and χ , we estimate q̂ = 0.58(2). By adopting the
parameter c from the fits, we plot G1, G2, and χL−2 versus
(lnL) + c in Fig. 4, which illustrates mutually consistent re-
sults for universal and nonuniversal parameters.

B. Superfluid stiffness

We examine the analogy of ρ to the SF stiffness of the
open-edge Bose-Hubbard model considered in Ref. [28],
where it was defined through the winding number fluctua-
tions in a path-integral world-line representation. As shown
in Fig. 5, there is a linear divergence of ρL on lnL. The
renormalization-group universal parameter α controls the FSS
of ρ, which can be written as

ρL = 2α(lnL) + b. (37)

FIG. 5. The scaled SF stiffness ρL vs lnL. The dashed lines stand
for 2α.

TABLE VII. Fits of the SF stiffness ρ to Eq. (37) for the extraor-
dinary critical phase. The underlines denote that the data for L = 128
are not included in fitting.

κ Lmin Lmax chi2/DoF α b

5 32 256 32.11/4 0.2770(4) 3.498(3)
48 256 5.38/3 0.2785(5) 3.484(4)
64 256 3.87/2 0.2790(6) 3.479(6)
96 256 0.79/1 0.280(1) 3.47(1)
32 128 18.79/3 0.2756(5) 3.509(4)
48 128 3.15/2 0.2776(7) 3.491(6)
64 128 2.91/1 0.278(1) 3.49(1)
32 256 32.08/3 0.2769(4) 3.499(4)
48 256 5.38/2 0.2785(5) 3.484(5)
64 256 3.87/1 0.2790(7) 3.479(6)

10 32 256 7.35/4 0.2822(6) 6.827(5)
48 256 6.28/3 0.2828(8) 6.821(8)
64 256 4.13/2 0.284(1) 6.81(1)
96 256 3.51/1 0.285(2) 6.80(1)
32 128 1.13/3 0.2810(8) 6.837(7)
48 128 1.10/2 0.281(1) 6.84(1)
64 128 1.03/1 0.281(2) 6.83(2)
32 256 3.23/3 0.2828(7) 6.823(6)
48 256 1.85/2 0.2835(9) 6.816(8)
64 256 0.05/1 0.284(1) 6.81(1)

Estimates of α come from the fits of ρ to Eq. (37), which
are summarized in Table VII. For κ = 5, we obtain α =
0.2785(5), 0.2790(6), and 0.280(1) with chi2/DoF ≈ 1.8,
1.9 and 0.8 for Lmin = 48, 64, and 96, respectively. We are
aware of the price of including large-size data with relatively
large uncertainties, and we also perform fits with L = 256
being precluded, i.e., Lmax = 128. As a result, we obtain
α = 0.2776(7) and 0.278(1) with chi2/DoF ≈ 1.6 and 2.9,
respectively. Then, we perform fits with the second-largest
size L = 128 being precluded yet L = 256 being contained,
for which the residuals are larger. A similar fitting procedure
is applied to κ = 10, and preferred fits are achieved. For
Lmax = 128, we obtain 0.2810(8), 0.281(1), and 0.281(2) with
chi2/DoF ≈ 0.4, 0.6, and 1.0, respectively. When L = 128
is precluded yet L = 256 is contained, we obtain 0.2828(7)
and 0.2835(9) with chi2/DoF ≈ 1.1 and 0.9, respectively.
Therefore, the estimates of α from κ = 5 and 10 are close to
each other. By comparing the fitting results in Table VII, the
universal value of α is estimated to be α = 0.28(1).

C. Scaling relation

We proceed to verify the scaling relation (4) of the crit-
ical exponent q̂ and the renormalization-group parameter α.
Figure 6 demonstrates the fitting results for q̂ and α versus
chi2/DoF, which are quoted from Tables V–VII. In the plot,
the two shadowed areas with q̂ = 0.58(2) and α = 0.28(1)
denote the final estimates from fitting. Next, using scaling
relation (4) with N = 2, namely αq̂ = 1/(2π ), we obtain es-
timates of α and q̂ from each other, and the results are also
presented in Fig. 6. It is found that the estimates of q̂ and
α from the scaling relation are close to the final estimates
indicated by shadowed areas, particularly when chi2/DoF ≈ 1
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FIG. 6. Verification for the scaling relation (4) with N = 2. The
green and black symbols with error bars stand for fitting results from
FSS analyses, while the purple and blue symbols without error bars
are transformed from the fitting results via the relation αq̂ = 1/(2π ).
The shadowed areas centered at dashed red lines denote the critical
exponent q̂ = 0.58(2) and the renormalization-group parameter α =
0.28(1).

is approached. Hence, the scaling relation (4) is compatible
with the present numerical results.

VI. DISCUSSION

To bridge the recent observations of exotic SC in classi-
cal statistical mechanical models [23–25] and the quantum
Bose-Hubbard model [28], we formulate the OSV model for
special and extraordinary-log criticality, which is extensively
simulated by a worm Monte Carlo algorithm. For the special
transition, the thermal and magnetic renormalization expo-

nents are estimated to be yt = 0.58(1) and yh = 1.690(1),
respectively, which are consistent with recent results from
classical spin models of emergent O(2) criticality [26,27]. For
the extraordinary-log phase, the critical exponent q̂ and the
universal renormalization-group parameter α are estimated to
be q̂ = 0.58(2) and α = 0.28(1), which are compatible with
scaling relation (4) with N = 2. Meanwhile, the estimated q̂
and α are fully consistent with previous results from the XY
model [24]. Moreover, the SF stiffness scales as L−1 at the
special transition and as L−1(lnL) for the extraordinary-log
critical phase. These features resemble the scaling formulas
of SF stiffness for the open-edge quantum Bose-Hubbard
model [28], where the stiffness was sampled over world-line
configurations. Hence, the present work provides an alter-
native demonstration for ELU and bridges recent numerical
observations over classical and quantum SC. As a byproduct,
it is promising that the quantitative results for special and
extraordinary-log criticality would serve as a long-standing
benchmark.

One direction for future work may be to finely tune the ge-
ometries of boundaries for a critical Bose-Hubbard or Villain
system by employing a full Suzuki-Trotter-type limiting pro-
cedure that underlies the quantum-classical correspondence.
Such an activity would offer a routine to reconcile the current
questions about SC in dimerized quantum antiferromagnets
[10–14,38–40], where the emergence of SC subtly depends
on geometric settings of boundaries and relates to symmetry-
protected topological phases.
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