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Nonlinear focusing of terahertz laser beam using a layered superconductor
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We theoretically study the propagation of a terahertz (THz) Gaussian beam through a thin sample of layered
superconductor. We consider the beam axis and the superconducting layers to be perpendicular to the sample
interface, while the electric field in the beam is perpendicular to the layers. We show that, in such a geometry, the
Josephson current between the superconducting layers supports lensing of the beam instead of divergence on the
Rayleigh range. Moreover, due to the nonlinearity, the focal length and waist of the transmitted beam depend on
the incident beam intensity. These dependencies demonstrate nontrivial hysteresis behavior that can be observed
in experiments with THz lasers.
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I. INTRODUCTION

In recent years, the physical properties of layered su-
perconductors have attracted the attention of many research
groups (see, e.g., Ref. [1] and references therein). The
strongly anisotropic Bi2Sr2CaCu2O8+δ , La2−δSrδCuO4, and
La2−δBaδCuO4 single crystals are the most prominent exam-
ples of such structures [2–5]. Numerous experiments on the
c-axis transport currents in layered high-Tc superconductors
justify the use of a model in which the superconducting CuO2

layers are coupled through the insulator layers by the intrinsic
Josephson effect [1,6,7]. This makes the layered superconduc-
tors to be anisotropic media not only quantitatively but also
qualitatively. While the currents in the plane of the layers are
of the same nature as in the bulk superconductors, the currents
across the layers are caused by the tunneling of the Cooper
pairs and quasiparticles.

The Josephson current flowing along the c axis is cou-
pled with the electromagnetic field inside the insulating
layers, thereby providing a specific kind of elementary excita-
tion called Josephson plasma waves (see, e.g., Refs. [7,8]).
These waves are of considerable interest because of their
THz and sub-THz frequency ranges, which are still hardly
reachable for both electronic and optical devices. The fre-
quencies of terahertz waves are in the region of resonance
frequencies of molecules and are expected to have many
applications [9,10].

Theoretical studies have predicted a variety of interest-
ing nonlinear phenomena in layered superconductors even in
the regime where the Josephson vortices are not formed [6].
This becomes possible for the frequencies not far from the
Josephson plasma frequency due to a specific nonlinearity of
equations describing the electrodynamic properties of layered
superconductors. In particular, the nonlinearity results in the
hysteresis response of the system to the electromagnetic exci-
tation [11–14] and in sensitivity of the system to the external
DC magnetic field [15,16]. In all these theoretical studies, the
irradiation of the sample was considered either by the plane
waves or in the waveguide geometry.

Meanwhile, for experimental investigations of layered
superconductor properties, the pulse-probe method using
laser radiation obtained from ZnTe crystals is commonly
used [1,17] with the spatially localized radiation. These lasers
emit unit pulses in the near-infrared range. Energy, produced
by unit pulse, reaches nanojoules with an electric field of
less than kilovolt per centimeter [18]. As was shown in
Refs. [11,19], such fields are well described by linear equa-
tions inside layered superconductor. To investigate nonlinear
effects, stronger fields are needed, and to achieve them the
main three types of beam generation can be used: the tilted
pulse front method [20], free-electron lasers [21], and gaseous
lasers [22].

The tilted pulse method [20,23,24] is based on the pas-
sage of external near-infrared radiation through a nonlinear
LiNbO3 crystal. Due to nonlinear optical effects, the fre-
quency of passed radiation is shifted to the THz range,
which is lower than the frequency of incident light. The
pulses from such lasers have a very wide bandwidth and
contain only several oscillations [20,25]. The area of the
beam cross section also depends on external laser and varies
from 4 mm2 to 30 cm2. The tilted pulse method was used in
Ref. [26] to investigate the response of layered superconductor
La1.84Sr0.16CuO4 to the terahertz external radiation, as well as
to measure the frequency dependence of reflectivity and con-
ductivity. To achieve strong electric fields, a laser was focused
down to a 1 mm2 beam cross section, thus field increased up
to 100 kV/cm. In Ref. [26], the frequency of the radiation was
450 GHz, which is below the Josephson plasma frequency of
2 THz.

The free-electron laser sources use radiation by relativistic
electrons moving in a nonhomogeneous periodically changing
magnetic field [21]. As opposed to the tilted pulse method, this
radiation is localized in frequency (2%), the duration of the
pulse is tens of picoseconds, and the time between pulses is
of the order of 10−7 s [19,27,28]. A 2 THz free-electron laser
with pulse duration of 25 ps was used in Ref. [19] for exci-
tation of the nonlinear Josephson plasma solitons, predicted
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in Ref. [29] for frequencies close enough to the Josephson
plasma frequency. The laser beam was focused to a 1 mm2

beam cross section, producing a 10 kV/cm field.
Recently, rapid development of CO-based gaseous lasers

with THz frequencies shows prospective abilities to use them
in investigation of layered superconductors [22,30,31]. These
lasers produce constant-in-time radiation with the electric
field up to fractions of kilovolts per centimeter. They can
be tuned to the pulse regime with the corresponding gain in
intensity.

Thus, the high amplitudes sufficient to observe nonlinear
effects in layered superconductors can be reached by the
pulsed radiation. On the other hand, the pulse duration should
be long enough to establish the stationary field distribution
in the sample. As one can see, the pulse length reachable in
experiments is of the order of several centimeters for ∼100 ps
pulses. In the present paper, we consider samples of several
millimeter thicknesses for which the existing experimental
setups can be used to observe the strongly nonlinear effects,
even taking into account the multiple reflections from the
interfaces of the superconducting slab.

In this paper, we theoretically investigate the Gaussian
beam which falls onto a thin slab of layered superconductor.
We consider the case of constant-in-time beam amplitude,
which corresponds to the long enough pulses in experiments.
Though the width of the beam does not change significantly
within the slab, the curvature of the wavefront becomes neg-
ative due to the nonlinearity, resulting in the convergence of
the beam. To characterize such nonlinear focusing effect, we
introduce focal length F (length from right sample interface
to the point, at which the width of beam becomes minimal).
We find the dependence of this parameter on the incident
beam amplitude and frequency. We show that, for the specially
chosen frequency and amplitude of the incident beam, the
focusing effect can be strongly increased, and the focal length
can be significantly decreased down to the distance of several
centimeters. Thus, this focusing effect becomes available for
the precise experimental investigation.

The paper is organized as follows. In Sec. II, we describe
the model of the beam in vacuum and in a layered supercon-
ductor and present the main equations for the electromagnetic
field in the system. In Sec. III, taking into account boundary
conditions at both interfaces of the slab, we find the curvature
of the wave front of the transmitted beam which determines
the focal length and the beam waist. In Sec. IV, we describe
the numerical scheme which we use to verify analytic results.
Finally, in Sec. V, we analyze the dependence of focusing
characteristics on frequency and amplitude of the incident
beam.

II. MODEL

A. Gaussian beam in the vacuum

We start our analysis from considering the behavior of the
THz Gaussian beam in the vacuum. For the beam propagating
along the x axis, the well-known distribution of the electric
field reads [32,33]

E (x, r, t ) = E0 exp

(
− r2

r2
b

)
sin

[
kv

(
x + αr2

2

)
− ωt + φ

]
.

(1)

FIG. 1. Schematics of the setup. The laser beam propagates from
left to right. The incident beam waist is r0 at the left interface. The
transmitted beam waist is rmin; it is located at the focal length F
from the right interface. The x axis is directed along the beam, the
z axis is perpendicular to the layers of the superconducting slab of
thickness d . The incident, reflected, and transmitted beams propagate
in the vacuum regions, while forward and backward beams propagate
inside the superconducting slab (arrows show the directions of cor-
respondent beams).

Here r =
√

y2 + z2 is the distance from the axis of beam, kv

and ω are the wave number and frequency, related to each
other by the dispersion relation kv = ω/c, and c is the speed
of light. The amplitude E0, characteristic radius rb, wave-front
curvature α, and the Gouy phase φ are the main characteristics
of the beam. Being governed by the Maxwell equations, they
vary along the beam path, thus being the functions of x.

Presume the beam transmitted through the slab of layered
superconductor, see Fig. 1, has radius rb(x = 0) = r0 and neg-
ative wavefront curvature α(x = 0) = −α0 < 0. The beam
radius rb(x) obeys the following relation [32]:

rb(x) = rmin

[
1 + 4(x − F )2

k2
vr4

min

]1/2

, (2)

demonstrating convergence of the beam to the minimal reach-
able radius rmin (the beam waist),

rmin = r0

[
1 + α2

0k2
vr4

0

4

]−1/2

, (3)

at a distance F from the right interface, that we call the focal
length:

F = − 1

α0

[
1 + 4

α2
0k2

vr4
0

]−1

. (4)

In the present paper, we investigate the beam transmitted
through the slab of a layered superconductor. To be specific,
we suppose that the waist point of the incident beam coincides
with the slab interface, thus the beam curvature in this point is
zero. In common media, after such a point, the beam should
diverge on the Rayleigh range. However, we show that even
a thin slab of layered superconductor can make the curvature
of the beam negative, thus producing the focusing effect (al-
though it does not change practically the radius of the beam
within the slab).
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B. Gaussian beam in a slab of layered superconductor

1. Choice of the polarization

We focus our attention on the case when a laser beam
falls perpendicularly onto a surface of layered superconductor,
which leads to the strong focusing of the beam without its
distortion. We are aiming to study the situation when the
Josephson tunneling current across the layer plays a decisive
role in the phenomenon under consideration. Therefore, we
consider the simplest geometry where the layers are perpen-
dicular to the slab interface, see Fig. 1. In another simple
geometry, when the layers of the slab are parallel to the
interface, the electric field of the beam lays in the plane of
superconducting layers, and the nonlinear Josephson current
is absent.

In the considered setup, the slab interface is anisotropic,
which makes the system highly sensitive to the polarization
of the radiation. Actually, the layered superconductor slab
acts as a THz polarization filter in a wide frequency range.
Indeed, if the electric field in the incident wave is directed
along the layers of the slab, the superconducting currents flow
only along the layers, and the so-called ordinary waves are
excited in the sample. These ordinary waves, as was shown in
Ref. [1], for characteristic frequencies not far from Josephson
plasma frequency ωJ , evanesce inside the sample on the char-
acteristic depth of λab ∼ 10−5 cm, which makes the sample
totally reflective for the realistic experimental situations. On
the contrary, the linearly polarized incident wave with the
electric field directed perpendicularly to the layers gener-
ates Josephson current and excites the so-called extraordinary
waves in the slab, which are nonlinear. Here we focus on the
specific polarization with the electric field perpendicular to the
layers, which induces only extraordinary waves and results in
the nonlinear focusing of transmitted beam.

The choice of polarization is also related to the symmetry
of the order parameter distribution in the layered supercon-
ductor. As is well-known, the usual superconductors have
spherical pairing symmetry (so-called s-wave paring), while
high-Tc superconductors usually have d-wave asymmetric
pairing [34], resulting in the dependence of their properties on
the direction. However, for the chosen polarization, this effect
is not important because the electric field is oriented nearly in
one direction along the whole way of the beam in the slab.

2. Multiple reflections and Gaussian profile

It is important to take into account the internal and exter-
nal reflections on both sample interfaces. Thus, we consider
incident, reflected, and transmitted beams in vacuum regions
and the beams propagating in both directions in the su-
perconducting slab. It should be noted that, in general, the
electromagnetic field inside the slab could not be represented
as the only two, forward and backward, Gaussian beams. First,
the Gaussian profile could be lost due to superposition of
numerously reflected beams and, second, all these reflections
could pump energy into each other due to the nonlinearity
of the system. However, we study the thin slabs, and this
assumption allows us overcome the mentioned problem.

Namely, we assume here that the thickness of the slab is
of the order of effective wavelength inside the slab and that
the radius of the beam is much greater than the characteristic

penetration length λc = c/(ωJ
√

ε) along the layers, where ε

is the permittivity of the insulating layers in the slab. These
assumptions are fulfilled for the realistic experimental impli-
cations of the THz beams (see, e.g., Ref. [19]), and allow one
to consider the radius and, thus, amplitude of each reflected
beam inside the slab to be constants. Indeed, using for the
estimation Eq. (2) with the wave number ks of linear waves in
superconductor [1,6],

k2
s = ε

(
ω2 − ω2

J

)
/c2, (5)

and characteristic parameters ωJ/2π = 2 THz,
ω − ωJ = 10−3ωJ , we get 	r/r ∼ 10−4, where 	r is the
variation of the thickness in the slab. This estimation is also
verified by numerical simulation, see Sec. IV for the details.
Therefore, superposition of all the forward (backward) beams
of the same radius can be regarded as a single forward
(backward) beam.

The other effect which we need to address here is the dissi-
pative quasiparticle current in the superconducting slab which
leads to the decay of the beam as it propagates and multiply
reflections from the interfaces. Taking into account quasipar-
ticle conductivity, the right-hand side of Eq. (5) acquires an
imaginary term −iεωωr/c2 with dissipation relaxation rate
ωr , see Ref. [6]. This results in attenuation length

la = 1

Im(ks)
=

(
2λ2

c√
β4 + ω2

r /ω
2
J − β2

)1/2

(6)

with β =
√

ω2/ω2
J − 1. For the realistic parameters reach-

able in experiments [35,36], ωr/ωJ may be as low as
10−4, . . . , 10−3. Then the attenuation length may reach cen-
timeters for frequency detuning ω − ωJ = 10−3ωJ , which
allows us to omit the dissipation for the samples with thick-
ness about millimeters in the present paper. Note also that
the parameters chosen below in the paper correspond to the
minimal field amplitudes required for the focusing effect to
be observed. For stronger fields, the sample may be chosen
thinner, and the role of attenuation can be reduced. Moreover,
the relaxation rate is highly sensitive to the temperature and
may be reduced significantly by cooling the system.

3. Forward and backward nonlinear beams

Thus, taking into account the numerous reflections from
the slab interfaces, within the assumption of small sample
thickness and nearly unchanged beam width, we can seek the
electric field in the slab in the form of two Gaussian beams
of the same radius r0, propagating in forward (index +) and
backward (index –) directions,

Es(x, r, t ) = E0 exp

(
− r2

r2
0

)
(E+ sin �+ + E− sin �−), (7)

where the total phases �+ and �− are

�± = ±k±(r)

(
x + α±r2

2

)
− ωt + φ±. (8)

Here E0 = �0/2πsλc is the characteristic scale of electric and
magnetic fields in a layered superconductor, �0 = πch̄/e is
the magnetic flux quantum, and s is the period of the layered
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superconductor structure. Parameters α± and φ± are consid-
ered here to be constants, which is correct for the thin samples.
This means that, in the linear approximation, the curvature
of the wave front would not distinctly change. However, in
the nonlinear regime, we should take into account the radial
dependency of the wave number k±(r) because intensity of
the electromagnetic field depends on the distance r from the
beam axis. Therefore, the cross terms depending on both r and
x appear in the phase that means the effective curvature of the
wave front changes along the propagation of the beam, see
Eq. (17) for details. In other words, due to the nonlinearity,
different regions of the wave front have different speeds, and
this makes the beam converge after passing the slab. The latter
is the mechanism of the nonlinear focusing of the THz beam
by the layered superconductor.

C. Electrodynamic equations for layered superconductors

To find the nonlinear wave number k±(r) we now briefly
describe the electrodynamic equations for a layered supercon-
ductor.

1. Equation for the gauge-invariant phase difference of the order
parameter

In the framework of the semiclassical approach, the field
inside the superconducting slab can be determined from the
gauge-invariant phase difference ϕ of the order parameter in
the neighboring superconducting layers of the slab (see, e.g.,
Ref. [6]). This parameter is actually discrete, but here we con-
sider rather thick beams in comparison with the period of the
layered superconductor structure, r0 � s, when the continual
approximation is valid. In the considering geometry, the elec-
tric field is oriented perpendicular to the layers and induces the
Josephson tunneling current, Jz = Jc sin ϕ with Jc being the
maximal value of nondissipative Josephson current density.
Meanwhile, the current along the layers can be described by
the London model, Jx = −c/(4πλ2

ab) Ax, where Ax is the x
component of the vector potential in the slab. The calibration
for the vector potential can be chosen in such a way that the
following relation for Az is valid: ϕ = −2πsAz/�0 (see, e.g.,
Ref. [6]).

Then, using the Maxwell equations and the relation of
electromagnetic field to the vector potential, one can express
the electric and magnetic fields via the phase difference ϕ,

Es = −E0
1

ωJ
√

ε

∂ϕ

∂t
, (9)

∂Hs

∂x
= −E0

λc

[
1

ω2
J

∂2ϕ

∂t2
+ sin ϕ

]
, (10)

and derive the differential equation [6,37], which is the contin-
ual version of the well-known coupled sin-Gordon equations:

(
1 − λ2

ab

∂2

∂z2

)[
1

ω2
J

∂2ϕ

∂t2
+ sin ϕ

]
− λ2

c

(
∂2ϕ

∂x2
+ ∂2ϕ

∂y2

)
= 0.

(11)
Here the Josephson plasma frequency ωJ is related
to the other parameters of the layered superconductor,
ωJ = √

8πesJc/(h̄ε). The value of ωJ is much lower than the
pairing gap 	 of superconducting layers, see, e.g., Ref. [38],

FIG. 2. Spatial distributions of the amplitude [(a), (c)] and the
total phase [(b), (d)] of electric field in the transmitted beam at the
right interface. (a) and (b) show the distributions obtained by the
numerical simulation as functions of spatial coordinates y and z by
the color gradient. (c) and (d) present these numerical distributions
in two perpendicular cross sections, vertical (at y = 0 as function
of z) and horizontal (at z = 0 as function of y), plotted by the blue
lines with solid circles and red lines with empty squares. These
curves are compared with the analytically obtained distributions (as
functions of r), plotted by the green lines and calculated as described
in Sec. III. The same blue and red colors are used for the dashed
straight lines in (a) and (c) to indicate respective cross sections. The
distributions are calculated for the incident beam with amplitude
Ei = 0.2 kV/cm with pronounced nonlinear effects. Other param-
eters are ωJ/2π = 2 THz, ω/ωJ − 1 = 1.1 × 10−3, λc/λab = 15,
r0 = 3.5 mm, d = 2.5 mm, s = 2 × 10−7 m, ε = 15.

that allows us to use the semiclassical approach for the fre-
quencies ω ∼ ωJ .

It is important to emphasize that, in spite of strong
anisotropy of the layered superconductor, the Gaussian beam
propagating through the thin slab nearly preserves its axial
symmetry of the amplitude distribution in its cross section.
Indeed, the terms with second derivatives over y and z in
Eq. (11) appear to be small in comparison to other terms if the
slab is thin, d � r0. We additionally verify this assumption
comparing the cross-sectional distribution in y and z calcu-
lated in numerical simulation with corresponding analytical
results, see Sec. IV and Fig. 2 for details.

2. Weak nonlinearity in the vicinity of Josephson plasma
frequency

The nonlinearity in Eqs. (10) and (11) leads, in principal,
to the generation of higher harmonics both in space and time
coordinates. As was reported in Ref. [6], this generation can
be neglected if the phase difference ϕ is small and sin ϕ can be
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expanded into series up to the third order, sin ϕ ≈ ϕ − ϕ3/6.
Usually, such approximation provides only weak nonlinear
effects. However, there is an important range of frequencies,
close enough to ωJ , where the nonlinearity plays a crucial
role [6]. The strong nonlinear effects can be observed when

ϕ ∼ β � 1, (12)

because the linear terms in Eq. (11) nearly cancel each other
and the cubic term becomes significant. In the present paper,
we study this frequency range and predict strong nonlinear
focusing of the Gaussian beam.

To determine the nonlinear wave number k±(r) in Eq. (8),
we expand all the radial dependencies in series over small
r/r0 up to the second order, supposing that the Gaussian
distribution for the thin slab is preserved. We find the phase
difference ϕ from Eq. (9) with the electric field Es in the
form of Eq. (7) and then substitute it into Eq. (11). Neglecting
higher spatial and temporal harmonics, the nonlinear wave
numbers k±(r) can be related to the amplitudes E± of the
forward and backward beams via parameters κ±,

k±(r) = ks + κ±
λc

− γ±
λc

r2

r2
0

, (13)

γ± = κ±
2β + κ±
β + κ±

, (14)

8κ±(2β + κ±) = ε(E2
± + 2E2

∓), (15)

where ks is the wave number of linear waves, Eq. (5). Note that
the wave numbers for the forward and backward propagating
beams are tangled with each other via their amplitudes, which
is natural for nonlinear problems.

The first term in Eq. (13) corresponds to the linear limit
of small amplitudes, while the second and third terms are
provided by the nonlinearity. The important effect of non-
linearity is the dependence of wave numbers k±(r) on the
radial coordinate, which means that the curvature of the beam
changes along its path. Indeed, recombining terms with r2/r2

0
in Eq. (8) and neglecting terms ∝ (r/r0)4, we can write �± in
the following form:

�± = ±k(0)
±

[
x + αeff

± (x)r2

2

]
− ωt + φ±, (16)

introducing the effective curvature αeff
± (x):

αeff
± (x) = α± − 2γ±

λck(0)
± r2

0

x, k(0)
± = k±(r = 0). (17)

Note that, strictly speaking, Eqs. (13) and (16) are valid only
for r/r0 � 1. However, they are correct practically for all r,
where exp[−(r/r0)2] ∼ 1, see Sec. IV and Fig. 2 for details.

For magnetic field (which is directed along the y axis), we
derive

Hs(x, r, t ) = E0 exp

(
− r2

r2
0

)
(H+ sin �+ + H− sin �−), (18)

with dimensionless amplitudes H± related to E±:

H± = ∓√
εE±(β + κ±). (19)

Now, having the expressions for the electromagnetic field
in the superconducting slab, we proceed with finding the

parameters E±, α±, φ± in superconductor and amplitudes,
curvatures and phases for the reflected and transmitted waves
in the vacuum.

III. FOCUSING OF THE GAUSSIAN BEAM BY THE SLAB
OF LAYERED SUPERCONDUCTOR

In this section, we derive an analytic expression for the
curvature αt in the transmitted beam that defines the focal
length F and the waist rmin of the beam. To that purpose,
we should relate the parameters of the beams in vacuum
and the slab of the layered superconductor by matching the
tangential components of the electric and magnetic fields at
the interfaces. For the slab, we use Eqs. (7) and (18), while
the corresponding expressions for the vacuum regions can
be written analogously to Eq. (1). Aiming to determine the
curvatures and phases of the incident, reflected, and trans-
mitted beams at the interfaces, we present the field only in
the vicinity of the slab. Near the slab, as well as within the
slab, we can set the radius of all beams to r0. There exist the
incident and reflected beams,

EL(x, r, t ) = exp

(
− r2

r2
0

)
(Ei sin �i + Er sin �r ), (20)

in the left vacuum region (see Fig. 1), and there is the trans-
mitted beam only,

ER(x, r, t ) = Et exp

(
− r2

r2
0

)
sin �t , (21)

in the right vacuum region. Here the phases �t of transmitted
and �r of reflected beams are defined as follows:

�t,r = ±kv

(
x + αt,rr2

2

)
− ωt + φt,r, (22)

with signs + and − corresponding to indices t and r, respec-
tively. Curvatures αr and αt as well as Gouy phases φr and
φt can be considered as constants only in the vicinity of the
slab and are to be determined from the boundary conditions.
Once they are found, they can be considered as initial values
for the corresponding beams to determine the focal length and
the beam waist.

The total phase �i of the incident beam we choose in the
following simple form:

�i = kvx − ωt, (23)

which means that the incident beam waist position (where the
curvature is absent, αi = 0) coincides with the left interface.

The corresponding magnetic field in the vacuum can be
easily obtained from Maxwell’s equations:

HL(x, r, t ) = exp

(
− r2

r2
0

)
(−Ei sin �i + Er sin �r ),

HR(x, r, t ) = −Et exp

(
− r2

r2
0

)
sin �t . (24)

Now we can match the tangential components of the elec-
tric and magnetic fields at the two interfaces between the
vacuum and the slab. To obtain the closed set of equations for
the sought quantities, we expand the fields as the functions of
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r into series and keep the summands up to the second order
in r/r0 only. Straightforward calculations yield the following
equations determining the amplitudes E± of the two beams in
the slab:

E+ + E− + H+ + H− = 0,

E+ − E−
2

sin

[
ksd + d

2λc
(κ+ + κ−)

]
= Ei

E0
. (25)

Recall that H± is related to E± by Eq. (18) and κ± is de-
termined by Eq. (15). Thus, the values of E± appear to be
nonlinear functions of the amplitude Ei of the incident beam.
Moreover, these functions can be multivalued, which will be
discussed in Sec. V.

Another result of matching the fields at the vacuum-slab
interfaces is the expression for the curvature of the wave front
of the transmitted beam, which is valid for the amplitudes E±
small enough as compared to β (and yet these amplitude can
be high enough for the nonlinear effects to be pronounced):

αt (x = 0) = 2d

kυr2
0

γ+E+ − γ−E−
E+ + E−

. (26)

It can be shown that this curvature is negative and thus the
beam converges. One can substitute this value into Eqs. (3)
and (4), α0 = αt (x = 0), and thus find the waist rmin of the
transmitted beam and the focal length F , which determine the
focusing ability of the superconducting slab.

IV. NUMERICAL SIMULATION

Before analyzing the waist of the transmitted beam and
the focal length as functions of the system parameters, we
describe our numerical simulation scheme, worked out to
verify the obtained analytic results. It should be emphasized
that, in our analytic approach, we make several important
assumptions, such as neglecting higher spatial and temporal
harmonics, and invariance of the radius and the Gaussian pro-
file of the beam inside the slab. To check them to be correct,
we perform a direct numerical simulation of Eq. (11) for the
phase difference ϕ as a function of coordinates x, y, z inside
the slab of layered superconductor and time t , while the inci-
dent, reflected, and transmitted beams are accounted for by the
corresponding boundary conditions for electric and magnetic
fields at each point of the slab interfaces. Additionally, we take
into account the conditions of free radiation for the reflected
and transmitted beams, which is standard routine in numerical
simulations of spatially unbounded systems.

The size of the sample is chosen to be N = 3 times greater
than the diameter of the beam, namely, 2.1 cm × 2.1 cm for
the 7-mm-wide laser. These dimensions are high enough to
neglect the edge effects due to the fact that the electromagnetic
field at the lateral edges is exp(N2) times weaker than on the
axis of the beam.

Technically, the numerical simulation of Eq. (11) is per-
formed for several values of the incident beam amplitude.
For each value of Ei, the following procedure is performed.
The amplitude is gradually increased from zero to Ei slowly
enough, and then is kept constant until the electromagnetic
field in the whole sample becomes well established. The ob-
tained distribution of the field is used to estimate deviations

FIG. 3. Dependence of focal length F (upper blue curve) and
normalized beam waist rmin/r0 (lower red curve) on frequency de-
tuning of the incident beam. Points a and b correspond to the local
maxima at ω/ωJ − 1 ≈ 0.75 × 10−4 and at ω/ωJ − 1 ≈ 2 × 10−4

on the lower curve. The amplitude of incident beam Ei is 50 V/cm.
The insets show the intensity distribution in the transmitted beam
for frequencies corresponding to points a and b, while dashed curves
show 1/e2 width. Other parameters are the same as in Fig. 2.

from the expected analytic result and to calculate the focusing
parameters of the transmitted beam.

Figure 2 shows the spatial distributions of the amplitude
[Figs. 2(a) and 2(c)] and the total phase [Figs. 2(b) and 2(d)]
of electric field in the transmitted beam at the right interface,
x = 0. The phase is counted from its value in the central point
of the cross section:

	�t (y, z) = �t (y, z, t ) − �t (y = 0, z = 0, t ).

Figures 2(a) and 2(b) present the distributions obtained by
the numerical simulation as functions of spatial coordinates
y and z by color gradient. Figures 2(c) and 2(d) are assigned
with analytic results for accurate comparison with numeri-
cally obtained distributions, namely, the green curves present
the amplitude Et exp(−r2/r2

0 ) [Fig. 2(c)] and the total phase
	�t (r) = �t (r, t ) − �t (r = 0, t ) [Fig. 2(d)] as functions of
the spatial coordinate r, calculated by analytic approach de-
scribed in Secs. II and III. The blue and red lines with
solid circles and empty squares correspond to the numerically
obtained distributions in two perpendicular cross sections,
vertical (at y = 0 as function of z) and horizontal (at z = 0
as function of y), respectively. The same colors are used for
the dashed straight lines in panels a and b to indicate corre-
sponding cross sections.

As can be seen from Figs. 2(c) and 2(d), even for the inten-
sive enough incident beam with amplitude Ei = 0.2 kV/cm,
where nonlinear effects are distinctly pronounced (see Sec. V
and Fig. 4 for details), the field distribution appears to be
nearly isotropic and Gaussian. Note that the seeming deviation
of the amplitude from the Gaussian in the region of small radii
is due to a slightly narrower distribution of the beam in the
simulation, which results in the higher amplitude in the central
part. The total phase is very consistent with the quadratic
dependence as assumed in the model, while the deviations
far from the beam axis are inessential there because of the
exponentially small amplitude, i.e., exp[−(r/r0)2] � 1.
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FIG. 4. Dependence of focal length (upper panel) and transmit-
ted beam waist (lower panel) on the amplitude of incident beam.
Green points show the results of the numerical simulation. The left
and right panels show the dependencies in different ranges of Ei.
Solid and dotted curves show reachable and unreachable branches.
Arrows show possible hysteresis variation of the focusing parame-
ters, when the incident beam intensity increases/decreases gradually.
Frequency detuning is ω/ωJ − 1 = 1.1 × 10−3, other parameters are
the same as in Fig. 2.

Thus, the numerical simulation ensures that our assump-
tions made in the model are reasonable and we can use
analytic results to study the nonlinear focusing of the Gaussian
beam by a thin plate of layered superconductor.

V. ANALYSIS OF THE RESULTS

In this section, we apply both the analytic approach and
numerical simulation to study the dependence of focal length
and the waist of the transmitted beam on the frequency and
amplitude of the incident radiation.

We start from the dependence on frequency, which is es-
pecially interesting in the vicinity of the Josephson plasma
frequency ωJ . Figure 3 shows the dependence of the focal
length F (upper blue curve) and the waist rmin/r0 of the trans-
mitted beam normalized to the initial radius (lower red curve)
as the functions of frequency detuning ω/ωJ − 1. One can see
that, as the frequency ω of the laser beam approaches ωJ , both
the focal length and beam waist pronouncedly oscillate. These
oscillations emerge from the variation of the wavelength in
the sample, and are analogous to the Fabry-Pérot oscillations.
Indeed, the critical points of the curves in Fig. 3 correspond
to the frequencies, for which the thickness of the sample is
equal to integer number of wavelengths, 2πn/k(0)

± . However,
the wavelength is not proportional to ω−1 as in linear optics,
but nonlinearly depends on the frequency detuning ω/ωJ − 1,
significantly affecting not only the amplitude of the transmit-
ted beam but also the focal length and the beam waist.

It should be noted that similar oscillations of the trans-
mission coefficients of plain waves and wave-guide modes
when changing frequency detuning ω/ωJ − 1 were predicted
in Refs. [12,13]. So, the nonlinear effects lead not only to
rapid increase of the transmitted amplitude but also to strong
focusing effect of the Gaussian beam.

Now let us analyze the effect of the beam intensity, which
also comes from the nonlinearity of the problem. Figure 4
shows the dependence of the focal length (upper panel) and
transmitted beam waist (lower panel) on the amplitude of the
incident beam. The green points with vertical error bars in
Fig. 4 show the results of the numerical simulation described
in Sec. IV. One can see that the simulation points fit well
the analytic curve, and the simulation errors increase with the
growth of the incident field amplitude.

It is important that, according to Eq. (17) with κ± from
Eq. (15), the dependence of curvature αt on the incident beam
amplitude Ei is implicit and strongly nonlinear. Therefore, as
seen from Fig. 4, the focal length appears to be nonmonotonic
as a function of Ei. Moreover, if one increases the amplitude
even more, up to approximately 0.7 kV/cm for the chosen
parameters, the dependencies become even multivalued (see
the right panels). One can see that each dependence F (Ei )
and rmin(Ei ) involves three branches. The first branch starts
at Ei = 0 and ends up at a certain critical value Ei,1, while the
third branch starts at a certain critical value Ei,2 and goes to
the greater values. The second (intermediate) branch shown
by dashed line between Ei,2 and Ei,1 is unreachable as is
usual for such multivalued dependencies. If one gradually
increases/decreases the amplitude of the incident beam, the
parameters of the transmitted beam can exhibit hysteresis
behavior with jumps marked by arrows in Fig. 4.

It should be noted that the accuracy of the simulation
did not allow us to check the hysteresis behavior though we
tried several strategies to achieve higher amplitudes with high
enough accuracy in the simulations. So, it is an open problem
to find out whether correspondent hysteresis behavior can
be attained in the numerical simulation and/or in the real
experiments. Yet, we clearly see that our analytic approach fits
the results of numerical simulation well and thus can be used
to predict the behavior of laser beams in nonlinear layered
superconducting slabs and describe its focusing parameters.

VI. CONCLUSIONS

In this paper, we have studied theoretically propagation of
the Gaussian laser beam through the layered superconductor
slab with layers perpendicular to the slab interface. We have
chosen polarization where the electric field is perpendicular to
the layers, thus inducing the Josephson interlayer currents in
the sample. Solving differential equations for the electromag-
netic field distribution in the slab with appropriate boundary
conditions, accounting for the reflections from the interfaces,
we have presented the dependencies of the focal length and
the transmitted beam waist on the frequency and amplitude of
the incident beam in an implicit algebraic form. We also have
performed the numerical simulation to determine the field
distribution in the slab and thus verified the analytic results.

We have shown that, in the nonlinear regime, the laser
beam acquires the negative curvature of the wave front after
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passing the layered superconductor slab which leads to the
beam focusing. The focusing effect strongly depends on am-
plitude and frequency of the incident radiation and becomes
more pronounced for frequencies close to the Josephson
plasma frequency and for high enough amplitudes. Note that
the results are shown for the small frequency detunings and
for the reachable amplitudes of the order of 1 kV/cm. If the
greater amplitudes are used, the frequency may be detuned
further from the Josephson plasma frequency. Moreover, the
analysis of the results admits that the focal length and the

transmitted beam waist can show hysteresis behavior when
the amplitude of the incident laser beam is increased and then
decreased gradually.
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