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Phase dynamics in an AC-driven multiterminal Josephson junction analog
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In the presence of an AC drive, multiterminal Josephson junctions exhibit the inverse AC Josephson effect,
where the oscillations of the superconducting phase of each junction can lock onto one another or onto the
external drive. The competition between these different phase-locked states results in a complex array of
quantized voltage plateaus whose stability strongly depend on the circuit parameters of the shunted junctions.
This phase diagram cannot be explored with low-temperature transport experiments alone, given the breadth of
the parameter space, so we present an easily tunable analog circuit whose dynamical properties emulate those of
a three-terminal junction. We focus on the observation of the multiterminal inverse AC Josephson effect, and we
discuss how to identify Shapiro steps associated with each of the three junctions as well as their quartet states. We
only observe integer phase-locked states in strongly overdamped networks, but fractional Shapiro steps appear
as well when the quality factor of the junctions increases. Finally, we discuss the role of transverse coupling in
the synchronization of the junctions.
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I. INTRODUCTION

In a multiterminal junction, a Josephson coupling is es-
tablished between multiple superconducting electrodes across
a common normal channel. Those devices recently attracted
considerable interest [1–7] because of the energy spectrum
of their Andreev bound states. Indeed these states, which
result from the Andreev reflections of charge carriers at each
superconducting interface, have an energy spectrum that can
emulate artificial band structures with interesting topological
features such as Weyl points and non-Abelian monopoles
[8–15].

While the quantum effects in these devices provide unique
opportunities, the dynamical effects of these circuits can
give rise to unexpected effects [16–19]. This is because the
time evolution of the superconducting phases obey nonlin-
ear differential equations that are comparable to those of
driven coupled pendulums [20–24]. As a result, many fea-
tures that are traditionally recognized as quantum effects in
Josephson junctions, may actually be caused by the non-
linearity of the equations describing them. For instance,
fractional Shapiro steps, which are often attributed to the
nonsinusoidal current phase relation (CPR) of a device, can
actually be observed in two or three-terminal junctions with
a strictly sinusoidal CPR as a consequence of the classical
equations governing them [4,25]. Another example arises in
three-terminal devices, where supercurrent resonances can
occur when commensurate finite voltages are applied to each
terminal. While those have been attributed to Andreev mul-
tiplets entangling four or more electrons, they can in fact
have a strictly dynamical interpretation which is observable
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in classical systems [23,26]. Therefore, as a way to distin-
guish quantum causes from classical ones, there is a need to
realize an experimental platform that mimics the dynamical
processes in these devices, decoupled from any complicating
quantum effects.

In the case of single junctions, analog circuits based on
voltage-controlled oscillators (VCO) can be designed so that
the voltage at one of their nodes follows the same differential
equation as the junction phase in the resistively and capaci-
tively shunted junction (RCSJ) model [25,27–30]. Recently,
we showed how a broad range of RCSJ phenomena could
be observed in such a circuit [25]. These include hysteretic
switching, activated escape rate caused by thermal-noise,
phase-locking, and chaos. Furthermore, the design allowed
the observation of the time evolution of the phase itself, as
well as its frequency spectrum. These are not experimentally
observable in standard junctions, because the phase dynamics
occur on subnanosecond timescales.

In this work, we expand these results to the case of a
three-terminal junction. We designed an analog circuit that
follows the same dynamical system as a network of three
shunted junctions. The high tunability of this circuit allows
us to not only replicate recent observations made on ballistic
multiterminal junctions, but also to explore their vast param-
eter space more conveniently than with real devices. We first
show how to identify transitions between phase-locked states
associated with each of the three junctions. Additionally, we
observe synchronization phenomena involving two junctions
and the drive. These result in Shapiro steps which have yet
to be observed in real devices, along so-called “quartet res-
onances” at quantized values of pVi + qVj , where Vi, j are
junction voltages. Finally, we show how an increase in the
quality factor favors the stabilization of fractional Shapiro
steps, and we analyze their dynamics.
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FIG. 1. (a) Schematic of the analog circuit used in this work. In red is a schematic of an equivalent three-terminal network of Josephson
junctions. The bottom superconducting contact is grounded and its phase set as zero. Subcircuits corresponding to the left (L), right (R), and
transverse junctions (T) are highlighted with dashed boxes. (b) Effective differential resistance of the circuit ∂〈VL〉/∂IL as a function of the
two biases IL and IR. (c) Effective differential resistance of the circuit ∂〈VR〉/∂IR as a function of the two biases IL and IR. (d) Cross section of
〈V 〉L (IL ) for IR = −1.47 mA.

II. THE THREE-TERMINAL SHUNTED JUNCTION
MODEL

We model the three-terminal Josephson junction by the net-
work which is sketched in red in Fig. 1(a). The left and right
terminals are respectively labeled L and R, and the bottom
contact is grounded, so its phase can be assumed to be zero.
Each junction is assumed to be shunted by a resistor and a
capacitor. Applying Kirchhoff laws at each node, we find [31]

h̄

2e
C�̈ + h̄

2e
G�̇ + Ic(�) = I.

Here,

� =
(

ϕL

ϕR

)
and I =

(
IL

IR

)

are two-row vectors, and we defined the following quantities:

Ic(�) =
(

IL sin(ϕL ) + IT sin(ϕL − ϕR)

IR sin(ϕR) + IT sin(ϕR − ϕL )

)
,

C =
(

CL + CT −CT

−CT CL + CT

)
,

G =
(

GL + GT −GT

−GT GL + GT

)
.

Ic(�) depends on the current phase relations of the junctions,
which for simplicity are assumed to be sinusoidal.

The circuit shown in black on Fig. 1(a) reproduces the same
system of differential equations as the three-terminal network
of Josephson junctions. A simpler circuit analog of a two-
terminal Josephson junction was already studied in Ref. [25]
and is here generalized to the three-terminal case. It relies
on three home-made voltage-controlled oscillators (VCOs),
which have been simplified as box diagrams for clarity but are
shown in the Supplemental Material [31]. These oscillators
deliver an output sine-wave of amplitude α and frequency kV ,
where V is the input voltage of the VCO and k its voltage to
frequency gain.
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If we define ϕ̇L and ϕ̇R as the output voltages of operation
amplifiers A3 and A2 (multiplied by 2πk), we show in the
Supplemental Material [31] that � verifies the equivalent dif-
ferential equation:

1

2πk
C�̈ + 1

2πk
G�̇ + Ic(�) = I.

It is thus possible to monitor the time evolution of output
voltages of A2 and A3 and get insights into the phase dynam-
ics of three-terminal Josephson junctions. Here, we defined
the two vector I as

I =
(−IL

−IR

)
.

III. DC TRANSPORT CHARACTERIZATION

We first evaluate the switching properties of the analog
Josephson junction network in the presence of a DC bias. Fig-
ures 1(b) and 1(c) show the effective differential resistances
∂〈VL〉/∂IL and ∂〈VR〉/∂IR as a function of DC biases IL and IR.

The maps draw strong similarities with previous work on
three-terminal junctions shown in Refs. [3,5,6]. Three arms
of suppressed differential resistance correspond to each of the
three junctions being in the zero-voltage state. The strongest
resonances of suppressed differential resistance correspond to
VL = 0, VR = 0, and VL − VR. The maps of those voltages are
shown in the Supplemental Material [31].

A cross section of the differential resistance ∂〈VL〉/∂IL

as a function of IL is shown in light blue in Fig. 1(d). The
corresponding I-V curve VL(IL ) is shown in darker blue on the
same plot. Those cross sections are strongly reminiscent of
typical Josephson junction transport, and evidently the region
of suppressed differential resistance correspond to a plateau at
VL = 0.

In addition to the three main zero-voltage resonances, the
maps 1(b) and 1(c) show additional resonances along contours
defined as p〈VL〉 + q〈VR〉 = 0 with p, q ∈ N. Those reso-
nances are also seen on the cross sections 1(d) around IL ≈ 0
and IL ≈ 1.25 mA. These correspond to classical realization
of Andreev multiplet states and were the focus of a different
publication [23].

IV. INTEGER PHASE LOCKING

We now turn to the transport properties of the network
in the presence of an AC drive. Conventional multiterminal
Josephson junctions can exhibit the multiterminal inverse AC
Josephson effect in the presence of microwave radiation [4].
In the presence of a periodic drive, the junction phase can lock
onto a multiple of the drive frequency nω [32], which results
in a quantized voltage across the junction. This is a purely
dynamical effect, which can thus be replicated in a Josephson
junction analog, as shown in Ref. [25]. Here, the three analog
junction frequencies are on the order of 500 Hz. It is therefore
possible to observe phase-locking in the presence of an AC
excitation provided by a simple function generator.

We first characterize the inverse AC Josephson effect when
the coupling between the Josephson junctions is disconnected
[using the switches shown in Fig. 1(a)]. Here the three analog
junctions have a quality factor of about 0.3 and are thus over-

damped. We observe Shapiro steps in 〈VL〉(IL ) and 〈VR〉(IR),
shown in Figs. 2(a) and 2(b). The voltage quanta are fac/k,
where k is the voltage to frequency gain of the VCO. Similar
to the conventional Josephson junction case, the height of the
voltage steps is expected to be proportional to the AC drive
frequency fac. For each junction, we thus plot the normalized
output voltage at two different frequencies and find that the
quantization indeed scales with fac.

We can then determine the evolution of the width of the
Shapiro steps as a function of the amplitude of the AC drive. In
the case of a voltage biased Josephson junction, that width can
be determined analytically and follows Bessel-like oscilla-
tions as a function of the drive amplitude. While this is not the
case in current-biased junctions, oscillations are still observed
and can be perfectly replicated within the RCSJ model [25].
Figure 2(c) shows that trend: dark blue regions correspond
to a vanishing differential resistance ∂〈VL〉/∂IL and therefore
quantized Shapiro steps in the I-V curve of the junction. This
map is typical of overdamped behavior, as observed in both
standard junctions [33] and analog junctions [25].

Now that signatures of phase locking in uncoupled ana-
log junctions are established, we restore the transverse
coupling and determine the evolution of the differential re-
sistances ∂〈VL〉/∂IL and ∂〈VR〉/∂IR as a function of both
biases [Figs. 2(d) and 2(e)]. Important patterns in the data
are sketched in Fig. 2(f). Shapiro plateaus are observed in
both channels and they correspond to the darkest blue stripes
observed in Figs. 2(d) and 2(e). Plateaus of constant 〈VL〉
in Fig. 2(d) are sketched as dark red lines in 2(f), whereas
plateaus of constant 〈VR〉 in Fig. 2(e) are sketched as dark
blue lines in 2(f). We also label the index n of the Shapiro
step (such that V = n fac

k ). Note that the overall slopes of the
plateaus are identical to the contours 〈VL〉 = 0 and 〈VR〉 = 0
in the DC regime, which are shown in Ref. [31]. In Fig. 2(d),
the imprint of the 〈VR〉 plateaus is observed as slightly lighter
blue stripes. This is because the sudden drop in 〈VR〉 causes
the effective resistance from the left contact to ground to
drop slightly because of the resistor network connecting the
junctions. Similarly, plateaus of constant 〈VL〉 affect 〈VR〉 and
are visible as light-blue stripes in Fig. 2(e). The transverse
junction can also become phase locked. When this happens,
〈VL − VR〉 is quantized, which forms plateaus parallel to the
contour 〈VL − VR〉 = 0 in the DC regime. These correspond to
diagonal stripes spanning the map from the bottom left to the
top right corner [sketched in pink in Fig. 2(f)].

Finally, we observe that classical quartet states also yield
Shapiro steps, although these are fainter, which are visible
on both maps. The most noticeable correspond to plateaus
of quantized 〈VL + VR〉 and quantized 〈2VL − VR〉 and are
sketched in light blue in Fig. 2(f). Voltage steps are observed
whenever pVl + qVr = fac

k , with (p, q) = (1, 1) and (2,−1).
For a true Josephson junction network, this would correspond
to pVl + qVr = h fac

2e . In Ref. [23], we showed how finite su-
percurrents at pVl + qVr = 0 do not necessarily come from
entangled pairs of Cooper pairs but can instead be dynami-
cally stabilized by a process reminiscent of Kapitza’s inverted
pendulum problem. Here, we see that in the presence of an
AC bias, those resonances result in Shapiro steps where two
phases are synchronized and locked to the drive. Hints of
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FIG. 2. (a) Shapiro steps in an AC driven uncoupled analog junction. 〈VL〉 is plotted as a function of bias when Iac = 1.84 mA and
fac = 429.2 Hz (light blue), or Iac = 1.13 mA and fac = 286.7 Hz. The junction voltage is expressed in units of the voltage quantum fac/k,
which is why the slope of the trace changes despite the unchanged quality factor. (b) Shapiro steps for 〈VR〉 using the same parameters.
(c) Differential resistance ∂〈VL〉/∂IL in the absence of coupling as a function of DC and AC biases at fac = 286.7 Hz. (d) Shapiro steps
in the presence of transverse coupling. Differential resistance ∂〈VL〉/∂IL as a function of both biases VL and VR. The map was measured
with fac = 429.2 Hz and Iac = 1.76 mA. (e) Differential resistance of the other channel ∂〈VR〉/∂IR as a function of both biases IL and IR. (f)
Schematic of the main resonances to notice in panels (d) and (e). Integer plateaus in 〈VL〉 are labeled in dark red, plateaus in 〈VR〉 are labeled in
dark blue, plateaus in the transverse junction voltage 〈VL〉/ − 〈VR〉 are labeled in pink, and quartet plateaus in 〈VL〉 + 〈VR〉 are labeled in light
blue.

similar plateaus were reported in Ref. [23] but have yet to be
properly characterized in real three-terminal devices.

V. FRACTIONAL PHASE LOCKING

Maps of multiterminal Shapiro steps are only this simple
when the junctions are sufficiently overdamped. Indeed, when
the quality factor of the junctions is increased, additional
fractional phase locked steps are observed. Fractional Shapiro
steps can easily be seen even in single junctions with a si-
nusoidal CPR [25] but can also result from the interaction of
two junctions within a network [4]. The measurement scheme
is identical to what was discussed in the previous section.
Figs. 3(a) and 3(b) show the same differential resistances
∂〈VL〉/∂IL and ∂〈VR〉/∂IR for a slightly underdamped analog
junction network with a larger quality factor of ≈0.8. Plateaus
are visible in both channels at integer phase locking for each

junction, similar to what was described in Fig. 2. However,
new plateaus emerge at fractional multiples of the voltage
quantum fac/k. These are visible as smaller stripes of van-
ishing differential resistance which for example can be seen
around (IR = −1.4 mA, IL = 1.1 mA) for Fig. 3(a) and around
(IR = −1.2 mA, IL = 1.3 mA) for Fig. 3(b). To gain insights
into those patterns, we plot a cross section of 〈V 〉(IR) along
a Shapiro step of 〈VL〉, indicated by a yellow dashed line in
Fig. 3(a). We observe robust plateaus in 〈VR〉 at fractional
values with denominators up to five. Similarly, Fig. 3(d) corre-
sponds to a cross section at constant 〈VR〉 along the full yellow
line indicated in panel B. The cross section shows fractional
steps in 〈VL〉

Note that fractional steps in 〈VL〉 are only observed when
〈VR〉 is integer phase locked, the converse being also true. For
example, the fractions highlighted in Fig. 3(c) are obtained
on top of the n = 1 plateau of 〈VR〉. This implies that integer
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FIG. 3. AC fractional Shapiro steps in a driven analog junction network. (a) Differential resistance ∂〈VL〉/∂IL as a function of both biases
IL and IR. The map was measured with fac = 687.7 Hz and Vac = 1.2 mA. (b) Differential resistance of the other channel ∂〈VR〉/∂IR. (c) Cross
section 〈VL〉 and 〈VR〉 through a fractional Shapiro steps sequence as a function of IR. The corresponding cross section is shown in yellow
dashes on panel (a). It corresponds to an integer plateau of 〈VL〉 which coincides with a sequence of fractional steps in 〈VR〉. (d) Similar cross
section, corresponding to the continuous yellow line in panel (a), where 〈VR〉 is quantized and 〈VL〉 goes through a sequence of fractional steps.
(e) Frequency spectrum of VL (t ) as a function of bias along the cross section shown in panel (a) by the bold yellow line. (f) Potential profile
of the three-terminal junction. Two simulated trajectories in phase space are overlaid on top of the map, and each correspond to 12 cycles of
the drive. The trajectory on the left corresponds to plateaus 〈VR〉 = 0 and 〈VL〉 = 1

2
fac
k , while the one on the right corresponds to 〈VR〉 = 0 and

〈VL〉 = 1
3

fac
k .

phase locking of one of the phases tends to stabilize fractions
in the other channel.

We now turn to a time-domain analysis of the phase when
fractional Shapiro steps are observed. We first record the un-
filtered VL(t ) and VR(t ) at each bias value, then compute the
fast Fourier transform in order to determine their frequency
spectrum. We can then generate a map of that frequency
spectrum along a bias cross section [25]. Figure 3(e) shows the
spectral weight of the fast Fourier transform (FFT) as a func-
tion of frequency and bias, when the bias is evolving along
the diagonal shown in Fig. 3(a). The main resonance in the
frequency spectrum is of course the fundamental excitation
frequency fac observed at 687.7 Hz. We see that whenever the
I-V curve of the time filtered 〈VL〉 shows a fractional Shapiro
step, the frequency spectrum of the unfiltered VL(t ) has stable
subharmonics at fac/q, where q is the denominator of the
fraction. This type of frequency spectrum is reminiscent of

what is observed in a single analog junction in the presence of
fractional Shapiro steps [25].

To understand this behavior, as well the origin of the
fractional steps, we turn to numerical simulations of the trajec-
tories in phase space under different bias conditions. Details of
those simulations are available in the Supplemental Material
[31]. Figure 3(e) shows a map of the washboard potential,
which if we drop a multiplicative constant can be writ-
ten as U (ϕL, ϕR) ∝ −IcL sin(ϕL ) − IcR sin(ϕR) − IcT sin(ϕL −
ϕR). We plot two simulated trajectories of the phase over 12
cycles of the drive, and shift them by multiples of 2π to fit
in this window. They correspond to ϕR in the n = 0 phase
locked state, while ϕL is in the n = 1/2 (left) or n = 1/3
(right) phase-locked state. In both cases ϕR does not drift
and just rocks back and forth. In the n = 1/2 case, we see
that, at every other oscillation of the drive, the phase os-
cillates either across a minimum of the washboard potential
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FIG. 4. Differential resistance ∂〈VL〉/∂IL as a function of both
biases IL and IR. The map was measured with fac = 286.7 Hz and
Iac = 1.8 mA. The effective transverse critical current was increased
by a factor of 2.5 for this measurement, by dropping RT 2 from 7.5 k�

to 3 k�.

or along the saddle point between two maxima. Those two
types of oscillations differ in amplitude, which explains the
period doubling of the signal. In the n = 1/3 case, the phase
oscillates twice along the saddle point and once across a
minimum of potential, thus explaining the period tripling
observed in Fig. 3(d). In both cases, oscillations around an
otherwise unstable saddle point are dynamically stabilized
by the rocking of ϕR. While fractional Shapiro steps can be
observed in a single current-driven junction, our simulations
strongly suggest that the fractional steps we observe are in-
stead caused by the two-dimensional nature of the washboard
potential for a three-terminal junction. This mechanism is
reminiscent of the dynamical stabilization of classical mul-
tiplet supercurrents observed in Ref. [23], which was shown
to be mathematically equivalent to Kapitza’s inverted pendu-
lum problem. This also explains the need for a larger quality
factor to observe such fractions, since inertia facilitates this
stabilization [23].

VI. SYNCHRONIZATION

Finally, we turn to the impact of transverse coupling on
the synchronization of the two phases. To that end, we in-
crease the value of the transverse coupling IcT , which can just
be done by reducing RT 2. We then measure the differential
resistance ∂〈VL〉/∂IL, which is shown in Fig. 4. The map of
∂〈VR〉/∂IR is essentially identical.

We focus in this section on the three stripes of suppressed
differential resistance going from the bottom-left to top-right

corners of the map and whose boundaries are highlighted with
orange dashed lines. These correspond to the quantization of
the voltage across the transverse junction with n = −1, 0, 1.
In those regions, the stability contours of the plateaus of 〈VL〉
and 〈VR〉 are identical because the two voltages are locked
to each other by the quantization of the transverse junction.
This explains why the slope of those plateaus changes as they
intersect with plateaus of the transverse junction. We can also
see that when the three types of stripes intersect, all three
junctions are phase locked to an integer multiple of fac/k. This
occurs for example around IL = 1 mA, IR = −1 mA, which
corresponds to quantized voltages 〈VL〉 = −2 fac/k, 〈Vr〉 =
− fac/k, and 〈VL − VR〉 = − fac/k.

Note that, in a conventional Josephson junction a voltage
quantum is h fac/2e, whereas in the analog equivalent it is
fac/k, where k is the voltage to frequency gain of the junction.
It is therefore important to calibrate the gain of the three
VCOs so they are as close to each other as possible. We fine
tuned them so that kL = 1817 Hz/V, kR = 1818 Hz/V, and
kT = 1818 Hz/V. Despite this calibration, we observe some
artifacts that are caused by the nonuniversal size of Shapiro
steps. These are most visible on top of the n = 0 plateau of
the transverse junction, when it intersects plateaus of the other
two junctions. These correspond to dark blue bands of slope
≈ − 1 perpendicular to the widest plateau of slope ≈1. We
see that each plateau splits into two in that region, which is
barely noticeable in a voltage map, but striking in a differential
resistance map.

Our results provide a convenient tabletop alternative to
pure numerical modeling to observe and classify dynami-
cal phenomena in multiterminal junctions. The low cost of
the setup also makes it suitable to develop advanced under-
graduate labs focusing on analog electronics and nonlinear
dynamics. Although these results can be replicated using a
fourth-order Runge-Kutta numerical scheme, the analog cir-
cuit offers a different approach to the problem. Its versatility
makes it possible to vary most RCSJ circuit parameters, and
visualize their impact on the overall phase dynamics in real
time. Additionally, the characterization of the circuit uses
electronic measurement techniques that are similar to what
is used in typical low-temperature transport, which makes it
easier to interpret transport measurements on real multitermi-
nal devices, and to single-out quantum effects from dynamical
ones.
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