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Quantum excitations of static charges in the Ginzburg-Landau model of superconductivity
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We point out that in superconductors there may exist localized quantum excitations of the electric and
condensate fields surrounding a static charge, which cannot be interpreted as simply the ground state of the
screened charge plus some number of massive photons. This is illustrated via a lattice Monte Carlo calculation
of the energy spectrum of a pair of separated static charges in an effective Ginzburg-Landau model of supercon-
ductivity.
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I. INTRODUCTION

Composite quantum systems typically have a discrete spec-
trum of excitations, and although certain objects such as
electrons and muons are referred to as “elementary” par-
ticles, this terminology can be a little misleading since in
any interacting quantum field theory these elementary par-
ticles are inevitably surrounded by a field of some kind.
In this sense, elementary particles are also composite. The
question we would like to address here is whether there can
exist a discrete spectrum of localized excitations in the fields
surrounding a static charge and, in particular, whether this
might be the case for the fields surrounding static ions in a
superconductor.

In the condensed matter context, a screened ion in either
the normal or superconducting phase, whether static or not,
may be viewed as a type of quasiparticle. Of course, there
is a ground state of the static charge surrounded by con-
duction electrons, but there is every reason to expect that
such a many-body system would have a spectrum of quan-
tum excitations above the ground state. Indeed, something
of this sort accounts for the asymmetric line shape in x-ray
photoelectron spectroscopy (XPS) spectra of metals in the
normal phase [1], as we note later on. Our concentration here
will be on the superconducting phase. If static ions in that
phase have a discrete spectrum, distinct from that found in
the normal phase, then the excited states of static ions in
a superconductor are a new type of collective excitation, to
be added to the list of such excitations in solids. We would
expect that the existence of such states might manifest it-
self in the XPS spectra of metals in the superconducting
phase.

Let us begin with the simplest case: a static charge cou-
pled to the free quantized Maxwell field. Gauge invariance
of physical states under infinitesimal gauge transformations,
embodied in the Gauss Law, insists that the static charge must
be the source of an electric field. The ground state of the static
charge + gauge field system, as shown long ago by Dirac [2],
is given by

|�x〉 = ψ (x)ρ(x; A)|�0〉, (1)

where ψ (x), operating on the vacuum, creates the static charge
and

ρ(x; A) = exp

[
−i

e

4π

∫
d3z Ai(z)

∂

∂zi

1

|x − z|
]
. (2)

In the state |�x〉, the expectation value of the electric field
is simply the Coulomb field of the static charge. The op-
erator ρ(x; A), which depends only on the gauge field,
is an example of what we call a “pseudomatter” opera-
tor.1 Operators of this kind, functionals of only the gauge
field, transform under an infinitesimal gauge transformation
like a static charge, but are invariant under global gauge
transformations g(x) = g in the center of the gauge group,
which in this case is g(x) = exp(iθ ) ∈ global U(1). As a
result, the physical state (1) is not entirely gauge invariant;
in fact, it transforms covariantly under such global U(1)
transformations, i.e.,

|�x〉 → e−iθ |�x〉. (3)

This is characteristic of an isolated charge in electrodynamics,
unscreened by any matter fields. It should be emphasized that
covariance under the global U(1) subgroup of the gauge group
is in no way a violation of the physical state condition (i.e., the
Gauss law), which does not require invariance under global
transformations that affect neither the gauge field nor the
charge densities. Of course, this global symmetry of the action
may or may not be a symmetry of the vacuum. As we have
discussed extensively elsewhere [3], it is the global center
subgroup of the gauge group which is broken spontaneously
in the Higgs phase of a gauge Higgs theory, with a corre-
sponding gauge-invariant order parameter closely analogous
to the Edwards-Anderson order parameter [4] for a spin glass.

1It is worth noting that ρ∗(x; A) is also the gauge transformation to
a Coulomb gauge. In fact, if g(x; A) is the gauge transformation to a
physical gauge defined by some condition F [A] = 0 imposed on each
time slice, then it is not hard to see that g∗(x; A) is the pseudomatter
operator. This statement can be readily generalized to non-Abelian
theories.
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Symmetry breaking of this kind is not a violation of Elitzur’s
theorem, which forbids the spontaneous breaking of local,
rather than global symmetries. While the transition to the
Higgs phase is not necessarily a thermodynamic transition, it
is nonetheless accompanied by a change in physical behavior,
which is either the loss of metastable flux tube states and
Regge trajectories (transition from the confinement phase) or
the disappearance of massless vector bosons (transition from
the Coulomb phase).

For our purposes, the free-field example is not so interest-
ing. Of course, there are excitations of the charge+quantized
field combination, but these excitations consist simply of
some number of photons, of arbitrary positive energies, su-
perimposed on a background Coulombic field; they are not
the localized excitations with a discrete energy spectrum that
are of interest here. We therefore move on to gauge Higgs
theories, including those which, like the Ginzburg-Landau
model, may simply be the effective theory of some more
fundamental physics in which the Higgs field is composite.
There is already evidence of excitations of static charges
in SU(3) gauge Higgs theory [5] and in the Abelian Higgs
model [6]. But the theories of phenomenological interest
would be the Ginzburg-Landau model of superconductivity
and the electroweak sector of the standard model. A spec-
trum of quark and lepton excitations or, more precisely, a
spectrum of localized excitations of the fields surrounding
quarks and leptons would obviously be of great interest,
but here we face the formidable complication that the elec-
troweak theory is a chiral gauge theory, which resists a
lattice formulation.2 For that reason, we turn our attention to
quantum behavior in the Ginzburg-Landau model with static
ions.

II. THE CALCULATION

The effective Ginzburg-Landau action is (cf. [8])

S =
∫

d4x

{
1

2
ρs

[
1

υ2
(∂0ξ + 2eA0)2 − (∇ξ − 2eA)2

]

+ 1

2
(E2 − B2)

}
, (4)

where ξ is the Goldstone mode, ρs = ns/2M where ns, M, 2e
are the Cooper pair density, mass, and charge, respectively,
and υ ∼ 10−2 is of the order of the ratio of the Fermi ve-
locity in a metal to the speed of light. The mass of the
transverse photon in the continuum formulation is, in natural
units,

Mph = 1

λL
= 2e

√
ρs , (5)

where λL is the London penetration depth. The transition to
the lattice formulation in Euclidean time, which is the non-
relativistic version of the charge q = 2 lattice Abelian Higgs

2See, however, the attempt to find excitations in a chiral U(1) theory
in [7].

model, is straightforward:

Seff = −β
∑
plaq

Re[UUU ∗U ∗]

− γ
∑

x

3∑
k=1

Re[φ∗(x)U 2
k (x)φ(x + k̂)]

− γ

υ2

∑
x

Re[φ∗(x)U 2
0 (x)φ(x + t̂ ), (6)

where β = 1/e2 ≈ 10.9, φ = eiξ , ρs = γ /a2, and a is the
lattice spacing. A choice of gamma, together with an observed
London penetration depth and the tree-level relationship (5),
requires a lattice spacing

a = 2eγ
1
2 λL . (7)

Obviously, the continuum limit would require γ → 0, but this
is impossible because of a transition to the massless phase
at finite γ . At β = 10.9, we find, from investigation of the
susceptibility of 〈Re[φ∗(x)U 2

k (x)φ(x + k̂)〉, a transition close
to γ = 0.017 (see the Appendix). So it must be emphasized
that the lattice formulation is an effective theory, valid beyond
some inherent short distance cutoff which, since Cooper pairs
are composite, would most naturally be the diameter of a
Cooper pair. In most texts, this effective theory is treated clas-
sically, but here we would like to treat the effective theory as
a quantum theory in its own right, with a short distance cutoff
a. In lattice Monte Carlo simulations of Seff , it is convenient
to fix to the unitary gauge, in which case, since 1/υ2 ∼ 104, it
is a very good approximation to take U0(x) = ±1.

The aim is to search for excitations around pairs of widely
separated static q = ±1 (e) charges, having fixed ions in mind.
We are obliged to consider pairs of charges for technical
reasons discussed below, which are related to the fact that
one cannot create a single charge in a periodic volume. We
therefore consider physical states of the following form:

|�n(x, y)〉 = Qn(x, y)|�0〉, (8)

with

Q2n−1(x, y) = ψ (x)ζn(x)ζ ∗
n (y)ψ (y),

Q2n(x, y) = ψ (x)φ(x)ζ ∗
n (x)ζn(y)φ∗(y)ψ (y), (9)

where ψ,ψ are static fermion operators, and the pseudomat-
ter operators ζn(x) are eigenstates of the covariant Laplacian
operator, ∑

y

(−D2)xyζn(y) = λnζ (x), (10)

where

(−D2)xy =
3∑

k=1

[2δxy − Uk (x)δy,x+k̂ − U †
k (x − k̂)δy,x−k̂].

(11)

Note that ζn(x) is a pseudomatter operator, and φ(x)ζ ∗
n (x)

transforms like a pseudomatter operator. We have found it im-
portant, in the calculations discussed below, to include both.

Now let us consider a subspace of Hilbert space spanned
by N physical states {|�n(x, y)〉, n = 1, . . . , N}, and let τ be

174508-2



QUANTUM EXCITATIONS OF STATIC CHARGES IN THE … PHYSICAL REVIEW B 106, 174508 (2022)

the transfer matrix. Define the rescaled transfer matrix,

T = τeE0 , (12)

where E0 is the vacuum energy [or, more precisely, if κ0 is the
largest eigenvalue of τ , then E0 = − ln(κ0)]. We would like
to construct a set of eigenstates of T in the truncated basis.
For this nonorthogonal basis, we first calculate numerically
the matrix elements and overlaps,

[T ]αβ (R) = 〈�α|T |�β〉 = 〈Q†
α (x, y, 1)Qβ (x, y, 0)〉,

[O]αβ (R) = 〈�α|�β〉 = 〈Q†
α (x, y, 0)Qβ (x, y, 0)〉, (13)

where R = |x − y|, and Q(x, y, t ), in Euclidean time path-
integral formulation, is the Q(x, y) operator acting at time t .
We obtain the eigenvalues of T in the subspace by solving the
generalized eigenvalue problem,

[T ]υ(n) = λn[O]υ(n), |�n(x, y)〉 =
N∑

α=1

υ (n)
α |�α (x, y)〉.

(14)

Each |�n(x, y)〉 is a linear combination of the nonorthogonal
basis states |�α (x, y)〉, and the set of states {|�n(x, y)〉} are
the energy eigenstates (i.e., eigenstates of the transfer matrix)
of the isolated static pair in the subspace.

Let us define, for M pseudomatter operators ζα , the N =
2M operators,

V2α−1(x, y,U ) = ζα (x)ζ ∗
α (y),

V2α (x, y,U ) = ζ ∗
α (x)φ(x)φ∗(y)ζα (y). (15)

In order to calculate the required matrix elements numerically,
we integrate out the heavy fermions (via a hopping parameter
expansion [9]) to obtain

[T T ]αβ (R) = 〈�α|T T |�β〉
= 〈Q†

α (x, y, T )Qβ (x, y, 0)〉
= 〈V †

α [x, y;U (t + T )]P†(x, t, T )

×Vβ[x, y;U (t )]P(y, t, T )〉
[O]αβ (R) = 〈V †

α [x, y;U (t )]Vβ[x, y;U (t )]〉, (16)

where indices α, β range from 1 to N , and

P(x, t, T ) = U0(x, t )U0(x, t + 1) · · ·U0(x, t + T − 1)
(17)

is a timelike Wilson line of length T . In (16), we have dropped
powers of the fermion mass in the hopping parameter expan-
sion, which only contribute an overall constant to the energy
of the fermion-antifermion system, and are therefore irrele-
vant to the question of excitations.

The eigenstates {|�n〉} of the transfer matrix in the N-
dimensional subspace are in general not eigenstates of the
transfer matrix in the full Hilbert space. But it may happen
that �1, the state with the lowest energy expectation value in
the subspace, has a very large overlap with the static charge
ground state in the full Hilbert space, and it follows that the
�n>1 would have a correspondingly small overlap. On general

grounds,

Tnn(R, T ) ≡ 〈�n|T T |�n〉
=

∑
αβ

υ∗(n)
α 〈Q†

α (x, y, T )Qβ (x, y, 0)〉υ (n)
β

=
∑

k

|ck (R)|2e−Ek (R)T , (18)

where Ek is the energy above the ground state of the kth
energy eigenstate in the full Hilbert space, containing a
static fermion-antifermion pair separated by a distance R. If
�n>1(x, y) has a large overlap with one excited energy eigen-
state �exact

i and a very small overlap with the ground state,
then we may expect that for some range of Tmin � T � Tmax,

Tnn(R, T ) ≈ |ci(R)|2e−Ei (R)T , Tmin � T � Tmax, (19)

and in that case we may extract the excitation energy Ei(R)
from a logarithmic plot of Tnn(R, T ) vs T .

Of course, there is no guarantee that a strategy of this
kind will work. It relies on the conjecture that the overlap
of |�1〉 with the true ψψ ground state is very large. Even if
this conjecture is true, it might be the case that the excited
states are simply the ground state plus one or more gauge
bosons, as in pure QED. But the general idea is testable, and
our results for the Ginzburg-Landau model in the Higgs phase
are reported in the next section.

A. Why not single fermion states?

Before presenting numerical results, we would like to ad-
dress this question: why not consider single fermion states of
the form

�α = ψ (x)ζα (x)�0, (20)

where ζα is a pseudomatter field. We assume that there is
some algorithm which determines ζ (x, t ) uniquely on time
slice t from the spacelike link variables on that time slice.
Such numerical algorithms exist for Laplacian eigenstates,
and also for numerical fixing to the Coulomb gauge.3 The
latter determines the gauge transformation to the Coulomb
gauge, which is itself a pseudomatter field, in a finite periodic
volume.

Now consider the transfer matrix elements,

〈�α|T |�β〉 = 〈ζ †
α (x, 1)U †

0 (x, 0)ζβ (x, 0)〉, (21)

which is essential to our discussion of energy expectation
values. The problem here is that the operator on the right-
hand side of (21) is not invariant under gauge transformations
g(x, t ) = eiθ (t ) or, in an SU(N) gauge theory, under transfor-
mations g(x, t ) = z(t ) ∈ ZN . Transformations of this kind do
not alter spacelike links, and hence do not alter the pseudo-
matter fields ζα (x). Nor do these transformations, which in
each time slice belong to the global ZN center subgroup of
the gauge group, alter the gauge-invariant action. But they do
transform the timelike links U0(x, t ). As a result, the matrix

3The iterative gauge-fixing algorithms used in computer simula-
tions are deterministic and fix to a unique Gribov copy satisfying the
gauge-fixing condition.
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elements (21) all vanish, at least in a finite periodic volume.
This is very general, i.e., it holds both in pure gauge theory
and gauge Higgs theories, and it is one way of understanding
why, on the lattice, it is impossible to place a single charge in
a periodic volume, despite the fact that one can numerically
transform the gauge field to some unique Gribov copy of the
Coulomb gauge. If there were a single-charged matter field in
the theory, call it ϕ, then the same objection would not hold
for the neutral state,

� = ψ (x)ϕ(x)�0, (22)

as the operator ψ (x)ϕ(x) is fully gauge invariant, includ-
ing under global gauge transformations, and the expression
in (21), with ζ replaced by ϕ, is invariant under g(x, t ) = eiθ (t ).
But there are no such single-charged dynamical fields in the
Ginzburg-Landau model under consideration.

It is for these reasons that we must consider pseudomatter
states with two static charges,

�αβ (x, y) = ψ (x)ζα (x)ζ ∗
β (y)ψ (y)�0, (23)

where the ζα are eigenstates of the covariant Laplacian oper-
ator. But here there is still an ambiguity, in that if ζα (x) is a
Laplacian eigenstate, then so is

ζ ′
α (x;U ) = eiFα [U ]ζα (x;U ), (24)

where Fα[U ] is any real-valued functional of the link vari-
ables. So, in general, we may expect that any ζα (x;U )
determined by the Arnoldi algorithm will have wild fluctua-
tions in a global phase factor as U is varied, and fluctuations
of that sort will cause

〈�αβ |T T |�αβ〉 (25)

to vanish, for any T > 0, and α = β. And, in fact, this is what
is observed in numerical simulations. For this reason, we must
restrict our considerations to states �n of the form (8) and (9),
where there is no remaining ambiguity, and any global phase
factor as in (24) cancels out.

B. Photon mass

The photon mass in the Ginzburg-Landau model is
determined from the time correlation of space-averaged
gauge-invariant link operators. We define

G(t ) = 1

3

3∑
i=1

〈Ai(t )Ai(0)〉, (26)

where

Ai(t ) = 1

L3

∑
x

Im[φ†(x, t )U 2
i (x, t )φ(x + î)]. (27)

Now, on very general grounds, G(t ) is related to a spectrum of
excitations with quantum numbers of the photon as follows:

G(t ) = lim
T →∞

1

3

3∑
i=1

〈0|e−H (T −t )Ai(t )e−HtAi(0)e−HT |0〉
〈0|e−2HT |0〉

=
∑

n

(
1

3

3∑
i=1

|〈0|Ai|n〉|2
)

e−(En−E0 )t

=
∑

n

ane−Ent , (28)
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FIG. 1. Determination of the photon mass at β = 10.9, γ = 0.6
from the time correlator G(t ) of space-averaged gauge-invariant link
variables Ai on a 163 × 36 lattice volume. The straight line on the
logarithmic plot is a best fit of ae−mpht to the data, where mph is the
photon mass and a is a constant.

where the En are energy eigenvalues, and En = En − E0 are
energies above the vacuum energy of states |n〉 with the quan-
tum numbers of Ai. For large t , the sum is dominated by the
lowest energy state, i.e., the state containing a single massive
photon at rest, and therefore

mph = − lim
t→∞

d

dt
ln G(t ). (29)

In practice, in a finite range where G(T ) fits a straight line
on a logarithmic plot, the data for G(t ) are fit by a single
exponential,

G(t ) ≈ ae−mpht , (30)

in that range, and from the best fit we can extract the photon
mass mph.

A typical result, at β = 10.9 and γ = 0.60, is shown in
Fig. 1. The data were taken on a 163 × 36 lattice volume, with
400 lattices separated by 100 sweeps. The data are fit very
precisely, in the range 1 � t � 10, by a single exponential;
evidently the contribution of higher excitations is negligible
in this correlator. Then, mph is extracted from a best fit of a
single exponential (30) to the G(t ) data, from which we derive
a value of mph = 0.446(3) for the photon mass in lattice units.
The accuracy of the straight line fit indicates that the contribu-
tion of more energetic states to the sum in (28) is negligible.
A similar fit with the same parameters, except for γ = 0.25,
results in mph = 0.288(1). We note that both of these values
are quite close to the tree-level expression mph = 2e

√
γ (with

mph in lattice units), obtained by multiplying both sides of
Eq. (5) (where Mph is in physical units) by the lattice spacing
a.

III. EXCITATIONS

We set β = 10.9, corresponding to e2/4π = 1/137 in nat-
ural units, and begin with Higgs coupling γ = 0.6 on a 123 ×
36 lattice volume. We consider static charge q = ±1 pairs at
all pairs of lattice coordinates x = (x1, x2, x3), y = (y1, y2, y3)
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 0.01

 0.1

 1

 0  1  2  3  4  5  6  7

T
nn

(R
,T

)

T

n=1
n=2
n=3

FIG. 2. Tnn(R, T ) vs T at R = 5.83, for n = 1, 2, 3, together with
their best fits. The corresponding energies En(R) are extracted from
the slope of exponential fits on a logarithmic plot. This data were
obtained on a 123 × 36 lattice volume at β = 10.9 and γ = 0.60.

with yi = xi + �i and −4 � �i � 4. This allows a maximum
off-axis separation of R = |x − y| = 6.93. Four Laplacian
eigenstates ζn(x), and therefore eight operators Qα (R) at each
R, were used in the computation.

Figure 2 shows an example of our results for Tnn(R, T ) at
R = 5.83. We see that T11(R, T ) = 1, independent of T , to a
very high degree of precision. This means that the ground-
state energy is E1(R) = 0, and it turns out that this result is
obtained at all R, not just at R = 5.83. The T22 and T33 data
are fit to an exponential,

cn(e−EnT + e−En (36−T ) ). (31)

It can be seen that the data for T22, T33 fall off linearly on
the logarithmic plot, with fits taken in the range [2,7], and the
slopes are slightly different, corresponding to a small energy
difference between E2 and E3. Beyond T = 8 or so, there are
rather large error bars, so those points are not included in the
fit.

The energies E2(R), E3(R) vs R are displayed in Fig. 3.
Also shown is the mass of a static photon (blue line) at
γ = 0.6, as obtained in the previous section, along with the

energy of the massive photon
√

m2
ph + (2π/12)2 at the min-

imal nonzero momentum on a periodic lattice of length 12.
The ground-state energy, not shown here, is at E1(R) = 0.

The energy E2(R) of the first excited state above the ground
state pretty nearly coincides with the photon mass. So this
state is easy to interpret: it is simply the ground state of the
static charges plus a static photon. The second excited state, of
energy E3(R), cannot be interpreted in that way because (with
the possible exception of one outlier) it lies above the one-
photon mass, but below the energy of a photon with minimal
momentum in a 123 space volume. So there are two possibil-
ities. One is that this state represents the energy of a static
photon plus a small excitation, of energy �E = E3 − mph,
of the field surrounding the static charge pair. But, in that
case, we might expect to see this energy �E as the energy
of the first excited state, i.e., an excitation without the massive
photon, which is not seen. The second possibility is that E3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5  6  7

E
n

R

� = 10.9, �  = 0.6

E2
E3

photon k=0
photon k>0

FIG. 3. Energies En(R) vs R for n = 2, 3 again at γ = 0.60 on a
123 × 36 lattice volume. The lower solid line represents the mass of a
massive photon, and the upper line is the energy of a massive photon
at the lowest possible momentum on this finite periodic lattice.

represents an excitation energy of the static charges with no
extra photons, which happens to lie above the threshold for
photon production, and this seems more likely. It, of course,
implies that in the infinite volume limit, where the photon
momentum can take on any value, this excitation is metastable
and could decay via massive photon emission. On the other
hand, if the charges are very far apart, this option might be
strongly suppressed since the excitation energy of the field
surrounding either charge is only half the total excitation
energy, 1

2 E3.
From the data, it appears that �1(x, y) and �2(x, y) are

very close to the true ground state, and the ground state plus
a massive photon, respectively. We note in passing that this
result required use of both types of operators shown in (9).
Use of only the Q2n−1 operators results in data that are not
easily fit by a single exponential.

A. Other Higgs couplings, volumes, and excitations

There is no visible dependence on R in E1(R), and very
little in E2(R) in Fig. 3. However, we see significant scatter
in the values shown for E3(R), which cannot be attributed
to error bars in the exponential fit. We conjecture that the
reason for this scatter is that |�3(x, y)〉, while close to the true
energy eigenstate, may contain enough (probably random)
admixtures of higher excited states to show a rather small,
mainly random dependence on R.

This ties into the question of finite volume effects. In Fig. 4,
we display in separate subfigures our data for the E2, E3, E4

excitation energies vs R, for 123 × 36, 163 × 36, and 203 × 36
lattice volumes. There are two points to note. First, the fluc-
tuations in En(R) with R increase with n, but clearly decrease
at larger volumes. Second, there is a slight tendency in the
data for En(R) to decrease at larger volumes. However, we see
that this lowering in E3(R), while noticeable in going from
a 123 × 36 to a 163 × 36 volume, is almost negligible going
from 163 × 36 to a 203 × 36 volume, particularly at larger R.
A convincing demonstration that the E3 data have converged
on the 203 × 36 volume would really require extrapolation of
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FIG. 4. Excitation energies En(R) vs R for lattice volumes
123, 163, 203 × 36. (a) E2(R), (b) E3(R), (c) E4(R). Note that fluc-
tuations with R tend to decrease with higher volumes.

the data to infinite volume, and this in turn would call for
computation on a very large range of volumes, which seems
impractical at this stage. So we must keep in mind that there
may yet be some reduction in the values of E3(R) at still larger
volumes, although we doubt, from the data seen in Fig. 4(b),
that this could be very substantial.

At spatial extension L = 16, the energy of a photon with
smallest nonvanishing momentum is at E = 0.597, which is

 0
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FIG. 5. Energies E2,3,4(R), but this time at γ = 0.25, with β =
10.9 and lattice volume 163 × 36. The lower and upper solid lines
represent the energies of a static massive photon, and a photon of
minimal momentum for this periodic volume.

very close to the E3 data points. If we had only the data
on the 163 × 36 volume, we would probably conclude that
E3 corresponds to the ground state plus a massive photon of
that kind. But this interpretation is inconsistent with the data
found on the smaller 123 × 36 volume, and since increasing
the volume has only a minimal effect on the values of E3, we
conclude that we are seeing the same state in both volumes,
i.e., an excitation above the ground state of the static ions,
rather than a photon of nonzero momentum. The data for E4

likewise vary only a little from the 163 × 36 to the 203 × 36
volume, which argues against an interpretation involving one
or more photons of finite momentum.

Figure 5 shows the results of the same calculation of E2−4

on a 163 × 36 volume, with the same exponential fit in the
range T ∈ [2, 7], but this time with γ = 0.25. The mass of
the massive photon is, of course, reduced (in lattice units) as
γ is reduced, as one expects, but the results are similar. The
next question is: how similar are the results?

B. Scaling

We have computed the photon mass and excitations En

in lattice units for two different γ values, namely, γ =
0.25, 0.60. For a given London penetration depth λL, we can
compute the lattice spacing and from there convert the charge
separation R, photon mass, and excitation energies in physical
units. Let mph(γ ) be the photon mass in lattice units found
at a particular γ value, and Mph(γ ) = mph(γ )/a be the corre-
sponding photon mass in physical units, where a is the lattice
spacing given in Eq. (7). We then have

Mph(γ1)

Mph(γ2)
=

√
γ2

γ1

mph(γ1)

mph(γ2)
. (32)

Inserting the computed values of mph(γ = 0.25) = 0.288(1)
and mph(γ = 0.60) = 0.446(3) in lattice units, we find the
ratio of photon masses in physical units to be

Mph(0.25)

Mph(0.60)
= 1.000(8). (33)
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If we choose a typical London penetration depth, say
λL = 50 nm, we can compare data for En vs R in physical
units, obtained at the two γ values. The result, for data taken
on a 163 × 36 lattice volume, is shown in Fig. 6. E1 is con-
sistent with zero for both γ values, and the excitations E2, E3

essentially coincide. Values for E4 differ at small R, but appear
to converge at larger R. The overall conclusion is that the
results in physical units do not really depend on γ , at least
at larger charge separations.

IV. DISCUSSION

The Ginzburg-Landau model is, of course a simplified
effective theory of superconductivity, presumably relevant
at scales beyond the diameter of a Cooper pair. But if the
Ginzburg-Landau model is not misleading us, then the results
presented here do suggest a possible experimental test via
x-ray photoelectron spectroscopy (XPS).

We have argued that the self-interacting field surrounding a
static charge may have a spectrum of localized excitations. In
a certain sense, this has already been seen in normal metals.
The electric field of a static charge which is suddenly inserted
into a normal metal is, of course, screened by electrons in
the conduction band, and one can ask whether these screening
electrons themselves have a spectrum of excitations. The an-
swer appears to be yes, and this is the origin of the asymmetric
line shape in the core electron XPS spectrum, as pointed
out long ago by Doniach and Sunjic [1] (for a simplified
discussion, cf. [10]). When an electron is ejected from the
valence band, this corresponds to a sudden appearance of an
isolated charge in the metal, and the process of screening can
leave the charge plus Fermi sea in one of a near continuum of
excitations slightly above the screened ground state since very
little energy is required to create electron-hole excitations near
the Fermi level. This results in the Doniach-Sunjic line shape,
which closely fits the XPS data.

According to our results in the Ginzburg-Landau model,
things may be a little different in the XPS spectrum of core
electron emission in the superconducting phase of a conven-
tional superconductor. We have found a discrete spectrum of

TABLE I. Comparison of E2,3,4(R) at β = 10.9 and γ =
0.25, 0.60 at R = 5.83, obtained from fitting the corresponding
Tnn(R, T ) vs T data in the different fitting intervals shown.

Fitting interval E 0.6
2 E 0.6

3 E 0.6
4 E 0.25

2 E 0.25
3 E 0.25

4

2–4 0.472 0.543 1.18 0.288 0.363 0.83
2–5 0.472 0.540 1.13 0.286 0.357 0.81
2–6 0.453 0.538 1.13 0.282 0.354 0.81
2–7 0.453 0.537 1.13 0.282 0.353 0.82
2–8 0.453 0.537 1.13 0.282 0.350 0.81

excitations of the condensate, with energies of the order of
mass of the massive photon. This mass, which in natural units
is the inverse of the London penetration depth, depends on
the metal, but in general is of the order of a few electron
volts. So in the superconducting phase, we would expect to
see a number of additional peaks in the core electron emis-
sion spectrum, separated from the main peaks by a few ev.
Unfortunately, the experimental situation is a little different
from our idealized setup of two static charges. One of the
charges, namely, the hole left by the emitted core electron, is
indeed static, and we would expect the condensate distribution
around the hole to be no different from the idealized situation.
The emitted electron, however, is by no means static, which
complicates making a precise prediction for the location of the
additional peaks. If this complication is ignored, then given
the Landau penetration depth λL, the positions of those peaks
are calculable. For, e.g., λL = 50 nm, the excitation energies
for widely separated charges are the E3, E4 energies seen in
Fig. 6 at the larger separations. The relative heights and widths
of these extra peaks depend on microscopic dynamics deter-
mining transition amplitudes and lifetimes, which are beyond
the scope of the simplified effective model.

It appears that a comparison of XPS core electron spectra
above and below the superconducting transition, for conven-
tional (or, for that matter, high Tc) superconductors, has not
yet been done. At least, we have not been able to find a
comparison of this type in the literature. An experimental
investigation along these lines could, for present purposes, be
very helpful.

An obvious question is whether quarks and leptons in the
electroweak sector of the standard model, which is also a
gauge Higgs theory, would have a spectrum of excitations
analogous to what we find in the Ginzburg-Landau model. If
so, these would appear as “elementary” particles in their own
right. Unfortunately, in the absence of a lattice formulation
of chiral gauge theory having a positive transfer matrix and
a sensible continuum limit, we are unable to make any pre-
dictions. Should such a formulation ever become available, it
would be possible to compute an excitation spectrum along
the lines presented here.
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APPENDIX: NUMERICAL DETAILS

In all cases we have constructed, on each time slice, the
Laplacian eigenstates ζn with the four lowest eigenvalues,
leading to eight |�n〉 states, according to the procedures
described above. The Laplacian eigenstates were computed
numerically via the Arnoldi algorithm, as implemented in the
ARPACK software package [11]. Data for [T T ]αβ (R), along
with error bars for those values, were obtained by averaging
the results of 10 independent Monte Carlo simulations at γ =
0.25, 0.60 on 123 × 36, 163 × 36 and (at γ = 0.60) 203 × 36
lattice volumes. In each simulation, 120 lattice configurations
were generated after 5000 thermalizing sweeps, with data
taking sweeps separated by 100 Monte Carlo update sweeps.
The numerical solution of the generalized eigenvalue problem
was carried out by the MATLAB eig routine, which derived
values and error bars for Tnn(R, T ). The determination of {En}
from fits to a single exponential, and the corresponding error
bars, were obtained from the GNUPLOT software [12].

Fitting data points over a finite range raises the question
of what is the “best” range and how the answers would differ
if the range were slightly modified. Although the lattice was
large enough in the time direction to compute Tnn(R, T ) up to
T = 18, in practice we found the statistical errors were signif-
icant for data points beyond T = 8. Excluding points beyond
those limits and dropping the first data point (which would
be the most susceptible to mixing from higher excitations),
we can compare the values for E2,3,4 using slightly different
fitting intervals. Typical results are shown in Table I, for

R = 5.83, and lattice size 163 × 36, where E0.25
n , E0.60

n refer
to excitation energies computed at γ = 0.25 and γ = 0.60,
respectively. Error bars for E2, E3 were approximately 1%,
and 3–4% for E4, which, given the small dependence on R,
could indicate a slight overestimate of error bars on the fitted
data points. The excitation energies shown in our figures were
derived for a fitting interval of R in the range 2–7, but it is
clear that choosing a different interval would not affect our
conclusions.

As mentioned in the text, at β = 10.9 we located a phase
transition, presumably to the massless phase, at the rather low
γ value of γ ≈ 0.017. This was determined from inspection
of the link susceptibility,

χ = V (〈L2〉 − 〈L〉2), (A1)

where V is the lattice volume and

L = 1

3V

∑
x

3∑
k=1

Re[φ∗(x)U 2
k (x)φ(x + k̂)], (A2)

with the result shown in Fig. 7(a). At each volume, data
were taken on 1400 lattices separated by 100 sweeps, after
20 000 thermalizing sweeps. In previous work on the relativis-
tic Abelian Higgs model, we have seen that the transition to
the massless phase corresponds to a discontinuity (a “kink”)
in the slope of L in the infinite volume limit (cf. Fig. 1 in [13]).
Although this is not as obvious in our Ginzburg-Landau data,
there is some evidence of such a kink developing, as the
volume increases, in Fig. 7(b).
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