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The continuous spontaneous localization (CSL) model is an alternative formulation of quantum mechanics,
which introduces a noise-coupled nonlinearly to the wave function to account for its collapse. We consider CSL
effects on quantum computers made of superconducting transmon qubits. As a direct effect CSL reduces quantum
superpositions of the computational basis states of the qubits: we show the reduction rate to be negligibly small.
However, an indirect effect of CSL, dissipation induced by the noise, also leads transmon qubits to decohere, by
generating additional quasiparticles. Since the decoherence rate of transmon qubits depends on the quasiparticle
density, by computing their generation rate induced by CSL, we can estimate the corresponding quasiparticle
density and thus the limit set by CSL on the performances of transmon quantum computers. We show that CSL
could spoil the quantum computation of practical algorithms on large devices. We further explore the possibility

of testing CSL effects on superconducting devices.
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I. INTRODUCTION

Quantum computers bring with themselves the promise
to allow for a significant speedup in the resolution of many
relevant complex problems with respect to current classical
computers [1-3]. When large enough quantum computers
will be available, they are expected to impact many fields
such as cybersecurity [1], drug synthesis [4], simulation of
quantum systems [5], to name a few. Such computers will
need a large processor comprising many qubits, the funda-
mental units of quantum computation (the analog of bits in
classical computers). Different physical realizations of qubits
are currently under development, e.g., superconducting qubits
[6], trapped ions [7], photonic chips [8], and spin qubits [9].
Superconducting qubits, which are electrical circuits made of
superconducting materials, are among the most promising for
scaling up quantum processors.

Quantum chips made of so called transmon supercon-
ducting qubits [10] are currently fabricated by the major
companies investing in quantum computing, such as Google
[11], IBM [12], and Rigetti [13]. State of the art transmon
devices contain qubits, and more than once were used to
reach quantum supremacy [11,14], i.e., the resolution of a
problem faster than what possible with any classical computer.
Although this is an outstanding result, the problems solved
so far do not have any practical application. Many technical
hurdles must be overcome for such quantum machines to be
practical. The main challenge to address is the fragility of
quantum states that are stored in quantum computers: even
a single qubit suffers decoherence, i.e., the undesired loss of
its quantum properties over time.
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Several sources of noise lead to decoherence. We can di-
vide them into two categories: environmental noise sources,
whose effects can be eventually mitigated with technological
development, and possible fundamental noise sources that are
instead unavoidable. Most of the research focuses on how
to protect qubits from environmental noises [15-20], and
less attention has been paid to identifying fundamental ones
[21,22]. While technology develops, we may reach a level
of control and accuracy at which fundamental noises can not
be overlooked anymore. Among these, of particular relevance
are those related to the spontaneous collapse of the quantum
states, as predicted by the continuous spontaneous localization
(CSL) model [23].

The CSL model (more generally, collapse models [23]) is
an alternative formulation of quantum mechanics developed in
order to solve the tension between the quantum superposition
principle and the wave packet reduction postulate. At the core
of the model there is a classical noise, suitably coupled to the
wave function of particles accounting for its collapse, which
now becomes part of the dynamics, not a separate postulate.
The CSL state vector reduction of quantum states becomes
more effective as the difference in mass density of the states
in superposition increases [24]. In this way the model is con-
sistent with quantum mechanics in the microscopic regime,
where the standard theory gives extremely accurate predic-
tions, at the same time justifying why macroscopic objects are
always localized in space.

The aim of the paper is twofold: On the one hand we
will quantify the limit set by collapse models on the perfor-
mance of quantum devices such as superconducting quantum
computers, on the other hand this new class of quantum
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devices could be used to test collapse models; although in the
near term the requirements for an experimental test are too
challenging, we quantify which bounds will be set when the
technology will be available.

Collapse models set an intrinsic limit to the stability of
quantum systems over time. As a consequence, they are ex-
pected to set a limit to the scalability of quantum computers,
which is the subject of this work where we will consider
quantum computers based on superconducting technology. As
we will see, the CSL state vector reduction does not limit
significantly the performance of transmon qubits. However,
an indirect effect of the collapse, dissipation, is more relevant,
given the extreme sensibility of superconducting devices to
perturbations. We will compute this effect and will show that,
when neglecting other sources of noise is (or will be) possible,
dissipation can be detected at current experimental tempera-
tures. Moreover, we will see that CSL could spoil the quantum
computation of complex practical algorithms on large devices.

The paper is organized as follows. In Sec. II we review
for convenience the key elements of the Bardeen-Cooper-
Schrieffer (BCS) theory of superconductors needed for the
subsequent analysis, highlighting the role played by the ex-
cited states of a superconductor, the quasiparticles. In Sec. III
we discuss how to treat CSL noise in the BCS formalism. The
results provide the basis for the study of the effect of CSL
terms in superconducting devices and computers. We will then
outline the key elements of the CSL model that are needed
to compute CSL effects on transmon qubits. In Sec. IV we
focus on transmon qubits and we compute the reduction rate
of CSL, i.e., the rate at which CSL localizes a superposition
of transmon qubits. We estimate that this effect is at date
negligibly small for practical purposes. We then characterize
the effects of the CSL dissipation on transmon devices. In
Sec. V we show how the CSL noise perturbs the supercon-
ducting materials in transmon qubits, by generating additional
quasiparticles. These excited states accumulate over time in
the devices’ volume leading to a steady-state quasiparticle
density larger than the thermal one. This excess limits the
coherence time of transmon qubits. We perform the compu-
tation of the CSL quasiparticle density in Sec. VI. In Sec. VII,
we explore the possibility of testing collapse models with su-
perconducting devices, showing the experimental conditions
to be met in order to detect the CSL excess of quasiparticles.
In Sec. VIII we estimate the fundamental limit due to CSL
on the performances of transmon quantum computers given
the quasiparticle density computed in Sec. VI. In Sec. IX we
conclude with final remarks and outlook.

II. BCS THEORY

Transmon qubits exploit the peculiar properties of super-
conducting materials. This section is devoted to introducing
the key concepts and quantities of the microscopic theory of
superconductors that will be used in the following.

Conventional superconductors are described by the BCS
theory. Below a critical temperature 7, it is energetically
convenient for electrons in some metals to bind in pairs, called
Cooper pairs. The attraction is mediated by phonons, and
the two electrons in a Cooper pair have opposite momenta
and spins. The total spin is zero, which allows different pairs

to behave coherently similarly to (but not exactly as) boson
condensates.

The BCS Hamiltonian of the system of electrons is given
by [25,26]

Hpcs = Y &l uo + ) Unelpnly ety (1)
ko kk’

where & = i’k?/2m — €p is the energy measured with re-
spect to the Fermi energy €, and Uy are the matrix elements
of the interaction potential. The first term of the Hamiltonian
is the kinetic energy while the second potential term couples
pairs of different momenta k and k. The ground state of a
superconductor is given by the BCS ground state,

Ws) = [ [+ e®uefne7y ) 10) )
k

where |0) is the vacuum state of the electrons and the opera-
tors éle (Cko ) create (destroy) an electron of momentum k and
spin o. The real coefficients uy and v satisfy the normaliza-
tion conditions uf + vy = 1. v} (u}) gives the probability that
the Cooper pair of momentum k is occupied (unoccupied).

Since finding the excited states of a superconductor in
terms of electron operators is not easy, it iS convenient to
perform a Bogoliubov transformation. Such a transformation
diagonalizes the Hamiltonian (1) by introducing new canoni-
cal fermionic operators i, (see Appendix A),

Hy =) By, o 3)
ko

where E is the energy of a an excited state associated to

momentum k,
Ex = /& + AL 4)

and Ay are the so called superconducting gap parameters.
The operators i, are such that the BCS ground state is their
vacuum state, i.e., Pk |Ws) = 0. Acting with f/kTa on the BCS
ground state gives an excited state, called quasiparticle. The
excited states in terms of éig read

W) =95 1) = e, [ Jan +weiety )10y, 5)
1£k

W) = 75y, 1s) = &y [ Jean +ueficfy )10), )
1£k

which means that for given momentum k there is an electron

with probability 1 and the other state of the pair is empty.

Quasiparticles can be then interpreted as fermions created by

P, which are in one-to-one correspondence with the &f .
The coefficients ux and vk are equal to

o _ L& o _ 1 &
uk_2<1+Ek>, vk—2<1 Ek)' )

One can see that, as k varies from well below the Fermi
surface to well above it, v goes from 1 to 0 (and analogously
ulz( goes from 0 to 1), i.e., Cooper pairs of momentum k well
below the Fermi surface are occupied in the ground state with
probability 1. As the momentum of the Cooper pairs increases
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above the Fermi surface, the occupation probability decreases
to 0.

In general, the superconducting gap parameters Ak have
different values for different k. As well known, BCS simplifies
this (see Appendix A) by setting Ay = A for values of k such
that |&| < fiwp (With wp the Debye frequency of phonons),
and Ax = 0 otherwise. A is the superconducting gap, and
its meaning becomes clearer by looking at the quasiparticle
energies Ey as function of & in Eq. (4). They have a minimum
at & = 0 and the value of the excitation energy at this point
is A. This implies that to have an excited states at least an
amount of energy A is required.

The superconducting gap is in general a function of tem-
perature, but at sufficiently low temperatures (we will make
this assumption hereafter) it is A(T) =~ A(0) = 1.76kgT,,
where T is the critical temperature and kp is the Boltzmann
constant.

In the realistic case of a small, but nonvanishing 7', some
quasiparticle will be thermally excited, and they will be dis-
tributed according to some occupation function f(E, T'). For a
superconductor at thermal equilibrium the quasiparticles have
a Fermi-Dirac occupation function,

1

frp(E,T) = FT 1

®)

The normalized quasiparticle density xgp, i.e., the ratio be-
tween the number of quasiparticles and the number of Cooper
pairs inside a superconductor, gives an estimate of how many
quasiparticles there are in a superconducting device. Its ex-
pression is given by

Xqp = / FE)(EVE, ©)
A

where p(E) is the normalized superconducting density of
states

E
VE - A

Making the assumptions that f(E) is a Fermi-Dirac distri-
bution and that xgp is small, so that most of the states are close
to the gap, one can find the following expression for xqp [27]:

Xgp = v/ 27kpT [ Ae™ 25T (11)

Inserting in this equation temperatures close to the exper-
imental regime of 20 mK, and the parameters of aluminum
(a typical superconductor used in transmon qubits), one can
see that the quasiparticle density should be exponentially
suppressed: xg, ~ 1072 [28]. For the purposes of this pa-
per, it is very important to stress that however experiments
on superconducting qubits and superconducting resonators
show higher density values, xg,” ~ 107 — 1076 [29]. Ther-
mal equilibrium seems not able to explain such an excess of
quasiparticles and for this reason the latter are usually called
nonequilibrium quasiparticles. Appendix A contains further
technical details about the BCS theory.

p(E) = (10)

III. CSL MODEL IN THE BCS FRAMEWORK

The CSL model is an alternative formulation of quantum
mechanics devised to solve the problem of the quantum-
to-classical transition in quantum theory. CSL unifies the
Schrodinger evolution, which is linear and deterministic, with
the nonlinear and stochastic dynamics giving wave packet
reduction. This is done by modifying the Schrodinger equa-
tion, adding stochastic and nonlinear terms that implement
the collapse of the wave function. This dynamical modifica-
tion is consistent with quantum mechanics in the microscopic
regime, where the standard theory gives extremely accurate
predictions, at the same time justifying why macroscopic ob-
jects are always localized in space. The strength and spatial
extension of the collapse (which is white in time) are dictated
respectively by two parameters of the theory, A and r.. The-
oretical arguments suggest that . ~ 1077 m [23,30] and X in
the range ~ 10~8 — 10~1951123,31].

Different experiments have been considered to bound the
CSL parameters. For r. = 1077, cantilevers [32] bound the
collapse rate to A < 107!9s~! gravitational wave detectors
[33] to A < 107?s~! and cold atoms [34] to A < 1085 1.
The strongest upper bounds come from x-rays [35], A <
10712 s~! and bulk heating [36], A < 10~ !'s~!. For the non-
white noise CSL model different upper bounds apply to A; the
strongest is again A < 107! s™! (see [37]) given by bulk heat-
ing. A comprehensive review of the different upper bounds is
given in [38]. From now on, to fix a possible value consistent
with white and nonwhite CSL bounds we set A = 1071 s~

The full nonlinear and stochastic CSL dynamics is not easy
to work with. Since we are interested in prediction of observ-
able effects, one can equivalently use the following simplified
linear dynamics (see Appendix B for further details):

dy())
dt

where H is the Hamiltonian of the system (I-?Bcg in the present
case) and Hcgr is the CSL contribution. By performing a
Fourier transform to momentum space in a normalization box
of volume V to avoid potential divergences (see Appendix B
for the details), Hcg takes the following expression:

R mhN/A ~ ~ AF A
HcsL = TV Z Wi, -k, (1) Gl —x, CLSCkzs, (13)

klkz,s

ih = (H + HesL) [y (1)) 12)

where my is the nucleon mass and m is the mass of the particle
considered (in our case, the electrons). The stochastic pro-
cesses Wi (?) have expectation value and two-point correlator
given by

E[Wi, ()] =0 (14)
E[Wi,, (1) Wi ()] = Vs 1108 (7 — 5), (15)

and they are weighted by the Gaussian function

2k2

Cr = (4mr2) e (16)

Equation (13) shows that the CSL noise scatters electrons,
effectively acting as a kick, which adds energy to the system.
The goal of the present analysis is to quantify the main effect
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of those kicks on the BCS ground state of a superconductor,
which, as we will see, amounts to the breaking of Cooper
pairs into quasiparticles. More precisely, we will compute the
transition probability from a superconductor initially in its
ground state to states containing quasiparticles. We will use
perturbation theory, thus considering the CSL Hamiltonian
(13) as an interacting term with the diagonal Bogoliubov
Hamiltonian Hp as the free term.

In this setup, the transition probability from the initial state
i) to a final state |f) is given by

Py = E[|T51*1 = B[ (f1 02, 1;) i) 121, (17)

where Ty; is the transition amplitude from [i) to a state |f)
and U;(t, 1;) is the time evolution operator in the interaction
picture,

Uy(t, 1) = et 0 (1, 1;)e~ 700" (18)

The operator U (t, t;) can be expanded in the Dyson series,
which at first-order reads [39]

t
U, 1) =1+ / ds Hig (), (19)

1

where ﬁgs)L(t) = eils! Fogr e~ #l# is the Hamiltonian (13) in

the interaction picture.

The diagonal form of the Bogoliubov Hamiltonian in terms
of Pk, and the properties of the BCS ground state for these
operators make it easier to work with creation and annihilation
operators for quasiparticles $; and k.. Using the inverse
Bogoliubov transformation [see Eq. (A7) in Appendix A], we
can transform the CSL Hamiltonian in terms of the operators
ks and then find its expression in the interaction picture,
reading

. B/ Am — ~
Ao — _ Zle—kz

moV e
% [ Wiyt (OL(Kk1 Ky)et Ba =Bl pi gy
+ Wit (DL (k1 kp)ei BB pt oy )
+ Wkrk1 (OM (ky, ky)e™® e 7 i +Eio Mot Vi)

+ Whgot (OM (ki ke e BB gl pF, ],
(20)

The first two terms in the square brackets are associated
to quasiparticle scattering: a quasiparticle of momentum k;
is annihilated and another one of momentum k, is created.
The third term is associated to quasiparticle recombination:
two quasiparticles of different momenta are annihilated. The
fourth term is the inverse process, called quasiparticle genera-
tion: two quasiparticle of different momenta are created. The
functions M and L, usually called coherence factors, are given
by

Lk, ky) = (ui, ua, — Vi, Vi, ), 2n

M(ky, ko) = (ux, vk, + Uk, U, ). (22)

Substituting Egs. (7) we have that

) o A% — 5152)

L(E\, E») = 2<1 “EE ) (23)
) _1 A? —§&

M*(E\, E>) = 5 (1 + “EE >, (24

where according to Eq. (4), & = \/E2 — AL

IV. CSL REDUCTION ON TRANSMON QUBITS

As anticipated, the direct effect of CSL on superconducting
quantum computers is to destroy superposition states. We now
give an estimate of the rate at which CSL reduces super-
positions of the computational basis states (labeled by |0)
and |1)) in a transmon qubit. To estimate this rate, we first
need a description of the physical form of the computational
basis states of transmon qubits, keeping in mind that the CSL
collapse mechanism is sensitive only to space superpositions
of different masses.

A transmon qubit can be described as an electrical circuit in
which a superconducting island (usually made of aluminum)
of volume V ~ 10% um? is linked to a superconducting reser-
voir (of approximately the same size) through an insulating
barrier of width d ~ 1 — 10> nm [40], forming a Josephson
junction. By applying a gate voltage, Cooper pairs can tunnel
through the Josephson junction from the reservoir into the
island. The dimensions and the components of the transmon
circuit are such that the number of excess Cooper pairs in
the island becomes a quantum number, and the tunneling of
a single Cooper pair can be controlled by manipulating the
gate voltage.

The computational basis states of the transmon qubit are
characterized by the number of excess Cooper pairs that have
tunneled from the reservoir into the island. The transmon
qubit works in a regime for which |0) and |1) are not exactly
eigenstates of the number of extra Cooper pairs operator, but
rather both |0) and |1) are a superposition of states with a
different number of extra Cooper pairs on the island. Nev-
ertheless, for our estimate we can assume that, for a typical
device, the difference in the number of pairs of the two
computational basis states is of the order of 4 [10]. For our
purposes, we can then effectively identify |0) as the state with
4 Cooper pairs on one side of the Josephson junction, the
reservoir, and |1) as the state with 4 Cooper pairs on the other
side of the junction, the island. We can think of these four
Cooper pairs as two groups of four electrons. The two groups
are separated by the BCS coherence length &, (a measure of
the average distance between the two electrons in a Cooper
pair), which for aluminum, the superconducting material used
inside transmon circuits, is m [26]. Given these assumptions,
we can compute the reduction rate with the formula [31]

2

g = mzN(&> (25)
mo

for n particles within a radius smaller than the correlation

length r., N groups of particles separated by more than the

correlation length 7., and with m, the mass of electrons. In

our effective model, if we substitute » =4 and N = 2 into
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Eq. (25), considering an optimal configuration with four elec-
trons packed within a distance smaller than r, in each of the
N =2 groups of electrons separated by a distance &, > r,,
we find the reduction rate I' = 32A(m,/mo)*> ~ 1077 s~ We
chose the value for n that gives the highest value for I'g, to
estimate the strongest theoretical CSL effect. We notice that
the factor (m,/mg)* ~ 1075 contributes to suppress the reduc-
tion rate. It means CSL effects on few electrons are weak: this
is a consequence of the mass proportionality of CSL. Col-
lapse models that are not mass-proportional, as the original
formulation of CSL, are inconsistent with experimental results
on spontaneous radiation [41] and are also discarded for the-
oretical considerations, such as compoundational covariance,
see [42].

This shows that CSL reduction is negligibly weak, as the
lifetime of a single qubit would be of the orders of billions of
years. Even a large quantum computer composed by millions
or even billions of such qubits, would be safe against the
localization of superpositions dictated by collapse models.

However, besides collapsing superposition states, the CSL
noise induces also dissipation as any other environmental
noise: it perturbs the transmon qubits materials, also leading
to decoherence effects. In fact, dissipation generates excited
quasiparticle states that accumulate over time and their pres-
ence destroys quantum superpositions of transmon qubits.

V. TRANSITION PROBABILITY DUE TO CSL
DISSTPATION

CSL is ineffective in directly suppressing superposition
states of superconducting qubits, mainly because too few
electrons are involved in the superposition, which moreover
have a very small mass. However, CSL impacts superpositions
of superconducting qubits also indirectly. As discussed in
Sec. III, the CSL noise couples to the Cooper pairs inside
a superconductor, generating its excited states, the quasipar-
ticles. Since the rate of decoherence of transmon qubits is
proportional to the density of quasiparticles [27], these limit
their performance. We now quantify the quasiparticle density
due to CSL, to infer a limit on the coherence time of transmon
qubits. To do so we compute the CSL transition probability
to quasiparticle states, that will be used in the next section to
obtain the CSL generation rate of quasiparticles and the evo-
lution of the occupation function of quasiparticles f(E).

We start by computing the transition probability in Eq. (17)
with |i) = |vs), using the time evolution operator expanded
at first order as in Eq. (19), with the CSL Hamiltonian in
Eq. (20), expressed in terms of quasiparticle operators. By
recalling that |yg) is the vacuum state for the operators Jj,
only the fourth term of the Hamiltonian in Eq. (20) gives a
nonvanishing contribution when acting on |vs). This produces
a transition to a final state different from |vs), which contains
quasiparticles. From these considerations, the main effect of
the CSL noise on superconductors at first order in perturba-
tion theory is the generation of quasiparticles. In particular,
the only final states, which give nonzero contribution to the
expectation value in (17) are those of the form

RESA AN (26)

where ¢ and p are fixed. Choosing |f) as in Eq. (26), the
zero-order term of the Dyson series gives a zero contribution
when inserted into Eq. (17). The first-order contribution of the
Dyson series is

i
h

and by substituting Eq. (20) for the interacting Hamiltonian
we find

t
T = - / dt (sl 7 Pt B ) 1), 27)
i

i

ivam ! ~ -
Ty =——- / dt; Y Gyt Why ke ()M (k1 k)
moV t Kok

x Pen B TE (Yo D PP P Is) . (28)

The expectation value in the last line is simplified using the
anticommutation rules

WUsl Pop1 Pt P 1 70y 1) = OkiaBlaps (29)
thus leading to

i m ! ~ ~ . i
Ty’ = ‘fv / dty Gy pWy (1M (g, p)e’®ei EEom,
A
(30)

This is the transition amplitude to a specific final state with
fixed momenta p and ¢. The transition probability from the
BCS ground state to a state as in Eq. (26) is computed by
taking the expectation value of the square modulus of the
transition amplitude, according to Eq. (17). In doing so, one
has to compute the two-point correlator between the noise and
its complex conjugate. Using the fact that W) (r) = W_i(?)
and Eq. (15), one has that

Py = " G

qap — m(Z)V q—p
where we assumed that 7o = 0 and we performed integration
over t;. This probability grows linearly with time. We no-
tice again the presence of the factor (m/mg)* ~ 107® as in
Eq. (25), which suppresses also this transition probability. By
dividing Eq. (31) by ¢, we obtain the transition rate, i.e., the
rate at with which two quasiparticles with given momentum
p and g are generated by the CSL noise. This transition rate
will be the starting point to compute the generation rate in the
next section, through which we can obtain the evolution of the
quasiparticle occupation function f(E), and thus the quasi-
particle density. We present further calculations of the total
generation rate of quasiparticles per unit volume in Appendix
C.

M?(q, p)t, @31

VI. QUASIPARTICLE DENSITY DUE THE CSL NOISE

In the following, we consider a superconductor at ther-
mal equilibrium and we neglect all sources of environmental
noise. To account for thermal effects, we should consider
the interaction of electrons with other electrons and with
phonons, but since typically the electron-phonon interaction
is dominant, we will consider only this one. The electron-
phonon interaction comprises three main physical processes:
quasiparticle scattering (both by emission and absorption of

174506-5



VISCHI, FERIALDI, TROMBETTONI, AND BASSI

PHYSICAL REVIEW B 106, 174506 (2022)

a phonon), quasiparticle recombination (by the emission of a
phonon), and quasiparticle generation (by the absorption of a
phonon).

The kinetic equation for the quasiparticle occupation func-
tion describes how f(E) redistributes over time because of
the above processes. It contains the rates of the electron-
phonon processes, and a generation rate given by an external
source [20,43]

df(E)
dr

o [~
ext / /
Ve (E)"‘E/]; dE'S(E,E")

X [(FENFENNE —E)+1)
— f(E)F(EN(E" - E)]

E
+ 25 | aEsE ENGENEWE - £)
— FEVFENNE — E') + 1]

dE'G(E, EN(f(E)f(EN(E +E")
A

= fFE)FENWNE +E') + D], (32)

where S(E,E') = (E — E')’p(E")L*(E,E’), G(E.E')=
(E 4+ E"Yp(E"YM?*(E,E’) and the rate y; is a characteristic
electron-phonon rate and it is a constant for a given material
(for aluminum 1/yy = 19 = 438 ns [20]). The factor N(L2) is
the occupation function of phonons, which is taken to follow
a Bose-Einstein distribution,

Yo
T

1

N(Q) = e /ksTo _ 17

(33)
for a bath of phonons at temperature 7,,. Phonons are sup-
posed to be in equilibrium at the refrigerator temperature and
thus N(€2) does not change in time. The rate yge’“(E )is a
generation rate per unit time due to external sources. The
second and third terms in Eq. (32) are associated to thermal
quasiparticle scattering, and the fourth term to thermal quasi-
particle recombination and generation.

One can check that when quasiparticles and phonons are in
thermal equilibrium, i.e., when f(E) is a Fermi-Dirac distri-
bution and N (£2) is a Bose-Einstein distribution with Tp,, = T,
the terms in every square brackets of Eq. (32) cancel. This
is not surprising since, if y;x‘ =0, i.e., there is no source of
quasiparticles, the superconductor remains at equilibrium and
the occupation function f(E) does not change in time.

Similarly to the phonon case, the CSL Hamiltonian (20)
contains terms associated to scattering, recombination and
generation of quasiparticles because of the interaction with
the CSL noise. For temperatures below 100 mK, we checked
that the generation rate is the only significant process. Let us
then compute this rate when two quasiparticles, one at a fixed
energy E and the other at any energy E’, are created by the
interaction with the CSL noise.

To do so, we start from the transition probability in
Eq. (31), integrating over one momentum

A@mr)3Pm?

CSL
Yy (Eq) =
¢ m3 (27 )3

/ & pe PP M2 (p, ) F(Ey).
(34)

f(E/A)

10—21 L
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1 0—23

107

1 0—25 L

1.2 1:4 1.6 1:8 2 22 2:4 EiA

FIG. 1. Log plot of the quasiparticle occupation function ob-
tained by solving Eq. (32) numerically for a starting equilibrium
temperature of 20 mK. The evolved occupation function deviates
significantly from the initial thermal distribution frp, here not shown
because too small.

Defining x = E/A and following the calculations in Ap-
pendix D we find

2
ngSL(x) _m )\rc2 2mA 1 e,ﬁm)

2ami  ho s(x)+ B

et [ dye s g WEOTPGEIA)

1
1 VX =12 =1 1) -
x ,O(y)§<1 -+ —)f(Ay),
xy Xy

(35)

where s(x) = VX2 — 1, B = €/ A and kgTes, = B /(2mr?).
Note that Eq. (34) leads to the same excitation rate found in
[44,45].

We solved numerically Eq. (32) with yge"‘ = ngSL and A =
10~''s~!. Figure 1 shows the evolved occupation function
obtained numerically (blue solid line) for a starting equilib-
rium temperature of 20 mK, which is a typical operational
temperature of transmon qubits. The steady state deviates
strongly from the starting Fermi Dirac distribution, given by
Eq. (8) with T =20 mK. The evolved occupation function
can not be approximated by a thermal distribution at some ef-
fective temperature. More on the evolution of the quasiparticle
occupation function can be found in Appendix E.

The quasiparticle density xgpSL generated by CSL is ob-
tained easily by using Eq. (9) with f(E) given by the
evolved quasiparticle occupation function. x¢>" turns out to
be ~ 107! This value is extremely small, as the resulting
number of quasiparticles in the typical volume V ~ 10? um?
of a transmon is very small Ny, ~ 1077 Although a single
Cooper pair breaking event, and the consequent generation
of quasiparticles, which can tunnel through the Josephson
junction, undermines the coherence of transmon qubits [46],
according to CSL this is a rare event: a single transmon under
the influence of CSL only can maintain its coherence for a
large time, longer than what possible with current experi-
ments. Indeed the quasiparticle density is orders of magnitude
lower than the lowest reported experimental value of xqp =
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10~° [29]. This means that other environmental noise sources
are yet dominant with the current technological implementa-
tion of the transmon qubits. Nevertheless we can use the CSL

quasiparticle density to get a limit on the coherence time of
transmon qubits.

VII. POSSIBILITY OF TESTING CSL WITH
SUPERCONDUCTING DEVICES

Our analysis not only leads to possible limits on the per-
formances of superconducting devices imposed by CSL, but
also suggests that CSL dissipation could be tested with such
devices.

We compare the electron-phonon generation and recombi-
nation rates with the CSL generation rate computed in Sec. VI
[see Eq. (35)], to find the temperatures for which the CSL
generation rate dominates over the electron-phonon genera-
tion and/or recombination rates.

The recombination and generation rates enter the last term
of Eq. (32). The electron-phonon recombination rate y,” h (E)
is the inverse lifetime for a quasiparticle at some given energy
E to recombine with another quasiparticle of any energy E’ by

emitting a phonon of energy E + E’. Its expression is given by
[20,47]

yeMWﬁpﬁ/de@+E¥mE)l+A2
r XN EE’

X (N(E+E")+ 1)f(E". (36)

We now briefly outline the different contributions appear-
ing in the above integral. The term (E + E’)? is the square
energy of the emitted phonon during the recombination pro-
cess. The normalized superconducting density of states p(E’)
[see Eq. (10)] appears since we are integrating over E’.
The term [1 + A2/(EE’)] is the coherence factor squared
M?*(E,E’) in Eq. (21). The factor N(2) is the occupation
function of phonons, a Bose-Einstein distribution Eq. (33)
at fixed T = T,,. The recombination rate is proportional to
the quasiparticle density because of the factor f(E’) in the
integrand [20]. This implies that recombination mediated by
phonons is slow when the density of quasiparticles is small.

The electron-phonon generation rate y, "(E) is the in-
verse lifetime for a quasiparticle at some given energy E to
be generated with another quasiparticle of any energy E’ by
absorbing a phonon of energy E + E’ [20,47]. Its expression
is given by

yeE) = 2% / CapE e reEn (14
8 A3 A EE’

x f(E")N(E + E'),

where f(E) =1 — f(E).

In Fig. 2 we fix the energy at A and plot the two differences
D, = yé,CSL(A, T) - yge_ph(A, T) and D, = ngSL(A, T) -
vSP"(A, T) as T varies from 20 mK to 160 mK. We assume
that quasiparticles and phonons are in equilibrium so that
T,, =T for every temperature 7.

We see that the CSL generation rate is dominant over the
electron-phonon generation rate (D; > 0) for temperatures
lower than ~ 140 mK, and similarly D, > 0 for temperatures

(37
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FIG. 2. Difference between the CSL generation rate and the
electron-phonon generation rate D (blue-solid line), and difference
between the CSL generation rate and the electron-phonon recombi-
nation rate D, (red-dashed line), as functions of temperature. D, is
positive for temperatures lower than ~140mK and D, is positive
for temperatures lower than ~70 mK. This implies that for tempera-
tures lower than ~70 mK the CSL generation rate is dominant over
both the electron-phonon generation and recombination rates. This
regime is accessible by experiments, since current refrigerators reach
temperatures down to ~20 mK. Isolating a superconductor at these
temperatures could lead to the detection of quasiparticles generated

by the CSL noise.

lower than ~ 70 mK. In particular, at temperatures lower than
70 mK the CSL generation rate is many orders of magnitude
larger than the electron-phonon generation rate. Since a su-
perconducting sample can be easily cooled down to ~ 20 mK,
this regime is already accessible by experiments. Of course, in
order to perform a meaningful test of CSL, one should isolate
the system from any other external source of quasiparticles.
Note however that the CSL generation rate is itself very small
~ 10720 g1 (computed through Eq. (35) at E = A), thus
making this kind of experiment challenging.

A straightforward way to perform such an experiment
is by measuring the quasiparticle subgap current through a
Josephson junction, which as we saw is a key component in
superconducting qubits. When two identical superconductors
at absolute zero are linked together with an insulator, at volt-
ages smaller than V < 2A/e no quasiparticle current flows,
since no quasiparticle state is excited. At finite temperature
and V < 2A/e, there will be a finite current of quasiparticles,
called quasiparticle subgap current [48]. The formula for the
subgap current at the voltage difference V is given by

1
Ip = —— [ dE p(EYp(E + V)(f(E) — f(E +¢V))
e]iv
I
= Z/dE P(E)p(E + eV)(f(E) — f(E +€V))

=1 f dx p(x)p(x +eV/A)(f(x) — f(x +eV/A))
(38)
where Ry and I, are, respectively, the normal state resistance

and the critical current of the junction. Note that we used the
Ambegaokar-Baratoff relation Rye = 7 A/21, = A/I. [49],
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with e the electron charge, in the second line, and in the third
line we performed the substitution x = E/A.

Plugging our computed occupation function in this equa-
tion, for a junction with critical current I, ~ 10~* A, we find
a quasiparticle current of the order of I ~ 107> A. This
value has to be compared to the experimental values, which
are of the order of Ig" ~ 107! A [48]. A CSL quasiparticle
current I 3" of such intensity is extremely difficult to detect,
as experiments that measure the quasiparticle current have a
sensitivity of the order of pA.

The value of the CSL quasiparticle subgap current de-
pends on the dimension of the Josephson junction and on the
volumes of the two linked superconductors. Superconducting
qubits have small superconducting volumes and thin Joseph-
son junctions to work in the quantum regime and achieve a
coherent control of the tunneling of single Cooper pairs, but
larger volumes imply a larger number of quasiparticles.

Also, one can consider superconducting materials dif-
ferent from aluminum. The critical temperature 7. of the
superconductor might play a role for two reasons. First, a
superconductor with lower 7. may have a lower temperature at
which the subgap current saturates because of external sources
[48,50]. Second, superconductors with higher 7. increase the
CSL quasiparticle generation as Eq. (C5) depends on A =
1.76kgT..

It is worthwhile noticing that the perturbative approach
developed in this work can be easily extended to higher orders.
Second-order effects could be relevant for CSL induced tun-
neling events of quasiparticles through Josephson junctions.

VIII. LIMITS SET BY CSL IN SUPERCONDUCTING
QUANTUM COMPUTERS

We use the quasiparticle density obtained in Sec. VI, to
estimate the ultimate limits set by CSL dissipation on the per-
formances of quantum computers based on transmon qubits
[10]. First, we estimate the coherence time allowed by CSL
for a single qubit. Next, we estimate how this would limit
the performance of a quantum computer made of N of these
qubits.

State of the art transmon qubits have a relaxation time
T, (the inverse of the relaxation rate I'y) of the order of
10 — 100 us [6]. A future goal is to achieve greater 7} in
order to have more reliable qubits, but this is experimentally
challenging. Relaxation can be driven by many loss channels,
such as radiation losses [15], dielectric losses [16], two-level
fluctuators in the junction materials [17], and by the excess
of quasiparticles in the superconducting materials [18-20].
The relaxation rate depends on every of these loss channel
affecting the qubit [51].

For a transmon qubit, the contribution to the relaxation
rate due to quasiparticles depends linearly on the normalized
quasiparticle density xgp [51],

2w, A
r = ,/n—;’hxqp (39)

where w, is the frequency of the given qubit (in [51] o, =
2w x 3.48 GHz).

Given x3>" ~ 107" that we found in the previous section,

we have 't &~ 1077 s~ This is ~ 10 orders of magnitude
larger than the CSL reduction rate estimated in Sec. IV, show-
ing that CSL dissipation is way more effective than the direct
collapse process in corrupting superpositions of transmon
qubits basis states. Note that 7,°5" is anyhow 11 orders of
magnitude larger than the 77 = 100 ps of current transmon
qubits, implying that CSL dissipation would not influence
effectively the performance of a single qubit.

By knowing the limit on the coherence time of a single
transmon qubit, we can estimate the limit on the performances
of a quantum computer with N of these transmon qubits.
Decoherence of each qubit accumulates during the operational
time of the quantum computer, eventually spoiling the quan-
tum computation.

Before proceeding, we mention that schemes to recover
from errors during a quantum computation, so called quantum
error correction schemes [52], are planned to be implemented
in future devices. However scaling a quantum computer with
an implemented error correction scheme is not an easy task.

In the near term, so called noisy intermediate scale quan-
tum (NISQ) [53] devices could become a viable tool, whose
qubits are subject to noise, without any implemented error
correction scheme. We then consider the effect of CSL on the
performance of a NISQ transmon quantum computer com-
posed of N qubits, each with a decay rate FfSL. Quantum
algorithms on such a device might require the storage of a
maximally entangled state of all these N qubits [54], whose
total decoherence rate I'y, scales with N and depends on the
individual decay rate I'; of the qubits [55,56].

Since the volume of a typical transmon qubit is hundreds
of microns cube [20,40], we roughly and conservatively es-
timate that the distance among such qubits is greater than
r.. Recalling Eq. (25), one thus has that the CSL rate scales
linearly with N: ISP = N x T'$5E. Thus, the CSL limit on
the decoherence time of a single qubit, 7,\°5F ~ 107 s, gives a
limit on 7,55t = 1/T'ESE, the decoherence time of a quantum
computer of N qubits. In order to gain a good fidelity of the
output of the quantum computation, i.e., an output as close
as possible to the desired result, the operational time of the
quantum algorithm should be substantially smaller than the
total decoherence time. The operational time of a quantum
algorithm can be naively defined as T, = ng X tg, Where ng is
the number of quantum gates and ¢, is the time to implement
one of these gate operations. State of the art devices have a
t; &~ 10 — 100 ns. Then, what one requires is that

TCSL

L (40)

CSL
Top TG = e < g

Note the resemblance of this condition to the so called “rule
of thumb” metric for the performance of a quantum computer
found in [57], if one defines € = T,"S" /1,.

As outlined in [57], it is not easy to estimate how smaller
T, should be with respect to T,55". Having a T,, ~ T,$5"
implies that the algorithm is highly probable to fail [58]. Note,
moreover, that the naive estimate we gave for Ty, is opti-
mistic, as many factors can contribute to increase it. The most
important examples are the restricted connectivity between
qubits in a quantum chip and the possibility of implementing
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FIG. 3. Log-log plot of the number n, of allowed gates as a
function of the number N of qubits (blue-dotted line) as dictated by
Eq. (40) with 7,"5* = 107 s and fixed t, = 10~ s. The colored area
under this curve corresponds to algorithms that use resources (i.e.,
number of qubits and number of gates) that allow to reach a good
fidelity of the output. The three red dots correspond to the resources
necessary to complete algorithms such as Shor factorization, molec-
ular simulation, and derivative pricing.

only the native gates allowed by the hardware [57]. The first
factor introduces additional swap gates so that two-qubit gates
are performed only between physically connected qubits, the
second factor requires the decomposition of the gates of the
algorithm into those belonging to the native gate set, adding
extra gate operations. Given these considerations, we will
conservatively require that T,, ~ 1073 x T,$3". State-of-the-
art transmon quantum computers with N &~ 10?> would have
a total decoherence time induced by CSL of TS5 ~ 10° s.
Thus the total operational time to reach a sufficiently accurate
result is Ty, ~ 100 s, and by having t, = 107 s, this allows a
maximum of n, ~ 10° operations.

This number of gate operations is very far for what is
needed to complete quantum algorithms for real life applica-
tion [1,5]. A N = 10? transmon quantum computer, targeted
by IBM in 2023, allows for n, = 10%. Many important quan-
tum algorithms such as molecular simulation, Shor algorithm
for prime number factorization [59,60], which require respec-
tively at least N ~ 102, ny ~ 10, N ~ 103, n, ~ 10° [5]
will be corrupted by the CSL noise. NISQ transmon quantum
computers will scale up, eventually reaching the milestone
of N = 10°, which is thought to be the number of qubits
necessary to apply error correction schemes. Note that in this
case the total time allowed by CSL without error correction
will decrease to T,55F ~ 10s.

Figure 3 summarizes these results: We plot the number of
allowed gates as a function of the number of qubits (blue-
dotted line) as dictated by Eq. (40). Quantum algorithms that
exploit a number of qubits and a number of gates that stay un-
der this curve (colored-blue area) can reach a good fidelity of
the output under the influence of CSL. The three red dots show
the resources, estimated in [5] and [61], in order to complete
important quantum algorithms such as prime number fac-
torization, molecular simulation, and derivative pricing [61].
The points corresponding to Shor factorization and molecular
simulation lie outside of the colored area: This means that

CSL may spoil quantum computation with transmon NISQ
quantum computers and also stresses the need of scaling up
the devices with the possibility of performing quantum error
correction or other error mitigation techniques. In fact even
if the CSL limit on the coherence time of a single qubit is of
the order of 107 s, which seems an extraordinary long time,
the performances of a quantum computer could be spoiled
without any scheme to recover from errors.

We conclude by pointing out that the values we obtained
should be taken as rough estimates of the fundamental lim-
itation imposed by collapse models on the performances of
transmon quantum computers. To get a more accurate result,
one needs to focus on a specific algorithm and calculate in
detail the resources, in terms of number of qubits and of
quantum gates, needed to complete it with a sufficiently good
fidelity of the output. Indeed the number of quantum gates
may vary a lot depending on different aspects [57], such as
the specific physical hardware used and the algorithm to be
solved.

IX. CONCLUSIONS AND OUTLOOK

We showed how the CSL model affects superconducting
quantum computers. The intrinsic localization of superposi-
tions dictated by collapse models leaves the superposition of
basis states of transmon qubits intact for very long times.
However, CSL contributes to decoherence also in an indi-
rect way: Dissipation induced by the CSL noise perturbs the
superconducting material and leads to the generation of quasi-
particles. These accumulate over time inside the volume of
the device leading to relaxation at a rate proportional to their
density. We estimated the quasiparticle density due to CSL by
adding the CSL generation rate of quasiparticles to the kinetic
equation for the quasiparticle occupation function. We solved
the kinetic equation numerically to find its steady-state solu-
tion. With this calculation we obtained a lower quasiparticle
density than the experimental one, so we conclude that other
environmental noise sources are currently giving the dominant
contribution to the experimental excess of quasiparticles.

However, assuming one can eliminate environmental
noises, the CSL excess quasiparticle density still limits the
coherence time of a transmon quantum computer. CSL dissi-
pation does not influence significantly a single qubit, as the
coherence time allowed by CSL dissipation is of the order
of 107 s, but it is relevant for a NISQ quantum computer
composed of many qubits in which a complex quantum al-
gorithm is run. Indeed the total decoherence time 7,55 of a
quantum computer is inversely proportional to the number of
qubits N stacked together in its processor. This implies that,
as the technology scales up to a larger N, less gate operations
can be applied before the state of the quantum computer
is corrupted by noise, as shown in Fig. 3. We showed that
important algorithms such as prime number factorization and
molecular simulation could be spoiled by CSL. Our analysis
is performed by assuming that there is no quantum error
correction scheme implemented in the devices. More accurate
results could be obtained by focusing on a specific algorithm
to find the resources needed to solve it, possibly including
quantum error correction.
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We further explored the possibility of testing CSL models
with superconducting devices. The fact that the experimental
values for the density of quasiparticle and for the subgap
quasiparticle current are bigger than the CSL ones, implies
that the detection of CSL effects is currently beyond the ex-
perimental sensitivity of superconducting devices, for which
other environmental sources are dominant. We do not exclude
that testing CSL models may be possible in the future as the
technology develops [62], given the importance that supercon-
ducting devices have for quantum computing. Our result show
that when a superconducting sample is sufficiently shielded
against environmental noises, CSL quasiparticles could be
detected at the current refrigerators temperature.
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APPENDIX A: BCS THEORY

The BCS Hamiltonian of the system of electrons is given
by

Apcs = ) &xli,tho + Y Ukifip &y ewyiy (D)
ko KK’

where & = ik’ /2m — €f is the energy measured with respect
to the Fermi energy €y and Uy is the interaction potential.
The first term of the Hamiltonian is the kinetic energy while
the second potential term couples pairs of different momenta k
and k’. The ground state of the Hamiltonian is the BCS ground
state (2) in the main text. The form of the BCS Hamiltonian
is involved since the potential term contains four fermionic
operators. A simplified form is found through the mean field
procedure. One defines

ag = (&].é", ) (A2)

k k1 C—ky

and assumes that the fluctuations (éltTéT—k VT ax) are negligi-
ble. Then the following substitution:

K

ckTéL(l = ax + (6,81 — ax) (A3)

(and its conjugate) is performed in the BCS Hamiltonian. By
keeping terms up to first order in the fluctuations, one obtains
the Bogoliubov Hamiltonian

A AT A
Hp = E §kCyy ko
ko

+ Z Ui [ak'élt@zH + axl_y by —akax], (A4)
K&

and defining Ax = ), Ugpay the Hamiltonian becomes

Hp =) &ilyolir — ) Mullyyely + iy i + and.
ko k
(A5)
At this point one performs the Bogoliubov transformation

¢5‘1k¢ Vky = vk€i¢@;T + uklky,

i¢p i

A~ N i
Ykt = UkCky — Uk€

Ckt + MkéT_ki,
(A6)

AT At —i A AT —
Vk‘T = Mkcl’(T —Uk€ TCk| V_ix, = Vk€

and the inverse Bogoliubov transformation is given by

ékT = ukf/kT + Ukeid))’}jlw 6‘_k¢ = ukf/_kl — Uk€i¢]>lz1\,

(A7)
Substituting Eqgs.(A7) in the Bogoliubov Hamiltonian one
finds

Ay = [6c(d — vd) + 28kmon ][, Pir + 71y, 7]

éltT = ukj)];% + Uke_l¢)>—k¢ éik¢ = uk?j]w —vke

k

+ ) [28wmco — Ax(ug = v) [Py, + Pk P
k

+ > [280f — 280k + Aran]. (A8)
k

This expression contains undesired terms of the type 7 and
)A/T)A/T so the coefficients of these terms are set to zero [26,63],

2§kukvk — Ak (l/tlz( — Ui) =0. (A9)

This condition together with the normalization condition uj +
vl% =1 gives

1 &k 1 &k
2 2
=—|14+=), =—|l1-=). Al0
b 2( +Ek) i 2( B (A10)
The quasiparticle energies are given by
E(u — vy) + 2AKuvi = \/E2 + AZ, (A11)

and the Bogoliubov Hamiltonian can be expressed in the form

Hp = ) ExlPyy o + 9y, 9o ] + W, (A12)
k

with Ex = ‘/%—l% + Az, and Wy = Zk [2%'](1)& — 2Akuxvg +
Axag]. The superconducting gap parameters are given by
Ag = Z Uk ax = Z Ukw (éiiwéik/ﬂ
K K
=Y Ukwtovie (1= %3 P10t — 90 7a00)
Y

= Z Ukk/uk/l)k/(l - f(Ek’))

K

(A13)

and by substituting the expression of uy and vk one finds the
usual self-consistent equations,

1 Ay
Ak = _E ; Ukk/E_kr(l - f(Ek’)) (Al4)
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The BCS assumption is that Uxpy = —V, a negative constant,
for k such that |§k| < fiwp, and Uy = 0 otherwise. In this
way one has

A for < ho,
k={ for 18| < hwp A15)
0 for |&| > hwp.
The equation for the gap becomes then
14 A
A=— —(1 = 2f(Ex)). Al6
2;&/( f(E) (A16)
Simplifying the common A factor we are left with
1% 1
1=— —(1 —2f(Eyx
5 kZ 5 (1= 2/ (B)
hwp hop l
1=g(e )V(/ ——/ dEp(E)=2 (E))
sler A AEZ— A2 A E f
2ha)D
1 =~ g(ep)V| In A (A17)

where in the third line we switched to an integration over the
quasiparticle energies E. The latter equation can be solved for
the gap,

A = 2hwpe” BV = A0)e ™ & A0)(1 — xgp)
(A18)

where Ag = 2hiwpe” /8 = 1.76kpT. is the superconduct-
ing gap with no quasiparticles, so at absolute zero. Notice
that the gap depends on the normalized quasiparticle density
and therefore on the occupation function of quasiparticles.
However for small occupation function, and for small enough
temperatures, it is reasonable to approximate A = A(0).

APPENDIX B: CSL MODEL

The CSL model is usually formulated in position space.
The collapse of the wave function is described by a nonlinear
and stochastic interaction with a classical noise through the
1t6 equation,

d19) = [— plhdn+ X f (W00 — (W00))dWi (%)

~ d’x d’y(M(x) — (M(x)))G(x —y)

x (M(y) — <M(y)>)dr} lv) (B1)

where my is the nucleon mass, (-) denotes the expectation
value on the state |) and M (x) is the mass density operator
defined by

M(x) =

ijaj(x)a J(X). (B2)
J

The operators a (x) and a;(x) are the creation and annihila-
tion operators at position x of a particle of type j with mass
m; (in our case we will have a single m given by the mass of
electrons). The G(x — y) in (B1) are Gaussian functions of the

form

— 1 (x—y)?
4,_3_()( y)

Gx—y) = (B3)

1

(4m r§)3/2
that characterize the statistical properties of the noise W;(x).
Indeed, by calling &, (x) = dW,(x)/dt, one has that E[&,(x)] =
0, and the two point correlator E[ (x), &(y)] = G(x —
y)8(t — s) where E[-] denotes the stochastic average. These
properties together with the mass proportionality of M guar-
antee respectively localization in space and the amplification
mechanism: the collapse rate of a body of N constituents gets
amplified linearly in N. It is generally difficult to work directly
with Eq. (B1), mainly because of its nonlinearity. Since we are
interested in expectation values we can use the simplified lin-
ear, but still stochastic, dynamic given by Eq. (12) in the main
text. The CSL term in position space and in the Stratonovich
form is given by

/i

HesL = —= = | d’x&0M ). (B4)
This term is related to the second term in Eq. (B1), but
now it is linear because it does not contain (M (x)) anymore.
Moreover the third term of Eq. (B1) is not present. These
simplifications are possible because of the equivalence of
Egs. (B1) and (B4) at the statistical level: nonlinearity effects
are washed away when expectation values are computed. The
term (B4) is Fourier transformed to obtain Eq. (13) of the
main text: we work in the normalization volume V' to avoid
any divergences and the position representation of the field
operators is related to the momentum operators via

1
ax.5) = > e, (BS)
k

—ikx AT

a'(x,s) = % ;e Oy (B6)

APPENDIX C: CALCULATION OF THE TOTAL
GENERATION RATE OF QUASIPARTICLES PER UNIT

TIME AND UNIT VOLUME

We can have a first estimate of the CSL effects by com-
puting the total rate I" of generation of quasiparticles per unit
time and unit volume. This corresponds to performing a sum
over momenta p and g on the transition probability (31),

am? ~
=5 2 Gap M@ )
q.p

AmZVr 20 N2 2 2
= —4m2n5/2/dqq/dpp [e7e 0" — 7P M (g, p),
0

(ChH

where in the second line we expressed the summations as
integrals in spherical coordinates.

To make the integral adimensional, we perform the fol-
lowing substitutions: ip/+/2mA = x and hig/~/2mA = y. We
recall that Ay = A for |&k| < fiwp and zero otherwise, which
gives the following constraints for the modulus of x:

A_<x <A; (C2)
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where AL =,/ #. The same applies to the modulus of y.

Performing these substitutions we find

)thVrC ZmA At At
4m Ty dy dx xy

« (e Z”’A" (x—y)? _e %(x-t—_\’)z)
5 (1 - = B> — B)
[(x2 = B2 + 1)((2 — B2 + D]
+ 1 1 > (€3)
[(x2 = B2 + 1)((2 — B2 + D]

where €7 /A = B. We can compare the different values of the
adimensional parameters appearing in the above integral. We

have that g ~ 10%, 2'"“ ~10%, A2 =g — e ~ 10* — 10

and Ai =B+ h% ~ 104 + 10. Then the Gaussian functions
can be considered as Dirac deltas, and since we are integrating
in two intervals for x and y where x has the same sign of y,
the second Gaussian gives no contribution. By exploiting the
Dirac delta representation

l 1 .2
5(t) = lim @ (C4)
e—0 €A /27-[

where in our case ﬁ = 2'";?“2' , we are then left with

)thV /2m 3Az \/—/+th d 1

= (== €

4m2m2\ h o (52 A2)

Am?V (2m

8—< ) Jer A, (C5)

mo

where in the first line we already performed the change of
variables from x to &, and in the second line we approxi-
mated the integral to 7 /2 since it is equal to tan~!(hwp/A)
with iwp /A >> 1. Assuming that each quasiparticle is gener-
ated with energy A, the total power density supplied by the
CSL to a superconducting sample of volume V is Eq. (C5)
multiplied by A. Plugging in these equations the parame-
ters for aluminum (e¢p = 11.6eV and A = 3.4 x 107*eV),
and a value A = 107''s7!, the total CSL generation rate
isT ~3x107"?s 'um™3 and the power density Py = 1 x
1073* Wum 3. Other papers [20] estimated the total gen-
eration rate per unit volume and the power density that
would account for the experimental quasiparticle density mea-
sured in transmon qubits. The values that we obtained are
~ 14 — 16 orders of magnitude smaller than the values es-
timated in [20], Fg’“ =24 x103s7! 3 and Py = 6 X
10~ Wum—3, thus showing that we can not attribute the
current experimental excess of quasiparticles to the CSL
noise, which is due to other sources. However we can neglect
them, and compute the steady-state quasiparticle density due
to CSL, as we do in the main text. In order to do so, the
information that the total generation rate gives is incomplete.
Thermal processes and the CSL generation of quasiparticles
contribute to the evolution of the occupation function f(F) of
quasiparticles. In this regime f(E) redistributes over time to a
steady state different from a thermal state, that enters Eq. (9)
to give the quasiparticle density due to CSL.

APPENDIX D: CALCULATION OF GENERATION RATE
OF QUASIPARTICLES PER UNIT TIME

We start from Eq. (34) of the main text,

)\,(4]‘[1’ )3/2m2 2002 -
CSL _ ¢ 3 re(p—q)" p g2
Ve (Eq) = /dpe ‘ M~(p,q)f (Ep)
s mg(2m)3 P
2 3/2
_ Am? (4 )3 r. /dpl—) (e—rf(pfq)2 _ efrf(p+q)2)
m32(2m)? q

x M*(p, @) f(Ep), (D1)

where in the second line we expressed the integral in po-
lar coordinates. We make the following substitutions: g =

V2m/R(VET = A% + €5)'/2 and p = 2m/R(VE? — A2 +

€r)!/? to obtain
ySH(E) = m*ar. 2m 1
2/mms b JE— A+ e
x f oodE’(eJZ—é‘%/ Fa e /B R e
A

e — 22 (JVE— D ter +/VE— A2+q)2)

x p(E"M*(E,E"f(E'). (D2)

The above expression is simplified by expanding the squares
in the exponential and collecting the common factors,

CSL(E)_ m*ir. A/2m 1 2;&\/@

2mwmy b [JET =A% + GF
o0
X e_4"1:2€F / dE ’e—ZZz’“ VE-a2

A

e

% ( i SV ter \WE?— Al ter)

2
_ ei2’;’%2\/(«/527&%,-)(«/E'27A2+e,-))

x p(E"M*(E,E"f(E"). (D3)

By defining Tcgy through kgTes, = h%/ (2mr?), and mak-
ing the substitutionx = E/A andy = E'/A, we get

2
y;:SL(x) _ m }\.rcz 2mA 1 e—ﬁs(x)
2ymmi h /s(x)+ B
o1, o0 A , r
xe T | dye W p(M2(x, ) f(AY))

1
2A
y ( R (VEOFBIGOFA)

— ¢ kloesL TCSL

V) +B)s()+B )) (D4)
where we called s(x) = +/x? — 1. We can further simplify this
expression by neglecting the negative term in the last line
because it is exponentially suppressed. We can finally write

2
CSL(X) _ m )trc2 2mA 1 e_ﬁm)
2ymmis b s(x)+ B
[e9]
X o Tl dy ¢ a0 ¢ Tptes VEOTRIGOTER)

1
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/v2 — 2 _
(1 R l)f'(Ay>.
Xy Xy

(D5)

1
X ,0()’)5

This is Eq. (35) of the main text.

APPENDIX E: STEADY-STATE SOLUTION

In the main text, we have seen that the steady-state solution
to Eq. (32) when y*' =0, is the Fermi Dirac distribution
function. This observation, together with the fact that the CSL
injection rate yS“(E) is small, suggests the following pro-
cedure to approximate the steady-state solution when yge’“ =
¥ St since the steady-state solution without injection rate is
a Fermi-Dirac distribution frp(E, T), at some temperature 7,
when we add the CSL injection term, the modified steady-
state solution can be written as fss(E) = frp(E, T) + 3 f(E)
with § f(E') a small perturbation.

We start from Eq. (32) and we neglect the rate terms
associated to recombination and generation, since they are
exponentially small. We plug fss = frp + 6f into Eq. (32),
and we perform the substitutions x = E/A,y = E'/A to get

4

Ve ) + vo / dyS, (1 = frp(x) — 8£(x))
(frp() + 8L GNWN(G —x) + 1) = (frp(x) + 81 (x))
(1 = frp () = (frp(X) + 8 £ ()= Sf (N (y — x))]
+70 /1 dyS(e, NI = frp(x) = 8f N (frp() + 8£ (1))

Nx =y) = (fro(x) + 3 = fro(y)

—8fMWx—y)+D]=0. (ED)
The integration limit is x = 4 since we are interested in the
low energy behavior of the occupation function.

Developing the product of all these factors, the terms

coming from the Fermi-Dirac distribution cancel out. Then,
keeping terms up to first order in 6 f one has

4

P+ [ S ep I OING =0+ 1)
£ rp(N (G — )+ 1) = 8F ) frp0IN G - x)
87 frp NG — 01 + 10 /1 dyS (., Y frn(x)

SFIN@ =) = froMSf (DN (x — ) = 8f(x) frp ()
NG&x =)+ D+ fep()3f (N (x —y) + D] =0,
(E2)

where frp(x) = 1 — frp(x). This is further simplified by ne-
glecting terms proportional to N(2) [see Eq. (33) of the main
text], since they are exponentially small for the temperatures
that we consider. In this way one ends up with

4
P+ [ S G BFOING =)+ 1)

—3f ) frp(MWN(y —x) + 1)]

o /1 dySCe Nrp NS F NG — y) + 1)
S frn NG — ) + 1] =0 (E3)

where frp = (1 — frp). B

From now on, we will approximate frpp(x)=1—
frp(x) = 1 and N(R2) 4+ 1 & 1, because at milliKelvin tem-
peratures and in the considered energy interval [A,4A],
frp(E) ~ e E/BT 0 and N(Q) ~ e~ ¥/%T ~ (0. The above
equation thus simplifies to

4
YL + 70 / dyS (e VIBL@) — 81 ) frp)]

+ Vo/l dyS (e, MI(frp())Sf(y) = 8f(x)]1 =0. (E4)

To further simplify this expression, we note that, for mil-
liKelvin temperatures, we can neglect the addends of the form
8f(x)frp(y) and frp(x)df(y), since we computed the corre-
sponding integrals and they turned out to be small quantities
with respect to the other terms in Eq. (E4). Finally one has
that

X

4
Ve @) + v / dyS(x, )8 ()= /1 dyS(x,y)8f(x)=0,
(ES)

which can be inverted to find the following equation for 6 f (x),

CSL 4
55 ) = J;g (x) In dyf(x,y)Bf(y)
Yo f; dyS(x.y) v i dyS(x.y)
Ve ot (x)

A8 E6
Yo f; dyS(x,y) (£0)

This shows that, by knowing the CSL generation rate, we can

compute the correction to the Fermi-Dirac distribution, and

thus the steady-state solution of Eq. (32) without the need to

solve it. The approximation in the second line of Eq. (E6) is
Y& )

w [} dzS(n2)’

second term of Eq. (E6) we obtain a small correction to the

first term. In the next section we check the validity of this
approximation scheme.

justified because if we substitute §f(y) = in the

APPENDIX F: VALIDITY OF THE APPROXIMATION
SCHEME

To test the validity of this approximation scheme, we have
chosen three representative starting equilibrium temperatures
(65 mK, 45 mK, and 25 mK) to check two aspects. First,
we compared fss = frp + 6f with frp, to check if §f is
indeed a small perturbation to frp. Second, we compared fsg
with the numerical solution of (32) [with y(E) = ySH(E)],
to check if fgs is a good approximation to the steady-state
solution of Eq. (32). We summarize the results in Fig. 4,
where we plot the occupation function obtained with the nu-
merical simulation (blue-solid line), the analytical expression
fss = frp + §f (red-dashed line) and the initial Fermi Dirac
distribution frp (black-dotted line), for a starting equilibrium
temperature of 65 mK (a), 45 mK (b), and 25 mK (c).
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FIG. 4. Log plot of the quasiparticle occupation function obtained solving Eq. (32) numerically (blue-solid line), of the the analytical
expression fss = frp + 6 f with 8 f given by Eq. (E6) (red-dashed line) and of the starting Fermi-Dirac distribution frp (black-dotted line) for
a starting equilibrium temperature of 65 mK (a), 45 mK (b), and 25 mK (c). In (a) 8 f is a small perturbation to frp only for energies lower than
~ 1.5A, where the red dashed line representing fss is close to the black dotted line representing frp. Despite this, the red-dashed line is very
close to the blue-solid line, meaning that fgg is a good approximation to the occupation function obtained by numerical simulation. In (b) the
correction 8f > frp, since the red-dashed line representing fss is many orders of magnitude larger than the black dotted line representing
frp. The same applies for T = 25 mK in (c). Analogously to (a), for both (b) and (c) the red-dashed line representing the analytical solution
fss is a good approximation to the blue-solid line representing the occupation function obtained by numerical simulation. Note that in (c) we
multiplied by 10'¢ the initial f7p to have the same interval in the vertical axis of (b).

In Fig. 4(a) the perturbation §f is small with respect to
frp only for energies lower than ~ 1.5A, as the red dashed
line representing fss = frp + 6 f is close to the black dotted
line representing frp only in this energy interval. Neverthe-
less the analytical expression fsg (red dashed line) is close
to the numerical result represented by the blue solid line
in the whole energy interval. This means that, despite the fact
that we are not allowed to treat § f as a small perturbation to
frp, fss is a good approximation to the steady-state solution
of Eq. (32).

In Fig. 4(b) the analytical solution (red-dashed line) is
many orders of magnitude larger than the initial Fermi-Dirac
occupation function (black-dotted line) in the whole energy
interval. Thus, in this case §f is not a small perturbation
to frp. The same applies to Fig. 4(c). Note however that,
analogously to Fig. 4(a), in both Figs. 4(b) and 4(c) the nu-

merical result (blue-solid line) is well approximated by fss
(red-dashed line).

In conclusion, for the temperatures considered, even when
6 f in Eq. (E6) is not a small perturbation to frp, we can use
fss = frp + & f as the steady-state solution of Eq. (32).

Note moreover that, the fact that for 7 =45 mK and
T =25 mK, the correction 6f > frp implies that fgg =
frp +8f ~ 8f. That is to say, 8f given by Eq. (E6), is
itself the good approximation to the steady-state solution
of Eq. (32). As §f turns out to be almost independent of
temperature for milliKelvin temperatures, this suggests that
the steady-state solution for any 7 < 45 mK, can always be
well approximated by & f. This fact was confirmed by addi-
tional simulations (here not shown) with starting equilibrium
temperatures at 7 = 10 mK and 7 =5 mK, for which the
numerical result was still well approximated by fss & 6 f.
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