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Different topological phases of quantum systems have become areas of increased focus in recent decades. In
particular, the question of how to realize and manipulate systems with a nontrivial first Chern number is pursued
both experimentally and theoretically. Here we go beyond typical spin-1/2 systems and consider both single
and coupled spin-1 systems as a means of realizing higher first Chern numbers and studying the emergence
of different topological phases. We show that rich topological phase diagrams can be realized by coupling two
spin-1 systems using both numerical and analytical methods. Furthermore, we consider a concrete realization of
spin-1 systems using a superconducting circuit. This realization includes nonstandard spin-spin interaction terms
that may endanger the topological properties. We argue, however, that the realistic circuit Hamiltonian including
all terms should be expected to show the rich phase structure as well. This puts our theoretical predictions within
reach of state-of-the-art experimental setups.
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I. INTRODUCTION

The phenomena of topological properties of quantum sys-
tems have seen much research in recent years as a tool for
describing global nontrivial features. Derived in 1950 by T.
Kato [1], though named after M. V. Berry, who discovered
it independently in 1984 [2], the Berry phase, also called the
geometric phase, arises by adiabatically varying the param-
eters governing the quantum system. This gives rise to the
Berry curvature, whose closed two-dimensional (2D) surface
integral is an integer multiple of 2π . This integer is the first
Chern number of the system, a topological invariant [3–7].
This connection between varying external parameters and
global features of the system gives a method of experimen-
tally probing the topological features of quantum systems
[8,9]. Two regions in the space of external parameters with
differing ground-state topological properties, i.e., differing
topological quantum numbers, are considered as distinct topo-
logical phases [10]. These topological phases are considered
as quite stable since the transitions between the two can only
happen by closing the energy gap between the ground state
and the first excited state. These distinct topological phases
and the dependence on externally changing parameters will
be the focus of our attention.

Topological properties of quantum systems are of increas-
ing interest in condensed matter physics, due to exhibiting
interesting properties that are typically not seen in classical
systems. Some of these properties are believed to have tech-
nological applications, including their use in quantum infor-
mation technology, topological insulators, and unconventional
superconductors [11–13]. For instance, for two-dimensional
filled bands and three-dimensional Fermi surfaces, the Hall
conductance of the system is characterized by the Chern
number [13].

Due to the difficulty of probing topological properties in
physical systems directly, emulation of the systems by other
means is sometimes employed. In 1982, Richard Feynman
proposed to use quantum simulation to investigate otherwise
inaccessible quantum phenomena [14]. In recent years, there
have been extended efforts to perform quantum simulation
[15] of systems that exhibit nontrivial Chern numbers us-
ing several different platforms including cold atomic gases
[16,17], Rydberg systems [18,19], trapped ions [20,21], and
photonics [22,23]. Here we will focus on the platform of
superconducting circuits [24–28] as our main platform for
studying systems that may realize nontrivial first Chern num-
bers. Inspired by two papers from 2014 [29,30], in which the
Chern number was experimentally measured in artificial spin-
1/2 qubit systems of quantum circuits, we will consider here
how higher spins can realize topological phases. In particular,
we will study spin-1 systems, also known as qutrits. These
have been the focus of attention for more than a decade within
the realm of superconducting circuits [31–39].

Here we explore how to obtain nontrivial Chern numbers
in spin systems realized as a quantum simulation in the sense
that they do not represent real particles, but rather achieve
the same dynamics using superconducting circuits. We will
explore topological phases in three types of spin-1 systems.
First, we will look at a simple spin-1 system controlled by
a magnetic field. Second, we will consider a system with
two coupled qutrit subsystems controlled by a single coupling
parameter. Finally, we will look at an example of how this
could be implemented in a system of qutrits using supercon-
ducting circuits that was suggested in a recent paper [40,41]
using three different coupling parameters. The analysis will
be based on both analytic solutions and numerical simula-
tion using the QUTIP simulation package [42]. Comments are
placed throughout on the aspects of superconducting circuits
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that might be relevant for physical realization. The exposition
below will start by consider the systems as abstract theoretical
models and then we proceed to discuss the concrete setups
within superconducting circuits.

II. FORMALISM

In this section we introduce the basic theoretical frame-
work and explain our notation. We will make use of spin
operators. These will be denoted Si for i = x, y, z,+,−. The
spin vector is defined as S = (Sx, Sy, Sz ). In the case of an
operator S working on a particular system j, we will use the
notation S j . As an example, the z component of the spin for
the first particle is Sz

1. When dealing with spin-1 three-level
systems, the states will be given in the basis {↑, 0,↓} and the
systems will be referred to as qutrits.

A. Brief introduction to Berry’s phase and related concepts

The derivation of Berry’s phase, and of the related Chern
number, can be found many places in literature (see, for ex-
ample, Chap. 2 of Ref. [13] or Chap. 5 of Ref. [43]). We will
simply state the main results.

Adiabatic time evolution is defined as time evolution where
the parameters of the system are changed slowly, allowing the
system to adapt to the change. The adiabatic theorem loosely
states that in the adiabatic limit, a system initially being in
the nth eigenstate will be in the nth eigenstate of the new
system. If one considers situations where the parameters of the
Hamiltonian will be changed slowly and return to the initial
ones, one might expect that the system will then be identical
to the original system, however, a phase may be picked up.

If a system starts out in the eigenstate |n〉 of H (0), then it
remains in the eigenstate |n〉 of H (t ), and the total state can be
written as

|�(t )〉 = eiγn (t )eiθn (t )|n(t )〉, (1)

where

γn(t ) =
∫ t

0
〈n(t ′)| ∂

∂t ′ |n(t ′)〉dt ′ (2)

is Berry’s phase and θn is the dynamic phase, which is not of
interest here.

B. Degeneracies and Chern numbers

We let R be a vector in the parameter space, i.e., the
components that control the Hamiltonian are collected in this
vector. The Berry phase gives rise to the Berry curvature Fn, a
local (in R-space) property of the quantum system, which in
the three-dimensional case can be calculated as

Fn(R) = −Im
∑
m �=n

〈n|∇RH |m〉 × 〈m|∇RH |n〉
(Em − En)2

. (3)

As can be seen from Eq. (3), degeneracies are the source of
Berry curvature due to the divergence that will result from
them.

The integral of the Berry curvature over a closed surface is
quantized in integer multiples of 2π [44], and the integer is
the first Chern number of the system,

Ch1 = 1

2π

∮
S

F · dS, (4)

where S is the normal vector of the surface S spanned by
the closed loop in parameter space. The first Chern number is
often simply called the Chern number and will be referred to
as such throughout this text. The Chern number is a topolog-
ical invariant. In this case, it reveals the number of enclosed
degeneracies.

The Berry curvature is sometimes described as an effective
magnetic field with degeneracies acting as the source of the
field, equivalent to magnetic monopoles (see, for instance,
Ref. [45]). In this framework, the Chern number is simply
found using Gauss’ law [46] and the number is signaling
the enclosed degeneracies with their monopole charge. In a
similar vein, Gritsev et al. showed that the Berry curvature
produces an effective force [47] in a system initially in the
ground state driven by a slow linear parameter change. By
changing the parameters in the μ direction with rate vμ =
∂μ/∂t , the system, with time dependent wave function |�(t )〉,
experiences a generalized force in the ν direction Mν =
−∂H/∂ν, related to the μν component of the Berry curvature,

〈Mν (t )〉 ≡ 〈�(t )|Mν |�(t )〉 = 〈0|Mν |0〉 + vμF0,μν + O
(
v2

μ

)
,

(5)

where O(v2
μ) are higher-order terms that will be neglected

due to the change happening slowly. The first term is the
value in the adiabatic limit vμ = 0 in which case the system
stays in the exact ground state at all times. Thus, we can
directly measure the Berry curvature from the linear response
by measuring 〈Mν〉. Both prescriptions of the curvature are
used throughout this paper, Eq. (3) when making analytical
predictions and Eq. (5) when performing simulations.

III. THREE-LEVEL SYSTEMS

As a warm-up to the coupled systems and an introduction
to how we treat the system analytically, we start by consid-
ering a relatively generic spin-1, or three-level, system. We
follow previous discussions of similar systems with spin 1/2
[29,30], as well as the study of Ref. [36] where topological
band structure was investigated with a superconducting circuit
and the measurement of a Chern number greater than unity
was achieved.

The spin matrices for spin 1 will be taken to be of the form

Sx = h̄√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Sy = ih̄√

2

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠, Sz = h̄

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, and S+ = h̄

√
2

⎛
⎝0 1 0

0 0 1
0 0 0

⎞
⎠ = (S−)† (6)

from this point on, where units in which h̄ = 1 are used.
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A. Simple three-level system

We first take a purely analytical approach to the simple
three-level system. This procedure is identical to the one
performed by Berry in Ref. [2]. The Hamiltonian we will be
dealing with is that of a spin 1 in a magnetic field, and has
the form

H = R · S, (7)

where R is the vector in parameter space. The Berry curvature
is calculated using Eq. (3). Explicitly calculating its eigen-
values, we see that it has energies E↑ = −E↓ = |R| = R and
E0 = 0. A quick calculation gives (E↑/↓ − E↓/↑)2 = 4R2 and
(E↑/↓ − E0)2 = (E0 − E↑/↓)2 = R2, while ∇RH = S. Since
the Hamiltonian is spherically symmetric, we can fix R to
point in the ẑ direction. We can then write S as

S = 1

2
(S+ + S−)x̂ + 1

2i
(S+ − S−)ŷ + Szẑ. (8)

Explicit calculation of the Berry curvature by Eq. (3) yields,
by invoking the requirement for spin eigenvalues and applying
orthogonality,

F↑ = − ẑ
R2

. (9)

Remembering that we had rotated our axes to point in the ẑ
direction, we arrive at the expression

F↑ = − R̂
R2

, (10)

while similar calculation will result in

F↓ = R̂
R2

, F0 = 0. (11)

The integral of F↑/↓ is well known in electrodynamics [46],
and the integral over any surface enclosing 0 will yield∮

S
F↑ · da = −4π. (12)

So, up to a sign, we arrive at Ch1 = 2 when the degeneracy is
enclosed. This degeneracy is known as the Weyl point and in
this case has topological charge 2.

1. Simulating the simple system

In order to address the potential conditions of an experi-
ment with a three-level system, we now simulate a protocol for
measuring the Chern number by use of Eq. (5). We consider
Hamiltonians of the form

H = −(H0Sz + Hr · S), (13)

with Hr= (Hx, Hy, Hz )= Hr[sin(θ ) cos(φ), sin(θ ) sin(φ),
cos(θ )]. For all simulations we use Hamiltonian parameters
that are within the usual set of values for superconducting
circuits [48–50], and we set Hr = 10×2π MHz. The system
is initialized in its instantaneous ground state for a particular
value of H0. We then change (ramp) the value of θ from 0 to
π as θ (t ) = πt/tramp, finally stopping at t = tramp. We denote

vθ = ∂θ

∂t
. (14)

FIG. 1. Schematic of the path traversed in the parameter space
over the closed spherical manifold described by Hr, starting at
Hr(t = 0) = Hz ẑ and moving in a semicircle to Hr(t = tramp) =
−Hz ẑ. The adiabatic case is represented by red arrows and the
measured deflection, caused by the ramping, is represented by blue
arrows. Inside the sphere lies the Weyl point causing the deflection
from adiabaticity, which is used to extract the Chern number. This
figure is based on Fig. 1 in Ref. [30].

By ramping θ like so, we create a curve through parame-
ter space in the shape of a semicircle from HrSz to −HrSz

(see Fig. 1).
Our Hamiltonian is cylindrically symmetric around the z

axis and as such, the Berry curvature is independent of φ. We
therefore fix φ(t ) = 0 throughout. The expectation value of
the generalized force of the system is then

〈Mφ〉 = −
〈
∂H

∂φ

〉
= Hr〈Sy〉 sin(θ ). (15)

The generalized force for a spin in a magnetic field is zero in
the adiabatic limit, as the spin will simply align with the field.
As such, the Berry curvature can be found as the leading order
correction with Eq. (5). We obtain that the Berry curvature can
be calculated as

Fθφ = Fθ0 = Hr

vθ

sin(θ )〈Sy〉. (16)

The Chern number is found by integrating the Berry curvature
over the entire manifold. However, since the Hamiltonian is
cylindrically symmetric, we need only integrate over θ . The
Chern number can then be found as

Ch1 = 1

2π

∫ π

0

∫ 2π

0
Fθφdφdθ =

∫ π

0
Fθφdθ. (17)

In a physical experiment, θ would be ramped linearly for a
time between 0 and tramp, then 〈Sy〉 would be measured and the
experiment would be performed again, ramping to a different
time, so that the evolution can be tracked.

Equation (17) gives a prescription of the Chern number
in terms of the Berry curvature. However, since the number
is a description of the number of enclosed degeneracies in
parameter space, we can also find these analytically. The path
described previously is on the surface of a spherical manifold
of radius Hr. Thus, in the simple case described here, the
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FIG. 2. (a) Plot of the Berry curvature Fθφ (θ ) for the case H0 = 0
with tramp = 0.5 µs and Hr = 10×2π MHz. The integral of Fθφ is
used to find Ch1. (b) Ch1 for various values of H0, with tramp =
0.5 µs and 10 µs. A topological transition occurs when H0 = Hr =
10×2π MHz, where the Weyl point is at the boundary of the ground
state manifold. The probing of the topological transition is made
clearer in the second case due to the slow ramping. (c) The trajectory
of the state on the surface of a sphere spanned by 〈Sx〉, 〈Sy〉, and
〈Sz〉 with tramp = 0.5 µs, starting from 〈Sz〉 = 1 at t = 0 to 〈Sz〉 = −1
at t = tramp. The deviation from the meridian is used to extract the
Berry curvature and the Chern number.

Weyl point lies inside the sphere for H0 < Hr and outside for
H0 > Hr. Comparing with Eq. (12), we see that the Chern
number is Ch1 = 2 when H0 < Hr. Simulating the ramping
of θ and integrating 〈Fθφ〉 over the resulting semicircle yields
a numerical way to calculate Ch1.

For the sake of example, the ramping of θ is performed
with tramp = 0.5 µs. For H0 = 0 this results in the Fθφ plotted
in Fig. 2(a). In this case the integral gives Ch1 ≈ 2, since the
Weyl point is enclosed. The topological nature of the number
can be investigated by simulating for different values of H0.
The result of these simulations is shown in blue in Fig. 2(b).
While it is clear that Ch1 changes from 2 to 0, it does so
continuously. This is a result of the measurement technique, as
a higher-order response from Eq. (5) makes Eq. (16) invalid.
If we instead choose to simulate with tramp = 10 µs, we get
a noticeably sharper transition plotted in red in Fig. 2(b).
As expected, a transition occurs at the point H0 = Hr, with
Ch1 = 2 when H0 < Hr and Ch1 = 0 when H0 > Hr.

The number of oscillations in Fθφ is given by Hr/vθ . As
a result of this, choosing a slower ramping speed will result

in a higher number of oscillations, and therefore a higher
resolution in time is needed to accurately determine Ch1.
Since the integral of Fθφ over the sphere is independent of
tramp, Eq. (16) also means that 〈Sy〉 becomes less pronounced,
requiring greater precision in its measurement. On the other
hand, higher levels in the superconducting circuit spectrum
are more unstable [35]. As a result of this, a fast ramp may
then mitigate some of the decay noise that might otherwise oc-
cur in slow transition protocols. Due to these considerations,
we set Hr = 10 MHz and tramp = 0.5 µs for the remainder of
the paper. This is also consistent with the energy scale of the
Hamiltonian of superconducting circuit relevance and in the
same order as similar experiments [29,30,36].

In the case of a qubit system, the response can be visualized
as a trajectory on a Bloch sphere. Since we are dealing with a
qutrit, more parameters are necessary to completely describe
the state of the system. We can, however, still visualize the
relevant parts of the trajectory, described by 〈Sx〉, 〈Sy〉, and
〈Sz〉. This can be considered as a cross section of the entire
space. This trajectory with tramp = 0.5 µs for the case H0 = 0
is plotted in Fig. 2(c).

IV. COUPLED THREE-LEVEL SYSTEM

A. Introduction to the coupled three-level system

Having discussed the single three-level system, we now
continue to the coupled case. The modification we perform
is to add an additional qutrit system coupled to the first with
a coupling term g(Sx

1Sx
2 + Sy

1Sy
2). This is the generalization to

higher spins of the coupled spin-1/2 system as, for instance,
discussed in Ref. [30]. Here we will explore how the extra
levels and the interactions can influence the phase diagram.

We consider Hamiltonians of the form

H = −[
H0Sz

1 + H1 · S1 + H2 · S2 − g
(
Sx

1Sx
2 + Sy

1Sy
2

)]
, (18)

where we will set H1 = H2 = Hr, again with

Hr = Hr[sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ )],

with Hr = 10×2π MHz. As before, the system is initialized
in its instantaneous ground state for a fixed value of H0 and
g. We ramp θ (t ), this time for both qutrits simultaneously,
with both H0 and g kept constant. Since g is kept constant
for each simulation, by taking the φ derivative of Eq. (18), we
see that the Berry curvature is obtained as the integral over
two separate spherical manifolds. Likewise, the system has
U (1) invariance along the z axis, meaning that the system for
H (θ, 0) can be mapped to H (θ, φ) as

H (θ, φ) = eiφ(Sz
1+Sz

2 )H (θ, 0)e−iφ(Sz
1+Sz

2 ). (19)

With this in mind, the Chern number is simply found by
integrating the Berry curvature for both qutrits,

Ch1 =
∫ π

0

Hr

vθ

sin(θ )
(〈

Sy
1

〉 + 〈
Sy

2

〉)
dθ. (20)

In the limiting case of g = 0, we expect this to be equiv-
alent to two isolated qutrits, one of which has a transition
where Ch1 changes by 2 when H0 = Hr, while the other is
unaffected by the change in H0, i.e., we expect Ch1 = 4 when
H0 < Hr and Ch1 = 2 when H0 > Hr. When g �= 0, things
become more complicated. We expect multiple phases of the
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system to be present, with different values of Ch1 depending
on the strength of H0 and g. The theoretical phase diagram can
again be found by considering the position of degeneracies in
the parameter space. We expect the total Ch1 to be no larger
than the sum of the individual Ch1 for each isolated qutrit,
since the coupling and offset is kept constant for each ramp.
That is, we expect Ch1 � 4, no matter the value of H0 and g.

B. Analytical solution

We first reorient our Hamiltonian to lie in the ẑ direc-
tion, so that θ = 0 or θ = π . We can analytically locate the
Weyl points of the system by considering this situation. For
θ = 0, the Hamiltonian, in the basis {↑, 0,↓} ⊗ {↑, 0,↓},
reduces to

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−H0 − 2Hr 0 0 0 0 0 0 0 0
0 −H0 − Hr 0 g 0 0 0 0 0
0 0 −H0 0 g 0 0 0 0
0 g 0 −Hr 0 0 0 0 0
0 0 g 0 0 0 g 0 0
0 0 0 0 0 Hr 0 g 0
0 0 0 0 g 0 H0 0 0
0 0 0 0 0 g 0 H0 + Hr 0
0 0 0 0 0 0 0 0 H0 + 2Hr

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

We will be localizing Weyl points in the parameter space, as
we know from Eq. (3) that this is the location in parameter
space that causes a nontrivial Berry curvature. The only rele-
vant coordinate of the Weyl points, the z coordinate, will be
denoted Hz.

We block-diagonalize the Hamiltonian in the eigenbasis of
Jz. As such, we analyze the system in terms of each value of
the total spin along z, mtot.

For mtot = ±2, we have energies E↑↑ = −H0 − 2Hr and
E↓↓ = H0 + 2Hr. For mtot = ±1 we have the matrices

H0↑/↑0=
(−H0 − Hr g

g −Hr

)
, H↓0/0↓=

(
Hr g
g H0 + Hr

)
,

(22)

with energies −H0
2 − Hr ±

√
H2

0 +4g2

2 and H0
2 + Hr ±

√
H2

0 +4g2

2 ,
respectively. Finally, the mtot = 0 sector looks like

H↑↓/00/↓↑ =
⎛
⎝−H0 g 0

g 0 g
0 g H0

⎞
⎠, (23)

with energies 0 and ±
√

H2
0 + 2g2. Since we have ∇RH = S =

1
2 (S+ + S−)x̂ + 1

2i (S
+ − S−)ŷ + Szẑ and since it is an orthog-

onal basis, Eq. (3) gives that only states that differ in mtot by
1 will be able to contribute to the Berry curvature. That is,
degeneracy from states with a difference in spin other than 1
are irrelevant.

Depending on the values of H0 and g, there will be three
different ground states, which can be found to be

|g〉 =
⎧⎨
⎩

|↑↑〉
a1 |↑ 0〉 − a2|0 ↑〉
b1|00〉 − b2 |↑↓〉 − b3 |↓↑〉

, (24)

where ai and bi are positive constants. In the case H0 = 0, we
get in particular a1 = a2 = b2 = b3 = 1/

√
2 and b1 = 1/2.

As such, the ground state Berry curvature will be different in
each case.

We first consider F↑↑. Here the curvature stems from de-
generacies between mtot = +2 and mtot = +1, and the two
resulting ground state degeneracies have z components,

Hz ∈
{
−H0

2
± 1

2

√
H2

0 + 4g2

}
. (25)

We now consider F↑0/0↑, the curvature from the states with
mtot = +1. Here, the relevant degeneracies are between the
mtot = +1 sector and both the mtot = +2 and mtot = 0 sectors.
The new ground state degeneracies have z components,

Hz ∈
{
−H0

2
± 1

2

√
H2

0 + 4g2 ∓
√

H2
0 + 2g2

}
. (26)

All remaining values of Hz will, up to a sign, be identical to the
ones already found. This can also be seen from our previous
argument that Ch1 � 4, with four values of Hz having been
found. In total, the four relevant locations are

Hz ∈
{
−H0

2
± 1

2

√
H2

0 + 4g2,

−H0

2
± 1

2

√
H2

0 + 4g2 ∓
√

H2
0 + 2g2

}
. (27)

These are the z components of the Weyl points. From this,
we can construct a theoretical phase diagram. This is done in
Fig. 3(a). As is evident in the figure, six different phases are
present, depending on how many Hz < |Hr|, i.e., how many of
the degeneracies are enclosed within the sphere.

C. Simulated solution

As with the isolated qutrit, this system has been simulated
for different values of H0 and g. Ch1 is again found by inte-
grating 〈Sy〉 over the sphere, this time for both qutrits as in
Eq. (20). This phase diagram is plotted in Fig. 3(b). The phase
diagram is very interesting for a number of reasons. First
of all, it is interesting that while the uncoupled system only
has a single transition where Ch1 changes by 2, this system
has a lot of possible transitions where Ch1 can change by 1.
For a fixed value of g between 0 and Hr, changing H0 from
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FIG. 3. (a) The theoretical phase diagram. Six different phases
are present, with different values of Ch1. This was constructed by
considering how many degeneracies are enclosed within the ground
state manifold with Hr = 10×2π MHz. (b) Simulated phase diagram
showing the value of Ch1, which was found by integrating Fθφ , for
different values of H0 and g, with Hr = 10×2π MHz and tramp =
0.5 µs.

0 to H0 > Hr will still cause Ch1 to change by 2, but in two
steps. In Sec. III A, the change in Ch1 by 2 could be interpreted
as moving the single monopole with charge 2 from inside
to outside the ground state manifold. This interpretation is
no longer valid, given how it changes in two steps. Instead,
one must interpret it as two distinct monopoles with charge
1. Likewise, for H0 = 0, changing g allows for two different
transitions, while for H0 between 0 and Hr, four transitions
occur.

The fact that the phases seem to “split” as g and H0 in-
creases is interesting in itself. The fact that there exist phases
that are not driven purely by H0 and g, but for specific values
of these in combination, is in itself a rather remarkable result.
This result is not possible in the spin-1/2 analog of the system,
given that each particle only contributes with Ch1 = 1 each,
and only three phases are present [30]. This system therefore
allows for completely new types of phases to occur that would
not be possible for lower spin.

V. IMPLEMENTATION OF COUPLED QUTRIT SYSTEM

As an example of how a system of two coupled spin-1
systems, i.e., qutrits, could be implemented in a physical
device, we look at the superconducting circuit proposed in
Ref. [40], Sec. XI D. A lumped circuit element drawing of
the system can be seen in Fig. 4. The system consists of three
superconducting islands indicated by nodes in the figure. The
islands are connected using Josephson junctions, capacitors,
and inductors, while the bottom island is connected to the
ground as a transmon [51]. The two effective coupled degrees
of freedom can be seen as the dipoles fluctuating between the

FIG. 4. A lumped-element circuit drawing of the proposed super-
conducting circuit implementing a coupled two-qutrit system with
an effective Heisenberg XXZ interaction. Standard circuit notation
is used, with the crossed boxes representing Josephson junction.

upper two islands, and between the lower island and equally
to each upper island, respectively. The third degree of freedom
is a combined fluctuation with respect to the ground and can
thus be ignored. The ratio of the inductances and capacitances
are chosen such that the two dipoles are in the transmon
regime and can thus be truncated to the lowest three levels.
The Hamiltonian from this circuit has the following form:

H = g
(
Sx

1Sx
2 + Sy

1Sy
2

) + JZ
(
Sz

1Sz
2

) + H1 · S1 + H2 · S2

+ H0Sz
1 + J02

4
[(S+

1 S−
2 )2 + (S−

1 S+
2 )2]. (28)

A deeper explanation of how the Hamiltonian arises is be-
yond the scope of this paper; however, in the Appendix we
describe briefly how the Hamiltonian of the system can be
found, and how to modify it so that it is written in terms of
spin-1 matrices. Further details can be found in Refs. [40]
and [41], including a discussion of the parameters involved.
Intuitively, the two effective degrees of freedom can be seen
as the electrical field modes oscillating between the left and
the right upper circuit nodes, and oscillating between the two
upper circuit nodes (black dots in Fig. 4) and the bottom
circuit node, respectively.

We note here that the J02 term is a nontrivial term that
appears because of the nature of the superconducting circuit
setup when it is driven in order to make the parameters config-
urable. We therefore need to ensure that this will not interfere
with the topological properties and the phase diagram. Luck-
ily, this turns out not to be the case, as we will discuss in the
next section.

VI. EXPLORING THE LARGER PARAMETER SPACE

The new system is considerably more complicated than
the one for a simple coupling, described in Sec. IV A. In the
regime where Jz → 0 and J02 → 0, it reduces to the previ-
ously described system. It is quickly noted that this system
also retains the U (1) invariance, as can be seen by writing out

H (θ, φ) = eiφ(Sz
1+Sz

2 )H (θ, 0)e−iφ(Sz
1+Sz

2 ) (29)

in matrix form.
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FIG. 5. Phase diagram for Ch1 with Hr = 10×2π MHz for var-
ious types of coupling with all others absent. (a) H0 and JZ . (b) H0

and J02. (c) g and JZ . (d) g and J02.

In the case of the simple coupling in Sec. IV A, the in-
teraction was controlled by Sx, Sy, Sz for both qutrits and
(Sx

1Sx
2 + Sy

1Sy
2), giving a parameter space of dimension seven.

Adding control of Sz
1Sz

2 and [(S+
1 S−

2 )2 + (S−
1 S+

2 )2] expands
this to nine. Changing both the previous free variables, as
well as the two new ones, would require four-dimensional
phase diagrams. For convenience, we will only be plotting
two-dimensional slices of this.

As before, we will be considering spherical manifolds with
constant |H1| = |H2| = Hr = 10×2π MHz.

In the simple case of only two parameters, we can easily
construct theoretical phase diagrams in a similar fashion to
that of Sec. IV A. We will do so with the new coupling
parameters. We will not provide in-depth derivation of the
theoretical phase diagrams, since the procedure is identical to
the one previously applied. That is, first reorient the axis to
point in the ẑ direction, find ground state wave functions for
each region, then locate the Weyl points. We have chosen to
do this with a selection of the parameters, collected in Fig. 5.

Simulated diagrams can also be constructed by ramping
θ (t ) linearly and integrating 〈Sy〉 for each qutrit. This will not
be presented. However, we note that all the theoretical values
agree with simulations. The remainder of this section will be
spent discussing the phase diagrams.

We first consider the effect of the JZ coupling. The resulting
diagram is plotted in Fig. 5(a). As is evident in the figure, three
phases are present, with transitions occurring at H0 + JZ = Hr
and JZ = Hr. This phase diagram is quite different than the
one for g-coupling, as the transitions are much simpler in this

regime. The fact that H0 and JZ can both contribute equally
to the transition where Ch1 changes from 4 to 2, but only the
coupling induces the transition where Ch1 → 0, is interesting.
Alone, however, the diagram is not so illuminating.

Next, we focus on the effect of varying the parameters J02

and H0. This is presented in Fig. 5(b). It is worth noting that
the phase diagram produced by this coupling is identical to the
first phase of the one controlled by g-coupling, except with a
scaling factor on the coupling parameter. To be exact, the z
component of the Weyl point is

Hz = −H0

2
± 1

2

√
H2

0 + J2
02,

compared to

Hz = −H0

2
± 1

2

√
H2

0 + 4g2

for g-controlled coupling.
The dynamics that are most common in spin chains are

those governed by the coupling of the types (Sx
1Sx

2 + Sy
1Sy

2)
and (Sz

1Sz
2), controlled by g and JZ . Phase diagrams for the two

couplings controlled by JZ and g are plotted in Fig. 5(c). As in
the case values of JZ and H0, the first transition is controlled
equally by the two parameters, while the second transition is
of a more complex nature.

Finally, we focus on the effect of J02 and g as in Fig. 5(d). It
can be seen that when g < Hr and J02 < 2Hr, neither coupling
is strong enough to change the topology, but that topolog-
ical transitions occur when g = Hr or J02 = 2Hr. The most
interesting thing is perhaps that while a strong increase in
either g or J02 will result in Ch1 → 0, we have Ch1 = 2 when
J02 ≈ g > Hr, no matter their magnitude.

The phase diagrams presented here are very rich. This indi-
cates that a relatively simple generalization of the case of two
coupled spin-1/2 systems, as performed in Ref. [30], can give
a much more varied set of topological phases as one tunes the
parameters. We note that this comes at the expense of adding
a single extra level to the superconducting circuits. Exploring
these new phase diagrams in greater detail than what has been
done here, by interpreting the phases and examining proper-
ties such as critical exponents of the topological transitions,
for example, should be a venue for future work.

Furthermore, the lifetimes of higher states beyond the first
two are typically only about a factor of two shorter. Compared
to Ref. [29], where a ramping for a two-level system for 1 ms
was performed, we expect that the three-level system can be
explored in the same manner, with ramping times of the same
order as explored in the simulations, i.e., at the level of around
0.5 ms. This may yield further insight into coupled higher-
spin systems as a means of simulating topological phases in
quantum systems.

VII. CONCLUSION AND OUTLOOK

In this paper, systems of interacting spins beyond the sim-
ple spin-1/2 system have been considered. Starting from a
single spin-1 system, we introduced the theoretical ground-
work in terms of spin-1 operators, Berry curvature, and
the first Chern number in order to address the topological
transitions that are possible for systems with higher spins.
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Furthermore, we also connected these considerations to previ-
ous measurement protocols used to probe different topological
phases, and how to induce transitions between different
phases by changing system parameters. We then proceeded
to add a second spin-1 system and studied the coupling of two
such qutrits. This turns out to produce a considerably richer
phase diagram compared to the case of coupled spin-1/2
systems. Finally, a system based on the platform of supercon-
ducting circuits was introduced that can be used to realize a set
of coupled spin-1 systems, and suitably modified with drive
lines in order to obtain control of different system parameters.
The system was simulated for a large set of parameters and
the ensuing dynamics was characterized. This allowed us to
conclude that a lot of opportunities may lie in the experimental
probing of higher spins for its topological properties.

Our analysis here did not take into account some issues
that may arise in realizations with superconducting circuits.
The issue of how noise may effect the phases and how to tune
the driving or optimize the protocols in order to mitigate noise
effects was left for future consideration.

Topological properties are of increasing interest in several
fields of physics, since they allow for unique physical phe-
nomena that typically goes beyond our basic intuitions, and
the realization of topological phases in quantum simulators
and in materials have become a very intensely pursued topic.
In order to derive topological features of different physical
systems, it is common to define mappings onto systems where
topological features are easier to identify. Quite often, this
will be to forms that are closely related to spins in magnetic
fields. There have been some works along these lines (see, for
instance, Refs. [30,52] and [36]). We therefore speculate that

the three-level systems coupled with J02 and JZ terms can be
mapped to a physical system in which the topological phases
of Sec. VI become manifest. Furthermore, as was noted in
Ref. [41], it is quite simple to imagine how to scale the present
system of two qutrits to a larger chain of coupled qutrits using
the superconducting circuit designs that lead to the Hamilto-
nian considered here. As is briefly mentioned at the end of
Ref. [36], this could be used to implement the Haldane phase
of an interacting spin-1 chain [53]. However, we note that
some of the other platforms mentioned in the introduction that
are currently in use for topological phase quantum simulations
may also serve this purpose. Hence, the principle theoretical
investigation started here with the coupling of two spin-1
systems could serve as a few-body precursor to the realization
of many-body phases with manifest topological properties.

APPENDIX: SUPERCONDUCTING CIRCUITS

In Sec. V we introduced a Hamiltonian for a physical
realization of a coupled three-level system, stemming from
the circuit in Fig. 4. This Appendix briefly presents the full
coupled Hamiltonian investigated in Ref. [41] and later in
Ref. [40] and describes how to modify it to arrive at Eq. (28).

The circuit Hamiltonian can be derived by following the
standard quantization procedure described in Refs. [40,54],
see Refs. [40,41]. As described in the main text, the three
nodes in the circuit couple in such a way that a change of
basis can be performed to a coordinate system where a center-
of-mass like degree of freedom can then be ignored. The result
is the Hamiltonian of effectively two coupled qutrits, denoted
by subscripts i = 1 and i = 2:

Hfull = 	1,1|1〉〈1|1 + (	1,1 + 	1,2)|2〉〈2|1 + 	2,1|1〉〈1|2 + (	2,1 + 	2,2)|2〉〈2|2
+ J01,01(|0〉〈1|1|1〉〈0|2 + |1〉〈0|1|0〉〈1|2) + J01,12(|0〉〈1|1|2〉〈1|2 + |1〉〈0|1|1〉〈2|2)

+ J12,01(|1〉〈2|1|1〉〈0|2 + |2〉〈1|1|0〉〈1|2) + J12,12(|1〉〈2|1|2〉〈1|2 + |2〉〈1|1|1〉〈2|2)

+ J02(|0〉〈2|1|2〉〈0|2 + |2〉〈0|1|0〉〈2|2) + JZZ (D1,1|1〉〈1|1 + D1,2|2〉〈2|1)(D2,1|1〉〈1|2 + D2,2|2〉〈2|2), (A1)

using an outer product operator notation with the qutrits states
denoted by 0, 1, and 2, respectively. The subscripts for 	,
D, and J are merely to distinguish them and to label which
states they pertain to. We note here that we have performed
the rotating wave approximation in order to arrive at the
Hamiltonian [40]. The structure of the coupling is similar
to XXZ-type Heisenberg couplings [55,56], but with some
important modifications that are discussed below. These arise
primarily from the driving terms required for full control of
the system levels and the subsequent transformation to the
rotating frame and diagonalization herein.

Here we will make the simplifying assumption that all
parameters can be externally controlled independently of each
other. This would require some additional drive lines for mul-
timode driving or other techniques added onto the original
model. The procedure for rewriting has been done by writing
out the terms in matrix form with the Kronecker product,
and comparing with how the spin matrices are given in the
same basis. Since the matrices are rather large, we will not

write them out explicitly. By setting J01,01 = J01,12 = J12,01 =
J12,12 = g, lines 3 and 4 can be written as

g
(
Sx

1Sx
2 + Sy

1Sy
2

)
,

i.e., XX + YY -coupling that we considered in Sec. IV A.
It is possible to remove a constant on the diagonal of the

Hamiltonian in order to set the lowest state at zero energy.
Alternatively, we could throw away the middle |1〉〈1| term and
be left with 	i,0|0〉〈0|i + (	i,0 + 	i,2)|2〉〈2|i for i = 1, 2 for
both the terms acting directly on the qutrit and the coupling
term. Setting 	i,0 = −	i,2/2, and similarly for the coupling
term, gives rise to the terms

	1Sz
1 + 	2Sz

2 + JZZ
(
Sz

1Sz
2

)
.

Finally, the J02 term cannot immediately be written in terms of
the Sx, Sy, or Sz spin-1 operators. It can, however, be written
in terms of the ladder operators as

J02[(S+
1 S−

2 )2 + (S−
1 S+

2 )2]/4.
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While not present in the presented circuit drawing (Fig. 4)
for simplicity, adding terms giving control over Sx and
Sy for both qutrits is a standard procedure. We refer to
Ref. [40] for details. Adding these terms, we have an im-
plementation of the required spin-1 operators added to the
Hamiltonian.

In the end we have the Hamiltonian

H = g
(
Sx

1Sx
2 + Sy

1Sy
2

) + JZ
(
Sz

1Sz
2

) + H1 · S1 + H2 · S2

+ H0Sz
1 + J02

4
[(S+

1 S−
2 )2 + (S−

1 S+
2 )2]. (A2)

This is Eq. (28) in the main text.
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