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Flat-band-induced superconductivity in synthetic bilayer optical lattices
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Stacking two layers of graphene with a relative twist angle gives rise to Moiré patterns, which can strongly
modify electronic behavior and may lead to unconventional superconductivity. A synthetic version of twisted
bilayers can be engineered with cold atoms in optical lattices. Here, the bilayer structure is mimicked through
coupling between atomic sublevels, and the twist is achieved by a spatial modulation of this coupling. In the
present paper, we investigate the superconducting behavior of fermionic atoms in such a synthetic twisted bilayer
lattice. Attractive interactions between the atoms are treated on the mean-field level, and the superconducting
behavior is analyzed via the self-consistently determined pairing gap. A strong enhancement of the pairing gap
is found when a quasi-flat band structure occurs at the Fermi surface, reflecting the prominent role played by
the twist on the superconductivity. The tunability of interactions allows for the switching of superconducting
correlations from intra (synthetic) layer to inter (synthetic) layer. This includes also the intermediate scenario, in
which the competition between inter- and intra-layer coupling completely destroys the superconducting behavior,
resulting in re-entrant superconductivity upon tuning of the interactions.
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I. INTRODUCTION

The Fermi-Hubbard model plays a central role in describ-
ing various aspects of the many-body physics of condensed
matter systems [1–6]. In particular, along with its variants, it
is widely believed to encompass the basic ingredients required
to understand high-temperature superconductivity, e.g., in
cuprates [7–11]. Although Hubbard models are effective sim-
plified models of complex condensed matter systems, they can
be realized with high fidelity and control in various engineered
systems such as ultracold atoms in optical lattices. This, in
turn, has lead to an exciting branch of physics—quantum
simulation of condensed matter phenomena [12–15]. In re-
cent years, one-, two-, and three-dimensional optical lattices
have been generated paving the way to studies of different
quantum phases under various types of interactions [16,17].
A distinguishing feature within the cold atom setup is the
freedom of precise tuning of microscopic system parameters,
i.e., interactions and particle tunneling over wide ranges [18].

The control of material properties via band structure engi-
neering has been a long standing goal in condensed matter
physics. A new frontier is twistronics, where the relative
rotational misalignment between layers in quasi two dimen-
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sional (2D) systems leads to Moiré patterns in real space.
The Moiré patterns strongly influence the band structure and
lead to enhanced collective effects induced by interactions and
topology [19]. In graphene bilayers, tuning the twist angle to
so-called magic values was predicted to strongly quench the
electronic kinetic energy leading to the formation of quasi-
flat bands [20–22], where small interactions can dominate
the phenomenology [23]. With the successful development
of fabrication methods for such devices, a series of experi-
ments spectacularly unveiled superconductivity and correlated
insulators in these materials around the magic angles [24–26].
The enhancement of superconductivity originating from com-
pletely isolated or nonisolated quasi-flat bands, in particular,
has turned out to be an exciting development in the search
for high-Tc superconductivity driven by quantum geometry
[27–30].

These results have driven the new field of twistronics in-
volving the study of various kinds of Van der Waals stacked
heterostructures beyond bilayer graphene [31]. The unavoid-
able effect of twisting 2D materials is the enlargement of the
unit cell, usually by a few orders of magnitude compared to
the original unit cell of a single sheet of the material [19,32],
into a so-called Moiré supercell. This emergent approximate
crystal symmetry strongly complicates direct microscopic
modeling and nonapproximating studies of correlations in
these systems. As a result, direct quantum simulations of
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twistronics, in particular based on the promising platform of
ultra cold atoms trapped in optical lattices, that allow for
exquisite control of system parameters, offer an additional
window to gain fundamental understanding of Moiré ma-
terials. Importantly, this approach allows to study systems
without certain practical difficulties associated with materials
such as the lack of control over the homogeneity of the twist
angle in samples and strain effects which lead to disorder.
Moreover, apart from the control of interactions, ultra cold
atom systems allow for tuning of interlayer coupling to strong
values that can lead to enhanced correlation effects even for
comparatively small Moiré supercells.

The interest in general 2D bilayer systems has led to the
design of multiple architectures and control schemes for bi-
layer optical lattices [33–35]. Moiré systems can be generated,
on one hand, by effectively performing the direct analog of
material twisting in overlapping samples [36], or spin depen-
dent optical lattices [37,38]. A different versatile approach
stems from the fact that physically, the main effect of twisting
is the induction of incommensurate quasi-periodic potentials
and quasi-periodic interlayer tunnelings in layered systems
[39–45]. Such spatially modulated patterns can be directly
imprinted on synthetic bilayer systems [43,46], i.e., a single
physical optical lattice layer of atomic species with Raman
coupled internal states playing the role of the additional layer
degree of freedom [47,48]. This remarkably realizes Moiré-
type physics without physical twisting.

In the present paper, we build on the idea originally
presented in [43] which uses the concept of synthetic di-
mensions to engineer twisted bilayers. For such a scenario,
we consider attractive on-site s-wave interactions with full
SU(4) symmetry and explore superconducting properties in
such synthetic bilayers with a chosen size and shape of the
supercell. Near-flat bands with very small dispersion com-
pared to its immediately neighboring bands can be accessed
with rather small unit cells in our synthetic-dimension-
based proposal, which allows us to adopt a multi-band
Hartree-Fock-Bogoliubov theory [49,50] for probing super-
conductivity. The analysis is performed extensively for a wide
range of experimentally controllable parameters, such as in-
terlayer coupling and interaction strength. Our study seeks
to understand and to characterize the role played by a finite
dispersion of the quasi-flat band on superconductivity. In fact,
the proposed setup allows to accurately control the widths of
the quasi-flat bands over a broad range [43,46].

The paper is arranged as follows. In Sec. II, we present
the lattice Hamiltonian and discuss the band structure and
interaction types appearing in the model. In Sec. III, the
detailed description of Hartree-Fock-Bogoliubov mean field
decoupling is shown together with resulting Bogoliubov-de
Gennes Hamiltonian and self-consistent procedure. Sec-
tion IV presents the original results of our study. First, we
take into account the impact of band flattening, caused by
modulation of the inter-layer hopping, on the superconducting
gap. Then, we consider breaking the symmetry into SU(2)
× SU(2) via selectively tuning the interaction channels. We
also tune one of interaction type to be of negligible amplitude
to facilitate the comparison of the obtained results with a
standard bilayer Fermi-Hubbard system. Finally, conclusions
are presented in Sec. V.

II. THE SYSTEM

The considered cold-atom system consists of N fermionic
atoms loaded into an optical square lattice with a unit lattice
constant. Atoms with large nucleus manifold, e.g., 87Sr or
173Yb [51], are prepared in four internal states, which are then
interpreted as two spin levels within two synthetic layer levels.
Accordingly, the four levels are denoted by two quantum
numbers, σ =↑,↓ for the (pseudo)spin, and m = +,− for the
(pseudo)layer. Throughout this study, the hopping amplitude
t is set to unity, i.e., t = 1, which fixes the units of the en-
ergies reported in this work. The synthetic hopping amplitude
between the pseudolayers, i.e., between m = + and m = −, is
denoted by �(r). The synthetic hopping is generated through
a pair of Raman lasers, and the position dependence of this
coupling can be used to produce a synthetic twist, which
gives rise to the flattening of certain energy bands, see [43].
Accordingly, the kinetic part of the Hamiltonian reads

Hkin = Ht + H�, (1)

where

Ht = −t
∑

r,m,σ

[a†
m,σ (r + 1x ) + a†

m,σ (r + 1y)]am,σ (r) + H.c.

(2)
denotes the hopping Hamiltonian between different sites in
the optical lattice, and

H� =
∑

r,m,m′,σ

�(r) a†
m,σ (r)am′,σ (r) + H.c. (3)

denotes the synthetic hopping Hamiltonian. Here, a†
m,σ (r)

and am,σ (r) represent the fermionic creation and annihilation
operators, respectively, and r = (x, y) denotes the position
of a lattice site in the two-dimensional plane of the opti-
cal square lattice, where x and y are integers. Moreover,
we define the unit vectors 1x = (1, 0) and 1y = (0, 1). Note
that in Eq. (3) we have chosen a spatially constant phase
of the coupling, but it is also straightforwardly possible to
implement a position-dependent phase term. Such a choice
would allow for incorporating artificial gauge fields into the
synthetic dimension [48,52], and the effect of such artificial
gauge fields in the context twist-simulating optical lattices has
been already discussed in [43]. The spatial modulation of the
synthetic hopping strength is given by

�(r) = �0{1 − α[1 + cos (2πx/lx ) cos (2πy/ly)]}. (4)

The strength of the spatial modulation is controlled by the
dimensionless parameter α which imposes a twist on the hop-
ping energies in the lattice, i.e., a Moiré lattice. The two length
scales, lx and ly, define the size of the unit cell of the Moiré
lattice. Here, we focus on lx = ly = 4, which is the simplest
case of the, socalled, first “magic-configuration”. This choice
is, yet, large enough to make the band structure sufficiently
flat, see Ref. [43], but still keeps the unit cell small enough
for an efficient computational treatment. It is important to
note that, despite the original lattice being a square lattice,
the Moiré lattice has a graphene-like brick-wall geometry. Its
unit cell contains eight physical sites of the original lattice, as
shown in Fig. 1(a). Among these eight sites, we distinguish
four sets of sites {AA, AB, B,C}: AA and AB denote the six
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FIG. 1. (a) Square lattice with unit cell of eight physical sites due to synthetic coupling which is different on the black (AA and AB -
depending on the amount of A-type neighbors), green (B), and red (C) sites. The lattice is covered by unit cells in a brick wall arrangement, as
indicated in the inset. (b) Schematic representation of the three interaction types appearing in the system. (c) Evolution of the average energy
of the bands as a function of the modulation parameter α at �0 = 100 (in units of t). The panel shows the outer bands (two blue lines and two
read ones) of each, positive and negative manifold being shifted with respect to the two inner subsets of bands marked with black lines. At
the critical value of αc ≈ 0.67 the blue band from the upper manifold reaches lower energy than black, negative manifold. This results with
change of the position of the Fermi surface. (d) Full spectrum of the system under periodic modulation �0 = 100 and α = 0.2. (e) Zoomed
plot of (d) highlighting the negative six-fold subset of bands including the central quasi-flat bands. (f) Spectrum of the system at �0 = 100 and
α = 0.7, after the flipping of the bands occurred (dashed line in panel (c)).

black sites in Fig. 1(a) with two or four “black” nearest neigh-
bours, respectively, and B and C denote the red and green
sites, respectively. According to Eq. (4), these three sets of
sites exhibit the following property:

�(r) =
⎧⎨
⎩

�0(1 − α) if r ∈ AA ∨ AB,

�0 if r ∈ B,

�0(1 − 2α) if r ∈ C,

(5)

that is, the coupling strength at sites B and C is shifted by |α|
with respect to the coupling strength at sites of type A, that is,
type AA or AB.

For our choice of lx and ly, the spectrum of Hkin consists
of 16 energy bands. A symmetrical arrangement of the bands
with respect to E = 0 reflects the particle-hole symmetry in
the system. At sufficiently large interlayer tunneling, e.g.,
�0 = 100t , the spectrum is gapped, as shown in Fig. 1(d) for
α = 0.2 and Fig. 1(f) for α = 0.7. Among these 16 bands,
we focus on the subset of six bands at E ≈ ±80t , i.e., we
assume a Fermi energy in the vicinity of this manifold. These
two manifolds are plotted in black in Fig. 1(d), and further
analyzed in Fig. 1(e), where we zoom into one of the six-fold
manifold. Importantly, we observe that the two central bands
of this manifold are almost flat. Moreover, there are different
degenercies, e.g., at the � point. In addition to these quasi-flat

bands, the system also exhibits isolated flat bands shown in
blue and red in Fig. 1(d).

The impact of the twist parameter α on the structure of
the whole energy spectrum is shown in Fig. 1(b). For α <

0.67, the isolated bands are located above and below the
six-fold manifolds, whereas for α > 0.67 both isolated bands
are above the sixfold manifold on the positive side of the
spectrum, and below the sixfold manifold on the negative side
of the spectrum.

Within the sixfold manifold, the modulation of the inter-
layer tunneling flattens the two central bands, as it mimics
Moiré patterning. This implies that, for α < 0.67, this quasi-
flat band structure appears at the Fermi surface when the
filling ν of the system is 1/4 or 3/4, i.e., the lowest four or
the lowest twelve bands are filled, see Figs. 1(d) and 1(e).
For α > 0.67, the quasi-flat bands are at the Fermi surface
for ν = 5/16 or ν = 11/16, i.e., the lowest five or eleven
bands are filled, see Fig. 1(f). In this way, the parameter
α can be used to control the density of states at the Fermi
surface, which will later be shown to have a strong impact
on the superconducting behavior. We have defined the filling
ν such that ν = 1 corresponds to a lattice which is filled by
four fermions per site. We consider only the uniform value of
filling (not distinguishing the filling at each synthetic level).
In the limiting case of α = 1, twelve bands become fully
degenerated at E = 0, as can be seen from Fig. 1(b).
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In order to investigate the superconductivity, we consider
attractive collisional Hubbard-type interactions between the
atoms, i.e., local interactions in the physical lattice. We as-
sume that the internal state of the atoms is not changed during
the collision. In the most general form, the interaction Hamil-
tonian then reads

Hint = −
∑

r,m,m′,σ,σ ′
U m,m′

σ,σ ′ nm,σ (r)nm′,σ ′ (r), (6)

where nm,σ (r) = a†
m,σ (r)am,σ (r) is the density operator of a

fermion in the {m, σ } state. U m,m′
σ,σ ′ denotes the (non-negative)

interaction strength between atoms in levels {m, σ } and
{m′, σ ′} and the negative sign indicates that we consider these
interactions to be attractive. In general, U m,m′

σ,σ ′ describes 16
different kinds of interactions. Out of these, the Pauli principle
excludes all diagonal interactions, i.e., U m,m

σ,σ = 0. We are left
with possibly twelve different nonzero interaction processes.
Because of symmetry arguments, these can be further grouped
into three interaction types, as illustrated in Fig. 1(c). The
first type are the intralayer interactions within a synthetic
layer

U1 ≡ U +,+
↑,↓ = U −,−

↑,↓ = U +,+
↓,↑ = U −,−

↓,↑ . (7)

The second type groups the interlayer interactions between
particles of opposite spin,

U2 ≡ U +,−
↑,↓ = U −,+

↑,↓ = U +,−
↓,↑ = U −,+

↓,↑ . (8)

The third groups contains the interlayer interactions of parti-
cles with equal spin

U3 ≡ U +,−
↑,↑ = U −,+

↑,↑ = U +,−
↓,↓ = U −,+

↓,↓ . (9)

From the point of view of a realization with alkali-earth atoms,
the case of U1 = U2 = U3 is the most natural/realistic one.
Interactions with nearly SU(N) symmetry are exhibited, for
instance, between the internal states obtained from the nuclear
spin manifolds (I = 5/2 and I = 9/2, respectively) for the
fermionic isotopes 87Sr and 173Yb, see Ref. [51]. We also
discuss the cases in which U1 (or U2) become the dominant
interaction, which is particularly relevant from the point of
view of bilayer interpretation.

III. MEAN-FIELD DECOUPLING

We apply a Hartree-Fock-Bogoliubov-de Gennes mean-
field approach [53,54] to tackle the many-body Hamiltonian
Hkin + Hint [see Eqs. (1) and (6)]. As we consider attractive
interactions, we focus only on pairing fields in the mean-
field decomposition. Each on-site quadratic attractive term in
Eq. (6) is thus decoupled as:

a†
m,σ am,σ a†

m′,σ ′am′,σ ′

≈ 〈a†
m,σ a†

m′,σ ′ 〉am′,σ ′am,σ + a†
m,σ a†

m′,σ ′ 〈am′,σ ′am,σ 〉
− 〈a†

m,σ a†
m′,σ ′ 〉〈am′,σ ′am,σ 〉, (10)

where 〈·〉 denotes the average. The last term is a constant shift
affecting the grand thermodynamic potential and is important
for obtaining the self consistent equations for the order pa-
rameters via minimization of the thermodynamic potential or
for assessing thermodynamic stability of different solutions.

We do not display this term in the following. Combining
Eqs. (6)–(10) and assuming symmetry between the layers and
spins, let us explicitly write down the pairing Hamiltonian:

HP = �1(a†
+,↑a†

+,↓ + a†
−,↑a†

−,↓)

+ �2(a†
+,↑a†

−,↓ + a†
+,↓a†

−,↑)

+ �3(a†
+,↑a†

−,↑ + a†
+,↓a†

−,↓) + H.c. (11)

Here, we have defined the following superco nducting order
parameters

�1 ≡ U1〈a+,↑a+,↓〉 = U1〈a−,↑a−,↓〉, (12)

�2 ≡ U2〈a+,↑a−,↓〉 = U2〈a−,↑a+,↓〉, (13)

�3 ≡ U3〈a+,↑a−,↑〉 = U3〈a+,↓a−,↓〉. (14)

The value of the order parameters can, in principle, vary
within each unit cell due to inequivalence of the lattice sites
and their surroundings caused by spatial modulation of the
synthetic coupling, described in Eq. (3). As has been shown
in Fig. 1(a) and defined in Eq. (5), one can differentiate the
sites in the unit cell into four types. While types B and C
are taken into account separately due to their different value
of synthetic coupling �(r), the sites of A-type (black sites
in Fig. 1) are distinguished based on geometric reasons and
divided into “bridge” (AA) and “node” (AB) sites, depending
on the amount of nearest A-type neighbors (two for AA, and
four for AB). A visual representation of this scheme is also
shown in Fig. 2, where yellow sites represent “bridge” (AA)
sites on panel (a) and “node” (AB) on panel (b). Therefore,
distinguishing between the four different types of sites, we
write the order parameter in the interaction channel i = 1, 2, 3
for the site of type I ∈ {AA, AB, B,C}. For the eight sites of a
unit cell, we thus have three sets of order parameters defined
below:

��i = (
�AB

i ,�AA
i ,�AB

i ,�AA
i ,�AA

i ,�B
i ,�AA

i ,�C
i

)
. (15)

It is also convenient to view the real-space fermionic operators
am,σ (r j ) as eight-component vectors, with each component
representing one site in the unit cell, and the j representing the
index of unit cell within the Moiré lattice. Then, we Fourier
transform the operators to quasi-momentum space, via

am,σ (r j ) = 1√
Ns

∑
k

e−ikr j am,σ (k), (16)

where Ns is the number of unit cells in the lattice and
cm,σ (k) is the eight-dimensional field operator of a fermion
with quasi-momentum k = (kx, ky). The real-space hopping
Ht is diagonalized as Ht = −t

∑
m,σ a†

m,σ (k)Hm
t (k)am,σ (k),

with Hm
t (k) being a diagonal matrix representing the eight

bands per layer index m ∈ {+,−}. Due to the symmetry be-
tween the synthetic layers, we have H+

t (k) = H−
t (k). The

interlayer tunneling is also diagonal in k, but of the form
a†

+,σ (k)H�(k)a−,σ (k).
In order to present the full Hamiltonian, H = Hkin + HP,

containing all order parameters of interest in the quadratic
form, we define the following 8 × 8-dimensional Nambu
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FIG. 2. (a), (b) Expansion of superconducting gaps �AA
1 and

�AB
1 as a function of the U = U1 = U2 � 16t under different mod-

ulation values α resulting in specific cutoff value Uc (�2 has an
identical behavior). (c) Critical temperature dependence on the mod-
ulation strength α at U1,2,3 = 16t . Inset plot represents the energetic
width δF of the quasi-flat bands as a function of the modulation
parameter α.

spinor:



†
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a†
−,↑(k)

a−,↓(−k)

a†
+,↑(k)

a+,↓(−k)
a−,↑(k)

a†
−,↓(−k)
a+,↑(k)

a†
+,↓(−k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

The mean field Hamiltonian in momentum space is of the
Bogoliubov-de Gennes (BdG) form and is given by

H (k) = 

†
kHBdG(k)
k − ε(k), (18)

where ε(k) is a diagonal matrix which includes all constant
values coming from the decoupling. Note that HBdG(k) is a
64 × 64 matrix as each component of the Nambu spinor is an
8-vector yielding eight bands. The structure of this matrix is
constructed as follows:

HBdG(k) =
(

HF (k) J2 ⊗ 1 ⊗ diag( ��3)
J2 ⊗ 1 ⊗ diag( ��3) H∗

F (k)

)
,

(19)
where 1 is the two-dimensional unity matrix, J2 =
([0, 1], [1, 0]) is the first Pauli matrix, and ⊗ denotes the
tensor product.

The matrix on the diagonal block has the following struc-
ture

HF (k) =
(

Hm(k) HR(k)
HR(k) Hm(k)

)
, (20)

where the four 16 × 16 blocks are defined as

Hm(k) =
(

Hm
t↑(k) − μ − n

3

(U1
2 + U2

2 + U3
2

)
diag( ��1)

diag( ��1) −Hm
t↓(−k) + μ + n

3

(U1
2 + U2

2 + U3
2

)
)

, (21)

and

HR(k) =
(

H�(k) diag( ��2)

diag( ��2) −H�(−k)

)
. (22)

The quadratic matrix H (k) depends on the unknown su-
perconducting order parameters ��i, which we determine
self-consistently by diagonalizing H (k) using random initial
guesses of ��i, and subsequently updating the order param-
eters by the ones obtained from the diagonalization until
convergence is attained. We check that this procedure leads
to the same order parameters for different initial guesses, or,
if this is not the case, we choose the solution with the lowest
grand thermodynamic potential energy.

IV. RESULTS

In this section we present the original results of the pairing
correlations in the system within the framework described
above. While we first focus on the case of fully symmetric

interactions that naturally arise in the context of the experi-
mental proposal presented in [43], namely U1=U2=U3 [see
Fig. 1(c)], where all internal degrees of freedom of each
atom are coupled to each other with the same strength, we
also study the effects of SU(4) symmetry breaking by con-
sidering the relative alteration between interaction channels
U1 and U2 in the subsequent subsection. In this context, we
set U3 = 0 in all subsequent calculations, which is justified
because any pairing in the U3 channel is strongly suppressed
by the strong Raman coupling, �. This coupling (interlayer
hopping) energetically penalizes the state with two particles of
equal pseudospin per site, as compared to the single-particle
states formed by the antisymmetric superposition of the states
with equal pseudospin and opposite pseudolayer degree of
freedom.

A very interesting phase diagram is found in the regime
of weak interactions: superconductivity is exponentially sup-
pressed in the symmetric case, i.e., near U1 = U2, but a
significant nonzero SC gap can again be amplified if the
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interactions are tuned to a sufficiently nonsymmetric choice.
We observe the narrowing of the weakly-superconducting
wedge shaped region in the phase diagram with increasing
interaction strength, as well as the coexistence of both the
inter and intra-layer superconducting order parameters. Tech-
niques to tune interactions, such as Feshbach resonance or
magnetic/optical field gradients [55,56], allow in experiments
for such a selective choice of a dominant interaction chan-
nel. Increase of band flattening via the tunable parameter
α leads to the development of strong superconducting or-
der for lower values of attractive interactions, in particular,
as compared to the standard (α = 0) bilayer Fermi-Hubbard
model.

Numerical calculations were performed for a system of 2 ×
256 sites forming a 2 × L × L bilayer square lattice with L =
16. The low temperature properties were studied by choos-
ing the temperature to kBT = 0.02t (or inverse temperature
β ≈ 3L for the finite size system).

A. Superconductivity in SU (N) symmetric system

We set a strong interlayer (Raman) coupling �0/t = 100 in
order to focus on effects in the quasi-flat band regime of our
system. We investigate the influence of two main parameters,
namely the modulation amplitude α and interaction strength
U on the SC characteristics.

The parameter α controls the relative strength of the spa-
tially dependent part of the synthetic hopping �(r) in Eq. (4).
The increase of α primarily results in flattening in the dis-
persion of the set of quasiflat bands of our interest. Up to a
value of α ≈ 0.67, the flattened bands lie exactly at Fermi
energy of the system for a filling ν = 1/4 (that is, one fermion
per physical site). As shown in Fig. 1(b), the critical value
of α ≈ 0.67 causes band flipping, which lifts the Fermi en-
ergy of the quarter-filled system away from quasi-flat band
[see Fig. 1(d) and 1(f)]. We focus on the case with ν = 1/4
and 0 � α � 0.67. A large superconducting gap opens in the
SU(4) symmetric system for interaction strengths higher than
a certain α-dependent cut-off interaction amplitude, namely
U > UC (α). We note that UC (α) decreases if one considers
lower temperatures. Enhancing the density of states at the
Fermi energy by increasing the band flattening with increasing
α is expected to lead to larger stability of the superconducting
phase and therefore lower threshold values UC (α). Indeed,
such behavior is markedly seen in Figs. 2(a) and 2(b). For an
example value of α = 0.6, the superconducting state appears
above U ∼ 6.2t . Similar effect has been observed for the
critical temperature of the system with respect to modulation
α. Figure 2(c) depicts the growth of the critical temperature
with bandflattening. We have limited the range of α in the
figure such that it covers only the scenario with Fermi en-
ergy matching the energy of quasi-flat bands. Therefore, by
tuning the modulation parameter α one can reach supercon-
ducting state at lower interaction values as compared to the
uniform inter-layer hopping scheme. Moreover, resulting the
difference in critical temperature between a highly modulated
system at α = 0.6 and an unmodulated one is of one order of
magnitude. In other words, the superconductivity near UC is
truly induced by the synthetic twist.

B. SU (4) to SU (2) × SU (2) symmetry breaking

The SU(N=4) symmetry (spin and magnetic levels) of the
system resulting from the internal structure of the atoms forbid
the free tuning of the strength of each interaction type individ-
ually without an external fields applied. As shown in [55,57],
one can tune the strength of interaction types by applying
external state-dependent force that effectively separates the
mF manifold of the ground state. For atoms with two valence
electrons, such as 87Sr, this technique, also termed as optical
Stern-Gerlach (OSG), has already been successfully applied
experimentally [55,57]. Following the scheme of the system
proposed in [43,46], we propose using the OSG to modify
the energy gaps between specific mF states, thereby tuning
the interaction strength of desired type. In this paragraph, we
study the effects on the SC properties due to a modification of
the interaction strength in such fashion. We note that the ex-
treme scenario of U1 � U2 corresponds to standard spin-spin
onsite only interactions widely explored in Fermi-Hubbard
model. Whereas the SU(N)-symmetric scenario requires a
threshold value of the coupling U for the system to exhibit
SC, the symmetry-broken scenario allows us to observe SC
pairing even for U1,U2 < UC (with one of them possibly even
being zero). Interestingly, a phase where SC is dominated by
U1 is separated from a U2 dominated SC phase through an
intermediate phase in which SC is absent, leading to the in-
teresting re-entrance phenomena, when one of the interaction
parameters is tuned.

The different phases are seen in Fig. 3 where the SC gaps
�AA,AB

1 are plotted as a function of the interaction strengths
U1 and U2, in the interval [1,6] in panels (a) and (b), and in
the interval [0,2] in panels (c) and (d). Here we have chosen
α = 0, and the corresponding UC from the SU(4) symmetric
system is UC ≈ 6. Hence, the shown regime is below UC

everywhere, and accordingly, the system does not exhibit SC
along the line U1 = U2. It is seen that this nonsuperconducting
regime, plotted in black, has a finite width, which narrows
as U1 and U2 approach towards UC . The width and the rate
of the narrowing depends on the modulation parameter α, as
indicated in Fig. 4. Nevertheless, relatively small deviations
from the symmetric interaction are already sufficient to open
a SC gap. This can be understood in the following way: the
SC pairing of each interaction type compete with each other,
but breaking the symmetry favors one interaction type with
respect to the other, and therefore facilitates the pairing in this
channel. Although one of the two different pairing channels
becomes dominant, there is still coexistence of the SC gaps
corresponding to the two channels, U1 and U2, for most pa-
rameter choices (unless we are in the non-SC regime, or one
of the interaction parameters is zero). However, monotonicity
of the size of the gap with respect to the interaction strength is
not obvious. We present a closer insight to this phenomenon
through the details presented in Fig. 4. It depicts the depen-
dence of the SC order parameters on U2 for four different
values of U1 at α = 0.67. The decay of �AA

1 and �AA
2 as U2

approaches U1 = U2 is the beginning of the zero-gap valley.
With increasing value of U2 the corresponding gap �AA

2 opens
and keeps increasing until reaching its maximum value. In
parallel, SC order parameter corresponding to U1 constantly
decreases.
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FIG. 3. Superconducting order parameter �AA
1 [panels (a) and (c)] and �AA

2 [panels (b) and (d)] as functions of relative amplitude of U1 and
U2 interactions at α = 0.67. Existence of SC phase in this SU (4) symmetric system is not present until U = U1 = U2 reaches a cut-off value
Uc, at which the non-SC valley narrows to zero. The width of the valley as well as the critical interaction strength depends on the modulation
parameter α (as shown in Fig. 2). Panels (c) and (d) represent the regime of small interaction strengths that are not covered on the panels
(a) and (b) due to limited colormap resolution. Sites of (AB) type reveal qualitatively identical behavior, however, with much smaller pairing
amplitude [See Fig. 4(b)].

FIG. 4. �AA,AB (dashed) and �2 (solid) as functions of U2 (in
units of U1) for four different values of U1 at modulation strength
α = 0.67. One can observe the shift of the SC gap decay towards
U2/U1 = 1 with the increase of interaction strength. For U1 = 6t ,
the decay of SC gap occurs at U2/U1 = 1 marking the UC for this
particular value of α.

We now consider the cases of U1 � U2 which can be
obtained experimentally with help of OSG techniques. We
would like to note that the same results have been obtained
for the opposite case, i.e., U2 � U1. This scenario qualita-
tively agrees with the standard bilayer Fermi-Hubbard model
with only in-plane interactions typically considered as good
approximations to describe various phenomena in condensed
matter physics. Note that in this paper we are not aiming at di-
rect comparison with real solid state systems. In contrast, our
focus here is on a nonstandard choice of parameters (� � t)
as it gives us access to study the effect of a flat band structure
even in relatively small Moiré supercells. Such a regime of
parameters is accessible in cold atomic systems. We choose
this regime in order to obtain a maximum possible value of the
gap for a given amplitude of U . As it has been shown in Fig. 4,
the widest gap appears for highly unequal interaction values,
i.e., U1 � U2. We begin by investigating the dependence on
the synthetic hopping amplitude, �0. In its absence the system
consists of two uncoupled layers of square lattices. At finite
�0, we can flatten the bands through the spatial modulation
provided by α, or realize the standard bi-layer model, i.e.,
α = 0. Panel (a) of Fig. 5 depicts both of these scenarios.
In particular, we have plotted separately the gap for A-type
and (B, C) sites in α-modulated case, as well as the mean
value of the gap averaged over all sites of the unit cell. The
green line represents the size of the gap for a standard bilayer
model, with α = 0. Interestingly, with a small separation of
the spectrum caused by inter-layer hopping, SC gaps drop.
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FIG. 5. Superconducting gap in the system of U1 = 2t and U1 �
U2. (a) The order parameter �1 associated with interaction type U1

as a function of the inter-layer hopping strength �0 at α = 0.2.
We have set U2 = 0 as its presence weakens the order parameter
�1, as shown on Fig. 4(b). The green line represents the situation
where the �(r) is homogeneous, i.e. α = 0. The separate plot for
�C has been omitted since it’s behavior is identical to �B, which
has been plotted. (b) Dependence of the order parameter �AA

1 on the
modulation strength α for �0 = 100t . We have omitted the plot of
�AB

1 due to its negligible amplitude. Sudden drop of pairing (marked
by dashed gray line) occurs around critical value of α ≈ 2/3 at which
the Fermi level does not reside at quasi-flat bands any more. Such
situation has been shown on Fig. 1(f).

However, after a full separation of the bands into positive
and negative branches, the system the size of the gap of the
quasi-flat band system starts to grow, in contrast to the SC
order parameter of the standard FH system. Panel (b) of Fig. 5
represent the dependence of the order parameter �1 on the
modulation parameter α. The plot depicts the situation where
�0/t = 100 and therefore �B,C

1 can be neglected due to their
vanishing values. The amplitudes of �1 in panel (b) have been
obtained for the fixed filling n = 1/4. Summarizing, modu-
lation of the inter-layer hopping leads to enhanced SC order
parameter with respect to a nonmodulated one at sufficiently
high �0. This effect is a result of band flattening and therefore
disappears once the modulation α crosses the critical value
or the Fermi energy does not match the energy of quasi-flat
bands. Qualitatively similar results also follow for larger finite
U2/U1.

V. CONCLUSIONS

In this paper, we have used the Bogoliubov–de Gennes
theory to study attractive interactions of the synthetic bi-layer
square lattice system. The studied model goes beyond the
thoroughly explored bi-layer Hubbard models and tackles
correlated phases in quasi-flat band systems emerging from
the periodic modulation of interlayer hopping. We have taken
into account all possible density-density on-site interaction

channels and considered properties across a wide range of
experimentally accessible interaction strengths. Our system
has a small Moiré unit cell for which flat band induced ef-
fects occur for large interlayer hopping strengths. We note
that similar small Moiré unit cells generated at large twist
angles in physical bilayers would also require rather large
interlayer hopping to isolate the flat band regime. This could,
in principle, be achieved by applying strong strain or pressure
in the direction perpendicular to the plane of the layers in
materials. However, it is rather more easily achieved in our
synthetic system where the interlayer hopping is controlled
simply by the intensity of a Raman laser coupling the internal
levels that play the role of the layer degrees of freedom.

First, we have focused on the natural case of equal interac-
tion amplitudes and observed strong dependence between the
inter-layer modulation parameter α and minimal interaction
strength Uc required to reach SC pairing at a fixed low temper-
ature. Observed results confirm the following: (i) Flattening of
the bands in the vicinity of Fermi energy leads to opening of
the SC gap at much lower interaction amplitudes, when com-
pared to uniform coupling systems, and (ii) Band flattening
causes the critical temperature scale to significantly increase
in these synthetic-twist-induced lattices with magic configu-
rations, and thus, superconductivity (paired neutral fermion
superfluidity) may be potentially observable in state-of-the-art
cold gas experiments.

Further results are obtained by altering relative interaction
amplitudes in the system: (iii) The resulting phase diagram
revealed a valley around U1 = U2 with strongly suppressed
superconducting correlations. The width of this valley nar-
rows with the growing amplitude of interactions to finally
completely vanish at Uc specific for each value of α. Similar
behavior has been observed in bi-layer Hubbard square lat-
tices with only one correlated layer [58]. There, the apparent
re-entrance of the SC gap was a result of increasing inter-layer
hopping. Here, however, we observe similar effects as a func-
tion of inter-layer interactions for large inter-layer hopping.

While the results discussed in this paper help to form a
general understanding of the effects of band flattening on
superconductivity in the synthetically twisted materials, fur-
ther studies can be be pursued in the future, particularly,
in context of topologically nontrivial bands with relatively
weak dispersion, which can be obtained via more involved,
but experimentally viable means, e.g., via imaginary next-to-
nearest neighbor tunnelings driving the system into a quantum
anomalous Hall phase [46]. In such cases, Wannier functions
with algebraically decaying tails may originate from nonzero
Chern numbers [59]. Novel understandings of the correlated
phenomenon could then be obtained via incorporation of new
mechanisms, such as correlated tunnelings in extended Hub-
bard bi-layer systems.

The data that support the findings of this study are available
from the corresponding author, T.S, upon reasonable request.
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