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Based on the Bogoliubov–de Gennes equations, we investigate the transport of the Josephson current in a
S/ fL-F1- fC-F2- fR/S junction, where S and F1,2 are superconductors and ferromagnets, and fL,C,R are the left,
central, and right spin-active interfaces. These interfaces have noncollinear magnetizations, and the azimuthal
angles of the magnetizations at the fL,C,R interfaces are χL,C,R. We demonstrate that, if both the ferromagnets have
antiparallel magnetizations, the critical current oscillates as a function of the exchange field and the thickness of
the ferromagnets for particular χL or χR. By contrast, when the magnetization at the fC interface is perpendicular
to that at the fL and fR interfaces, the critical current reaches a larger value and is hardly affected by the exchange
field and the thickness. Interestingly, if both the ferromagnets are converted to antiparallel half-metals, the critical
current maintains a constant value and rarely changes with the ferromagnetic thicknesses and the azimuthal
angles. At this time, an anomalous supercurrent can appear in the system, in which case the Josephson current still
exists even if the superconducting phase difference φ is zero. This supercurrent satisfies the current-phase relation
I = Ic sin(φ + φ0) with Ic being the critical current and φ0 = 2χC − χL − χR. We deduce that the additional
phase φ0 arises from phase superposition, where the phase is captured by the spin-triplet pairs when they pass
through each spin-active interface. In addition, when both the ferromagnets are transformed into parallel half-
metals, the fC interface never contributes any phase to the supercurrent and φ0 = χR − χL + π . In such a case,
the current-phase relation is similar to that in a S/ fL-F- fR/S junction.
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I. INTRODUCTION

In recent years great attention was paid to the study of
superconductor (S)/ferromagnet (F) heterostructures due to
plenty of fascinating phenomena that have been predicted
and observed [1–7]. It is well known that ferromagnetism
and spin-singlet superconductivity are two inimical orders,
as ferromagnetism favors a parallel spin alignment, while
spin-singlet Cooper pairs consist of electrons with antiparallel
aligned spins. Consequently, the ferromagnetic exchange field
will make a dephasing effect on the electrons of the spin-
singlet pairs [2,3], when a F is adjacent to a conventional
s-wave S. In hybrid S/F structures with homogeneous magne-
tization, the spin-singlet pairs (↑↓ − ↓↑) are destroyed by the
exchange field of the F layer, so that they penetrate the F layer
over a rather short scale. Meanwhile, the spin-triplet pairs
(↑↓ + ↓↑) generate at the S/F interface and rapidly decay
in the F layer. In contrast, the magnetic inhomogeneities could
mediate equal-spin triplet pairs where both electrons are in the
same spin band—either the majority band for spin-up triplet
pairs (↑↑) or the minority band for spin-down triplet pairs
(↓↓). Such triplet pairs are immune to the exchange field and
can therefore penetrate the ferromagnet over a long distance
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from the S/F interface that the spin-singlet pairs could not
reach [2–7].

In a uniform ferromagnetic Josephson junction (S/F/S),
the wave function of the Cooper pairs penetrates ferromagnet
on a short distance of the order ξF = h̄v f /2h for ballistic
systems and ξF = √

h̄D/h for diffusive ones, where v f is the
Fermi velocity, h is ferromagnetic exchange field, and D is the
electronic diffusion constant [2]. Meanwhile, this penetration
is accompanied by oscillations of the wave function in space.
As a result, the critical current will reverse sign with changing
temperature and thickness of the F layer (see [2] and refer-
ences cited therein). Besides, in the Josephson junction with
a nonuniform exchange field, the long-range supercurrent is
apparent because the equal-spin triplet pairs (↑↑) [or (↓↓)]
occur in the F layer [3–6]. The penetration depth of these
triplet pairs into a ferromagnet is much longer than ξF and
may be of the order of the Cooper pair penetration length
into a normal metal, ξN = h̄v f /2πT for ballistic systems and
ξN = √

h̄D/2πT for diffusive ones, where T is the tempera-
ture [2].

On the other hand, in a traditional ferromagnetic Josephson
junction, the ground state energy usually switches between
specific superconducting phase differences φ = 0 and π , and
the current-phase relation is sinusoidal I (φ) = Ic sin φ, with
Ic being the critical current flowing through the junction
[1]. In the presence of breaking chiral [8] and time-reversal
symmetry [1] in the Cooper pairs tunneling process, a spon-
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taneous supercurrent at zero phase difference can arise, and
the Josephson ground state can be characterized by a super-
conducting phase difference φ0. This supercurrent satisfies
the current-phase relation I (φ) = Ic sin(φ + φ0) [1]. This φ0

junction could introduce excellent opportunities to quantum
computer bits. It has been reported that the φ0 junction can be
realized in Josephson junctions with ferromagnetic interlayers
or under an externally applied Zeeman field in the presence
of spin-orbit coupling [8–21], as well as with inhomogeneous
ferromagnetic interlayers without an external spin-orbit cou-
pling [22–33].

It was theoretically predicted several years ago that the
long-range triplet pairs with equal spins could be induced
by the inhomogeneous magnetization configuration in the
Josephson junctions [34–46]. The prediction of the long-range
penetration of the spin-triplet pairs into a ferromagnet was ob-
served in multiple experiments [47–63]. It is very much worth
noting that Houzet et al. [37] proposed an alternative Joseph-
son junction geometry of the form S/ fL-F- fR/S in which the
magnetization directions of the fL and fR layers are non-
collinear to the central F layer. They suggested measuring the
critical current in the Josephson junction to demonstrate the
equal-spin triplet pairs. Soon after, the Birge group [52–54]
observed a long-range supercurrent in Josephson junctions of
the form S/ fL-Co-Ru-Co- fR/S, where the central Co-Ru-Co
trilayer was a synthetic antiferromagnet. The thin Ru layer
induces antiparallel exchange coupling between the domains
in the two Co layers, leaving nearly zero net magnetization in
the junctions. To qualitatively explain the above experiments,
the theoretical works of Volkov et al. [43] and Trifunovic
et al. [44] utilizing the quasiclassical theory studied the spatial
distribution of spin-singlet and spin-triplet pair amplitudes
and the long-range spin-triplet Josephson current in the S/ fL-
F1-F2- fR/S junction.

There are three questions to be solved urgently: (i) The
experiments found that, without the Ru layer, the critical cur-
rents were very small [52–54]. However, in both theoretical
works [43,44], the Ru layer was regarded as a nonmagnetic
metal and thus its influence on the transport of the spin-triplet
pairs was not considered. (ii) It is known that the majority
spin-triplet component has a larger amplitude than the mi-
nority spin-triplet component in the strong ferromagnet. In
the S/ fL-F1-F2- fR/S junction, when magnetizations of the
F1 and F2 layers are antiparallel to each other, the majority
spin-triplet pairs in the F1 layer become minority spin-triplet
pairs in the F2 layer and vice versa. As a result, both triplet
components suffer from the lower transmission amplitude of
the minority component somewhere in the system. If that were
the whole story, then the Josephson current should be small.
In particular, the current is completely inhibited when the F1

and F2 layers are turned into antiparallel half-metals. This
inference is inconsistent with the critical current enhancement
observed in the experiments [52–54]. (iii) The quasiclassical
approximation used by both theoretical works [43,44] does
not consider the fact that the transport properties of the major-
ity and minority electrons at the Fermi surface in the F1 and
F2 layers are very different, in which case the spontaneous
supercurrent cannot be captured.

The purpose of this paper is to address the three questions
raised above. Recently, Quarterman et al. [64] experimentally

demonstrated that ferromagnetism can occur in ultrathin Ru
films. This evidence can be used to address questions (i)
and (ii) mentioned above. The Ru layer with noncollinear
magnetizations can induce a spin-flip scattering effect, which
converts the spin-up (spin-down) triplet pairs in the F1 layer
to the spin-down (spin-up) triplet pairs in the F2 layer. In
this process, the Ru layer acts as a bridge connecting the F1

and F2 layers to ensure supercurrent transmission. To address
question (iii), we employ a microscopical approach to solve
the Bogoliubov–de Gennes (BdG) equations [65]. The exact
numerical solutions of these equations can acquire the spon-
taneous supercurrent.

In this paper we study the propagation of long-range
Josephson current in the S/ fL-F1- fC-F2- fR/S junction, where
F1,2 are antiparallel or parallel ferromagnets, and fL,C,R denote
the left, central, and right spin-active interfaces. All these in-
terfaces have noncollinear magnetizations, and the azimuthal
angles of the magnetizations at the fL,C,R interfaces are χL,C,R.
When the F1 and F2 layers are antiparallel to each other,
the Josephson critical current exhibits different characteristics
for the different azimuthal angles of the interfaces. If the
azimuthal angle χL or χR takes particular values, the criti-
cal current will oscillate with increasing exchange field and
thickness of the F1 and F2 layers. For other values of χL or
χR, the oscillation effect of the current hardly appears. By
comparison, when the magnetization of the fC interface is
perpendicular to that of the fL and fR interfaces, the critical
current reaches a higher value and is essentially unaffected by
the exchange field and thickness.

Interestingly, when both ferromagnetic layers turn into
antiparallel half-metals, in which case the very large magne-
tization strength permits only one spin to exist, the critical
current always remains a constant value and is rarely affected
by the ferromagnetic thicknesses and the azimuth angles. At
this time, the Josephson current gains an additional phase
φ0 = 2χC − χL − χR to form the spontaneous supercurrent.
We consider that the phase φ0 arises from the phase superposi-
tion effect, where the phase is obtained by the spin-triplet pairs
when they transport through each spin-active interface. In con-
trast, if the F1 and F2 layers become parallel half-metals, the
central fC interface is similar to an ordinary spin-independent
barrier and never makes any contribution to the phase φ0. It
can be attributed to the phase cancellation of the spin-triplet
pairs when they pass through the fC interface. As a result,
the current-phase relation is similar to that in the S/ fL-F- fR/S
junction. The advantages of the S/ fL-F1- fC-F2- fR/S junction
and the possible experimental implementation are introduced
in the Supplemental Material [66].

II. MODEL AND FORMULA

In general, Green’s function technique is a very powerful
tool for studying diffusive S/F systems. The quasiclassical ap-
proaches for Green’s function were proposed by Eilenberger
[67] and Usadel [68] successively. However, the applicability
of these methods assumes that the exchange field h in the
ferromagnet should be much smaller than the Fermi energy
h � EF and the use of the Usadel equations implies even
more restrictive conditions hτ � 1, where τ is the elec-
trons scattering time [2]. As a result, since the transport
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FIG. 1. (a) Schematic diagram of the S/ fL-F1- fC-F2- fR/S junc-
tion, where thick arrows in F1 and F2 indicate the directions of the
exchange field, and the thicknesses of F1 and F2 are d1 and d2, respec-
tively. The fL , fC , and fR interfaces are assumed to be spin-active
potential barriers due to misaligned local magnetizations. (b) The
direction of magnetization �ρ j at the f j interface, where j = L, C, and
R correspond to the left, central, and right interfaces, respectively. θ j

and χ j denote polar and azimuthal angles.

properties of the majority and minority electrons in the F
layers are very different, the quasiclassical approaches lose
their effectiveness, and some subtle qualitative effects may
be missed, see, for example, [30,33,69,70]. Moreover, a lot
of experimental activities with the S/F heterostructures deal
with strong ferromagnets (or even half-metals [63,71,72]) for
which the quasiclassical approximation cannot provide an ad-
equate quantitative description. The alternative approach for
the description of proximity effects in strong ferromagnets
is the use of the microscopical approach based on the BdG
equations [65]. For the inhomogeneous ferromagnetic Joseph-
son junction, analytical solutions to the BdG equations are
generally not easy to obtain. The exact numerical solutions
of these equations may provide additional information to the
quasiclassical approach and this method was used in [73–85]
and references cited therein. In the following, we describe the
generalized BdG method in detail.

The considered S/ fL-F1- fC-F2- fR/S Josephson junction is
shown schematically in Fig. 1. The x axis is chosen to be
perpendicular to the layer interfaces with the origin located at
the position of the fC interface. The BCS mean-field effective

Hamiltonian is given by [2,65]

Heff =
∑
α,β

∫
dr

{
ψ̂†

α (r)[He − (hzσ̂z )αα]ψ̂α (r)

+ 1

2
[(iσ̂y)αβ(r)ψ̂†

α (r)ψ̂†
β (r) + H.c.]

− ψ̂†
α (r)(�ρ · �σ )αβψ̂β (r)

}
, (1)

where He = − h̄2∇2

2m − EF , and ψ̂†
α (r) and ψ̂α (r) represent

creation and annihilation operators with spin α. Here �σ =
(σ̂x, σ̂y, σ̂z ) is the vector of Pauli matrices, m denotes the ef-
fective mass of the quasiparticles in both the superconductors
and the ferromagnets, and EF is the Fermi energy. We assume
equal Fermi energies in the different regions of the junction.
The superconducting gap is supposed to be constant in the su-
perconducting electrodes and absent inside the ferromagnetic
region:

(r) =

⎧⎪⎨
⎪⎩

eiφ/2, x < −d1,

0, −d1 < x < d2,

e−iφ/2, x > d2,

(2)

where  is the magnitude of the gap, and φ is the phase
difference between the two superconducting electrodes. This
approximation is justified when, for example, the thickness of
the superconducting layers is much larger than the thickness
of ferromagnetic layers. The exchange field in two ferromag-
netic layers is parallel or antiparallel to the z axis. It has the
form

hz =
{

h1ẑ, −d1 < x < 0,

±h2ẑ, 0 < x < d2,
(3)

where ẑ is the unit vector along the z axis. We model the
spin-active interface by a δ function potential barrier �ρ(x) =
�ρLδ(x + d1) + �ρCδ(x) + �ρRδ(x − d2), where �ρ j ( j = L, C and
R) is a vector parallel to the magnetization at the f j interface.
The components of �ρ j are characterized by the polar angle θ j

and the azimuthal angle χ j in the usual way

ρx
j = ρ j sin θ j cos χ j,

ρ
y
j = ρ j sin θ j sin χ j,

ρz
j = ρ j cos θ j, (4)

where ρ j represents the strength of the interfacial magnetiza-
tion.

To diagonalize the effective Hamiltonian Heff , the field
operator ψ̂α (r) is expanded utilizing the Bogoliubov trans-
formation ψ̂α (r) = ∑

n[unα (r)γ̂n + v∗
nα (r)γ̂ †

n ], where unα and
vnα represent the quasiparticle amplitude, and γ̂n, γ̂ †

n are the
Bogoliubov annihilation and creation operators, respectively.
Using the presentation unα (r) = uα

k eikx, vnα (r) = vα
k eikx, the

resulting BdG equations can be expressed as [65]

(
Ĥ0 + Û iσ̂y(x)

−iσ̂y
∗(x) −Ĥ0 − Û ∗

)(
û(x)

v̂(x)

)
= ε

(
û(x)

v̂(x)

)
, (5)
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where

Ĥ0 =
(

ξk − hz 0

0 ξk + hz

)
,

Û = ÛLδ(x + d1) + ÛCδ(x) + ÛRδ(x − d2),

and

Ûj =
( −ρz

j −(
ρx

j − iρy
j

)
−(

ρx
j + iρy

j

)
ρz

j

)
.

Here ξk = h̄2k2

2m − EF , and û(x) = [u↑
k (x) u↓

k (x)]T and v̂(x) =
[v↑

k (x) v
↓
k (x)]T are quasiparticle and quasihole wave func-

tions, respectively.
The BdG equations (5) can be solved for each supercon-

ducting electrode and each ferromagnetic layer, respectively.
For a given energy ε in the superconducting gap, we find the
following plane-wave solutions in the left superconducting
electrode:

ψS
L (x) = C1ζ̂1e−ik+

S x + C2ζ̂2eik−
S x

+ C3ζ̂3e−ik+
S x + C4ζ̂4eik−

S x, (6)

where k±
S = kF

√
1 ± i

√
2 − ε2/EF − (k‖/kF )2 are the per-

pendicular components of the wave vectors for quasiparticles
in both superconductors, and k‖ is the parallel component.
ζ̂1 = [1 0 0 R1e−iφ/2]T , ζ̂2 = [1 0 0 R2e−iφ/2]T , ζ̂3 = [0 1 −
R1e−iφ/2 0]T , and ζ̂4 = [0 1 − R2e−iφ/2 0]T are the four basis
wave functions of the left superconductor, in which R1(2) =
(ε ∓ i

√
2 − ε2)/. The corresponding wave function in the

right superconducting electrode can be described by

ψS
R (x) = D1η̂1eik+

S x + D2η̂2e−ik−
S x + D3η̂3eik+

S x + D4η̂4e−ik−
S x,

(7)

where η̂1 = [1 0 0 R1eiφ/2]T , η̂2 = [1 0 0 R2eiφ/2]T , η̂3 =
[0 1 − R1eiφ/2 0]T , and η̂4 = [0 1 − R2eiφ/2 0]T .

The wave function in the F1 layer is

ψ1(x) = (M1eik1x + M ′
1e−ik1x )ê1 + (M2eik2x + M ′

2e−ik2x )ê2

+ (M3eik3x + M ′
3e−ik3x )ê3 + (M4eik4x + M ′

4e−ik4x )ê4,

(8)

where ê1 = (1 0 0 0)T , ê2 = (0 1 0 0)T , ê3 = (0 0 1 0)T , and
ê4 = (0 0 0 1)T are basis wave functions in the ferromag-
netic region, and k1(2) = kF

√
1 + (ε ± h1)/EF − (k‖/kF )2

and k3(4) = kF

√
1 − (ε ∓ h1)/EF − (k‖/kF )2 are the perpen-

dicular components of the wave vectors for the quasiparticles
in the F1 layer. The corresponding wave function ψ2(x) in the
F2 layer can be derived from Eq. (8) by replacement h1 → h2.
It is worthy to note that the parallel component k‖ is conserved
in the transport processes of the quasiparticles.

The wave functions [ψS
L (x), ψ1(x), ψ2(x), and ψS

R (x)] and
their first derivatives satisfy the following boundary condi-
tions:

ψS
L (−d1) = ψ1(−d1),

ψ ′
1(−d1) − ψ ′S

L (−d1) = kF

(
V̂L 0
0 V̂ ∗

L

)
ψ (−d1), (9)

ψ1(0) = ψ2(0),

ψ ′
2(0) − ψ ′

1(0) = kF

(
V̂C 0
0 V̂ ∗

C

)
ψ (0), (10)

ψ2(d2) = ψS
R (d2),

ψ ′S
R (d2) − ψ ′

2(d2) = kF

(
V̂R 0
0 V̂ ∗

R

)
ψ (d2), (11)

where

V̂j =
( −Pz

j −(
Px

j − iPy
j

)
−(

Px
j + iPy

j

)
Pz

j

)
. (12)

We define the dimensionless spin-dependent parameter
(Px

j , Py
j , Pz

j ) = Pj (sin θ j cos χ j, sin θ j sin χ j, cos θ j ), where

the dimensionless parameter Pj = 2mρ j/(h̄2kF ) describes the
strength of the spin-active barrier at the f j interface.

From these boundary conditions, we can set up 24 linear
equations in the following form:

ÂX = B̂, (13)

where X contains 24 scattering coefficients, and Â is a 24 × 24
matrix. The solution of the characteristic equation

det Â = 0 (14)

allows one to identify two Andreev bound-state solutions for
energies EAω (ω = 1, 2). Below we will consider the case of
the short Josephson junction with a thickness much smaller
than the superconducting coherence length ξS . In such a case,
the contribution to the Josephson current comes from the
discrete Andreev bound states, and the continuous electron
state does not play any role (see, e.g., [86,87]). In a one-
dimensional (1D) structure, the Josephson current can be
calculated by the general formula

I1D(φ) = 2e

h̄

∂�

∂φ
, (15)

where � is the phase-dependent thermodynamic potential.
This potential arises from the excitation spectrum by using
the formula [88,89]

� = −2T
∑

ω

ln

[
2 cosh

EAω(φ)

2T

]
, (16)

where , h1, h2, Pj , θ j , and χ j are assumed to be the
equilibrium values, which minimize the free energy of the
S/ fL-F1- fC-F2- fR/S junction and depend on microscopic pa-
rameters [90]. The summation in (16) is taken over all positive
Andreev energies [0 < EAω(φ) < ]. For each value of φ, we
solve Eq. (14) numerically to obtain the two spin-polarized
Andreev levels. Since the Andreev energy spectra are doubled
as they include the Bogoliubov redundancy, and only half of
the energy states should be taken into account, we can find the
1D Josephson current via Eqs. (15) and (16).

In a three-dimensional (3D) case, the Josephson current
can be expressed as [70]

I3D(φ) = 4π

eRN

∫ 1

0
I1D(k̃‖)k̃‖dk̃‖, (17)
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FIG. 2. The critical current I3D
c versus the left azimuthal angle χL for χC = χR = 0 [(a), (c), and (e)], and I3D

c versus χC for χL = χR = 0
[(b), (d), and (f)]. Here it is shown that I3D

c varies with the exchange field h/EF for the ferromagnetic thickness kF d = 50 [(a) and (b)], and I3D
c

varies with kF d for h/EF = 0.1 [(c) and (d)] and h/EF = 1.05 [(e) and (f)]. In all panels, the spin-active barriers are taken as PL = PR = 1 and
PC = 1.5.

where R−1
N = e2k2

F S/(4π2 h̄) is the Sharvin resistance, and
k̃‖ = k‖/kF is the normalized wave vector. The 3D critical
current can be derived from I3D

c = maxφ |I3D(φ)|.

III. RESULTS AND DISCUSSIONS

In our calculations we use the superconducting gap  as
a unit of energy and take the Fermi energy EF = 1000. All
length scales and the exchange field strengths are normalized
by the inverse Fermi wave-vector kF and the Fermi energy
EF , respectively. Note that the approximation of the short
Josephson junction (kF d1, kF d2 � 1000) is fully satisfied in
the presented calculations. The normalized unit of current is
I0 = 2π/(eRN ) in the 3D case. The calculations of all the
currents are performed at temperature T = 0 throughout the
paper.

For simplicity, we define that the magnetization vector �ρ j

at the f j interface lies in the x-y plane (θL = θC = θR = π/2),
and sets up the azimuthal angle χ j with the x axis, see Fig. 1.
The magnetization of the F1 layer is fixed along the z axis, and
the direction of the F2 layer is antiparallel or parallel to the F1

layer. Unless otherwise stated, the results are calculated for
the same strength of exchange fields (h1 = ±h2 = h) and the
same thicknesses (d1 = d2 = d) in the F1 and F2 layers.

A. The Josephson current in the S/ fL-F1- fC-F2- fR/S junction
with antiparallel magnetization configurations

We discuss first the Josephson current for the antiparal-
lel magnetic configurations (h1 = −h2 = h). As illustrated in
Figs. 2(a) and 2(c), I3D

c exhibits an oscillatory characteristic
with increasing h/EF and kF d . The oscillating effect of I3D

c

is more prominent at χL = 0 and 2π but almost no longer
appears at χL = π . Figures 2(b) and 2(d) show that when χC

takes values around 0.5π and 1.5π , I3D
c always maintains a

large amplitude over the entire range of h/EF and kF d . As χC

is in the vicinity of 0, π , and 2π , the I3D
c amplitude decreases,

but its oscillatory character with h/EF and kF d becomes more
pronounced. For the half-metallic ferromagnet in Figs. 2(e)
and 2(f), I3D

c neither changes with the azimuthal angles χL and
χC nor with the ferromagnetic thickness kF d . These features
demonstrate that the Josephson current through the system is a
long-range spin-polarized supercurrent. Moreover, the left and
right interfaces play the same role in the transport process of
the Josephson current. The variation of the Josephson current
with the two interface angles (χL and χR) is described in the
Supplemental Material [66].

Continually, we explore the dependence of the Josephson
current on the interfacial barriers and the ferromagnetic ex-
change fields. As shown in Fig. 3(a), without the spin-active
barriers (PL = 0 or/and PC = 0), I3D

c is zero. As the interfacial
barriers increase, I3D

c increases rapidly and reaches a maxi-
mum for PL = 1 and PC = 1.5, then decreases at larger values
of PL and PC . The decrease in I3D

c at large PL and PC signals
that the interfacial barriers not only flip the electron spin but
also suppress the transport of paired electrons. By contrast, as
illustrated in Fig. 3(b), I3D

c shows the same dependence on the
left and right barriers and reaches a maximum at PL = PR = 1.
On the other hand, Fig. 3(c) shows the dependence of I3D(φ)
on h/EF , when the fL interface is magnetized along the y axis,
and the other two interfaces are along the x axis. Under a weak
h/EF , I3D(φ) cannot be represented as a sinusoidal function.
But when h/E is strong enough, the current satisfies a rela-
tion I3D(φ) = I3D

c sin(φ − π/2) for χL = π/2. When the fC

174502-5



MENG, WU, REN, AND WU PHYSICAL REVIEW B 106, 174502 (2022)

FIG. 3. The critical current I3D
c versus the strength of the spin-active barriers PL and PC in the case of PL = PR (a), and I3D

c versus PL and PR

for PC = 1.5 (b). In (a) and (b) we choose h/EF = 1.05, kF d = 50, χL = χR = 0, and χC = π/2. Current-phase relation I3D(φ) under different
exchange fields h/EF for χL = π/2 when χC = χR = 0 (c) and for χC = π/2 when χL = χR = 0 (d). Spontaneous supercurrent I3D(φ = 0)
versus χL for χC = χR = 0 (e), and I3D(φ = 0) versus χC for χL = χR = 0 (f) when h/EF takes several values. (e) and (f) use the same legends.
In (c)–(f) we choose kF d = 50, PL = PR = 1, and PC = 1.5.

interface is oriented along the y axis, the I3D(φ) amplitude
gradually decreases with increasing h/EF , but the cur-
rent approximately maintains a sinusoidal relation I3D(φ) =
I3D
c sin(φ + π ) for χC = π/2 [see Fig. 3(d)]. In comparison,

as shown in Figs. 3(e) and 3(f), I3D(φ = 0) does not exist at
h/EF = 0, and its amplitude increases with increasing h/EF .
As the two ferromagnets are converted into half-metals, the
amplitude reaches the maximum. The oscillation periods of
I3D(φ = 0) with angles χL and χC are 2π and π , respectively.
Therefore, the spontaneous supercurrent satisfies the follow-
ing relations: I3D(φ = 0) = I3D

c sin(−χL ) for χC = χR = 0
and I3D(φ = 0) = I3D

c sin(2χC ) for χL = χR = 0.
Next, we show the current-phase relation I3D(φ) and the

spontaneous supercurrent I3D(φ = 0) for the half-metallic
phase in Fig. 4. It can be seen that the oscillation period of
current with χL and χR is twice that with χC . According to
the inference described in the Supplemental Material [66],
we can deduce a complete current-phase relation I3D(φ) =
I3D
c sin(φ + 2χC − χL − χR) for the entire system.

We now give a simple physical picture to describe the prop-
agation process of the Cooper pairs in the S/ fL-F1- fC-F2- fR/S
junction when the F1 and F2 layers are antiparallel half-metals.
As mentioned before, the orientation of the interfacial barrier
is characterized by the polar (θ ) and the azimuthal (χ ) angles
measured from the z axis in spin space. The transformation
formulas for basis vectors quantized along the direction (θ , χ )
in terms of basis vectors quantized along the z axis read [6]

(↑)θ,χ = cos
θ

2
e−i χ

2 (↑)z + sin
θ

2
ei χ

2 (↓)z, (18a)

(↓)θ,χ = − sin
θ

2
e−i χ

2 (↑)z + cos
θ

2
ei χ

2 (↓)z, (18b)

and can be used to find the transformation for the spin-singlet
pairs and the spin-triplet pairs [6]

(↑↓ − ↓↑)θ,χ = (↑↓ − ↓↑)z, (19a)

(↑↓ + ↓↑)θ,χ = − sin θ [e−iχ (↑↑)z − eiχ (↓↓)z]

+ cos θ (↑↓ + ↓↑)z. (19b)

FIG. 4. Current-phase relation I3D(φ) versus the azimuthal an-
gles χL (a) and χC (b). Spontaneous supercurrent I3D(φ = 0) versus
the azimuthal angles (χL , χC) (c) and (χL , χR) (d). Here the unlabeled
azimuthal angles in each panel are set to 0, and the parameters are as
follows: h/EF = 1.05, kF d = 50, PL = PR = 1, and PC = 1.5.
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The reverse transformation formulas can be written as

(↑)z = cos
θ

2
ei χ

2 (↑)θ,χ − sin
θ

2
ei χ

2 (↓)θ,χ , (20a)

(↓)z = sin
θ

2
e−i χ

2 (↑)θ,χ + cos
θ

2
e−i χ

2 (↓)θ,χ , (20b)

in which case the quantization direction of the basis vector
rotates from the z axis to the orientation (θ , χ ). So the
spin-triplet pairs have the following transformation:

(↑↑)z = eiχ

[
cos2 θ

2
(↑↑)θ,χ + sin2 θ

2
(↓↓)θ,χ

]

− sin
θ

2
cos

θ

2
eiχ (↑↓ + ↓↑)θ,χ , (21a)

(↓↓)z = e−iχ

[
sin2 θ

2
(↑↑)θ,χ + cos2 θ

2
(↓↓)θ,χ

]

+ sin
θ

2
cos

θ

2
e−iχ (↑↓ + ↓↑)θ,χ . (21b)

The transport process of the Cooper pairs in the S/ fL-F1- fC-
F2- fR/S junction can be divided into the following steps:

(i) It is well known that, since the spin-singlet pairs (↑↓
− ↓↑) penetrate from the left superconductor into the fL

interfacial region, it induces a mixture of the spin-singlet pairs
(↑↓ − ↓↑)θL,χL and the spin-triplet pairs (↑↓ + ↓↑)θL,χL in
the fL region [5]. When the magnetization direction of the F1

layer is different from that in the fL interface, the spin-singlet
pairs (↑↓ − ↓↑)θL,χL , which are rotationally invariant, cannot
survive in the F1 layer due to the strong exchange field. But
the spin-triplet pairs (↑↓ + ↓↑)θL,χL can be transformed into
a combination of the equal-spin-triplet pairs and the opposite-
spin-triplet pairs when viewed with respect to the z axis, see
formula (19b). Because the magnetization in the interfaces
lies in the x-y plane (θL = θC = θR = π/2), the spin-triplet
pairs (↑↓ + ↓↑)z disappear due to former factor cos θ = 0.
Moreover, the F1 layer is defined as being polarized along the
z axis. So the spin-triplet pairs (↑↑)z can survive in the F1

layer, but the spin-triplet pairs (↓↓)z are not allowed. When
the spin-triplet pairs transfer from the fL interface into the F1

layer, a conversion process can be obtained:

(↑↓ + ↓↑)θL,χL −→ −e−iχL (↑↑)z. (22)

(ii) When the spin-triplet pairs pass from the F1 layer into
the fC interface, they have a transition process

(↑↑)z = 1
2 eiχC [(↑↑)θC ,χC + (↓↓)θC ,χC ]

− 1
2 eiχC (↑↓ + ↓↑)θC ,χC . (23)

If one ignores the contribution of the first term on the right-
hand side of Eq. (23), a simplified process can be obtained:

(↑↑)z −→ − 1
2 eiχC (↑↓ + ↓↑)θC ,χC . (24)

(iii) Following the above process, the spin-triplet pairs
transport from the fC interface into the F2 layer, in which case
they undergo a transformation

(↑↓ + ↓↑)θC ,χC = −e−iχC (↑↑)z + eiχC (↓↓)z. (25)

Because the magnetization of the F2 layer is antiparallel to
the z axis, the spin-triplet pairs (↑↑)z will be completely

FIG. 5. Transformation process of the spin-triplet pairs in the
S/ fL-F1- fC-F2- fR/S junction. The F1 and F2 are strongly spin-

polarized half-metals with antiparallel magnetizations
→
M1 and

→
M2,

and the interfacial barriers fL , fC , and fR have misaligned magne-
tizations

→
ρL ,

→
ρC , and

→
ρR. The azimuthal angles of

→
ρL ,

→
ρC , and

→
ρR

are denoted by χL , χC , and χR, respectively. The spin-triplet pairs
(↑↓ + ↓↑) are usually generated in the fL , fC , and fR regions, which
can be converted to the equal-spin-triplet pairs (↑↑) in the F1 layer
or (↓↓) in the F2 layer. When the spin-triplet pairs transport from the
left fL region to the right fR region, they will acquire an additional
phase 2χC − χL − χR.

suppressed. As a result, we have a transformation process:

(↑↓ + ↓↑)θC ,χC −→ eiχC (↓↓)z. (26)

(iv) When the spin-triplet pairs move from the F2 layer to
the fR interface, they experience a transformation process:

(↓↓)z = 1
2 e−iχR [(↑↑)θR,χR + (↓↓)θR,χR ]

+ 1
2 e−iχR (↑↓ + ↓↑)θR,χR . (27)

If the first term on the right-hand side of Eq. (27) is omitted,
the following result can be achieved:

(↓↓)z −→ 1
2 e−iχR (↑↓ + ↓↑)θR,χR . (28)

The transmission process of the spin-triplet pairs through the
entire S/ fL-F1- fC-F2- fR/S junction can be summarized as

(↑↓ + ↓↑)θL,χL

fL⇒F1−−−→ −e−iχL (↑↑)z
F1⇒fC−−−→

ei(χC−χL )(↑↓ + ↓↑)θC ,χC

fC⇒F2−−−→ ei(2χC−χL )(↓↓)z

F2⇒fR−−−→ ei(2χC−χL−χR )(↑↓ + ↓↑)θR,χR , (29)

where we discard the factors in front of the spin-triplet pairs.
The above process is illustrated visually in Fig. 5. The spin-
triplet pairs acquire an additional phase 2χC − χL − χR when
they pass through the entire system. The obtained phase may
directly enter into the current phase to produce an expression
I3D(φ) = I3D

c sin(φ + 2χC − χL − χR). This qualitative inter-
pretation is consistent with the numerical results we obtained
above.

B. The Josephson current in the S/ fL-F1- fC-F2- fR/S junction
with parallel magnetization configurations

In the following we investigate the contribution of the
interfacial azimuthal angles to the Josephson current when
the F1 and F2 layers are parallel half-metals (h1 = h2 = h and
h/EF = 1.05). The top row of Fig. 6 shows the dependence
of the current-phase relation I3D(φ) on the azimuthal angles.
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FIG. 6. The top row illustrates the current-phase relation I3D(φ) as a function of the azimuthal angles χL (a), χC (b), and χR (c). The bottom
row shows the spontaneous supercurrent I3D(φ = 0) as a function of (χL , χC) (d), (χL , χR) (e), and (χR, χC) (f). The unlabeled azimuthal angles
in each panel take the value of 0, and the other parameters are h/EF = 1.05, kF d = 50, PL = PR = 1, and PC = 1.5. The results shown are for
the S/ fL-F1- fC-F2- fR/S junction with parallel magnetizations.

As seen, I3D(φ) oscillates with χL and χR but does not vary
with χC . The current magnitude is reduced compared to that
in the junction with the antiparallel magnetizations. Moreover,
the bottom row of Fig. 6 presents the influence of the az-
imuthal angles on the spontaneous supercurrent I3D(φ = 0).
It is observed that χC has no contribution to I3D(φ = 0). The
variation characteristic of I3D(φ = 0) with χL is different from
that in the antiparallel S/ fL-F1- fC-F2- fR/S junction. From
the dependence of the current on the phase difference and
the azimuthal angles, one can deduce a current-phase relation
I3D(φ) = I3D

c sin(φ + χR − χL + π ).
The physical picture leading to this relation can be ex-

plained by the transport process of the spin-triplet pairs:

(↑↓ + ↓↑)θL,χL

fL⇒F1−−−→ −e−iχL (↑↑)z
F1⇒fC−−−→

ei(χC−χL )(↑↓ + ↓↑)θC ,χC

fC⇒F2−−−→ −e−iχL (↑↑)z

F2⇒fR−−−→ ei(χR−χL )(↑↓ + ↓↑)θR,χR . (30)

In the above process, when the spin-triplet pairs pass from the
F1 layer into the fC interface, they transform from (↑↑)z to
(↑↓ + ↓↑)θC ,χC and acquire an additional phase χC . Contin-
ually, if (↑↓ + ↓↑)θC ,χC penetrate from the fC interface into
the F2 layer, they are converted into (↑↑)z and get another
phase −χC . The two phases resulting from the spin-triplet
pairs crossing the fC interface can superimpose and cancel
each other out. During the entire transmission process, the
obtained phase is only related to the azimuthal angles χL and
χR. So we can say that the fC interface works as a conventional
potential barrier and does not contribute any additional phase
to the Josephson current. The above current characteristics
are the same as those in the S/ fL-F- fR/S junction, which we
further demonstrate below.

C. The Josephson current in the S/ fL-F- fR/S junction

In Figs. 7(a) and 7(b) we illustrate the variation of the
current-phase relation I3D(φ) with the azimuthal angles χL

and χR in the S/ fL-F- fR/S junction. It can be seen that, except
for the increased amplitude, I3D(φ) has the same character-
istics as shown in Figs. 6(a) and 6(c). Moreover, Fig. 7(c)
shows the spontaneous current I3D(φ = 0) as a function of the
azimuthal angles χL and χR, which is the same as that shown
in Fig. 6(e). These behaviors demonstrate that the Joseph-
son current in the S/ fL-F- fR/S junction satisfies a relation
I3D(φ) = I3D

c sin(φ + χR − χL + π ), which is consistent with
the results in Refs. [6,22,23]. This relation can be explained
by the transport process of the spin-triplet pairs:

(↑↓ + ↓↑)θL,χL

fL⇒F−−−→ −e−iχL (↑↑)z
F⇒fR−−−→

ei(χR−χL )(↑↓ + ↓↑)θR,χR . (31)

Therefore, the same current-phase relation can be generated in
the S/ fL-F- fR/S junction and the parallel S/ fL-F1- fC-F2- fR/S
junction. The last which must be noted is that the current
magnitude in the S/ fL-F- fR/S junction is almost the same
as that in the antiparallel S/ fL-F1- fC-F2- fR/S junction (see
Figs. 4 and 7). It indicates that adding the antiparallel F2

layer and the fC interface does not significantly suppress the
Josephson current.

IV. CONCLUSION

On the basis of the exact numerical solution of
the Bogoliubov–de Gennes equations, we have investi-
gated the Josephson current in the S/ fL-F1- fC-F2- fR/S
junction. If the magnetizations of the F1 and F2 layers are
antiparallel, the critical current oscillates with the exchange
field and the thickness of the F1 and F2 layers when the
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FIG. 7. Current-phase relation I3D(φ) is shown as a function of the azimuthal angles χL (a) and χR (b). The spontaneous supercurrent
I3D(φ = 0) is shown as a function of the azimuthal angles (χL , χR) (c). The unlabeled azimuthal angles in each panel are taken as 0, and the
other parameters are set to h1/EF = 1.05, kF d1 = 50, and PL = PR = 1. The results shown are for the S/ fL-F- fR/S junction (kF d2 = 0 and
PC = 0).

azimuthal angle χL takes some specific values. The oscillation
is not significant for the other χL. By contrast, when the
magnetization at the fC interface is perpendicular to that at
the fL and fR interfaces, the critical current reaches a larger
value and is rarely affected by the exchange field and the
thickness. For other directions of the fC interface, the critical
current decreases and a significant oscillation effect occurs.
Interestingly, the critical current will no longer change with
the azimuthal angles and the ferromagnetic thickness once
the antiparallel ferromagnets increase up to the half-metallic
phase. In this situation, the Josephson current will gain an ad-
ditional phase φ0 to form an anomalous supercurrent I3D(φ) =
I3D
c sin(φ + φ0) with φ0 = 2χC − χL − χR. This feature re-

veals direct coupling between the interface magnetizations
and the Josephson phase difference. We attribute this anoma-
lous effect to the phase superposition. The spin-triplet pairs
capture a phase as they pass through each interface. All the
captured phases are superposed to contribute to the Josephson
current. When the F1 and F2 layers become parallel half-
metals, the central fC interface cannot provide any phase to the
Josephson current and φ0 = χR − χL + π . The fC interface
works like a conventional potential barrier because the spin-
triplet pairs passing through the fC interface create a phase
cancellation effect. In such a case, the current-phase relation

is the same as that in the S/ fL-F- fR/S junction. The results
we obtained above might be used in experiments to construct
novel structures to manufacture the φ0 junction, and ultimately
achieve the purpose of controlling the superconducting phase
in superconducting spintronics.
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