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Disorder suppression in topological semiconductor-superconductor junctions
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Disorder in a proximitizing bulk superconductor can scatter quasiparticles in a putative topological super-
conductor and eventually destroy the topological superconducting state. We use a scattering approach and a
random-matrix calculation to estimate the disorder scattering time in a topological Josephson junction. We
find that the disorder scattering rate from the bulk of the superconductor, even in the strong-coupling limit,
is suppressed in the ratio of Fermi momenta between the semiconductor and superconductor. This suppression
of disorder scattering is accompanied by near-perfect Andreev reflection at such semiconductor-superconductor
interfaces, which can be used as a signature of such clean proximity effect. We also find that these results
can be understood by a semiclassical estimate of scattering. We discuss limits in other systems such as the
semiconductor nanowire where disorder scattering is suppressed according to similar classical estimates.
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I. INTRODUCTION

Majorana zero modes in a topological superconductor pro-
vide a possible realization of topological quantum qubits due
to their non-Abelian braiding statistics [1,2]. Recent studies
[3,4] now predict topological superconductivity in a number
of semiconductor-superconductor (SM-SC) heterostructures
where the proximity effect from the SC induces a pair poten-
tial in the SM. However, disorder scattering from impurities
in both the semiconductor and superconductor can destabilize
the topological superconducting phase [5,6]. In fact, most
topological superconductors are destroyed by a disorder back
scattering rate comparable to the superconducting gap. This
places a rather stringent constraint on the mean free path of
the SM-SC system to exceed the superconducting coherence
length [7–9].

Several theoretical studies [5,6,10–13] since the early
2010s have probed the effect of bulk disorder in the
proximity-inducing superconductor on topological phenom-
ena in semiconductors. However, research on the induced
topological gap in semiconductors [5,6,11,14] appears to lead
to conflicting results. Analytical calculations [5,6] show that
disorder effects from the proximity-inducing superconductor
can only be avoided in the weak tunneling limit between
the. superconductor and semiconductor. Numerical [11] and
self-consistent Born [15] calculations suggest these analyt-
ical results are truly limited to weak coupling, finding that
strong proximity coupling between a disordered supercon-
ductor and semiconductor leads to suppression of topological
superconductivity. This could be particularly devastating for
topological superconductivity in planar Josephson junctions
[4,16–18]. On the other hand, arguments made in the context
of thin-shell superconductors in nanowires [14] suggest that
disorder scattering from the proximity-inducing superconduc-
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tor can be ignored in the limit of the Fermi wave-vector
mismatch between the superconductor and semiconductor.

In this paper, we use a random-matrix theory approach [19]
to understand the density and tunnel coupling dependence
of disorder scattering from the proximitizing superconductor.
This method will help unify the various limits of supercon-
ducting scattering [5,6,11,14,15] that have been studied in the
past. The combination of random-matrix theory and semiclas-
sical approaches can overcome the computational challenge
associated with the large length-scale difference between the
Fermi wavelength of the superconductor and the coherence
length in the semiconductor.

While our work will discuss different platforms of topo-
logical superconductivity, we start by considering a planar
Josephson junction with a short semiconducting region [see
Fig. 1(a)] since this platform requires strong coupling be-
tween the semiconductor and superconductor [4]. The strong
coupling allows one, in principle, to cross into a topological
phase by tuning the phase difference between the super-
conductors to π [4]. Concomitant experimental works show
promising evidence for a possible topological superconduct-
ing phase in these systems [16,17,20,21]. An analysis of
this junction has shown that disorder enhances the spectral
gap near k ∼ kF , while suppressing the topological gap near
k ∼ 0 [22], suggesting a topological phase for a strongly
spin-orbit-coupled Josephson junction in the limit where the
disorder scattering is smaller than the microscopic supercon-
ducting gap. This result is consistent with a similar result
for topologically superconducting semiconductor nanowires
in the strong-spin-orbit-coupled regime [7] and confirms that
strong disorder scattering, which could potentially arise from
a strongly disordered proximitizing superconductor, would
destroy topological superconductivity in both platforms.

The proximity-induced superconducting pairing potential
� in the semiconductor in Fig. 1(a) is related to the Andreev
reflection rate from the superconductor, which can be writ-
ten as � ∼ �sc|reh|2, where |reh|2 is the Andreev reflection
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FIG. 1. Illustrations of the Josephson junction model (a) and the
effective model for the right interface (b). SM represents semicon-
ductor, N represents a diffusive metal, DSC represents a disordered
superconductor, and SC represents a clean superconductor. ξd is the
disordered superconducting coherence length, kF is the Fermi wave
vector, and � is the bulk pair potential.

probability and �sc is the scattering rate for electrons in the
semiconductor reflecting between the superconductors. The
presence of disorder in the superconductor introduces scat-
tering at a rate τ−1

d that breaks momentum conservation in the
semiconductor. We find that this scattering is dominated by
normal scattering with the probability |ree|2 (see Appendix C),
which is entirely momentum conservation breaking in the
case of a transparent semiconductor-superconductor interface.
We can then approximate the scattering rate τ−1

d as the rate
of normal scattering τ−1

d ∼ �sc|ree|2, written in terms of the
induced pairing potential as

τ−1
d ∼ �|ree|2

1 − |ree|2 . (1)

The disorder scattering in Eq. (1), with the condition of a
large topological gap, i.e., τd� � 1 [7], leads to the require-
ment |ree|2 � 1. This condition can be experimentally verified
by checking for near perfect Andreev reflection, i.e., GNS =
4e2Nsm/h. However, the possibility of weak normal reflection
from the superconductor in the strong-coupling regime is un-
clear due to the apparent contradiction between the numerical
results of Cole et al. [11] and the Fermi momentum mismatch
arguments in Kiendl et al. [14]. In our work, we show that
disorder scattering can indeed be suppressed at such interfaces
with a strong Fermi level mismatch. We also estimate disorder
scattering in other systems such as a thin superconductor [14]
and a finite-length semiconductor [5,6], applying a semiclas-
sical estimate of scattering to these situations. We use these
arguments to provide a unifying view of previous works on
the subject [5,6,11,14]. Finally, we discuss how the disorder
scattering may be restored in the presence of a magnetic field
and how our results compare to numerical simulation.

The paper is organized as follows. In Sec. II, we introduce
an effective model and use a random matrix theory approach
to solve for the scattering probabilities. In Sec. III, we insert
physical parameters to achieve a lower bound for the mean

free path. In Sec. IV, we study additional physical systems
and compare with previous literature, applying a semiclassical
approximation which is motivated by the scattering result. In
Sec. V, we explore the breaking of disorder suppression using
a magnetic field and in Sec. VI we support this notion with
numerical results. Finally, we give a conclusion in Sec. VII.

II. RANDOM-MATRIX THEORY APPROACH TO
SCATTERING RATE

To model the disordered superconductor, we make a sim-
plifying assumption by separating this region into a diffusive
normal region of length LN coupled to a clean superconductor
[as shown in Fig. 1(b)]. The length LN is chosen as LN = ξd

since a shorter diffusive region (i.e., LN � ξd ) underestimates
the effect of disorder while a longer region (i.e., LN � ξd )
exhibits spurious subgap states [23]. Such an approximation
to the disordered superconductor retains its essential disorder
scattering as well as Andreev reflection processes while pre-
serving the gap. The near-perfect Andreev reflection, even in
the absence of disorder, is possible only if the superconductor
is connected to the semiconductor by an adiabatic (i.e., nonre-
flective) potential. We model this adiabatic potential step as a
scattering matrix with reflection and transmission amplitudes
of either 0 or 1 and the transverse wave functions as eigenvec-
tors. These assumptions lead to the effective model shown in
Fig. 1(b).

To solve for the normal reflection probability |ree|2, and
therefore the effective scattering rate according to Eq. (1),
we compose the scattering matrices of the SM-N interface,
the diffusive region and the superconductor. We first consider
the Nsm × Nsm reflection matrix rL of the normal part of the
system (i.e., without the superconducting lead) from the the
semiconductor side. This matrix depends on rN, the N × N
reflection matrix of the diffusive metal. Due to time-reversal
invariance, rN is symmetric and therefore admits a polar de-
composition,

rN = U T
√

RNU, (2)

where RN is a diagonal matrix of reflection probabilities and
U is a unitary matrix. We also define the reflection matrix rsm,
describing the adiabatic scattering at the semiconductor-metal
interface, as

rsm =
N∑
i

�
(
k2

i − k2
F,sm

)|i〉〈i|. (3)

Here ki is the transverse momentum in the ith mode of the
metal, kF,sm is the Fermi momentum in the semiconductor, and
� is the Heaviside step function. Using these two reflection
matrices, we can calculate rL as [24]

rL = tsm(1 − rNrsm )−1rNtsm, (4)

where tsm ≡ 1 − rsm.
Following Beenakker [25], the zero-energy conductance

resulting from Andreev reflection of electrons coming from
the left lead of Fig. 1(b) can be written in terms of the eigen-
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values of rLr†
L, RLi, as:

GNS = 4e2

h

∑
i

(
1 − RLi

1 + RLi

)2

, (5)

which is bounded by

GNS >
4e2

h
(Nsm − 4TrrLr†

L ). (6)

This bound becomes an accurate estimate in the limit of small
RL, which we will find applies in limit of small Nsm/N .

The trace in this conductance is a self-averaging quantity
in the limit of large Nsm, so we can approximate its value
by averaging over disorder realizations. This value is equiv-
alent to averaging the trace by choosing the total scattering
matrix sN from a distribution of random matrices in the COE
ensemble. The equivalent channel assumption, motivated by
Dorokhov’s model [26] of disordered conductors, implies that
U [see Eq. (2)] is uniformly distributed over the unitary group
[27]. With this formula in mind, we write expectation value of
the trace Tr rLr†

L as

〈
Tr rLr†

L

〉 =
∞∑

n=0

�n, (7)

where

�n = 〈
Tr tsmU T

√
RNU (rsmU T

√
RNU )n

× tsm(U †√RNU ∗rsm )nU †√RNU ∗〉,
noting that terms with unequal U and U ∗ factors vanish [28].

Traces over products of random unitary matrices, similar to
the above equation, have appeared in studies of conductance
of disordered metal-superconductor junctions and a chaotic
quantum dots as well as other systems [29,30]. Diagrammatic
methods [19] can evaluate such averages in the large-N limit.
We use a similar method to calculate �n to leading order in N
and Nsm (see Appendix A for details):

�n = N2
sm

N
RN

n+1
(

1 − Nsm

N

)n

. (8)

Taking the sum over the geometric series in n [see Eq. (7)]
then yields

TrrLr†
L = Nsm

Z2

1 + Z2
, Z2 = Nsm

N

(
TN

−1 − 1
)
, (9)

where TN = 1 − RN is the average transmission eigenvalue
of the normal region. Physically, Z represents the unitless
strength of an equivalent δ-function barrier which completely
describes the scattering probability of the SM-N junction.
Note that this expression is independent of correlations be-
tween transmission eigenvalues. Substituting this into the
bound in Eq. (6) yields an estimate for the bound on the
conductance:

GNS � 4e2

h
Nsm

1 − 3Z2

1 + Z2
. (10)

The above conductance, which arises entirely from An-
dreev reflection, provides an upper bound to the normal

reflection probability in the superconducting junction:

|ree|2 <
4Z2

1 + Z2
. (11)

The total disorder scattering from the bulk superconductor is
a combination of the above normal reflection as well as the
off-diagonal part of the Andreev reflection matrix. As shown
in Appendix B, the full Andreev reflection matrix for time-
reversal invariant systems can be written in terms of rLr†

L as:

reh = −i
1 − rLr†

L

1 + rLr†
L

. (12)

Since rLr†
L is a positive definite matrix that is suppressed as

Z2 → 0, we can approximate reh ∼ −i(1 − 2rLr†
L ). The off-

diagonal components are thus bounded by the fluctuations of

2rLr†
L, i.e., 2

√
TrR2

L/Nsm, where RL is the diagonal matrix of

rLr†
L eigenvalues. These fluctuations scale as 2Z2/(1 + Z2),

similar to the mean in Eq. (9) (see Appendix C). The off-
diagonal Andreev reflection probability then scales as |rod|2 ∼
Z4, which is thus negligible compared to the normal reflection
probability |ree|2 ∼ Z2, corroborating the assumption made in
the expression for τ−1

d [Eq. (1)]. This also gives an estimate
of the perfect (diagonal) Andreev reflection by substituting
rLr†

L → Z2/(1 + Z2):

∣∣rp
eh

∣∣2 ≈ 1

(1 + 2Z2)2 . (13)

III. SCATTERING RATES AT REAL MATERIAL
INTERFACES

To compare with realistic material properties, we connect
the Andreev reflection probability to physical parameters.
The disordered superconducting coherence length is ξd =√

ξ0λ where ξ0 = vF,sc/� is the clean superconducting co-
herence length and λ is the mean free path. In the diffusive
regime for the normal region N in Fig. 1(b), the Dorokhov-
Mello-Pereyra-Kumar (DMPK) equation [26,31,32] gives an
average transmission eigenvalue of T N = λ/LN � 1 in the
many-channel limit. Setting the normal region length to the
disordered superconducting coherence length ξd [as shown in
Fig. 1(b)] yields

Z2 ≈ Nsm

N

√
ξ0

λ
. (14)

This result is valid under the parameter hierarchy N �
Nsm

√
ξ0/λ � Nsm � 1. Figure 2 shows the upper-bounded

disorder scattering rate τ−1
d as a function of mean free

path for various values of the density mismatch at the
semiconductor-superconductor interface. By approximating
the ratio Nsm/N ≈ kF,sm/kF,sc [k2

F,sm/k2
F,sc in three dimensions

(3D)], we write

Z2 =
√

2
m∗

sm

m∗
sc

μsm

�

1

kF,scλ
. (15)

Here m∗
sm(sc) is the effective mass in the semiconductor (super-

conductor), μsm is the Fermi energy in the semiconductor, and
kF,sc is the Fermi momentum in the superconductor.
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FIG. 2. Upper bound of disorder scattering rate in units of
the induced gap as a function of mean free path in units of the
superconducting coherence length, from Eq. (11). Dashed horizon-
tal line represents the maximum rate (τ−1

d = 0.5�, see Ref. [7])
where a topological gap is possible. The series labeled with
log10(kF,sc/kF,sm ) = 2.7 and 3.0 represent InAs-Al and InSb-Al junc-
tions respectively [33,34].

To produce an induced topological gap in the semicon-
ductor, the disorder scattering time must satisfy �τd � 1.08
[7]. To ensure this inequality is strongly satisfied, we enforce
�τd > 2. Combining Eqs. (1), (11), and (15) gives a resulting
minimum bound for the mean free path:

λ � 242
m∗

sm

m∗
sc

μsm

�
k−1

F,sc. (16)

To evaluate the validity of this inequality, we insert specific
values for InAs, InSb, and Al. For μsm we use 46 K for InAs
and 14 K for InSb. Taking the remaining physical values from
Refs. [33] and [34], we find that the lower bound on the mean
free path is 4.39 nm for InAs and 1.07 nm for InSb. The actual
requirements on the mean free path in the superconductor
depend on the Fermi energy in the semiconductor μsm in a
particular device. Planar Josephson junction setups [16] can
be topological at higher values of Fermi energy such as the
one [33] used for the above estimate. Nanowire systems for
topological superconductors have Fermi energy that is typi-
cally lower than a few K [3,35].

Another natural possibility that can arise in some ma-
terial systems is that the high-density superconductor is in
the three-dimensional limit, while the semiconductor is in
the two-dimensional limit. In this case the ratio becomes
Nsm/N = kF,sm/k2

F,scW , where W is the thickness of the su-
perconductor. This change can further enhance the channel
mismatch effect where the Z2 in Eq. (15) is reduced by a
factor of (kF,scW )1/2 and enhance the robustness to disorder
scattering. Whether this occurs in a planar Josephson junction
device depends on the density in the semiconductor that is
directly under the superconductor.

A. Application to thin-shell superconductors around nanowires

Though the calculation in the previous section specifically
pertains to planar Josephson junctions with an ideally in-
finitely long superconductor [Fig. 1(a)], we find that the result
in Eq. (11) also applies to a system where the superconductor
is a thin shell around a nanowire [14,36,37], provided the
Fermi wave vector kF,sc of the superconductor continues to
be parametrically large. The thin-shell superconductor, which
is used in many of the experiments on Majorana nanowires
[38–40], differs from the configuration in Fig. 1(a) in that the
superconductor thickness d is much smaller than the disor-
dered superconducting coherence length. The effective model
in Fig. 1(b) with a naïvely shortened diffusive normal region
LN = d does not properly exhibit the scattering processes of
such a shell. The scattering in the effective model is much
weaker than the physical thin-shell system because it does not
represent reflection from the surface of the thin shell.

To represent scattering from the surface, we introduce a
barrier of fixed transparency � = d/ξd between the normal
metal (N) and the superconductor (S) in Fig. 1(b). This barrier,
which represents the reflection from the outside surface of
the thin-shell, ensures that the electron propagates a total dis-
tance of approximately ξd before entering the superconducting
region, simulating the Brownian path within the supercon-
ducting shell.

Since Eqs. (4) through (12) hold for any symmetric re-
flection matrix rN, we can replace the average transmission
TN in Eq. (9) with the metal-barrier average transmission TNB

to calculate |ree|2 in the thin-shell system. While the DMPK
equation provides a simple approximation for TN, the calcu-
lation of TNB requires a composition of scattering matrices,
formulated as TNB = Tr t†

NBtNB/N , where

tNB =
√

�(1 − r′
N

√
1 − �)−1t ′

N. (17)

Here r′
N and t ′

N are respectively the right-side reflection ma-
trix and left-to-right transmission matrix of the normal metal
region with length d . Since TNB is self-averaging, we use
the polar decomposition and integrate over the unitary group,

calculating TNB = (T ′
N

−1 + �−1 − 1)−1 to leading order in N
where T ′

N = Tr t ′
N

†t ′
N/N (see Appendix D). By applying the

DMPK equation to T ′
N, we find that the transmission TNB has

a lower bound of T ′
N� = √

λ/ξ0 which is equivalent to the
transmission value found in Eq. (14). Therefore the bound
on |ree|2 in Eq. (11) also applies to the superconducting shell
system, indicating that perfect Andreev reflection with low
disorder scattering can occur in thin superconducting shells
where the mean free path satisfies Eq. (16).

IV. CLASSICAL ESTIMATE OF SCATTERING RATES

Interestingly, the results for both the planar Josephson
junction as well as the thin superconducting shell turn out
to be qualitatively consistent with a semiclassical estimate
of Andreev scattering. This estimate is similar to the Drude
estimate of the conductivity of metals which views electrons
as classical particles executing a random walk as a result of
collisions with impurities. Andreev reflection is described by
electrons becoming holes which retrace the classical path.
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Reference [14] finds that this semiclassical argument correctly
estimates the proximity-induced pairing from a disordered
superconducting shell.

The semiclassical model for scattering in a superconduc-
tor is based on the observation that so-called Diffuson and
Cooperon diagrams [41] dominate the long-ranged contribu-
tions to propagation of electron waves in a diffusive normal
metal. Andreev reflection can be added to this model by con-
necting the two legs of the Cooperon containing time-reversed
electron trajectories by a reflection process [13,42]. The re-
sulting picture is similar to the Drude theory of conductance,
which assumes that the electron follows a Brownian path
that randomly switches direction after traveling distance λ

between scattering events, before it Andreev reflects into a
hole after traveling a total distance ξ0 in the superconductor
[14]. The distribution of the electron density following the
Brownian motion matches the profile obtained from Diffusion
and Cooperon diagrams that obey a diffusion equation. The
total penetration of the electron trajectory into the diffusive
superconductor is therefore ξd = √

ξ0λ. Within this classical
model, the Andreev reflected hole exactly retraces the time-
reversed path of the electron and thus does not contribute
to scattering in momentum space. Scattering events where
an electron is within a mean free path λ from the interface
can lead to an electron reflecting back into the semicon-
ductor. Thus, each electron suffers (ξ0/λ) × (λ/ξd ) = √

ξ0/λ

impurity collisions where it has a chance to return to the
semiconductor. The electron can only return if the momentum
after scattering is compatible with the allowed momenta in the
semiconductor. Combining these two facts, the total probabil-
ity of a scattered electron reflecting into the semiconductor is

P(e → e) = 2

π

kF,sm

kF,sc

√
ξ0

λ
.

This matches (modulo a numerical prefactor) the result of the
random matrix calculation in Eqs. (13) and (14) to first order.

We note that these results agree despite the fact that
Eq. (14) is based on the setup in Fig. 1(b). The key difference
between these two systems is that in the effective model,
Andreev reflection can happen only in at the boundary of the
normal region while in the classical estimate, it can occur any-
where on the diffusive path. This difference has no effect on
the reflection probabilities provided that the length of the nor-
mal region LN is chosen to be the average penetration length
ξd into the superconductor. Additionally, the momentum non-
conserving part of the Andreev reflection, which vanishes in
the classical estimate, is subleading Z2 according to the result
in Appendix C.

The classical estimate above provides intuition for suppres-
sion of SC disorder scattering found in these calculations. In
the classical picture, it is quite unlikely for an electron to re-
turn to the semiconductor unless it Andreev reflects into a hole
and retraces its path backwards in time (an assumption also
made in Ref. [14]), suppressing disordered reflection. Specif-
ically, electrons in the normal metal must have a transverse
momentum less than the Fermi momentum of the semicon-
ductor to transmit across the junction [see Eq. (3)]. If the angle
between the particle’s momentum and the wire’s length is θ ,
then this condition is equivalent to the inequality kF,sc sin θ <

kF,sm. When the ratio of Fermi momenta is small, proba-
bility of transmission back into the semiconductor becomes
2kF,sm/πkF,sc in 2D systems. The consistency between the
random matrix result [Eqs. (13) and (14)] and the classical
estimate provide confidence in the scattering rate estimated in
this work.

A. Scattering rates in nanowires

The similarity between the classical estimate and our quan-
tum calculations motivates us to consider other cases such
as the proximity-induced superconducting quantum well con-
sidered in Refs. [5,6]. In this system, a barrier at the SM-N
interface confines the semiconductor states to quantum well
states, which have a broadening γ from tunneling into the
superconductor in its normal state. This broadening sets the
proximity pairing in the semiconductor [43]. The parameter
γ is also key to allowing the electrons to scatter back from
the diffusive superconductor into the broadened band of the
quantum well since it is proportional to the phase space in
the semiconductor. Assuming a three-dimensional system, the
momentum broadening of states in the semiconductor results
in a total phase space proportional to kF,sm γ /vF,sm = m∗

smγ

for a single band. Comparing this to the phase space area in
the superconductor which is proportional to k2

F,sc allows us to
estimate the phase-space ratio of electrons in the semiconduc-
tor and the superconductor.

The full disorder scattering rate τ−1
d is the product of sev-

eral factors that are written as

τ−1
d ∼ γ ′

(vF,sc

λ

)(
λ

ξd

)(
1

�

)
P′

(
m∗

smγ

k2
F,sc

)
. (18)

We explain the origin of the various factors in the rest of
this paragraph. Here γ ′ ≈ min(γ ,�) is the collision rate with
the barrier and the factor vF,sc/λ = τmean is the scattering
rate in the superconductor. Only scattering events that occur
close enough to the interface can cause transmission back
into the superconductor, contributing a probability λ/ξd . This
process continues over the Andreev time τsc,A = 1/�. The
factor P′ is the probability of crossing the barrier and the final
factor m∗

smγ /k2
F,sc is the phase-space ratio from the previous

paragraph, which is related to the likelihood that the particle
will have a available state in the semiconductor. The collision
rate γ ′ is on the order of γ in the weak-coupling limit γ �
�. In the strong-coupling limit γ � �, based on arguments
following Eq. (1), the scattering rate is limited by the high
probability Andreev reflection process so that γ ′ ∼ �.

Note that the transmission probability P′ on resonance is
not the same as the transmission probability from inside the
well. To understand this, consider replacing the supercon-
ductor by a clean normal metal with a Fermi velocity vF,sc.
Let us assume that the state in the well is tunnel broadened
by γ , which also matches the decay rate of the electron in
the well from leaking into the metal. The flux of particles
from the normal metal side, per unit energy, is proportional
to vF,sc × DOS ∝ vF,sc/vF,sc = 1. The transition rate from the
normal metal into the well over the energy range γ would thus
be P′γ . This matches the decay rate γ of the electron which is
trapped in the well if we assume P′ ∼ 1. Substituting this into
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Eq. (18) and simplifying gives

τ−1
d ∼ γ ′γ m∗

sm

�m∗
scξd kF,sc

. (19)

This classical result is consistent (apart from numerical fac-
tors) to the result in Lutchyn et al. [5] in the weak-coupling
limit where γ ′ = γ . However, the strong-coupling limit mod-
ifies this result to τ−1

d ∼ γ m∗
sm

m∗
scξd kF,sc

.
Thus, our results suggest that the suppression of bulk SC

disorder demonstrated in the weak-coupling limit in Ref. [5]
continues to apply for the quantum well case in strong
coupling γ � � when kF,scξd � 1. Scattering in a quasi-
one-dimensional nanowire case of width W would add a
phase-space factor of W/kF,sm from the estimate for a quantum
well in the previous paragraph. An interesting case from the
numerical standpoint, is the case of a purely two-dimensional
superconductor. In this case, we lose a factor of kF,sm/kF,sc

and we find that the disorder scattering is suppressed by kF,sm

in the denominator of Eq. (19) instead of kF,sc. Thus, the
suppression of disorder scattering at large kF,sc fails to apply in
this strong-coupling case which is consistent with numerical
simulations in Ref. [11]. This partly explains the discrepancy
between the results of Ref. [5] and Ref. [11] as being a result
of different dimensionality of the superconductors rather than
coupling. However, the classical estimate fails to describe
the numerics in Ref. [11] for the strictly two-dimensional
superconductor case likely because the kF,sc in the simulations
were not large enough to enter the classical limit.

V. MAGNETIC FIELD ENHANCEMENT OF DISORDER
SCATTERING

The results in the previous sections show that the disorder
scattering from a disordered superconductor with large Fermi
momentum mismatch is dominated by normal reflection. This
is because of the approximate conservation of quasiparticle
momentum in the Andreev scattering process. We understand
this effect classically as each hole retracing the time-reversed
trajectory of the electron. Quantum mechanically, this is a
result of the Cooperon contribution to the electron diffusion
in the time-reversal symmetric case. The application of a
small magnetic field breaks time-reversal symmetry and adds
a momentum δek = qe

∫
dt (ṙ × B) = qeδr × B over the elec-

tron part of the trajectory r(t ). Since both the charge of the
electron qe as well as the displacement δr changes sign, the
change in momentum over the hole part of the trajectory is
the same, i.e., δhk = δek. Thus, the total change of momentum
is δk = 2qeδr × B. The average magnitude of the momentum
shift provides an estimate of the mean free path from this
magnetic-field induced scattering, i.e., λmag = 〈δk2〉−1/2 =
1/2qeB

√
〈δr2

⊥〉, where δr⊥ is the component of the displace-
ment which is transverse to the magnetic field. This field can
have a significant effect on topological superconductivity if
the ratio

ξ0

λmag
∼ 2qeBξ0

√〈
δr2

⊥
〉

(20)

is comparable to unity, since ξ0/λmag ∼ (�τmag)−1 where τmag

is the magnetic scattering time.

Assuming, for a thin superconductor, that the mean-
squared displacement is comparable to the thickness d ∼√

〈δr2
⊥〉, the ratio ξ0/λmag becomes significant (on the order

of one) for a d = 10-nm-thick superconductor with ξ0 � 500
nm and with a relatively modest magnetic field of about
B ∼ 0.2 T. Thus, magnetic fields can eliminate the protection
from disorder scattering in the superconductor that results
from Fermi momentum mismatch. This enhanced scattering
is consistent with numerical results described in the following
section. However, the classical analysis suggests that the extra
scattering momentum δk is perpendicular to the applied mag-
netic field. This may provide protection in a magnetic field
for single subband topological superconductors where the
magnetic field is aligned with the topological superconductor.
However, this requires more detailed quantum calculations
that include a magnetic field.

VI. NUMERICAL EVALUATION OF DIAGONAL
ANDREEV REFLECTION

Topological superconductivity relies on the clean (or diag-
onal in momentum space) part of the Andreev reflection |rp

eh|2
defined in Eq. (13). The random matrix results of Secs. II
and Appendix C show that this diagonal part of the Andreev
reflection dominates the scattering process in the time-reversal
invariant case with large momentum mismatch. The argument
in the last section shows that the diagonal Andreev reflection
is suppressed in the presence of an orbital magnetic field.
These results were based on a combination of random ma-
trix theory and semiclassical dynamics. In this section, we
perform a direct numerical simulation of Andreev reflection
using Kwant [44]. We use a 2D square bilayer lattice of width
200 nm to simulate the effective model shown in Fig. 1(b)
(the bilayer allows for an in-plane magnetic field, see next
paragraph). The lattice constant is a = 1 nm with the distance
between bilayers being az = 20 nm. We take the effective
mass to be 1.4me in the superconductor and 0.02me in the
semiconductor, using a chemical potential of μsc = 98.6 meV
in the superconductor and μsm = 20.48 meV in the supercon-
ductor. We introduce a pairing potential � = 1 meV into the
superconductor. This large gap is not physical but reduces the
coherence length to ξ0 = 2a

√
μsct/π� ≈ 33.0 nm, allowing

numerics with smaller systems. To implement the adiabatic
SM-N interface, we smoothly change the potential over a
Lsm = 2000 transition region which is attached to a Lsc =
4ξ0 superconductor with Gaussian, uncorrelated disorder of
strength V , giving a mean free path of λ = a

√
μsct3/V 2. In

the V = 0 case, the adiabatic barrier has a reflection proba-
bility on the order of 10−4. Clean leads are attached to the
left and right sides of the system with Nsm = 8 propagating
modes in the semiconducting lead and N = 164 propagating
modes in the superconducting lead. We simulate 10 realiza-
tions of 50 disorder strengths which are shown in Fig. 3. The
theoretical calculation gives a reduced chi-squared statistic
of χ2/DOF = 2.56.

As discussed in Sec. V, the orbital effects of a trans-
verse magnetic field B enhance the disorder scattering
from the superconductor in the classical approximation.
In the tight-binding system, we model this effect using a
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FIG. 3. Numerical simulation of perfect Andreev reflection prob-
ability |rp

eh|2 as a function of normal region conductance. Results
are averaged over 10 realizations of Gaussian on-site disorder with
model parameters m∗

sc = 1.4me, m∗
sm = 0.02me, μsc = 98.6 meV,

μsm = 20.48 meV, � = 1 meV, az = 20 nm. The number of prop-
agating modes is Nsm = 8 in semiconductor and N = 164 in the
superconductor. This simulation is compared to theoretical result in
Eqs. (13) and (14) with and without a transverse in-plane magnetic
field in units of the flux quantum, the clean superconducting coher-
ence length and the bilayer separation. The theoretical result gives
χ 2/DOF = 2.56 in the B = 0 case. These results are compared to
theoretical predictions using the physical values of the InAs-Al and
InSb-Al junctions (see Sec. III).

Peierls substitution, replacing the transverse hopping tx with
tx exp(iqeAxaazτz ), where Ax is the longitudinal component of
the vector potential and τz is a Pauli matrix in Nambu space.
To define a transverse in-plane field, Ax must vary in the z
direction, which motivates the use of a bilayer system. There-
fore, we substitute tx �→ tx exp(iqeBaazτz ) in one of the layers
of the model. This field has a strength of B ≈ 3.15�0/ξ0az,
producing a cyclotron radius rc = m∗

scvF,scqeB ≈ 127.8 nm.
The physical value of B is quite high, corresponding to B =
10 T, since the coherence length is nonphysically small. How-
ever, the inverse relationship between the coherence length
and the field strength shown in Eq. (20) indicates that a system
with ξ0 � 500 would experience similar disorder enhance-
ment at B ∼ 0.7 T.

The numerical results for the no-field case shown in Fig. 3
agree quite well with the random matrix result in Eqs. (14) and
(13), which is shown by the solid black line. Realistic mate-
rials, such as the InAs-Al and InSb-Al junctions discussed in
Sec. III, have a higher degree of Fermi momentum mismatch
and exhibit much more disorder suppression than numerically
feasible systems. Application of a magnetic field (green dots
in Fig. 3), even with a cyclotron radius larger than the bilayer
separation, is enough to suppress diagonal Andreev reflection
substantially.

VII. CONCLUSION

Topological superconductors are rather sensitive to dis-
order scattering and require relatively clean systems where

the mean free path exceeds the superconducting coherence
length [7–9,45]. While semiconductor fabrication has been
improved to the point of being able to achieve mean free
paths over a micron, the mean free path of the superconductor
is typically much shorter because the superconductor is not
epitaxially grown. Even in the case of nanowires where the
superconductor is epitaxial [36], the mean free path in the
superconductor is limited by surface scattering. This poses a
potential challenge in systems where strong coupling to the
superconductor is often needed for creating robust topological
gaps.

Using a combination of scattering theory and random ma-
trix calculations, we find in Sec. II that the effects of disorder
scattering in the bulk superconductor are suppressed as the
ratio of the Fermi wavelength in the semiconductor to that in
the superconductor. This regime is also characterized by near
perfect Andreev reflection, which can be used as a signature
of being in this low disorder scattering regime. We calculate
the maximum disorder (minimum mean free path) in realistic
materials and find a higher disorder tolerance than previously
expected [5,11,15]: In InAs-Al, the mean free path in the
superconductor must exceed lengths of ∼1 nm to generate a
topological gap. Our results might be a possible explanation
for why many semiconductor-superconductor experiments
[16,46] appear to show high Andreev reflection probabilities
relative to metal-superconductor interfaces, where this effect
rarely occurs [47].

Interestingly, the results of our scattering matrix calcu-
lation turn out to be consistent with the classical estimate
(Sec. IV) for the scattering rate at the leading order in the ratio
of the Fermi momenta. The classical estimate provides an
understanding of disorder scattering suppression as a result of
a reduction in phase space, making disorder scattering highly
unlikely without affecting Andreev scattering. We find that
the same classical approach can show that previous results on
superconducting scattering [5,6] continue to be valid in the
moderately strong superconducting coupling limit as long as
the Fermi momenta are sufficiently different. The apparent
discrepancy of these works with the numerical result [11]
where strong disorder scattering is noted can be attributed
to the purely two dimensional nature of the superconducting
model.

Finally, we show in Sec. V that the introduction of mag-
netic fields can significantly enhance disorder effects by
introducing scattering into the Andreev reflection, which is
otherwise momentum conserving. However, the magnetic
field must lie perpendicular to the momentum scattering. A
similar effect maybe expected from the combination of spin-
orbit scattering and in-plane Zeeman field, which has not been
explicitly studied here. The effect of both these contributions
to disorder requires a careful treatment of time-reversal and
spin-conservation breaking, which is left for future studies.
While future work is needed to understand the proximity
effect from spin-orbit-coupled superconductors in a magnetic
field, our work shows that as a matter of principle, even the
normal state mobility constraints on superconductors that are
used to realize topological superconducting phases by prox-
imity effect are not strongly restrictive if the semiconductor
has low density. Demonstration of near perfect Andreev re-
flection at a semiconductor-superconductor interface is a good
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indicator that such a condition has been met in the absence of
a magnetic field.

Note added. Two recent preprints have appeared with some
connections to the current work. One preprint investigated
numerically, through realistic nonperturbative first-principles
simulations, the effects of disorder in the superconductor on
the proximity effect in the hybrid superconducting thin film
and semiconducting nanowire platform in the presence of
Fermi surface mismatch, concluding, in agreement with us,
that the disorder in the superconducting film mostly has neg-
ligible detrimental effects on the proximity effect [48]. The
second preprint presents extensive experimental results on
Al-InAs superconductor-nanowire platforms, providing direct
evidence for a topological gap in InAs in spite of considerable
disorder (mean free path 10 nm) in the Al film, again in
agreement with our theoretical conclusion in the current work
[49].
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APPENDIX A: CALCULATION DETAILS

Using the Haar measure, we can calculate the integrals of
unitary matrix moments as Weingarten functions [19,28]:

〈
Ui1 j1 · · ·Uin jnU

∗
i′1 j′1

· · ·U ∗
i′n j′n

〉
=

∑
P,P′

δi1i′P(1)
· · · δini′P(n)

δ j1 j′
P′ (1)

· · · δ jn j′
P′ (n)

Wg(P−1P′, N ),

(A1)

where P and P′ sum over all permutations in the symmetric
group Sym(n). Weingarten functions decrease asymptotically
with respect to the matrix dimension N and thus higher-order
terms in N are negligible for multichannel metals [50]. For
leading order in N , the Weingarten function of a permutation
σ can be expressed as a product over cycle lengths Ci, includ-
ing one-cycles:

Wg(σ, N ) =
∏

i

(−1)Ci−1cCi−1

N2Ci−1
+ O(N−n−1), (A2)

where cn ≡ (2n)!/n!(n + 1)! is the nth Catalan number.

Integrating these moments yields a product of the Wein-
garten function and Kronecker deltas:

�n =
∑
{i},{ j}

ti1δi2n+3 j1t j1δ j2n+3,i1

×
2n+2∏
even
μ=2

√
RiμRjμ

2n+1∏
odd
μ=3

riμr jμ

×
∑
P,P′

Wg(P−1P′, N )
2n+2∏
k=1

δakαP(k)δbkβP′ (k)
, (A3)

where ri, ti, and Ri are the diagonal elements of rsm, tsm,
and Ri, respectively; P and P′ are elements of Sym(2n + 2);
and a and b (α and β) are the left and right indices of U
(U ∗), respectively, defined explicitly as ak = i2�(k+1)/2�, bk =
i2�k/2�+1, αk = j2�(k+1)/2�, and βk = j2�k/2�+1.

To simplify Eq. (A3), we make a series of observations.
First, any Kronecker δ factor which shares indices with both
a ti factor and a ri factor sums to zero since the nonzero
entries of these diagonals are disjoint. Furthermore, each δ

term preserves the parity of indices, mapping even to even
and odd to odd. Therefore we can assume every nonzero
term in the sum over P, P′ contains either δi1 j1 and δi2n+3 j2n+3

or δi1 j2n+3 and δi2n+3 j1 . In other words, either P′(1) = 1 and
P′(2n + 3) = 2n + 3 or P′(1) = 2n + 3 and P′(2n + 3) = 1.

Since we are chiefly concerned with multichannel metals,
we consider only the leading term in N . With this in mind,
we note that each index (other than the first and last) comes
in a pair. Therefore each index has two Kronecker δ factors
relating it to two other indices. We can view this structure as a
graph of disjoint cycles. When summing over all i and j terms,
the Kronecker δs contract the indices, resulting in a number
of summations over N equal to the number of Kronecker δ

cycles. Since each summation (other than the first and last
indices) contributes a factor proportional to N , the dominant
permutations are those that create the most cycles. Specifi-
cally, these configurations manifest as those that preserve the
pairs of indices such that each cycle consists of only two
Kronecker δ terms.

Finally, we note that the Weingarten function
Wg(P−1P′, N ) has the highest power in N when the
permutation P−1P′ is the product of one-cycles; i.e., the
identity permutation. Therefore we assume P = P′ for any
relevant terms.

Using these classifications of the dominant terms, we con-
sider the previously mentioned case where P′(1) = 1 and
P′(2n + 3) = 2n + 3. Since P = P′, we find that P(1) = 1,
leading to a δi2 j2 term. Since each pair must map to itself
in the leading N term, the next index of i2 must map to the
next index of j2, such that P(2) = 2. Therefore P′(2) = 2,
mapping i3 to j3. We can continue this reasoning to induc-
tively show that P = P′ is the identity. In the P′(1) = 2n + 3
and P′(2n + 3) = 1 case, similar reasoning shows that P = P′
is equal to [(1, 2n + 3)(2, 2n + 2) · · · (n + 1, n + 3)] or the
mapping ik �→ j2n+4−k . We refer to this case as the exchange
permutation.

Pulling out the sum over permutations, we separate �n into
terms �id

n and �ex
n representing the identity permutation and
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exchange permutation, respectively. Contracting the δ func-
tions in the identity term gives

�id
n = Wg(1, N )

∑
{i}

ti1ti2n+3δi1i2n+3

2n+2∏
even
μ=2

Riμ

2n+1∏
odd
μ=3

riμ

= 1

N2n+2
(Nsm )(NRN)n+1(N − Nsm )n

= Nsm

N
RN

n+1
(

1 − Nsm

N

)n

,

where RN is the average conductance of a single channel in
the normal metal. The exchange term �ex

n evaluates to the
same expression with an extra factor of Nsm coming from
the additional sum over ti2n+3 . Assuming Nsm � 1, the identity
term becomes negligible and �n reduces to Eq. (8).

Note that similar arguments apply in the diagrammatic
method [19], yielding the same result.

APPENDIX B: GENERALIZATION TO NONSQUARE
TRANSMISSION MATRICES

From Ref. [25], the Andreev reflection matrix is

reh = −itLR(1 + r†
RrR)−1t†

LR, (B1)

where tLR and rR describe the right-to-left transmission and
right-side reflection of the SM-N interface respectively. Not-
ing that tLR is rectangular with dimension Nsm × N , we use
the singular value decomposition (SVD) to write it as tLR =
W TT V , where W and V are unitary matrices and T is a real
rectangular diagonal matrix. By the unitarity of the full scat-
tering matrix, t†

LRtLR = 1 − r†
RrR and t∗

LRtT
LR = 1 − r†

LrL. The
SVD then implies T TT = 1 − RR and T T T = 1 − RL, where
RR and RL are the diagonal matrices of right and left reflection
eigenvalues, respectively. Since T is rectangular diagonal,
RR = diag(RL,0), assuming that dim(RR) > dim(RL ). Fur-
thermore, the unitarity relation connects the SVD matrices W
and V with the polar decomposition such that rL = W T

√
RLW

and rR = V T
√

RRV , allowing us to rewrite reh as

reh = − iW †T (1 + RR)−1T T W

= − iW †

(
1 − RL

1 + RL

)
W

= − i
1 − rLr†

L

1 + rLr†
L

. (B2)

This gives the derivation of Eq. (12).

APPENDIX C: OFF-DIAGONAL REFLECTION

Following Beenakker [25], the Andreev reflection matrix
reh for zero-energy Andreev reflection of electrons coming
from the left in Fig. 1(b) is given by:

reh = −itLR(1 + r∗
RrR)−1t∗

RL. (C1)

which describes the total Andreev reflection of the SM-N-SC
system. Here rR is the right-side reflection and tLR(RL) is the
right-to-left (left-to-right) transmission of the SM-N junction.
In this case, we assume tLR(RL) is a Nsm × N (N × Nsm ) rect-
angular matrix, only mapping to allowed modes. Since the
scattering matrix is symmetric, tLR = tT

RL and r∗
R = r†

R. Using
the singular value decomposition and the unitarity of the scat-
tering matrix, we find Eq. (12).

To calculate the magnitude of off-diagonal reflection, we
first find the variance of the reflection eigenvalues RLi. Using
similar reasoning to the calculation in Sec. II, we calculate
the second moment of the reflection eigenvalues using the
trace R2

L = (1/Nsm )〈Tr rLr†
LrLr†

L〉. In this case, we cannot re-
duce the calculation to a single sum. Each of the four rL

matrices contribute an infinite sum with one sum reduced to
enforce equal numbers of U and U ∗ factors, resulting in a
three-dimensional infinite series. Following the logic of the
first moment derivation, we break the expression into terms
�a,b,c,d :

〈Tr rLr†
LrLr†

L〉 =
∞∑

a,b,c

�a,b,c,a+c−b. (C2)

In the second moment case, the terms take the form

�a,b,c,d =
N∑

{i},{ j},{k},{l}
ti1δi2a+3 j1t j1δ j2b+3k1tk1δk2c+3l1tl1δl2d+3i1

×

⎛
⎜⎝2a+2∏

even
μ=2

√
Riμ

2b+2∏
even
μ=2

√
Rjμ

2c+2∏
even
μ=2

√
Rkμ

2d+2∏
even
μ=2

√
Rlμ

⎞
⎟⎠

⎛
⎜⎝2a+1∏

odd
μ=3

riμ

2b+1∏
odd
μ=3

r jμ

2c+1∏
odd
μ=3

rkμ

2d+1∏
odd
μ=3

rlμ

⎞
⎟⎠

×
〈

2a+2∏
even
μ=2

Uiμiμ−1Uiμiμ+1

2b+2∏
even
μ=2

U ∗
jμ jμ−1

U ∗
jμ jμ+1

2c+2∏
even
μ=2

Ukμkμ−1Ukμkμ+1

2d+2∏
even
μ=2

U ∗
lμlμ−1

U ∗
lμlμ+1

〉
.

Recall that nonzero terms in Weingarten sum must map ti
factors to other ti factors. In the first moment calculation, we
inductively demonstrated that P(1) = 1 implies P′(2a + 3) =

2a + 3. Similarly in the exchange permutation, P′(1) = 2a +
3 implies P′(2a + 3) = 1. In order for these iterations to map
ti factors together, a must equal b. Generally, in the second
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moment case, we also permit permutations which map from i
indices to l indices and k indices to j indices. In this scenario,
similar reasoning enforces b = c. Therefore all nonzero terms
obey a = b or b = c. Since �a,b,c,d is symmetric under a ↔ c
transformation [51] we write

〈Tr rLr†
LrLr†

L〉 = 2
∞∑

m �=n

�m,n +
∞∑
n

�n,n, (C3)

where �m,n ≡ �m,m,n,n, separating the infinite sum into asym-
metric and symmetric terms.

In the asymmetric term there are four ways to link the ti fac-
tors (identity and exchange permutations between i ↔ j and
k ↔ l) forming the direct product group Sym(2) × Sym(2).
We associate each element of this group with Nsm raised to the
number of disjoint cycles, indicating the contribution of the ti
terms. Summing these terms gives N3

sm + N2
sm + N2

sm + Nsm ≈
N3

sm for Nsm � 1. Following the Sec. II calculation, we find

�m,n = N3
sm

N2
RN

m+n+2
(

1 − Nsm

N

)m+n

. (C4)

The symmetric term �n,n introduces a third degree of free-
dom for the permutation P′, incorporating those that map i
indices to l indices and j indices to k indices [P′ ∈ Sym(2) ×
Sym(2) × Sym(2)]. This contributes a factor of 2 compared
to the asymmetric terms so that �m=n = 2�m �=n. Therefore

the full sum becomes R2
L = 2

∑
m,n �m,n with �m,n defined in

Eq. (C4), evaluating to

R2
L = 2

(
Z2

1 + Z2

)2

,

using the definition of Z2 from Eq. (9).
Relating our results to the SM-N-SC junction, we compare

the magnitude of off-diagonal Andreev reflection to diagonal
reflection using Eq. (5). Seeing that the second moment of the
reflection eigenvalues RLi approaches 0 in the large-N limit,
we can approximate reh as

r′
eh = −i

1 − RL

1 + RL
× 1 (C5)

by assuming that RLi are uniform (i.e., RLi = RL). The accu-
racy of this approximation is quantified by the trace Tr rodr†

od,
where rod ≡ reh − r′

eh is the off-diagonal reflection matrix. By
Taylor expanding around small RL and rLr†

L we have

Tr rodr†
od ≈ Tr (2RL − 2rLr†

L )2

= 4Nsm
(
R2

L − RL
2)

,

which is proportional to the variance of the eigenvalues RLi.
Using the results from the first and second moment calcula-
tions, we find the probability of off-diagonal e → h reflection
to be

|rod|2 = 4

(
Z2

1 + Z2

)2

,

demonstrating that as RL goes to 0 (i.e., T → 1), the Andreev
reflection becomes diagonal. We therefore find that the off-
diagonal reflection is much smaller than the normal reflection
and that reh is well approximated by the scalar matrix r′

eh,
resulting in Eq. (13). This expression gives a conductance
approximation

GNS ≈ 4e2

h

Nsm

(1 + 2Z2)2 ,

refining the value in Eq. (10).

APPENDIX D: THIN-SHELL CALCULATION

In Sec. III A, the average transmission eigenvalue of the
combined metal-barrier region is

TNB = �Tr (1 − V †
√

(1 − T ′
N)(1 − �)V ∗)−1

× V †T ′
NV (1 − V T

√
(1 − T ′

N)(1 − �)V )−1. (D1)

where T ′
N is the diagonal matrix of transmission eigenvalues

and V is a Haar-distributed unitary matrix. Expanding out the
geometric series gives TNB = �

∑∞
n=0 �n where

�n = (1 − �)n
∑
{i},{ j}

δi2n+2 j1 Tj1δ j2n+2,i1

×
2n∏

even
μ=2

√
(1 − Tiμ )(1 − Tjμ )

×
∑
P,P′

Wg(P−1P′, N )
2n+1∏
k=1

δakαP(k)δbkβP′ (k)
(D2)

after integrating over V . As in Appendix A, ak = i2�(k+1)/2�,
bk = i2�k/2�+1, αk = j2�(k+1)/2� and βk = j2�k/2�+1.

Also following Appendix A, we recall that the Weingarten
function is maximum in N when P = P′; however, unlike
in Sec. A, every cycle in Eq. (D2) contributes a factor of
N . Therefore the leading term is given by the permutation
which creates the most cycles, namely the identity permuta-
tion (P = P′ = 1). Summing this term over the i and j indices
yields �n = T ′

N(1 − T ′
N)n(1 − �)n. The full geometric sum

then becomes TNB = (T ′
N

−1 + �−1 − 1)−1. A similar result is
found in Ref. [19].
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