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Multiple-Q magnetic states, such as a skyrmion crystal, become a source of unusual transport phenomena and
dynamics. Recent theoretical and experimental studies clarified that such multiple-Q states ubiquitously appear
under different crystal structures in metals and insulators. Toward a systematic understanding of the formation of
the multiple-Q states in various crystal systems, in this theoretical study we present a low-energy effective spin
model with anisotropic exchange interactions in momentum space. We summarize symmetry rules for nonzero
symmetric and antisymmetric anisotropic exchange interactions in momentum space, which are regarded as
an extension of Moriya’s rule. According to the rules, we construct the effective spin model for tetragonal,
hexagonal, and trigonal magnets with primitive-lattice and multisublattice structures based on the symmetry
of the crystal and wave vector. Furthermore, we describe the microscopic origin of the effective anisotropic
exchange interactions in itinerant magnets by perturbatively analyzing a multiband periodic Anderson model
with the spin-orbit coupling. We apply the effective spin model to an itinerant magnet in a P6/mmm crystal, and
we find various multiple-Q states with a spin scalar chirality in the ground state. Our results provide a foundation
of constructing effective phenomenological spin models for any crystal systems hosting the multiple-Q states,
which will stimulate further exploration of exotic multiple-Q states in materials with the spin-orbit coupling.
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I. INTRODUCTION

Topological spin textures have attracted much attention as a
source of unconventional physical phenomena and a candidate
for robust information carriers against external stimuli [1–5].
Since the first discovery of a magnetic skyrmion [6–9] in a
chiral magnet MnSi [10], active searches have revealed its
existence in a variety of crystal systems irrespective of spatial
inversion symmetry [11]: cubic [10,12], hexagonal [13–15],
and tetragonal [16–19] crystal systems. The skyrmion spin
structure is characterized by an integer topological number
(skyrmion number), which gives rise to intriguing transport
phenomena, such as the topological Hall and Nernst effects
[14,20–25]. In addition, a variety of new topological spin
textures beyond the skyrmions have also been extensively
investigated [5], some of which have been observed in ex-
periments, such as a hedgehog [26–28], biskyrmion [29,30],
skyrmionium [31], ferrimagnetic skyrmion [32], and antifer-
romagnetic skyrmion [33].

In the crystal systems, such topological spin textures often
appear in a periodic form, which are expressed as a super-
position of multiple spin density waves termed a multiple-Q
state [34–39]. The multiple-Q spin configuration consisting
of n-tuple spin density waves with the ordering wave vectors
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{Q1, Q2, . . . , Qn} is given by

Si =
n∑

ν=1

(eiQν ·Ri SQν
+ e−iQν ·Ri S−Qν

), (1)

where Sq is the Fourier transform of the spin at the wave vec-
tor q. A variety of multiple-Q magnetic structures are realized
depending on the type of constituent waves characterized by
SQν

. For example, a triple-Q superposition of proper-screw
(cycloidal) spiral waves leads to a Bloch-type (Néel-type)
skyrmion crystal (SkX) with a skyrmion number of ±1, while
that of the sinusoidal waves induces different types of the SkX
with a skyrmion number of ±2. The multiple-Q spin configu-
ration in Eq. (1) can describe other periodic topological spin
textures, such as a hedgehog lattice [40–46], meron-antimeron
crystal [47–55], and vortex crystal [56–62]. Furthermore, the
sublattice-dependent multiple-Q states [63–67], such as the
antiferromagnetic SkX, are described by taking into account
the sublattice degrees of freedom in Eq. (1).

The emergence of multiple-Q states largely depends on
the microscopic mechanisms, which have been extensively
studied for various systems. The typical mechanisms are dipo-
lar interactions [53,68,69], competing exchange interactions
in frustrated magnets [45,66,70–72], a biquadratic spin in-
teraction in itinerant magnets [73–77], and symmetric and
antisymmetric magnetic anisotropy in systems with the spin-
orbit coupling (SOC) [9,49,52,78–89].

In this paper, we focus on the role of symmetric and anti-
symmetric anisotropic exchange interactions originating from
the SOC and dipolar interactions. The Dzyaloshinskii-Moriya
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(DM) interaction is the most familiar anisotropic exchange
interaction arising in noncentrosymmetric materials [90,91].
It favors the spiral spin density wave with a spiral plane
perpendicular to the DM vector in the combination of the
ferromagnetic exchange interaction, which results in multiple-
Q spiral states in an external magnetic field [9,41]. As the
DM vector is determined by crystal symmetry, which is the
so-called Moriya’s rule [91], one can expect the types of
multiple-Q states that appear in the DM-based systems [7].
For example, the DM interaction in P422, P4mm, and P4̄m2
crystals tends to favor the Bloch-type, Néel-type, and antitype
SkXs, respectively.

In contrast to the early studies based on the antisymmetric
DM interaction, recent discoveries of SkXs and hedgehog
lattices in centrosymmetric magnets [14,15,18,28] open up the
possibility that various multiple-Q states can emerge by sym-
metric anisotropic exchange interactions. In fact, some model
calculations have clarified that such a symmetric anisotropic
exchange interaction stabilizes the multiple-Q states including
the SkXs in centrosymmetric crystals with the space group
P4/mmm [51–53,92,93], P6/mmm [54,69,94–96], and P3̄m1
[61,89,97]. However, there have been few studies focusing on
the symmetric anisotropic exchange interactions in spite of
various types of interactions depending on the crystal sym-
metry classified by the space group. To understand which
types of anisotropic exchange interactions play an important
role in inducing the multiple-Q states, it is highly desired to
perform a systematic investigation for various space groups
irrespective of the centrosymmetric and noncentrosymmetric
lattice structures. Furthermore, it is important to clarify rel-
evant microscopic model parameters for the emergence of
the anisotropic exchange interactions beyond the symmetry
argument.

To systematically investigate the multiple-Q instability in-
duced by the anisotropic exchange interactions, we present
how to construct an effective spin model in discrete lattice
systems based on the magnetic representation [98] and per-
turbation analyses [73,77,99]. Our effective spin model can
be applied to magnetic systems with both a short-range ex-
change interaction in insulators and a long-range one in metals
irrespective of classical and quantum spins. Furthermore, our
effective spin model can be used irrespective of whether
the anisotropic form of the interaction originates from the
SOC or dipolar interaction. First, we find general symmetry
rules to specify both symmetric and antisymmetric exchange
interactions in momentum space, which is an extension of
Moriya’s rule. The obtained rules provide a foundation of
constructing the effective low-energy spin model with the
momentum-resolved anisotropic exchange interactions based
on the symmetry of the crystal and the wave vector, which
are closely related to neutron and x-ray experiments. As an
example, we demonstrate how to construct the effective spin
model in tetragonal, hexagonal, and trigonal crystal systems
by applying the rules to 24 space groups with primitive
lattices. In addition, we show an extension of the symme-
try rules to multisublattice systems, and we test our rules
on the honeycomb and kagome systems as examples. Next,
we show one of the microscopic origins of the long-range
anisotropic exchange interactions by starting from the peri-
odic Anderson model (PAM) incorporating the effect of the

SOC [61,100,101]. We present important microscopic model
parameters for the anisotropic exchange interactions based
on the perturbation analysis. The perturbation analysis be-
yond the symmetry argument gives us a way to quantitatively
evaluate the anisotropic exchange interactions. Finally, we
demonstrate that the anisotropic exchange interactions stabi-
lize various multiple-Q states with a spin scalar chirality by
considering a specific example in a P6/mmm crystal and by
performing simulated annealing for the effective spin model.
The present results to construct the effective spin model with
momentum-resolved interactions provide both symmetric and
microscopic ways of investigating a plethora of multiple-
Q instabilities in various crystal systems. In particular, the
present effective spin model is useful to identify complicated
spin configurations including the SkX in materials, such as
Gd2PdSi3 [14], Gd3Ru4Al12 [15,96], GdRu2Si2 [18,102,103],
EuPtSi [104–108], and EuAl4 [109–112].

This paper is organized as follows. In Sec. II, we show a
way to obtain the momentum-resolved anisotropic exchange
interactions under the crystal symmetry based on the magnetic
representation analysis. In Secs. III and IV, we discuss the ori-
gin of momentum-resolved anisotropic exchange interactions
in itinerant electron models and localized spin models, re-
spectively. In particular, we show the relationship between the
long-range anisotropic exchange interaction and microscopic
model parameters by performing the perturbation calculation
in the PAM in Sec. III. In Sec. V, we show how to construct
and analyze the effective spin model by taking an example
of the system belonging to the P6/mmm space group. We
summarize the obtained results and discuss a perspective in
Sec. VI.

II. SYMMETRY ANALYSIS OF ANISOTROPIC
EXCHANGE INTERACTIONS

In this section, we show the classification of an anisotropic
exchange interaction in momentum space in crystal systems
based on the symmetry argument. In Secs. II A 1 and II A 2,
we present general rules to give nonzero momentum-resolved
anisotropic exchange interactions in primitive-lattice systems
and multisublattice systems, respectively. Then, we explic-
itly show the effective spin model in tetragonal, hexagonal,
and trigonal crystal systems with the primitive lattice in
Sec. II B 1. In addition, we show the effective spin model on
the honeycomb (kagome) structure as an example of two-
sublattice (three-sublattice) systems in Sec. II B 2. We also
discuss a tendency of single-Q and multiple-Q modulations
in the presence of the anisotropic exchange interactions in
Sec. II C.

A. General symmetry rules

1. Primitive-lattice case

Let us start by considering a general form of the
momentum-resolved exchange interaction with wave vector q.
We consider an arbitrary bilinear exchange coupling, which is
given by

ST
q XqS−q, (2)
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FIG. 1. Symmetry operations for wave vectors q and −q in momentum space: (a) space inversion at the inversion center denoted as 0,
(b) mirror perpendicular to q, (c) twofold rotation perpendicular to q, (d) mirror parallel to q, (e) twofold rotation around q, and (f) n-fold
(n = 3, 4, 6) rotation around q. The nonzero components of Dq, Eq, and Fq are represented by the orange, yellow, and magenta arrows,
respectively. Eq in (a) and Fq in (a)–(e) are arbitrary (arb).

with

Xq =

⎛
⎜⎝

F xs
q Ezs

q + iDzs
q Eys

q − iDys
q

Ezs
q − iDzs

q F ys
q Exs

q + iDxs
q

Eys
q + iDys

q Exs
q − iDxs

q F zs
q

⎞
⎟⎠. (3)

In Eq. (2), ST
q = (Sxs

q , Sys
q , Szs

q ) is the Fourier transform of the
spin, (xs, ys, zs ) are Cartesian spin coordinates, and T denotes
the transpose of the vector. It is noted that the following
results in this section are applicable to both classical spin and
quantum spin operators; the expectation value of the spin is
not necessarily fully polarized. In addition, we ignore the sub-
lattice structure in the lattice system in Eq. (2) for simplicity;
we also discuss the counterpart to the multisublattice systems
[see Eqs. (7) and (8)] in Sec. II A 2. In Eq. (3), Xq stands
for the general form of the interaction matrix with the real
coupling constants Dq = (Dxs

q , Dys
q , Dzs

q ), Eq = (Exs
q , Eys

q , Ezs
q ),

and Fq = (F xs
q , F ys

q , F zs
q ); Dq corresponds to the antisymmet-

ric interaction in spin space, while Eq and Fq correspond to
the symmetric off-diagonal and diagonal ones, respectively.
For instance, the xs components of Dq, Eq, and Fq are ex-
pressed as

iDxs
q

(
Sys

q Szs−q − Szs
q Sys

−q

)
, (4)

Exs
q

(
Sys

q Szs−q + Szs
q Sys

−q

)
, (5)

F xs
q

(
Sxs

q Sxs−q

)
. (6)

The momentum-resolved interactions Dq, Eq, and Fq show
a different transformation by reversing q → −q due to the
time-reversal symmetry; Dq = −D−q, Eq = E−q, and Fq =
F−q. The nonzero components in Xq depend on the crystal
symmetry. It is noted that, in general, Xq depends on both
temperature and microscopic model parameters as discussed
in Sec. III, although they do not affect the following results

based on the symmetry analysis. We find six rules to deter-
mine nonzero q-resolved anisotropic exchange interactions.
In the following, we consider the wave vector q, which lies
inside the Brillouin zone for simplicity; q does not lie on the
Brillouin zone boundary. Then, the six rules for Dq, Eq, and
Fq under the specific crystal (point group) symmetry are given
by using the magnetic representation theory:

(a) The space inversion symmetry imposes Dq = 0, while
there is no constraint on Eq and Fq [Fig. 1(a)].

(b) The mirror symmetry with respect to the plane perpen-
dicular to q imposes Dq ‖ plane and Eq ⊥ plane, while there
is no constraint on Fq [Fig. 1(b)].

(c) The twofold rotational symmetry around the axis per-
pendicular to q imposes Dq ⊥ axis and Eq ‖ axis, while there
is no constraint on Fq [Fig. 1(c)].

(d) The mirror symmetry with respect to the plane parallel
to q imposes Dq ⊥ plane and Eq ⊥ plane, while there is no
constraint on Fq [Fig. 1(d)].

(e) The twofold rotational symmetry around the axis par-
allel to q imposes Dq ‖ axis and Eq ‖ axis, while there is no
constraint on Fq [Fig. 1(e)].

(f) The n-fold (n = 3, 4, 6) rotational symmetries around
the axis parallel to q imposes Dq ‖ axis, Eq = 0, and Fq =
(F xs

q , F⊥
q , F⊥

q ) [Fig. 1(f)].
Here, xs is taken along the q direction, and each operation
leaves the origin q = (0, 0, 0) invariant. A detailed discussion
is given in Appendix A. The rules do not change in the
presence of the magnetic field due to the characteristic of the
bilinear coupling of S±q.

The above rules indicate that nonzero components of Dq

and Eq largely depend on the point-group symmetry, while
there is only one constraint for Fq. In particular, the rules
for Dq are the counterpart in momentum space of Moriya’s
rule in real space [91]. In addition, the condition for the
symmetric off-diagonal interaction Eq is also obtained, where
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TABLE I. Symmetry constraint on XAB;q when the point-group symmetry fixes the sublattices A and B. The point-group symmetries in
momentum space in the left column correspond to those in Fig. 1.

Symmetry Constraint on XAB;q

Inversion center Im(DAB;q) = 0, Im(EAB;q) = 0, Im(FAB;q) = 0
Mirror plane ⊥ q Re(DAB;q) ⊥plane, Im(DAB;q) ‖plane, Re(EAB;q) ⊥plane, Im(EAB;q) ‖plane, Im(FAB;q) = 0
Twofold axis ⊥ q Re(DAB;q) ‖axis, Im(DAB;q) ⊥axis, Re(EAB;q) ‖axis, Im(EAB;q) ⊥axis, Im(FAB;q) = 0
Mirror plane ‖ q DAB;q ⊥plane, EAB;q ⊥plane
Twofold axis ‖ q DAB;q ‖axis, EAB;q ‖axis

the nonzero component of Eq is different from (the same as)
that of Dq for the rules (a)–(c), and (f) [(d) and (e)]. Thus, the
above rules are regarded as an extension of Moriya’s rule to
the momentum space and symmetric interactions.

2. Multisublattice case

Next, we extend the above results to multisublattice cases.
The general expression of the momentum-resolved exchange
interactions is described by∑

μ,ν

ST
μqXμν;qSν−q, (7)

with

Xμν;q =

⎛
⎜⎝

F xs
μν;q E zs

μν;q + Dzs
μν;q Eys

μν;q − Dys
μν;q

E zs
μν;q − Dzs

μν;q F ys
μν;q Exs

μν;q + Dxs
μν;q

Eys
μν;q + Dys

μν;q Exs
μν;q − Dxs

μν;q F zs
μν;q

⎞
⎟⎠.

(8)

ST
μq = (Sxs

μq, Sys
μq, Szs

μq) is the Fourier transform of the spin
on the sublattice μ and Xμν;q = X †

νμ;q. The interac-
tion matrix Xμν;q is an extension of Xq in Eq. (3),
which is composed of the complex coupling constants
Dμν;q = (Dxs

μν;q,D
ys
μν;q,Dzs

μν;q), Eμν;q = (Exs
μν;q, E

ys
μν;q, E zs

μν;q),
and Fμν;q = (F xs

μν;q,F
ys
μν;q,F zs

μν;q). For μ = ν (μ �= ν),
Xμν;q represents the intrasublattice (intersublattice) inter-
action; Xμμ;q has nine independent components because
Re(Dμμ;q) = Im(Eμμ;q) = Im(Fμμ;q) = 0 similar to Xq in
Eq. (3), while Xμν;q for μ �= ν has 18 independent

components. Here, Dμν;q (Eμν;q and Fμν;q) corresponds to
the antisymmetric (symmetric) interactions in spin space;
Re(Dμν;q), Im(Eμν;q), and Im(Fμν;q) [Im(Dμν;q), Re(Eμν;q),
and Re(Fμν;q)] correspond to the antisymmetric (symmetric)
interactions for μ ↔ ν; Re(Dμν;q), Re(Eμν;q), and Re(Fμν;q)
[Im(Dμν;q), Im(Eμν;q), and Im(Fμν;q)] correspond to the
symmetric (antisymmetric) interactions for q → −q.

Similar to Xq in Sec. II A 1, the symmetry rules for Xμν;q

are obtained by the magnetic representation analysis, as de-
tailed in Appendix A. Since the interaction is defined in the
momentum space as well as the primitive-lattice case, it is
enough to consider the six point-group symmetries in Fig. 1
to obtain nonzero components of Xμν;q. The different point
from the primitive-lattice case is to take into account the per-
mutation among the sublattices in each symmetry operation.
In the following, we give the symmetry rules for Xμν;q in
two and three sublattice systems as specific examples. As we
list the general rules for the permutation among the sublat-
tices, the following analyses are straightforwardly extended to
more than three-sublattice systems. To simplify the rules, we
consider the situation where the wave vector q is inside the
Brillouin zone and perpendicular to the principal axis, which
means that there are no symmetry constraints by the n-fold
(n = 3, 4, 6) rotational symmetry around q in Fig. 1(f).

First, we consider the symmetry rules in terms of XAA;q,
XBB;q, and XAB;q(= X †

BA;q) for the two-sublattice case, i.e.,
μ, ν = A, B in Eq. (7). In contrast to the primitive-lattice
case, the symmetry rules change depending on the permuta-
tion symmetry of the sublattices; we divide the cases where

TABLE II. Symmetry constraint between XAA;q and XBB;q when the point group symmetry interchanges the sublattices A and B. The point
group symmetries in momentum space in the left column correspond to those in Fig. 1. The superscript ‖ # (⊥ #) represents the components
parallel (perpendicular) to #, where # denotes any of axis and plane.

Symmetry Constraint on XAA;q and XBB;q

Inversion center Im(DAA;q) = −Im(DBB;q), Re(EAA;q) = Re(EBB;q), Re(FAA;q) = Re(FBB;q)

Mirror plane ⊥ q Im(D‖plane
AA;q ) = Im(D‖plane

BB;q ), Im(D⊥plane
AA;q ) = −Im(D⊥plane

BB;q ),

Re(E‖plane
AA;q ) = −Re(E‖plane

BB;q ), Re(E⊥plane
AA;q ) = Re(E⊥plane

BB;q ), Re(FAA;q) = Re(FBB;q)

Twofold axis ⊥ q Im(D⊥axis
AA;q ) = Im(D⊥axis

BB;q ), Im(D‖axis
AA;q) = −Im(D‖axis

BB;q),

Re(E⊥axis
AA;q ) = −Re(E⊥axis

BB;q ), Re(E‖axis
AA;q) = Re(E‖axis

BB;q), Re(FAA;q) = Re(FBB;q)

Mirror plane ‖ q Im(D⊥plane
AA;q ) = Im(D⊥plane

BB;q ), Im(D‖plane
AA;q ) = −Im(D‖plane

BB;q ),

Re(E⊥plane
AA;q ) = Re(E⊥plane

BB;q ), Re(E‖plane
AA;q ) = −Re(E‖plane

BB;q ), Re(FAA;q) = Re(FBB;q)

Twofold axis ‖ q Im(D⊥axis
AA;q ) = −Im(D⊥axis

BB;q ), Im(D‖axis
AA;q) = Im(D‖axis

BB;q),

Re(E⊥axis
AA;q ) = −Re(E⊥axis

BB;q ), Re(E‖axis
AA;q) = Re(E‖axis

BB;q), Re(FAA;q) = Re(FBB;q)
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TABLE III. Symmetry constraint on XAB;q when the point-group symmetry interchanges the sublattices A and B. The point-group
symmetries in momentum space in the left column correspond to those in Fig. 1.

Symmetry Constraint on XAB;q

Inversion center DAB;q = 0
Mirror plane ⊥ q DAB;q ‖ plane, EAB;q ⊥ plane
Twofold axis ⊥ q DAB;q ⊥axis, EAB;q ‖axis
Mirror plane ‖ q Re(DAB;q) ‖plane, Im(DAB;q) ⊥plane, Re(EAB;q) ⊥plane, Im(EAB;q) ‖plane, Im(FAB;q) = 0
Twofold axis ‖ q Re(DAB;q) ⊥ axis, Im(DAB;q) ‖ axis, Re(EAB;q) ‖ axis, Im(EAB;q) ⊥ axis, Im(FAB;q) = 0

the point-group symmetry (i) fixes or (ii) interchanges the
sublattices A and B. In the case (i), the symmetry con-
straint on XAA;q (XBB;q) is the same as that for Xq shown in
Figs. 1(a)–1(e), while the symmetry rules for XAB;q are
summarized in Table I. In this case, there is no constraint
between XAA;q and XBB;q. In the case (ii), the point-group
symmetry imposes constraints between XAA;q and XBB;q

and those on XAB;q, as summarized in Tables II and III,
respectively.

Next, we present the symmetry rules for the three-
sublattice case, i.e., μ, ν = A, B, C. There are three cases
according to the permutation symmetry: The point-group
symmetry (i) fixes the sublattices A, B, and C, (ii) inter-
changes the sublattices A and B but fixes the sublattice C,
and (iii) cyclically interchanges the sublattices A, B, and C.
Here, we only consider the cases (i) and (ii) since the case
(iii) is rare for q perpendicular to the principal axis. In the
case (i), the symmetry constraint on XAA;q, XBB;q, and XCC;q

is the same as that for Xq shown in Figs. 1(a)–1(e). Besides,
the symmetry rules for XAB;q, XBC;q, and XCA;q are the same
as those for XAB;q shown in Table I. In the case (ii), the sym-
metry constraints between XBC;q and XCA;q are qualitatively
different from the two-sublattice case, which are summarized
in Table IV. Meanwhile, the symmetry rules for the other
interaction matrices are obtained by using the above results;
the symmetry constraint on XCC;q is the same as that for Xq

shown in Figs. 1(a)–1(e), and the symmetry constraint on
XAA;q, XBB;q, and XAB;q is the same as that shown in Tables II
and III.

B. Effective spin model under space groups

1. Primitive-lattice case

The above symmetry argument in Sec. II A 1 gives a gen-
eral form of the spin Hamiltonian in any primitive-lattice
systems, which is obtained by summing the contribution from
the entire q in the first Brillouin zone as

H = −
∑

q

ST
q XqS−q, (9)

where the minus sign is added for later convenience [see
Eq. (38) in Sec. III C]. As a demonstration, we discuss here
a specific form of Xq for 24 gray symmorphic space groups
belonging to the tetragonal, hexagonal, and trigonal crystal
systems shown in Tables V–VII. The gray symmorphic space
group M defined as M = H + θH with the symmorphic space
group H and the time-reversal operation θ [113]. In the model
in Eq. (9), we take the spin coordinates xs, ys, and zs along the
x, y, and z directions, respectively, shown in Fig. 2(a).

Let us start by constructing an effective model (mean-field
Hamiltonian) consisting of the interactions at specific wave
vectors rather than all the wave vectors in the Brillouin zone,
which is given by

Heff = −
∑

q∈{Q}
ST

q XqS−q, (10)

where {Q} represents a set of the symmetry-related wave vec-
tors. For example, in the tetragonal crystal system, there are
at least four symmetry-related wave vectors connected by the

TABLE IV. Symmetry constraint between XCA;q and XBC;q when the point-group symmetry interchanges the sublattices A and B but fixes
the sublattice C. The point-group symmetries in momentum space in the left column correspond to those in Fig. 1. The superscript ‖ # (⊥ #)
represents the components parallel (perpendicular) to #, where # denotes any axis and plane.

Symmetry Constraint on XCA;q and XBC;q

Inversion center DCA;q = −DBC;q, ECA;q = EBC;q, FCA;q = FBC;q

Mirror plane ⊥ q D‖plane
CA;q = D‖plane

BC;q , D⊥plane
CA;q = −D⊥plane

BC;q , E‖plane
CA;q = −E‖plane

BC;q , E⊥plane
CA;q = E⊥plane

BC;q , FCA;q = FBC;q

Twofold axis ⊥ q D⊥axis
CA;q = D⊥axis

BC;q , D‖axis
CA;q = −D‖axis

BC;q, E⊥axis
CA;q = −E⊥axis

BC;q , E‖axis
CA;q = E‖axis

BC;q, FCA;q = FBC;q

Mirror plane ‖ q Re(D⊥plane
CA;q ) = −Re(D⊥plane

BC;q ), Re(D‖plane
CA;q ) = Re(D‖plane

BC;q ), Im(D⊥plane
CA;q ) = Im(D⊥plane

BC;q ),

Im(D‖plane
CA;q ) = −Im(D‖plane

BC;q ), Re(E⊥plane
CA;q ) = Re(E⊥plane

BC;q ), Re(E‖plane
CA;q ) = −Re(E‖plane

BC;q ),

Im(E⊥plane
CA;q ) = −Im(E⊥plane

BC;q ), Im(E‖plane
CA;q ) = Im(E‖plane

BC;q ), Re(FCA;q) = Re(FBC;q), Im(FCA;q) = −Im(FBC;q)

Twofold axis ‖ q Re(D⊥axis
CA;q ) = Re(D⊥axis

BC;q ), Re(D‖axis
CA;q) = −Re(D‖axis

BC;q), Im(D⊥axis
CA;q ) = −Im(D⊥axis

BC;q ), Im(D‖axis
CA;q) = Im(D‖axis

BC;q),

Re(E⊥axis
CA;q ) = −Re(E⊥axis

BC;q ), Re(E‖axis
CA;q) = Re(E‖axis

BC;q), Im(E⊥axis
CA;q ) = Im(E⊥axis

BC;q ), Im(E‖axis
CA;q) = −Im(E‖axis

BC;q),
Re(FCA;q) = Re(FBC;q), Im(FCA;q) = −Im(FBC;q)

174437-5



RYOTA YAMBE AND SATORU HAYAMI PHYSICAL REVIEW B 106, 174437 (2022)

FIG. 2. A set of {Q} along the different high-symmetry lines
inside the first Brillouin zone in (a),(b) tetragonal crystal systems and
(c),(d) hexagonal and trigonal crystal systems. In (a) and (b), Q1 and
Q2 are connected by the fourfold rotation around the z axis, while in
(c) and (d), Q1, Q2, and Q3 are connected by the threefold rotation.
The wave vectors in {Q} lie on the xy plane.

fourfold rotation, {Q} = ±Q1,±Q2, whereas there are at least
six (three) symmetry-related wave vectors connected by the
sixfold (threefold) rotation, {Q} = ±Q1,±Q2,±Q3 ({Q} =
Q1, Q2, Q3), in the hexagonal (trigonal) crystal system.

Once {Q} and the space group in the model in Eq. (10)
are determined, we can write down nonzero components
of Xq following the rules in Sec. II A 1. We present the
results of Xq in the tetragonal, hexagonal, and trigonal
crystal systems, where the wave vectors lie along the
high-symmetry lines; Q1 is taken along the x [Fig. 2(a)] and
[110] [Fig. 2(b)] axes in the tetragonal crystal system, while
Q1 is taken along the x [Fig. 2(c)] and y [Fig. 2(d)] axes in
the hexagonal and trigonal crystal systems. The specific form
of XQ1

is summarized in Table V for the tetragonal crystal
systems (P4/mmm, P422, P4̄2m, P4̄m2, P4mm, P4/m, P4,
and P4̄), Table VI for the hexagonal crystal systems
(P6/mmm, P622, P6̄m2, P6̄2m, P6mm, P6/m, P6̄, and P6),
and Table VII for the trigonal crystal systems
(P3̄m1, P3̄1m, P321, P312, P3m1, P31m, P3̄, and P3). In
Tables V–VII, Nc stands for the number of independent
components of XQ1

. Xq for the low-symmetric {Q} is also
obtained by using the same rules, as shown in Appendix B.

TABLE V. Interaction matrix XQ1
and the number of independent components Nc in the tetragonal crystal systems for the high-symmetric

wave vector Q1 shown in Figs. 2(a) and 2(b). The spin coordinates xs, ys, and zs are taken along the x, y, and z directions in Fig. 2(a),
respectively.

Q1 ‖ x̂ Q1 ‖ [110]

Space group H XQ1
Nc XQ1

Nc

P4/mmm

⎛
⎝F x

Q1
0 0

0 F y
Q1

0
0 0 F z

Q1

⎞
⎠ 3

⎛
⎝F x

Q1
Ez

Q1
0

Ez
Q1

F x
Q1

0
0 0 F z

Q1

⎞
⎠ 3

P422

⎛
⎝F x

Q1
0 0

0 F y
Q1

iDx
Q1

0 −iDx
Q1

F z
Q1

⎞
⎠ 4

⎛
⎝ F x

Q1
Ez

Q1
−iDx

Q1

Ez
Q1

F x
Q1

iDx
Q1

iDx
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 4

P4̄2m

⎛
⎝F x

Q1
0 0

0 F y
Q1

iDx
Q1

0 −iDx
Q1

F z
Q1

⎞
⎠ 4

⎛
⎝ F x

Q1
Ez

Q1
iDx

Q1

Ez
Q1

F x
Q1

iDx
Q1−iDx

Q1
−iDx

Q1
F z

Q1

⎞
⎠ 4

P4̄m2

⎛
⎝ F x

Q1
0 −iDy

Q1

0 F y
Q1

0
iDy

Q1
0 F z

Q1

⎞
⎠ 4

⎛
⎝ F x

Q1
Ez

Q1
−iDx

Q1

Ez
Q1

F x
Q1

iDx
Q1

iDx
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 4

P4mm

⎛
⎝ F x

Q1
0 −iDy

Q1

0 F y
Q1

0
iDy

Q1
0 F z

Q1

⎞
⎠ 4

⎛
⎝ F x

Q1
Ez

Q1
iDx

Q1

Ez
Q1

F x
Q1

iDx
Q1−iDx

Q1
−iDx

Q1
F z

Q1

⎞
⎠ 4

P4/m

⎛
⎝F x

Q1
Ez

Q1
0

Ez
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 4

⎛
⎝F x

Q1
Ez

Q1
0

Ez
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 4

P4

⎛
⎝ F x

Q1
Ez

Q1
−iDy

Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

⎛
⎝ F x

Q1
Ez

Q1
−iDy

Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

P4̄

⎛
⎝ F x

Q1
Ez

Q1
−iDy

Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

⎛
⎝ F x

Q1
Ez

Q1
−iDy

Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6
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TABLE VI. Interaction matrix XQ1
and the number of independent components Nc in the hexagonal crystal systems for the high-symmetric

wave vector Q1 shown in Figs. 2(c) and 2(d). The spin coordinates xs, ys, and zs are taken along the x, y, and z directions in Fig. 2(a),
respectively.

Q1 ‖ x̂ Q1 ‖ ŷ

Space group H XQ1
Nc XQ1

Nc

P6/mmm

⎛
⎝F x

Q1
0 0

0 F y
Q1

0
0 0 F z

Q1

⎞
⎠ 3

⎛
⎝F x

Q1
0 0

0 F y
Q1

0
0 0 F z

Q1

⎞
⎠ 3

P622

⎛
⎝F x

Q1
0 0

0 F y
Q1

iDx
Q1

0 −iDx
Q1

F z
Q1

⎞
⎠ 4

⎛
⎝ F x

Q1
0 −iDy

Q1

0 F y
Q1

0
iDy

Q1
0 F z

Q1

⎞
⎠ 4

P6̄m2

⎛
⎝ F x

Q1
iDz

Q1
0

−iDz
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 4

⎛
⎝F x

Q1
0 0

0 F y
Q1

0
0 0 F z

Q1

⎞
⎠ 3

P6̄2m

⎛
⎝F x

Q1
0 0

0 F y
Q1

0
0 0 F z

Q1

⎞
⎠ 3

⎛
⎝ F x

Q1
iDz

Q1
0

−iDz
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 4

P6mm

⎛
⎝ F x

Q1
0 −iDy

Q1

0 F y
Q1

0
iDy

Q1
0 F z

Q1

⎞
⎠ 4

⎛
⎝F x

Q1
0 0

0 F y
Q1

iDx
Q1

0 −iDx
Q1

F z
Q1

⎞
⎠ 4

P6/m

⎛
⎝F x

Q1
Ez

Q1
0

Ez
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 4

⎛
⎝F x

Q1
Ez

Q1
0

Ez
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 4

P6̄

⎛
⎝ F x

Q1
Ez

Q1
+ iDz

Q1
0

Ez
Q1

− iDz
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 5

⎛
⎝ F x

Q1
Ez

Q1
+ iDz

Q1
0

Ez
Q1

− iDz
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 5

P6

⎛
⎝ F x

Q1
Ez

Q1
−iDy

Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

⎛
⎝ F x

Q1
Ez

Q1
−iDy

Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

From Tables V–VII, one finds two features irrelevant to the
details of the space group. First, there are at least three inde-
pendent components (Nc � 3) in all cases. Among them, one
component corresponds to the isotropic contribution, F iso

q =
(F x

q + F y
q + F z

q )/3. Second, the antisymmetric interaction Dq

only appears in the absence of the spatial inversion symmetry,
while the symmetric ones Eq and Fq appear irrespective of
the inversion symmetry, as shown in rule (a) in Sec. II A 1.

In addition, there are three characteristics in Tables V–VII.
The first is that the interaction matrix depends on not only
the space group but also the direction of Q1, which reflects
the different symmetry of the wave vectors. In particular,
XQ1‖x̂ and XQ1‖ŷ in P6̄m2, P6̄2m, P321, P312, P3m1, and
P31m crystals have a different number of independent com-
ponents. The second is that the diagonal components of the
interactions are different for all the space groups except for
Q1 ‖ [110] in P4/mmm, P422, P4̄2m, P4̄m2, P4mm, and
P4/m crystal systems, i.e., F x

Q1
�= F y

Q1
�= F z

Q1
; the difference

between F x
Q1

and F z
Q1

(F y
Q1

and F z
Q1

) is due to an inequivalence
between the in-plane and z directions, while that between F x

Q1

and F y
Q1

is due to the discrete rotational symmetry around
the principal axis. It is noted that in the case of Q1 ‖ [110]
in P4/mmm, P422, P4̄2m, P4̄m2, P4mm, and P4/m crystal
systems, all the space groups allow nonzero Ez

Q1
instead of

different F x
Q1

and F y
Q1

. The third is that the symmetric off-
diagonal components, Ex

Q1
and Ey

Q1
, only appear in the trigonal

crystal systems, which do not have the twofold axis along
the z direction and the horizontal mirror plane [see rules (c)
and (d)]. Thus, a qualitatively different multiple-Q state is
expected under Ex

Q1
and Ey

Q1
in the trigonal crystal systems

from that in the tetragonal and hexagonal crystal systems, as
discussed in Sec. II C.

The other relevant interactions at the symmetry-related
wave vectors in {Q} are obtained by rotating the interaction
matrix XQ1

by the angle φ, which is represented by

XQη
= �(φ)XQ1

�−1(φ), (11)

where

�(φ) =
⎛
⎝σ cos φ −σ sin φ 0

σ sin φ σ cos φ 0
0 0 1

⎞
⎠ (12)

with σ = 1 (σ = −1) for the rotation (improper rotation) and
η = 2, 3. Specifically, XQ2

for P4/mmm, P422, P4mm, P4/m,
and P4 (P4̄2m, P4̄m2, and P4̄) are obtained by using Eqs. (11)
and (12) with φ = π/2 and σ = 1 (σ = −1), and XQ2

(XQ3
)

in the hexagonal and trigonal systems are obtained with
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TABLE VII. Interaction matrix XQ1
and the number of independent components Nc in the trigonal crystal systems for the high-symmetric

wave vector Q1 shown in Figs. 2(c) and 2(d). The spin coordinates xs, ys, and zs are taken along the x, y, and z directions in Fig. 2(a),
respectively.

Q1 ‖ x̂ Q1 ‖ ŷ

Space group H XQ1
Nc XQ1

Nc

P3̄m1

⎛
⎝F x

Q1
0 0

0 F y
Q1

Ex
Q1

0 Ex
Q1

F z
Q1

⎞
⎠ 4

⎛
⎝F x

Q1
0 0

0 F y
Q1

Ex
Q1

0 Ex
Q1

F z
Q1

⎞
⎠ 4

P3̄1m

⎛
⎝F x

Q1
0 Ey

Q1

0 F y
Q1

0
Ey

Q1
0 F z

Q1

⎞
⎠ 4

⎛
⎝F x

Q1
0 Ey

Q1

0 F y
Q1

0
Ey

Q1
0 F z

Q1

⎞
⎠ 4

P321

⎛
⎝F x

Q1
0 0

0 F y
Q1

Ex
Q1

+ iDx
Q1

0 Ex
Q1

− iDx
Q1

F z
Q1

⎞
⎠ 5

⎛
⎝ F x

Q1
iDz

Q1
−iDy

Q1−iDz
Q1

F y
Q1

Ex
Q1

iDy
Q1

Ex
Q1

F z
Q1

⎞
⎠ 6

P312

⎛
⎝ F x

Q1
iDz

Q1
Ey

Q1−iDz
Q1

F y
Q1

iDx
Q1

Ey
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

⎛
⎝ F x

Q1
0 Ey

Q1
− iDy

Q1

0 F y
Q1

0
Ey

Q1
+ iDy

Q1
0 F z

Q1

⎞
⎠ 5

P3m1

⎛
⎝ F x

Q1
iDz

Q1
−iDy

Q1−iDz
Q1

F y
Q1

Ex
Q1

iDy
Q1

Ex
Q1

F z
Q1

⎞
⎠ 6

⎛
⎝F x

Q1
0 0

0 F y
Q1

Ex
Q1

+ iDx
Q1

0 Ex
Q1

− iDx
Q1

F z
Q1

⎞
⎠ 5

P31m

⎛
⎝ F x

Q1
0 Ey

Q1
− iDy

Q1

0 F y
Q1

0
Ey

Q1
+ iDy

Q1
0 F z

Q1

⎞
⎠ 5

⎛
⎝ F x

Q1
iDz

Q1
Ey

Q1−iDz
Q1

F y
Q1

iDx
Q1

Ey
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

P3̄

⎛
⎝F x

Q1
Ez

Q1
Ey

Q1

Ez
Q1

F y
Q1

Ex
Q1

Ey
Q1

Ex
Q1

F z
Q1

⎞
⎠ 6

⎛
⎝F x

Q1
Ez

Q1
Ey

Q1

Ez
Q1

F y
Q1

Ex
Q1

Ey
Q1

Ex
Q1

F z
Q1

⎞
⎠ 6

P3

⎛
⎝ F x

Q1
Ez

Q1
+ iDz

Q1
Ey

Q1
− iDy

Q1

Ez
Q1

− iDz
Q1

F y
Q1

Ex
Q1

+ iDx
Q1

Ey
Q1

+ iDy
Q1

Ex
Q1

− iDx
Q1

F z
Q1

⎞
⎠ 9

⎛
⎝ F x

Q1
Ez

Q1
+ iDz

Q1
Ey

Q1
− iDy

Q1

Ez
Q1

− iDz
Q1

F y
Q1

Ex
Q1

+ iDx
Q1

Ey
Q1

+ iDy
Q1

Ex
Q1

− iDx
Q1

F z
Q1

⎞
⎠ 9

φ = 2π/3 (φ = 4π/3) and σ = 1. X−Q is obtained from
X−Q = X ∗

Q by the time-reversal symmetry.
Tables V–VII are useful to construct the model not only

with {Q} shown in Fig. 2 but also with other {Q}. For
example, the model with {Q} = {±Q1 ‖ x̂,±Q2 ‖ ŷ, Q1 ±
Q2,−Q1 ± Q2} in P4/mmm crystal is constructed from XQ1‖x̂

and X(Q1+Q2 )‖[110], which are given in Table V. Then, the
number of independent interactions in the model is six. Fur-
thermore, the general model in Eq. (9) with the interactions
at the two-dimensional wave vectors can be constructed from
Tables V–VII and Appendix B, which will give an insight
into the stability of the two-dimensional multiple-Q states,
such as the SkX. Similar to the case with two-dimensional
wave vectors, one can construct the spin model with the
interactions at three-dimensional wave vectors based on the
rules (a)–(f), which leads to a minimal effective spin model to
investigate an instability toward three-dimensional multiple-Q
states [42,46,108,114], such as the hedgehog lattice.

Although one can start from the general model in Eq. (9)
and obtain the optimal spin configurations by performing
unbiased numerical simulations, such as Monte Carlo simu-
lations, one notices that the effective spin model in Eq. (10)
is enough to discuss the magnetic instability in specific
temperature regions. For example, in the case of the isotropic
classical spin model, which corresponds to F x

q = F y
q = F z

q and

Dq = Eq = 0, the ground state becomes the spiral ordering
with the wave vector q∗ that gives the largest value of Xq. In
this case, the interactions with other q( �= q∗) do not contribute
to the energy, which can be neglected. Meanwhile, in the case
of the anisotropic spin model originating from the SOC, the
instability toward a multiple-Q state, which is a superposition
of spin density waves at different q, can occur. In such a situa-
tion, the superposition between the wave vectors connected by
the point-group operations tends to be favored, since they give
the same largest eigenvalue of Xq so as to satisfy the lattice
symmetry. Then, it is natural to use the effective spin model
in Eq. (10) rather than the general model in Eq. (9) to examine
the low-temperature spin configuration. The use of the effec-
tive spin model enables us to reduce the computational cost.
Furthermore, the effective spin model is useful to discuss the
instability toward the multiple-Q states in the model with the
dipolar interaction at high temperatures [53,69].

The momentum-space effective spin model in Eqs. (9) and
(10) can be applied to both metals with long-range interactions
and insulators with short-range interactions. Especially, when
considering the low-temperature spin configuration in metals,
the effective spin model in momentum space in Eq. (10)
enables us to search for multiple-Q states more efficiently
compared to the original itinerant electron model in real space.
In the momentum-space effective spin model, there are only

174437-8



EFFECTIVE SPIN MODEL IN MOMENTUM SPACE: … PHYSICAL REVIEW B 106, 174437 (2022)

three to nine model parameters depending on the wave vector.
Meanwhile, when we construct an effective spin model with
the real-space interactions for the itinerant electron model, the
consideration up to the further-neighbor interactions including
the sign change is required. Besides, too many model parame-
ters make it difficult to obtain the optimal spin configurations
with the lowest energy, since there are a lot of local minima
due to the competing interactions in real space. Thus, our
effective spin model in Eq. (10) gives an efficient guideline
to understand the instability toward the multiple-Q states.

We comment that the effective spin models in the
primitive-lattice system in Eq. (10) can be used as the ef-
fective spin model in the multisublattice systems when the
ordering vectors in each sublattice are common to each
other. Indeed, the effective spin models based on such an
approximation have accounted for the appearance of the
SkX [96,103,108,111], hedgehog-lattice [42], and vortex-
crystal [95] phases in real materials where there are multiple
magnetic ions in the unit cell. Meanwhile, in order to examine
the magnetic structures within the unit cell, we need to extend
the effective spin models so as to include the sublattice degree
of freedom, as discussed in the next section.

Finally, we briefly discuss how to construct the model
from the experimental data, where we focus on GdRu2Si2

[18,103]. GdRu2Si2 has a I4/mmm crystal structure with the
alternative stacking of the Gd square lattice and hosts the
incommensurate order below a Néel temperature with the or-
dering vector Q ‖ [100]. By applying the magnetic field along
the [001] direction, the double-Q SkX with ordering vec-
tors Q1 = (Q, 0, 0) and Q2 = (0, Q, 0) appears in the ground
state, where Q1 and Q2 are connected by the fourfold rotation
along [001]. Thus, we approximate the I4/mmm crystal struc-
ture by the Gd square lattice with P4/mmm symmetry and
take into account the interactions only at ±Q1 and ±Q2. Such
a situation is described by the model in Eq. (10) with P4/mmm
symmetry and {Q} = {±Q1,±Q2}, which is constructed from
Table V and Eqs. (11) and (12): XQ1‖x̂ is shown in the first
row of Table V, and XQ2

are obtained by using Eq. (12) with
σ = 1 and φ = π/2. Indeed, this model reproduces not only
the observed SkX phase but also the other double-Q phases
appearing at low temperatures by additionally considering the
magnetic field and biquadratic interaction [103]. In this way,
one can construct the effective spin model for other materials
once the space-group symmetry and relevant {Q} are deter-
mined from the x-ray and neutron experiments.

2. Multisublattice case

Based on the symmetry argument in Sec. II A 2, one can
directly construct the effective spin model in two and three
sublattice systems. The effective spin Hamiltonian is given by

Heff = −
∑

q∈{Q}

∑
μ,ν

ST
μqXμν;qSν−q, (13)

where {Q} is a set of the wave vector. As in the primitive-
lattice case, we can write down nonzero components of the
interaction matrix once {Q} and the space group are given. As
specific examples, we present the interaction matrix at Q1 ‖ x̂
in the honeycomb and kagome structures with the hexagonal
space group P6/mmm shown in Fig. 3; the Brillouin zone

FIG. 3. (a) Honeycomb and (b) kagome structures with P6/mmm
symmetry. Gray, white, and black spheres represent sublattices A, B,
and C, respectively. The wave vector Q1 parallel to the x direction is
denoted in the figure.

is the same as that in Fig. 2(c). When focusing on the Q1
component, there are seven symmetry constraints in both hon-
eycomb and kagome lattices similar to the primitive triangular
lattice as follows: the inversion center (I); the mirror planes
perpendicular to x̂ (mx ), ŷ (my), and ẑ (mz ); and the twofold
axis parallel to x̂ (Cx ), ŷ (Cy), and ẑ (Cz ). Depending on
the sublattice configurations, these constraints give different
interaction matrices, as detailed below.

In the two-sublattice honeycomb-structure case in
Fig. 3(a), mz, mx, and Cy (I , my, Cx, and Cz) fix (interchange)
the sublattices A and B. The symmetry constraints by mz,
mx, and Cy (I , my, Cx, and Cz) are given in Fig. 1 and Table I
(Tables II and III). Consequently, the interaction matrices are
expressed as

XAA;Q1
=

⎛
⎜⎝

Re
(
F x

AA;Q1

)
iIm

(
Dz

AA;Q1

)
0

−iIm
(
Dz

AA;Q1

)
Re

(
F y

AA;Q1

)
0

0 0 Re
(
F z

AA;Q1

)
⎞
⎟⎠,

(14)

XBB;Q1
=

⎛
⎜⎝

Re
(
F x

AA;Q1

) −iIm
(
Dz

AA;Q1

)
0

iIm
(
Dz

AA;Q1

)
Re

(
F y

AA;Q1

)
0

0 0 Re
(
F z

AA;Q1

)
⎞
⎟⎠,

(15)

XAB;Q1
=

⎛
⎜⎝

Re
(
F x

AB;Q1

)
iIm

(
E z

AB;Q1

)
0

iIm
(
E z

AB;Q1

)
Re

(
F y

AB;Q1

)
0

0 0 Re
(
F z

AB;Q1

)
⎞
⎟⎠.

(16)

Here, XBB;Q1
is related to XAA;Q1

through I , my, Cx, and Cz.
Compared to XQ1‖x̂ on P6/mmm triangular lattice shown in
Table VI, the main difference is seen in the off-diagonal
components in XAA;Q1

and XBB;Q1
; the intrasublattice DM

interaction Im(Dz
AA;Q1

) arises in the honeycomb structure due
to the lack of the local inversion symmetry at each sublat-
tice. Meanwhile, the intersublattice interaction XAB;Q1

has a
symmetric anisotropic exchange interaction Im(E z

AB;Q1
) rather

than the DM interaction. The interaction matrices at the other
Qη are easily obtained from a similar relation in Eq. (11).

In the three-sublattice kagome-structure case in Fig. 3(b),
I , mz, and Cz fix the sublattices A, B, and C, while mx, my, Cx,
and Cy interchange the sublattices A and B but fix C. Thus,
the symmetry constraints by the former (latter) symmetries
are given in Fig. 1 and Table I (Fig. 1 and Tables II–IV). As a
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result, the interaction matrices are given by

XAA;Q1
=

⎛
⎜⎝Re

(
F x

AA;Q1

)
Re

(
E z

AA;Q1

)
0

Re
(
E z

AA;Q1

)
Re

(
F y

AA;Q1

)
0

0 0 Re
(
F z

AA;Q1

)
⎞
⎟⎠, XBB;Q1

=

⎛
⎜⎝ Re

(
F x

AA;Q1

) −Re
(
E z

AA;Q1

)
0

−Re
(
E z

AA;Q1

)
Re

(
F y

AA;Q1

)
0

0 0 Re
(
F z

AA;Q1

)
⎞
⎟⎠, (17)

XCC;Q1
=

⎛
⎜⎝Re

(
F x

CC;Q1

)
0 0

0 Re
(
F y

CC;Q1

)
0

0 0 Re
(
F z

CC;Q1

)
⎞
⎟⎠, XAB;Q1

=

⎛
⎜⎝ Re

(
F x

AB;Q1

)
Re

(
Dz

AB;Q1

)
0

−Re
(
Dz

AB;Q1

)
Re

(
F y

AB;Q1

)
0

0 0 Re
(
F z

AB;Q1

)
⎞
⎟⎠, (18)

XBC;Q1
=

⎛
⎜⎝ Re

(
F x

BC;Q1

)
Re

(
E z

BC;Q1

) + Re
(
Dz

BC;Q1

)
0

Re
(
E z

BC;Q1

) − Re
(
Dz

BC;Q1

)
Re

(
F y

BC;Q1

)
0

0 0 Re
(
F z

BC;Q1

)
⎞
⎟⎠, (19)

XCA;Q1
=

⎛
⎜⎝ Re

(
F x

BC;Q1

) −Re
(
E z

BC;Q1

) + Re
(
Dz

BC;Q1

)
0

−Re
(
E z

BC;Q1

) − Re
(
Dz

BC;Q1

)
Re

(
F y

BC;Q1

)
0

0 0 Re
(
F z

BC;Q1

)
⎞
⎟⎠. (20)

Since the sublattice C is fixed by all the point-group sym-
metries, XAA;Q1

and XBB;Q1
(XBC;Q1

and XCA;Q1
) depend on

each other, while XCC;Q1
(XAB;Q1

) is independent. Similar to
the honeycomb-structure case, the DM interaction arises in
the kagome-structure case, although their natures are different
from each other due to the different sublattice configurations:
The DM interaction appears in the intersublattice interaction
Xμν;Q1

in the kagome-structure case, while it appears in the
intrasublattice interaction Xμμ;Q1

in the honeycomb-structure
case. The interaction matrices at the other Qη are also obtained
from a similar relation in Eq. (11).

The effective spin model in Eq. (13) becomes a reference to
search for sublattice-dependent multiple-Q states, such as the
antiferromagnetic SkX [63–65] and multisublattice SkX [66].
As Re(Dμμ;q), Im(Eμμ;q), Im(Fμμ;q) in the intrasublattice
interaction matrix Xμμ;Q1

, and Dμν;q, Eμν;q, and Fμν;q in the
intersublattice interaction matrix Xμν;Q1

(μ �= ν) additionally
emerge according to the multisublattice configurations, they
can become different sources to induce the multiple-Q states
in the multisublattice system. Besides, the model in Eq. (13)
is useful to provide insight into the microscopic origin of
the sublattice-dependent topological spin textures observed in
experiments, such as the fractional antiferromagnetic SkX in
MnSc2S4 [115,116].

C. Tendency of spin configurations under
the anisotropic interactions

In Secs. II A and II B, we show that a variety of anisotropic
exchange interactions appear depending on the space group,
wave vector, and sublattice structure. To intuitively un-
derstand the relationship between the momentum-resolved
anisotropic exchange interactions and the multiple-Q states,
we present plausible spin configurations in the presence of
each DQη

, EQη
, and FQη

in the primitive triangular-lattice
case under the hexagonal and trigonal space groups. Figure 4
shows the expected single-Q and triple-Q modulations under
the strong anisotropic interactions, as detailed in Secs. II C 1
and II C 2, respectively. Although we present here the spin
configurations for the variable spin length due to quantum and
thermal fluctuations for better visibility, similar single-Q and

triple-Q spin configurations are also obtained as the ground
state even in the classical spin model by taking into account
the anisotropic exchange interaction.

1. Single-Q case

We discuss the tendency of single-Q instabilities under the
momentum-resolved interaction at the wave vector Q1 ‖ x̂.
In the case of the isotropic interaction, the spiral state with
a wave vector q∗ = Q1 has the lowest energy, as described
above, where the spiral plane is arbitrary. When additionally
considering the anisotropic interactions, the spiral wave is
modulated depending on the type of interaction. For example,
DQ1

fixes the spiral plane perpendicular to DQ1
: The proper-

screw (out-of-plane cycloidal) spiral wave is favored in the
space group P622 (P6mm) with nonzero Dx

Q1
(Dy

Q1
), and the

in-plane cycloidal spiral wave is favored in the space group
P6̄m2 with nonzero Dz

Q1
. The proper-screw, out-of-plane cy-

cloidal, and in-plane cycloidal spiral waves are shown in
the upper panels of Figs. 4(a)–4(c), respectively. Meanwhile,
when considering the effect of EQ1

instead of DQ1
, the spiral

plane by the isotropic interaction is elliptically modulated so
as to have a more perpendicular spin component to EQ1

. In
other words, EQ1

favors the sinusoidal wave oscillating in one
direction. For example, Ex

Q1
, Ey

Q1
, and Ez

Q1
favor the sinusoidal

wave with the spin oscillation along the [011], [101], and
[110] directions in spin space, respectively, which are shown
in the upper panels of Figs. 4(d)–4(f). It is noted that a similar
sinusoidal spin configuration with a constant |Si| is expected
to appear in the classical spin model. Such a sinusoidal modu-
lation by Ex

Q1
, Ey

Q1
, and Ez

Q1
is expected in the space groups

P3̄m1, P3̄1m, and P6/m, respectively. Moreover, FQ1
also

modulates the spiral wave into the sinusoidal wave. For exam-
ple, in the case of F x

Q1
, F y

Q1
, and F z

Q1
, the sinusoidal wave with

the spin oscillation along the [100], [010], and [001] directions
in spin space is favored, respectively, as shown in the upper
panel of Figs. 4(g)–4(i).

2. Triple-Q case

Similar to the single-Q case, one can expect a tendency of
the multiple-Q spin configuration under the strong anisotropic
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FIG. 4. Spin configurations in the presence of the anisotropic interactions: (a) DQ1
‖ x̂, (b) DQ1

‖ ŷ, (c) DQ1
‖ ẑ, (d) EQ1

‖ x̂, (e) EQ1
‖ ŷ,

(f) EQ1
‖ ẑ, (g) FQ1

‖ x̂, (h) FQ1
‖ ŷ, and (i) FQ1

‖ ẑ. Upper panel: Single-Q spin structures with the ordering vector Q1 ‖ x̂ of (a)–(c) spiral
waves and (d)–(i) sinusoidal waves. In (a)–(c), the spiral planes in the spiral wave are (a) yz, (b) zx, and (c) xy planes. In (d)–(i), the oscillating
directions in the sinusoidal wave are (d) [011], (e) [101], (f) [110], (g) [100], (h) [010], and (i) [001] directions. Lower panel: Triple-Q
structures consisting of the three single-Q waves in the upper panel at Q1, Q2, and Q3 in Fig. 2(c). The colors of the arrows represent the z
spin component, where red, blue, and green denote positive, negative, and zero values. When the spin length at each site is fixed, these spin
configurations are modulated by the constraint in terms of the spin norm.

interactions. We discuss here the relationship between the
anisotropic interactions and the triple-Q spin configuration
by superposing the three spirals with the same intensity on
the triangular lattice belonging to the hexagonal and trigonal

space groups, where we consider the superposition of the spin
density waves at Q1, Q2, and Q3 in Fig. 2(c) and neglect
the phase degree of freedom of the spin density wave for
simplicity [62,117,118].
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In the case of DQ1
‖ x̂, i.e., DQ1

‖ Q1, the threefold ro-
tational symmetry imposes DQ2

‖ Q2 and DQ3
‖ Q3. Then,

DQ1
‖ x̂ favors the triple-Q proper-screw spiral wave ex-

pressed as the superposition of the three proper-screw spirals
in the lower panel of Fig. 4(a), which corresponds to the Bloch
SkX with Nsk = −1 per magnetic unit cell [see Eq. (57) for the
definition of the skyrmion number Nsk in Sec. V C]. Similarly,
DQ1

‖ ŷ and DQ1
‖ ẑ favor the triple-Q out-of-plane cycloidal

spiral wave corresponding to the Néel SkX with Nsk = −1 and
the triple-Q in-plane spiral wave, as shown in the lower panel
of Figs. 4(b) and 4(c), respectively. As shown in Figs. 4(a)
and 4(b) [Fig. 4(c)], the superposition of spirals in different
spiral planes (the same spiral plane) leads to the noncoplanar
(coplanar) structure.

Meanwhile, EQ1
and FQ1

tend to favor triple-Q sinusoidal
waves, as shown in the lower panel of Figs. 4(d)–4(i). Among
them, EQ1

‖ x̂ and EQ1
‖ ŷ tend to favor the noncoplanar

triple-Q sinusoidal waves since they consist of the three
sinusoidal waves oscillating in different out-of-plane direc-
tions, as shown in the lower panel of Figs. 4(d) and 4(e). These
noncoplanar triple-Q sinusoidal states correspond to the SkXs
with Nsk = +2. The cases for EQ1

‖ ẑ, FQ1
‖ x̂, and FQ1

‖ ŷ
favor the coplanar triple-Q sinusoidal waves consisting of
the three sinusoidal waves oscillating in different in-plane
directions, as shown in the lower panel of Figs. 4(f)–4(h).
The remaining FQ1

‖ ẑ favors the collinear triple-Q sinusoidal
wave consisting of the three sinusoidal waves oscillating in
the same direction [the lower panel of Fig. 4(i)], which is the
so-called magnetic bubble.

The above intuitive analysis provides two important pieces
of information about the SkXs. The first is that the anisotropic
interactions in all the hexagonal and trigonal crystal systems
do not tend to favor the antitype SkXs with Nsk = +1 with-
out the threefold rotational symmetry, since the anisotropic
exchange interactions connected by the threefold rotation [see
Eq. (11)] lead to the energy loss to form such SkXs free from
threefold symmetry. Meanwhile, there is no preference be-
tween the SkXs and antitype SkXs in terms of the symmetric
anisotropic exchange interactions in the tetragonal crystal sys-
tems. The second is that there is an instability tendency toward
the SkXs with |Nsk| = 2 only in the trigonal crystal systems
with Ex

Q1
and Ey

Q1
within the bilinear exchange interactions.

Such an argument in terms of the spin modulations under
the anisotropic exchange interactions is consistent with the
previous studies for the effective spin model with the clas-
sical spin, where unbiased numerical simulations have been
performed at low temperatures close to the zero temperature
under the space groups P4/mmm [51,92], P4mm [49], P4/m
[119], P6/mmm [54,94], P6mm [55], P6̄m2 [120], and P3̄m1
[61]. For example, the P3̄m1 system with nonzero Ex

Q1
in

addition to the isotropic exchange interaction exhibits the
instability toward the SkX with |Nsk| = 2 in Fig. 4(d). Ac-
cording to the simulation, the plausible multiple-Q state can
be energetically stable even by small magnetic anisotropy;
the SkX with |Nsk| = 2 in Fig. 4(d) is stabilized by Ex

Q1
,

whose magnitude is 10 times smaller than that of the isotropic
interaction [61]. For another example, the P6/mmm system
with nonzero F x

Q1
(F y

Q1
) in addition to the isotropic exchange

interaction and Zeeman coupling to an external magnetic field

leads to the SkX with Nsk = −1, whose spin configuration is
similar to that in Fig. 4(b) [4(a)]. Furthermore, the skyrmion
texture of the quantum spin has been studied in the quantum
spin state, where the Néel-type skyrmion appears by DQ1

‖ ŷ
even under quantum fluctuations [121–123].

III. ORIGIN OF THE ANISOTROPIC EXCHANGE
INTERACTIONS: CASE OF ITINERANT

ELECTRON MODELS

We discuss how to derive the momentum-resolved
anisotropic exchange interaction in Eq. (9) based on a micro-
scopic Hamiltonian for itinerant magnets. Starting from the
multiband anisotropic PAM with the SOC in Sec. III A, we
present the important parameters for nonzero anisotropic in-
teractions. For that purpose, we perform the Schrieffer-Wolff
transformation [99] to derive the Kondo lattice model with
the anisotropic exchange coupling between itinerant electron
spins and localized spins in Sec. III B. Then, we trace out
the itinerant electron degree of freedom to derive the effec-
tive spin model by supposing the weak exchange coupling in
Sec. III C.

A. Anisotropic periodic Anderson model

We consider the multiband anisotropic PAM incorporating
the effect of the SOC [61,101,124,125], which is represented
by

HPAM = Hc + H f + Hc f , (21)

where

Hc =
∑

m,k,σ

(εmk − μ)c†
mkσ

cmkσ , (22)

H f = (E f − μ)
∑
i,σ

niσ + U
∑

i

ni↑ni↓, (23)

Hc f =
∑

m,i,k,σ,σ ′

eik·Ri

√
N

f †
iσ

(
V 0

mkδ + V mk · σ
)
σσ ′cmkσ ′ + H.c.

(24)

Here, c†
mkσ

(cmkσ ) is a creation (annihilation) operator of an
itinerant electron with band m, wave vector k, and spin σ ,
f †
iσ ( fiσ ) is a creation (annihilation) operator of a localized

f electron at position vector Ri with spin σ , and niσ = f †
iσ fiσ .

Hc represents the Hamiltonian of the itinerant electron with
the energy dispersion εmk and the chemical potential μ. H f

represents the Hamiltonian of the localized f electron, where
E f is the atomic energy and U is the Coulomb interaction.
Hc f stands for the Hamiltonian consisting of the hybridiza-
tion between the itinerant electrons and localized electrons;
V 0

mkδσσ ′ represents the spin-independent hybridization, and
V mk · σσσ ′ = ∑

α=x,y,z V α
mkσ

α
σσ ′ represents the spin-dependent

hybridization, where δσσ ′ is the Kronecker delta, σσσ ′ =
(σ x, σ y, σ z )σσ ′ is a vector of the Pauli matrices, and N is
the number of unit cells. The contribution of spin-dependent
hybridization arises from the mixture of up- and down-spin
basis functions of the itinerant and/or localized electrons due
to the SOC, where the spin index σ in the spin-orbital-coupled
basis is regarded as the pseudospin.
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B. Anisotropic Kondo lattice model

We derive a low-energy effective model when E f (E f + U )
is much smaller (larger) than the Fermi energy. In this situa-
tion, the f electron state at each site is occupied by a single
electron (

∑
σ niσ = 1) and the f electron is approximately

regarded as the localized spin. When the hybridizations are
treated as the perturbation, the low-energy effective model is
derived by the Schrieffer-Wolff transformation as eSHPAMe−S

with the generator S; S satisfies Hc f + [S,H0] = 0, where
H0 = Hc + H f and [S,H0] represents the commutation re-
lation. Then, S is given by

S = 1√
N

∑
m,i,k,σ,σ ′

(Amk + Bmkniσ̄ )

× {
eik·Ri f †

iσ

(
V 0

mkδσσ ′ + V mk · σσσ ′
)
cmkσ ′ − H.c.

}
, (25)

where σ̄ = −σ and

Amk = 1

E f − εmk
, (26)

Bmk = 1

εmk − E f
− 1

εmk − E f − U
. (27)

Then, the low-energy effective model up to the second order
of the hybridizations, HPAM(2), is approximately given by

HPAM(2)

= H0 + 1
2 [S,Hc f ] (28)

= Hc +
∑
m,m′

∑
σ,σ ′

(
H′

mσ ;m′σ δσσ ′ + Hex
mσ ;m′σ ′ + HSOC

mσ ;m′σ ′
)
,

(29)

where the subscript mσ ; m′σ ′ represents a matrix element
between itinerant electrons with (m, σ ) and (m′, σ ′). In the
derivation, we drop the constant terms such as H f . The details
of HPAM(2) are given in Appendix C.

To focus on the origin of the anisotropic interactions, we
further neglect the contributions from the spin-independent
term H′ and from the different bands in Hex and HSOC. In the
end, HPAM(2) reduces to an anisotropic Kondo lattice model as

HKLM = Hc +
∑

m

∑
σ,σ ′

(
Hex

mσσ ′ + HSOC
mσσ ′

)
, (30)

where the subscript mσσ ′ represents a matrix element be-
tween itinerant electrons with (m, σ ) and (m, σ ′).

The Kondo lattice model includes two spin-dependent
terms. One is the exchange interaction between itinerant elec-
tron spins and localized spins, Hex

mσσ ′ , which is given by

Hex
mσσ ′ = 1√

N

∑
k,q,α,β

Jαβ

mk+qkc†
mk+qσ

σ α
σσ ′cmkσ ′Sβ

q . (31)

Here, Sq is the Fourier transform of the localized spin Si =∑
σ,σ ′ f †

iσ σσσ ′ fiσ ′/2. The exchange interaction is decomposed
into isotropic, symmetric anisotropic, and antisymmetric
anisotropic exchange interactions in spin space [61,101,126]
as

Jαβ

mkk′ = J ISO
mkk′δαβ + [

JS
mkk′

]αβ + [
JAS

mkk′
]αβ

, (32)

where

J ISO
mkk′ = C(1)

mkk′
(
V 0

mk′V 0∗
mk − V mk′ · V ∗

mk

)
, (33)[

JS
mkk′

]αβ = C(1)
mkk′

(
V α

mk′V β∗
mk + V α∗

mk V β

mk′
)
, (34)[

JAS
mkk′

]αβ = iC(1)
mkk′

∑
γ

εαβγ

(
V γ

mk′V 0∗
mk − V γ ∗

mk V 0
mk′

)
, (35)

with C(1)
mkk′ = (Bmk + Bmk′ )/2 and the Levi-Civita symbol

εαβγ . The symmetric and antisymmetric exchange interac-
tions satisfy [JS

mkk′]αβ = [JS
mkk′]βα and [JAS

mkk′]αβ = −[JAS
mkk′]βα ,

respectively. The anisotropic exchange interactions vanish in
the absence of the spin-dependent hybridizations. In addition,
it is noted that these anisotropic interactions also vanish when
Hc f includes a single component of (V 0

mk,V mk).
The other spin-dependent term in Eq. (30) is the effective

SOC for itinerant electrons, HSOC
mσσ ′ , which is given by

HSOC
mσσ ′ =

∑
k

gmk · c†
mkσ

σσσ ′cmkσ ′ , (36)

where

gα
mk = C(2)

mk

(
V α

mkV 0∗
mk + V α∗

mk V 0
mk − i

∑
β,γ

εαβγV β

mkV γ ∗
mk

)
, (37)

with C(2)
mk = −(Amk + Bmk/2). The effective SOC is induced

by the spin-dependent hybridizations; gα
mk vanishes for V mk =

0. The expression of gα
mk reduces to the antisymmetric spin-

orbit interaction in the single-band system, which appears in
noncentrosymmetric crystal systems.

C. Effective spin model

An effective spin model of the anisotropic Kondo lattice
model in Eq. (9) is obtained by expanding the grand poten-
tial to second order with respect to the exchange coupling
[73,74,77]. When taking gmk = 0 for simplicity, the lowest
second-order contribution of the exchange energy to the grand
potential is given by

�(2) = −T

2

∫ 1/T

0
dτ1

∫ 1/T

0
dτ2

〈
TτHex

τ1
Hex

τ2

〉
con

= −
∑

q

∑
α,β

X αβ
q Sα

q Sβ
−q, (38)

where T is the temperature, τ is the imaginary time, Tτ is
the time-ordered product, Hex

τ = eτHcHexe−τHc
, and 〈· · · 〉con

represents the contributions from the connected Feynman di-
agrams. X αβ

q in the second line corresponds to the interaction
matrix in Sec. II, which is given by

X αβ
q = T

N

∑
m,k,γ ,ωn

Gmk+q(iωn)Gmk(iωn)Jγα

mk+qkJγ β

mkk+q

= 1

N

∑
m,k,γ

f (εmk) − f (εmk+q)

εmk+q − εmk
Jγα

mk+qkJγ β

mkk+q, (39)

where Gmk(iωn) = 1/(iωn − εmk + μ) is the noninteracting
Green’s function with the Matsubara frequency ωn, and
f (εmk) is the Fermi distribution function. It is noted that the
Green’s function does not depend on the spin, since we neglect
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the effective SOC (gmk = 0), and then we omit its spin depen-
dence for notational simplicity. Dq, Eq, and Fq in Eq. (3) are
related to X αβ

q in Eq. (39) as

Dα
q = 1

2

∑
β,γ

εαβγ Im
[
X βγ

q

]
, (40)

Eα
q = 1

2

∑
β,γ

|εαβγ |Re
[
X βγ

q

]
, (41)

Fα
q = X αα

q . (42)

In this way, the momentum-resolved anisotropic interactions
introduced in Eq. (3) are obtained based on the itinerant
electron model. As shown in Eq. (39), the coupling matrix
depends on the temperature and electronic states. It is noted
that the anisotropic interactions are also obtained from the
Kondo lattice model with gmk �= 0 instead of JS

mkk′ and JAS
mkk′

[49,127,128].
The effective spin model in Eq. (38) is justified when the

energy scale of the exchange interaction is smaller than that of
the bandwidth. In the itinerant electron model, the dominant
q components in the interactions giving the largest eigenvalue
of Xq are related to the nesting vectors of the Fermi surface,
as inferred from Eq. (39). As Xq is calculated when εmk, μ,
V 0

mk, and V mk are given, one can quantitatively evaluate the
contributions of the anisotropic interactions. For example, one
can directly evaluate the anisotropic interactions in materials
within the framework of the first-principles calculations.

Similar momentum-resolved spin models can be derived
from other itinerant electron models. For example, the clas-
sical Kondo lattice model in the strong exchange coupling
regime (double exchange model [129,130]) is mapped onto
the effective spin model with the short-range spin inter-
actions [131–134]. When taking into account the Rashba-
or Dresselhaus-type SOC, the short-range spin interactions
become anisotropic [88,135–139]. Furthermore, the effec-
tive spin model with the short-range spin interactions can
be constructed based on the Hubbard model with the SOC
[136,140,141]. In these cases, the momentum-resolved effec-
tive spin model in Eq. (10) is obtained once the dominant
interaction in q space (including q = 0 component) is ex-
tracted.

IV. ORIGIN OF THE ANISOTROPIC EXCHANGE
INTERACTIONS: CASE OF LOCALIZED SPIN MODELS

In the previous section, we show that the momentum-
resolved anisotropic exchange interaction is obtained as the
effective long-range (short-range) interaction for itinerant
electron models. Meanwhile, the above momentum-resolved
anisotropic exchange interaction is also related to the short-
range interaction in the localized spin model. For example, a
ground-state magnetic phase diagram has been constructed by
considering the dominant q interactions in frustrated magnets
[80,142] and DM-based magnets [143]. In the localized spin
model, the anisotropic exchange interaction originates from
the relativistic SOC, which largely depends on the point-group
symmetry in crystals [90,91,144–153]. In such a situation, the
microscopic origin of the interaction matrix Xq in Eq. (10) is
attributed to the Fourier transform of real-space anisotropic

FIG. 5. Left panel: P6/mmm crystal lattice consisting of three
layers. The blue (gray) spheres represent magnetic (nonmagnetic)
ions with the f (s) orbital and form the triangular lattice on the xy
plane. The three layers are stacked along the z direction at equal
intervals of c. Right panel: the triangular lattice viewed from the z
direction; e1, e2, and e3 are the unit vectors.

exchange interactions. Furthermore, the effective spin model
can include the effect of the dipolar interactions by performing
the Fourier transformation, which is renormalized into Eq and
Fq [53,69].

V. APPLICATION TO A SPECIFIC HEXAGONAL SYSTEM

We apply the above general expression to a specific hexag-
onal crystal system under the space group P6/mmm at low
temperatures. Starting from the PAM in Sec. V A and mapping
it onto the effective spin model in Sec. V B, we show the
multiple-Q instability in the ground state by performing the
simulated annealing in Sec. V C.

A. Anisotropic periodic Anderson model

As an example, we consider the specific P6/mmm crystal
lattice consisting of three triangular-lattice layers separated by
a distance c, as shown in the left panel of Fig. 5; the localized
f orbitals denoted by the blue spheres lie on the middle layer,
and the itinerant s orbitals denoted by the gray spheres lie on
the upper and lower layers. We set the lattice constant of the
triangular lattice as the length unit.

The system is described by the multiband anisotropic PAM
in Eq. (21) under the periodic boundary condition in the x and
y directions. The energy dispersion of the itinerant electron in
Hc in the upper and lower layers is given by

εmk = −2
∑

i=1,2,3

(t1 cos k · ei + t3 cos 2k · ei ), (43)

where k = (kx, ky ) is the two-dimensional wave vector; e1 =
(1, 0), e2 = (−1/2,

√
3/2), and e3 = (−1/2,−√

3/2) are the
unit vectors of the triangular lattice (the right panel of Fig. 5);
and m = + (−) represents the upper (lower) nonmagnetic
layer. Here, we consider the hoppings between the nearest-
and third-neighbor sites, t1 and t3, within the same layer.

Meanwhile, we suppose that the f orbital with the Kramers
twofold degeneracy is anisotropic in spin space by incorpo-
rating the effect of the SOC and the crystalline electric field
(CEF) under the P6/mmm symmetry in the following way.
By assuming that the magnitude of SOC is greater than that of
CEF, the 14 degenerate f electron states are split into the two
levels with the total angular momentum j = 7/2 and 5/2 by
the SOC, and then they are split into a total of seven Kramers
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pairs by the CEF. We choose one out of seven Kramers pairs,
which is expressed as

f †
i↑|0〉 = αCEF

∣∣∣∣i, 3,
1

2

〉
+
√

1 − α2
CEF

(√
6

7

∣∣∣∣i,−2,−1

2

〉

+
√

1

7

∣∣∣∣i,−3,
1

2

〉)
, (44)

f †
i↓|0〉 = −αCEF

∣∣∣∣i,−3,−1

2

〉

−
√

1 − α2
CEF

(√
6

7

∣∣∣∣i, 2,
1

2

〉
+
√

1

7

∣∣∣∣i, 3,−1

2

〉)
,

(45)

where |i, lz, sz〉 is characterized by the site i and the mag-
netic quantum number of the f orbital (lz = −3,−2, . . . , 3)
and spin (sz = ±1/2), and αCEF (|αCEF| � 1) is a constant
depending on the CEF parameters. It is noted that the sub-
scripts ↑ and ↓ on the left-hand side represent the pseudospin
to satisfy θ f †

i↑ |0〉 = f †
i↓ |0〉 and θ f †

i↓ |0〉 = − f †
i↑ |0〉 for the

time-reversal operation θ . |i,±3, sz〉 and |i,±2, sz〉 on the
right-hand side are related to the real expressions of the f or-
bitals |3a〉 ∝ √

10x(x2 − 3y2)/4, |3b〉 ∝ √
10y(3x2 − y2)/4,

|βz〉 ∝ √
15z(x2 − y2)/2, and |xyz〉 ∝ √

15xyz as

|i,±3, sz〉 = ∓ 1√
2

|i, 3a, sz〉 − i√
2
|i, 3b, sz〉, (46)

|i,±2, sz〉 = 1√
2

|i, βz, sz〉 ± i√
2
|i, xyz, sz〉. (47)

Then, the hybridizations V 0
mk and V α

mk (α = x, y, z) in Hc f

are given by

V 0
mk =

∑
d

T 0
mdeik·d , (48)

V α
mk =

∑
d

T α
mdeik·d , (49)

where d represents the vector connecting the s orbital at Ri +
d and the f orbital at Ri, and

T 0
md =

−√
7αCEF +

√
1 − α2

CEF√
14

t3a
d , (50)

T x
md = i

√
1 − α2

CEF

√
3

7
t xyz
d , (51)

T y
md = i

√
1 − α2

CEF

√
3

7
tβz
d , (52)

T z
md = i

√
7αCEF +

√
1 − α2

CEF√
14

t3b
d , (53)

with t3a
d = √

10l (l2 − 3m2)(sfσ )/4, t3b
d = √

10m(3l2 −
m2)(sfσ )/4, tβz

d = √
15n(l2 − m2)(sfσ )/2, and t xyz

d =√
15lmn(sfσ ). (l, m, n) = d/|d| and (sfσ ) is the Slater-

Koster parameter [154]. Hereafter, we set (sfσ ) = 1, d =
±e1 + m(0, 0, c), ±e2 + m(0, 0, c), and ±e3 + m(0, 0, c).
Then, V z

mk vanishes for any αCEF and c due to the symmetry
of |3b〉. In addition, for αCEF = ±1 or c = 0, V x

mk = V y
mk = 0,

FIG. 6. αCEF and c̃ = c/
√

3 dependences of (a) q∗
x giving the

largest eigenvalue of Xq, (b) F x
q∗ − F z

q∗ , and (c) F y
q∗ − F z

q∗ . (d) Eigen-
values λq in momentum space at αCEF = −0.8 and c = 0.4, where
the hexagon with a solid line shows the first Brillouin zone. The
maxima appear at Q1 = e1π/3, Q2 = e2π/3, and Q3 = e3π/3. The
other parameters are set as t1 = 1, t3 = −0.85, μ = 1.3, C (1)

mkk′ = 1,
T = 0.02, and N = 482.

as t xyz
d and tβz

d are proportional to n. In this situation,
the anisotropic interaction in Eqs. (40)–(42) appears for
αCEF �= ±1 and c �= 0. It is noted that the nearest-neighbor
hybridizations by d = (0, 0,±c) vanish for any αCEF and c
due to the symmetry in the present system.

B. Effective spin model

Following the procedure in Sec. III, we derive the effective
spin model for the present PAM, which enables us to search
for the multiple-Q instability. From the symmetry argument,
there are three independent components (Fq) in Xq for the
high-symmetric lines, e.g., q = (qx, 0) and q = (0, qy), while
there are four independent components (Fq and Ez

q) for a
general q, as shown in Tables VI and X. In each q, the in-
teraction matrix Xq is calculated when the model parameters
(t1, t3, μ,U, E f ,V mk, T ) are given. It is noted that V mk is
determined by αCEF and the distance c, and U and E f are used
for C(1)

mkk′ . Here, we evaluate Xq by setting t1 = 1, t3 = −0.85,
and μ = 1.3. For the parameters, we neglect the wave-vector
dependence of C(1)

mkk′ in Eqs. (33)–(35) by supposing the sit-
uation in which U and |E f | are larger than the bandwidth.
Besides, we set C(1)

mkk′ = 1 for simplicity.
We first calculate the optimal ordering vector q∗ = (q∗

x , q∗
y )

that gives the maximum eigenvalue of Xq while changing
αCEF and c̃ = c/

√
3 at a low temperature T = 0.02 for the

system size N = 482. As shown in Fig. 6(a), the maximum
eigenvalue of Xq is obtained for q∗ = (π/3, 0) drawn by the
white region, while it is obtained for q∗ = (q∗

x , q∗
y ) with q∗

x �=
π/3 and q∗

y �= 0 drawn by the color region. We also plot the
anisotropic exchange interactions, F x

q∗ − F z
q∗ and F y

q∗ − F z
q∗ , in

Figs. 6(b) and 6(c), respectively. One finds that the anisotropic
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TABLE VIII. λq, F x
q , F y

q , F z
q , and Ez

q at Q1, 2Q1, 3Q1, 2Q1 − Q3,
and Q1 − Q3 at αCEF = −0.8 and c = 0.4, where Q1 = e1π/3, Q2 =
e2π/3, and Q3 = e3π/3. The other parameters are the same as those
in Fig. 6.

q λq F x
q F y

q F z
q Ez

q

Q1 1.53 1.53 0.76 1.16 0.00
2Q1 0.82 0.82 0.24 0.79 0.00
3Q1 0.80 0.80 0.45 0.65 0.00
2Q1 − Q3 0.64 0.55 0.30 0.64 −0.09
Q1 − Q3 0.55 0.46 0.28 0.52 0.16

interaction to satisfy F x
q∗ > F y

q∗ , F z
q∗ is realized in almost the

region except for αCEF = ±1, where only the isotropic spin
interaction appears, i.e., F x

q∗ = F y
q∗ = F z

q∗ . In other words, the
magnitude of anisotropic interactions largely depends on αCEF

and c. In particular, the reversal of the magnitude relation
between F y

q∗ and F z
q∗ in Fig. 6(c) indicates the instability to-

ward the different spiral or multiple-Q states. For example,
the tendency toward the out-of-plane (in-plane) cycloidal spin
is expected for αCEF = −0.5 and c̃ = 0.3 (αCEF = 0.3 and
c̃ = 0.5).

In the following, we fix the parameters as αCEF = −0.8 and
c̃ = 0.4, which gives the optimal ordering vectors as ±Q1 =
±e1π/3, ±Q2 = ±e2π/3, and ±Q3 = ±e3π/3. We plot the q
dependence of the largest eigenvalue of Xq at each q denoted
as λq in Fig. 6(d). We summarize the numerical values of λq,
F x

q , F y
q , F z

q , and Ez
q at Q1 in Table VIII. In addition, we show

them at wave vectors given by linear combinations of Q1, Q2,
and Q3 for later convenience.

C. Multiple-Q instability

1. Simulated annealing

We investigate the low-temperature magnetic phases in the
presence of the effective anisotropic interactions Xq obtained
in Sec. V B. Here, we add the Zeeman term, HZ = −H

∑
i Sz

i ,
to the effective anisotropic spin model in Eq. (9) in order to in-
vestigate the effects of the magnetic field H . It is noted that the
introduction of the magnetic field along the z direction does
not lead to the additional anisotropic bilinear interactions.
The spin configuration is obtained by using the simulated an-
nealing combined with the standard Metropolis local updates.
To focus on the multiple-Q instability in the ground state,
we ignore the temperature dependence of Xq for simplicity.
We gradually reduce the temperature with a rate Tn+1 = αTn,
where Tn is the temperature at the nth step. We set the initial
temperature T0 = 1 and the coefficient α ≈ 0.993 116. A final
temperature Tf = 0.001 is reached after a total of 105 Monte
Carlo steps, where we perform 102 Monte Carlo steps at
each temperature Tn. At the final temperature, we perform
104 Monte Carlo steps for thermalization and measurements,
respectively. To determine the phase boundary, we set the spin
configuration obtained near the phase boundary as the initial
spin configuration and perform the simulated annealing start-
ing at a low temperature (T0 = 0.05, 0.01). In the simulation,
we again set λQ1

as the energy unit. Moreover, we treat the

spin as the classical one with fixing the spin length at each
site (|Si| = 1) for simplicity.

We identify magnetic phases by measuring a magnetic
moment, a spin scalar chirality, and the skyrmion number. The
magnetic moment with wave vector q is defined as

mα
q =

√√√√〈
1

N2

∑
j,k

Sα
j Sα

k eiq·(R j−Rk )

〉
, (54)

where α = x, y, z and 〈· · · 〉 is the average over the Monte
Carlo samples. The in-plane and out-of-plane magnetic

moments are given by m⊥
q =

√
(mx

q)2 + (my
q)2 and mz

q, respec-

tively. mq=0 corresponds to the uniform magnetization M.
The spin scalar chirality of the triangle is defined as χr =
[S j · (Sk × Sl )], where the position vector r represents the tri-
angle center and the triangle consists of ( j, k, l ) sites labeled
in counterclockwise order. The uniform spin scalar chirality
is given by χsc = 〈∑r χr/N〉. The spin scalar chirality with
wave vector q is given by

χq =
√√√√〈

1

N2

∑
μ

∑
r,r′∈μ

χrχr′eiq·(r−r′ )

〉
, (55)

where μ = (u, d ) represents upward and downward triangles,
respectively. A skyrmion density �r [155] at the triangle r is
defined as

tan

(
�r

2

)
=
[

S j · (Sk × Sl )

1 + S j · Sk + Sk · Sl + Sl · S j

]
. (56)

Then, the skyrmion number is given by

Nsk = 1

4πNm

〈∑
r

�r

〉
, (57)

where Nm is the number of the magnetic unit cell.
In the following, we discuss three situations with different

sets of wave vectors, {Q}. First, we analyze the ground state
of the effective spin model by taking into account all the q
contributions in the interactions in Sec. V C 2. As mentioned
in Sec. II B 1, part of the interactions are important to describe
the magnetic instability at low temperatures. Therefore, we
discuss the minimum effective spin model to reproduce the re-
sults in Sec. V C 2. In Sec. V C 3, we find that it is not enough
to reproduce the results in Sec. V C 2 when considering only
the contributions from Q1-Q3. In Sec. V C 4, we show that
the additional contribution from 3Q1-3Q3 well reproduces the
results in Sec. V C 2.

2. Case of the interactions at all the wave vectors

In the effective spin model with the interactions at all the
wave vectors q except for q = 0, we investigate the ground
state of the effective spin model while changing the magnetic
field H . We show H dependences of the in-plane magnetic
moment at Q1-Q3, (m⊥

Qη
)2, in Fig. 7(a), the out-of-plane mag-

netic moment at Q1-Q3, (mz
Qη

)2, in Fig. 7(b), the spin scalar

chirality at Q1-Q3, (χQη
)2, in Fig. 7(c), the uniform mag-

netization Mz and the uniform spin scalar chirality |χsc| in
Fig. 7(d), and the skyrmion number Nsk in Fig. 7(e), where we
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FIG. 7. H dependences of (a) (m⊥
Qη

)2, (b) (mz
Qη

)2, (c) (χQη
)2,

(d) Mz and |χsc|, and (e) Nsk in the model with the interactions at
all the wave vectors. We sort m⊥

Qη
, mz

Qη
, and χQη

to satisfy m⊥
Q1

�
m⊥

Q2
� m⊥

Q3
.

sort m⊥
Qη

, mz
Qη

, and χQη
to satisfy m⊥

Q1
� m⊥

Q2
� m⊥

Q3
for better

readability. In addition to the fully polarized state at H = 2,
we find three types of the multiple-Q states; all the states are
characterized by mQη

, since Xq has the largest eigenvalues
at Qη, as detailed below. These multiple-Q states are stabi-
lized by magnetic anisotropy rather than thermal fluctuations.

Figure 8 shows the spin and chirality configurations in real
space and the magnetic moments in momentum space for each
multiple-Q state. The skyrmion density configurations in real
space for each multiple-Q state are shown in Fig. 9.

At H = 0, the ground state becomes a double-Q (2Q′)
state. In this state, the spin configuration is characterized by
the double-Q in-plane components m⊥

Q1
and m⊥

Q2
with differ-

ent intensities and no out-of-plane components at Q1-Q3 (Q′
represents different intensities of the Q1 and Q2 components),
as shown in Figs. 7(a) and 7(b). The real-space spin configu-
ration is shown in the first column of Fig. 8(a). The in-plane
spins form a periodic structure consisting of the vortex (circle)
and antivortex (square), while the z spins show no periodic
structure. Such a tendency is found in the presence (absence)
of sharp peaks in m⊥

q (mz
q), as shown in the third (fourth)

column of Fig. 8(a). In the scalar chirality sector, this state
exhibits χQη

= 0 and χsc = 0, as shown in Figs. 7(c) and 7(d),
respectively. In the real-space picture, the local scalar chirality
is randomly distributed, as shown in the second column of
Fig. 8(a). Accordingly, there is no skyrmion number (Nsk = 0)
in Fig. 7(e).

By applying a magnetic field, the 2Q′ state changes into
a triple-Q chiral I (3Q′-Ch-I) state, whose spin structure is
characterized by the double-Q in-plane components m⊥

Q1
>

m⊥
Q2

and the single-Q z component mz
Q3

, as shown in Figs. 7(a)
and 7(b). The in-plane spin configuration of the 3Q′-Ch-I state
is similar to that of the 2Q′ state, as shown in the first and third
columns of Fig. 8(b). Meanwhile, the first and fourth columns
of Fig. 8(b) show a structure of z spin components due to
the single-Q peak of mz

Qη
, where the z spins have positive

(small positive or negative) values at antivortices (vortices).
The undetermined sign of the z spins at vortices is due to
the small value of mz

Qη
, which results in the fluctuations of

Nsk characterized by noninteger values, as shown in Fig. 7(e).
The 3Q′-Ch-I state shows a nonzero uniform scalar chirality
[Fig. 7(d)] as well as the chirality density wave along the
Q3 direction [Fig. 7(c)]. The nonzero uniform scalar chirality
is attributed to the inequivalence between the z spin compo-
nent at antivortices and vortices, as found in the real-space
spin and chirality configurations in Fig. 8(b); there is a large
negative chirality at antivortices with large z spins and a small
negative/positive chirality at vortices with small z spins.

While increasing H , the peak structures of mz
Qη

and Mz

are developed, and then there are no fluctuations in Nsk for
H � 0.225. We call this state a triple-Q chiral II (3Q′-Ch-II)
state. As the difference of m⊥

Qη
, mz

Qη
, χQη

, and χsc between the

3Q′-Ch-I phase and the 3Q′-Ch-II phase seems to be slight in
Figs. 7(a)–7(d), the similar spin and chirality configurations in
real and momentum spaces appear in Figs. 8(b) and 8(c). By
closely looking into their spin configurations, one finds that
all spins have positive z components in the 3Q′-Ch-II phase
in Fig. 8(c), which is presumably due to the development of
mz

Qη
and Mz. As a result, the positive chirality contribution

appears at vortices, which leads to the suppression of the
total scalar chirality, as shown in Fig. 7(d). While further
increasing H , the chirality contributions from the vortices and
antivortices are canceled out, and then this state turns into the
fully polarized state at H = 2.
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FIG. 8. First column: The spin configurations averaged over 500 Monte Carlo steps of (a) the 2Q′ state at H = 0, (b) the 3Q′-Ch-I state at
H = 0.15, and (c) the 3Q′-Ch-II state at H = 0.5. The arrows and contours show the xy and z components of the spin, respectively. The circle
(square) highlights the vortex (antivortex) structure in the xy spins. Second column: The scalar chirality configurations of the first column.
Third and fourth columns: The in-plane and out-of-plane magnetic moments in momentum space. The solid and dashed circles in the third
column highlight the Qη and 3Qη components, respectively. The hexagons with a solid line show the first Brillouin zone. The q = 0 component
is removed for better visibility.

We further discuss the H dependence of Nsk in Fig. 7(e),
especially for the small H region, where Nsk takes a noninteger
value. We plot the real-space skyrmion density configurations
in Fig. 9. All the states have the large skyrmion density
near the (anti)vortex cores. At H = 0, the skyrmion number
becomes zero within the errorbars, where both vortices and
antivortices take a random value, as shown in Fig. 9(a). For
H > 0, Nsk takes a noninteger value in the 3Q′-Ch-I state.
In this state, the antivortices take a negative value, while
the vortices take a positive or negative value at random, as
shown in Figs. 9(b) and 9(c). This randomness is the reason
why Nsk becomes the noninteger values. Such randomness
is suppressed while increasing H , as shown in Figs. 9(b)
and 9(c). In the end, the randomness vanishes in the 3Q′-
Ch-II state, since the vortices always take a positive value,
as shown in Fig. 9(d). This result indicates that the energy
scale of F z

q is too small to lead to the sharp peak of mz
Qη

,
which makes the skyrmion density at the vortices ambigu-
ous. The ambiguity of skyrmion density is also suppressed
while decreasing T . Indeed, we confirm that the 3Q′-CH-
I state turns into the state with Nsk = −2 at 0 < H < 0.1
and that with Nsk = 0 at H � 0.1 by using a more efficient

simulation method, a heat-bath method at zero temperature
limit.

3. Case of the interactions at Qη

To identify the origin of the multiple-Q states, we consider
the minimum model to reproduce the results in Fig. 7 by drop-
ping off the less important q component of the interactions. In
the previous section, we find that the model shows the insta-
bility toward the multiple-Q states with the scalar chirality,
where there are no contributions from the interactions at al-
most all q channels except for Qν and their higher harmonics,
as discussed in Sec. II B 1. In this section, we only consider the
contributions of the interactions at {Q} = {±Q1,±Q2,±Q3},
since they give the maximum eigenvalue of Xq.

As a result, we find that the model with the interactions
at {Q} = {±Q1,±Q2,±Q3} is oversimplified in the present
situation. The H dependences in Fig. 10 show that the mag-
netic phases in the present model are different from those
in Sec. V C 2; we obtain the 2Q′-CS, 3Q′-SkX, 3Q-SkX,
and 3Q-Ch states that are not stabilized in the model in
Sec. V C 2. In particular, the appearance of 3Q′-SkX and 3Q-
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FIG. 9. Skyrmion density configurations of (a) the 2Q′ state at
H = 0, (b) the 3Q′-Ch-I state at H = 0.1, (c) the 3Q′-Ch-I state at
H = 0.15, and (d) the 3Q′-Ch-II state at H = 0.5. The skyrmion
density is calculated by using the spin configuration averaged over
500 Monte Carlo steps.

SkX with Nsk = −1 is a characteristic of the oversimplified
model, whose real-space spin and chirality configurations are
shown in Fig. 11. In the 3Q′-SkX state, the in-plane spin
configuration is similar to that in the 3Q′-Ch-I state, while
there is a difference in the z spin configurations; the 3Q′-
SkX state in Fig. 11(a) [the 3Q′-Ch-I state in Fig. 8(b)] has
the (no) alternating arrangement of vortices with the positive
and negative z spins in the Q3 direction. Meanwhile, The
3Q-SkX state in Fig. 11(b) shows an entirely different struc-
ture, which is expressed as the superposition of the three
cycloidal elliptical waves with the same intensity. The 3Q-
SkX state is similar to the SkX in Fig. 4(b), since it is
stabilized by the interplay among large F x

Q1
, the isotropic

interaction, and the magnetic field, as discussed in Sec. II C 2.
We show the real-space spin and chirality configurations, the
q-space magnetic moments, and the skyrmion density config-
urations for the obtained states in Appendix D for reference.

4. Case of the interactions at Qη and 3Qη

Next, we focus on the contribution from higher harmon-
ics for the following reasons. By comparing the q-resolved
magnetic moments shown in Figs. 8 and 15, we find that the
discrepancy between the results in Figs. 7 and 10 appears
in the magnetic moments at higher-harmonic wave vectors.
Indeed, the values of λq and Fq at 2Q1, 3Q1, and 2Q1 − Q3
are large enough to compete with those at Q1, as shown in
Table VIII. On the basis of the above discussion, we addition-
ally take into account the interactions at the higher-harmonic
wave vectors with those at Qν .

By performing the numerical simulations for several
models with different {Q}, we find that the introduction
of the interactions at ±3Q1,±3Q2,±3Q3 is enough to

FIG. 10. H dependences of (a) (m⊥
Qη

)2, (b) (mz
Qη

)2, (c) (χQη
)2,

(d) Mz and |χsc|, and (e) Nsk in the model with the Qη channels. We
sort m⊥

Qη
, mz

Qη
, and χQη

to satisfy m⊥
Q1

� m⊥
Q2

� m⊥
Q3

.

reproduce the results in Fig. 7. We show the results for the
model with {Q} = {±Q1,±Q2,±Q3,±3Q1,±3Q2,±3Q3} in
Fig. 12. Compared to the results in Fig. 7, the H dependences
of spin- and chirality-related quantities are reproduced except
for the high-field region, H � 1.625. It is noted that there
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FIG. 11. Left panel: Snapshots of the spin configurations of
(a) the 3Q′-SkX state at H = 0.3 and (b) the 3Q-SkX state at H =
0.75. The arrows and contours show the xy and z components of the
spin, respectively. Right panel: The scalar chirality configurations
corresponding to the spin configurations shown in the left panel.

is still an inconsistency in the high-field region; the 3Q-Ch
state appears for H � 1.625 corresponding to the 3Q-Ch state
in the model with the interactions only at ±Q1,±Q2, and
±Q3 in Sec. V C 3, although the intensities of Q1, Q2, and
Q3 components in the magnetic moments are slightly differ-
ent in the present 3Q-Ch state. This result indicates that the
interactions at other higher harmonics like 2Q1 − Q2, which
contributes to the energy in the 3Q′-Ch-II state [Fig. 8(c)],
might be important in the high-field region.

The reason why the contribution from the interactions at
3Qν is important is understood from the spiral modulation in
the presence of anisotropic interactions. From the relation of
F x

Q1
> F z

Q1
(> F y

Q1
), the spiral plane along the Q1 direction is

elliptically modulated so as to have more x-spin components.
In a similar way, the multiple-Q states in Sec. V C 2 consist
of a superposition of the elliptical waves along the Q1-Q3 di-
rections. Such a deformation from the circular spiral plane to
the elliptical spiral plane leads to the relatively large intensity
at 3Qη, as shown by the dashed circles in the third column
in Fig. 8. Thus, the interactions at 3Qη play an important
role in the present situation. Meanwhile, it is noted that the
contribution at the 2Qη channel is not important in spite of the
larger value of λ2Qη

than λ3Qη
, since the 2Qη modulation does

not appear in the elliptical modulation under FQη
.

Furthermore, we investigate how a large contribution from
the 3Qη channel requires the stabilization of the 3Q′-Ch-II
state by multiplying the variable 0 � r � 1 by X3Qη

. Figure 13
shows the r dependence of the uniform spin scalar chirality at
H = 0.7. The result at r = 0 corresponds to that in Fig. 10,
while the result at r = 1 corresponds to that in Fig. 12. The
3Q′-SkX state in the intermediate r has similar spin and
chirality textures to those in Fig. 11(a). The result shows
that the 3Q′-Ch-II state appears at r � 0.31, which indicates

FIG. 12. H dependences of (a) (m⊥
Qη

)2, (b) (mz
Qη

)2, (c) (χQη
)2,

(d) Mz and |χsc|, and (e) Nsk in the model with the Qη and 3Qη

channels. We sort m⊥
Qη

, mz
Qη

, and χQη
to satisfy m⊥

Q1
� m⊥

Q2
� m⊥

Q3
.

that relatively small λ3Q1
� 0.31λQ1

leads to the stabilization
(destabilization) of the 3Q′-Ch-II (3Q(′ )-SkX) state.

Finally, we find that the relationship of F x
3Q1

> F y
3Q1

, F z
3Q1

is also important. Indeed, when we perform the simulations
by setting F y

3Q1
> F x

3Q1
, F z

3Q1
and F z

3Q1
> F x

3Q1
, F y

3Q1
, while at

the same time changing 3Q2 and 3Q3 channels to satisfy
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FIG. 13. r dependence of |χsc| in the model with XQη
and rX3Qη

at H = 0.7.

the threefold rotational symmetry, we cannot reproduce the
results in Fig. 7.

VI. SUMMARY AND PERSPECTIVE

To summarize, we formulated a systematic method of
constructing the effective spin model with the momentum-
resolved anisotropic exchange interactions based on two
approaches in order to systematically understand multiple-
Q instabilities. First, by performing magnetic representation
analysis, we found the six symmetry rules to obtain nonzero
momentum-resolved anisotropic exchange interactions in the
primitive-lattice system. According to the rules, one can sys-
tematically construct the effective spin model in any primitive
lattices. As a demonstration, we showed the effective spin
models in the tetragonal, hexagonal, and trigonal crystal sys-
tems. We also found the symmetry rules in the multisublattice
system and showed the effective spin model in the honeycomb
and kagome structures. Second, by performing perturbation
analysis, we found that the spin-dependent hybridizations
between itinerant electron and localized electron states are
important microscopic model parameters for nonzero long-
range anisotropic exchange interactions in metals. The results
beyond the symmetry argument provide a way to quantita-
tively evaluate the contributions of the anisotropic interactions
in magnetic metals within the framework of first-principles
calculations. Finally, we showed how to use the above general
results by applying them to a hexagonal crystal and how the
anisotropic interactions affect multiple-Q states by perform-
ing simulated annealing for the effective model. We found that
a plethora of multiple-Q states with a spin scalar chirality are
stabilized by the symmetric anisotropic exchange interactions
at wave vectors that give the maximum of the magnetic sus-
ceptibility as well as those at their higher harmonics.

Our results will stimulate further exploration of mate-
rials hosting SkX. Based on the symmetry argument, one
can construct the effective spin model and analyze possible
SkXs stabilized by the anisotropic interactions once the crys-
tal symmetry and the ordering vector are provided from the
neutron and x-ray experiments. Therefore, the symmetry argu-
ment provides a reference for the exploration of further SkXs
in both centrosymmetric and noncentrosymmetric magnets
since our results show a complete relationship between the
anisotropic exchange interaction and crystal symmetry in any
crystal systems. In particular, the symmetry rules about the
symmetric anisotropic interaction make it possible to search

centrosymmetric materials hosting SkXs, which have been
less studied so far compared to noncentrosymmetric materials
based on Moriya’s rule.

In addition, our results will open up the possibility of
exotic multiple-Q states beyond the SkXs. As various sets of
anisotropic exchange interactions emerge depending on the
crystal symmetry, there are several ways to stabilize differ-
ent types of multiple-Q states. Indeed, we showed that the
competition between interactions at different wave vectors
leads to the emergence of unconventional multiple-Q state.
These competitions might become a source of exotic multiple-
Q states [92,93]. We also showed a variety of anisotropic
exchange interactions in the multisublattice system, which
become an origin of the sublattice-dependent SkX, such as the
antiferromagnetic SkX. In addition, it is an intriguing problem
to examine the role of thermal fluctuations in the momentum-
space effective spin model since a recent theoretical study
has revealed rich multiple-Q states in the magnetic-field–
temperature phase diagram [114].
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APPENDIX A: MAGNETIC REPRESENTATION ANALYSIS

1. Primitive-lattice case

We show details of the magnetic representation analysis
in Secs. II A 1 and II B 1. The q-resolved anisotropic spin
interaction in Eq. (2) is determined so as to satisfy the crys-
tal symmetry as well as the time-reversal symmetry. In the
following, we discuss the interaction matrix Xq in the gray
symmorphic space group M = H + θH including the time-
reversal operation θ , space group operations ∈ H, and their
product.

The time-reversal symmetry connecting ±q imposes

X αβ
q = θX αβ

−q θ−1

= (
X αβ

−q

)∗
, (A1)

where the property of the antilinearity of θ is used in the
second line. From this symmetry constraint and the definition
of Xq in Eq. (3), one obtains Dq = −D−q, Eq = E−q, and
Fq = F−q, which means that Dq is antisymmetric in momen-
tum space but Eq and Fq are symmetric.

We adopt point-group operations in momentum space as
follows. Let us assume a crystal with a lattice vector Rn and
a point-group operation P of the crystal. Then, PRn leaves
the system invariant. Meanwhile, the crystal in momentum
space is characterized by a reciprocal-lattice vector Gm, where
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PGm leaves the system invariant. Thus, the same point-group
operation P is present in both real and momentum spaces.

Since the anisotropic spin interaction, ST
q XqS−q, is re-

garded as the interaction between two spins at reciprocal wave
vector ±q, nonzero components in Xq are determined by the
point-group operation leaving the “bond” connecting q and
−q. There are two types of such operations, PI and PII, which
are given by the following:

(I) Operation PI satisfying PIq = q.
(II) Operation PII satisfying PIIq = −q.

In terms of the magnetic space group, these point-group oper-
ations form the magnetic little cogroup [113]. In other words,
the anisotropic spin interaction in Eq. (2) must satisfy the
magnetic little cogroup symmetry rather than the point-group
symmetry, which is the reason why the anisotropic interaction
depends on not only the crystal symmetry but also the wave
vector q (see Tables V–VII).

The symmetry constraints from point-group symmetry are
obtained by dividing the symmetry operations into spin and
momentum space (magnetic representation [98]). First, we
rewrite the anisotropic spin interaction at ±q as

ST
q XqS−q + ST

−qX−qSq = S̃
T
(

0 Xq

X ∗
q 0

)
S̃, (A2)

with

S̃ = (
Sxs

q , Sys
q , Szs

q , Sxs−q, Sys
−q, Szs−q

)T
. (A3)

Here, Sα
q is the classical spin (axial vector) at wave vector q in

the Cartesian coordinates α = (xs, ys, zs), and Xq represents
the 3 × 3 interaction matrix.

By using the magnetic representation �(P) for the opera-
tion P, the symmetry constraint is obtained from(

0 Xq

X ∗
q 0

)
= �(P)

(
0 Xq

X ∗
q 0

)
�−1(P). (A4)

�(P) is given by

�(P) = �perm(P) ⊗ �ax(P), (A5)

where 2 × 2 matrix �perm(P) is the permutation representation
for q and −q, and 3 × 3 matrix �ax(P) is the axial vector
representation for the three spin components. The permuta-
tion representation �I

perm for any type I operations is defined
as PI(q,−q) = (q,−q)�I

perm = (q,−q), while �II
perm for any

type II operations is defined as PII(q,−q) = (q,−q)�II
perm =

(−q, q). Then, �perm is explicitly given by

�I
perm =

(
1 0
0 1

)
, �II

perm =
(

0 1
1 0

)
. (A6)

Meanwhile, The axial vector representation is defined as
�ax(P)αβ = 〈α| P |β〉 (α, β = xs, ys, zs), where |α〉 is the basis
in classical spin space (axial vector space).

Then, the rules (a)–(f) in Sec. II A 1 are obtained from the
following magnetic representations by setting |xs〉 ‖ q:

(A) The representation of the space inversion center corre-
sponding to Fig. 1(a) is given by

�II
perm ⊗

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠. (A7)

FIG. 14. A set of low symmetric wave vectors along the low
symmetric lines inside the first Brillouin zone in (a) tetragonal crystal
systems and (b) hexagonal and trigonal crystal systems. The dashed
lines represent the high symmetric lines. In (a), Q1 and Q2 (Q′

1 and
Q′

2) are connected by the fourfold rotation around the z axis, while in
(b), Q1, Q2, and Q3 (Q′

1, Q′
2, and Q′

3) are connected by the threefold
rotation. Q1 and Q′

1 are connected by the twofold rotation around
the x axis, the mirror reflection on the xz plane, the time-reversal
operation after the twofold rotation around the y axis, or the time-
reversal operation after the mirror reflection on the yz plane. The
wave vectors in {Q} lie on the xy plane.

(B) The representation of the mirror plane perpendicular to
q corresponding to Fig. 1(b) is given by

�II
perm ⊗

⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠. (A8)

(C) The representation of the twofold axis perpendicular to
q corresponding to Fig. 1(c) is given by

�II
perm ⊗

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠, (A9)

where the direction of |zs〉 is parallel to the axis.
(D) The representation of the mirror plane including q

corresponding to Fig. 1(d) is given by

�I
perm ⊗

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠, (A10)

where the direction of |zs〉 is perpendicular to the mirror plane.
(E) The representation of the twofold axis including q

corresponding to Fig. 1(e) is given by

�I
perm ⊗

⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠. (A11)

(F) The representation of the n-fold (n = 3, 4, 6) axis in-
cluding q corresponding to Fig. 1(f) is given by

�I
perm ⊗

⎛
⎝1 0 0

0 cos φ − sin φ

0 sin φ cos φ

⎞
⎠, (A12)

with φ = 2π/n.
Since the operation P in the rules (a)–(c) [(d)–(f)] is the

type II (I), the rules (a)–(c) [(d)–(f)] are obtained from Xq =
�ax(P)X ∗

q �−1
ax (P) [Xq = �ax(P)Xq�

−1
ax (P)]. Thus, the rules

(a)–(c) [(d) and (e)] are imposed by the point-group operation
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TABLE IX. Interaction matrices XQ1
and XQ′

1
and the number of independent components Nc in the tetragonal crystal systems for the low

symmetric wave vectors Q1 and Q′
1 shown in Fig. 14(a). The spin coordinates xs, ys, and zs are taken along the x, y, and z directions in Fig. 14(a),

respectively.

Q1 Q′
1

Space group H XQ1
Nc XQ′

1
Nc

P4/mmm

⎛
⎝F x

Q1
Ez

Q1
0

Ez
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 4

⎛
⎝ F x

Q1
−Ez

Q1
0

−Ez
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 0

P422

⎛
⎝ F x

Q1
Ez

Q1
−iDy

Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

⎛
⎝ F x

Q1
−Ez

Q1
iDy

Q1−Ez
Q1

F y
Q1

iDx
Q1−iDy

Q1
−iDx

Q1
F z

Q1

⎞
⎠ 0

P4̄2m

⎛
⎝ F x

Q1
Ez

Q1
−iDy

Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

⎛
⎝ F x

Q1
−Ez

Q1
iDy

Q1−Ez
Q1

F y
Q1

iDx
Q1−iDy

Q1
−iDx

Q1
F z

Q1

⎞
⎠ 0

P4̄m2

⎛
⎝ F x

Q1
Ez

Q1
−iDy

Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

⎛
⎝ F x

Q1
−Ez

Q1
−iDy

Q1−Ez
Q1

F y
Q1

−iDx
Q1

iDy
Q1

iDx
Q1

F z
Q1

⎞
⎠ 0

P4mm

⎛
⎝ F x

Q1
Ez

Q1
−iDy

Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

⎛
⎝ F x

Q1
−Ez

Q1
−iDy

Q1−Ez
Q1

F y
Q1

−iDx
Q1

iDy
Q1

iDx
Q1

F z
Q1

⎞
⎠ 0

P4/m

⎛
⎝F x

Q1
Ez

Q1
0

Ez
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 4

⎛
⎜⎝

F x
Q′

1
Ez

Q′
1

0

Ez
Q′

1
F y

Q′
1

0

0 0 F z
Q′

1

⎞
⎟⎠ 4

P4

⎛
⎝ F x

Q1
Ez

Q1
−iDy

Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

⎛
⎜⎝

F x
Q′

1
Ez

Q′
1

−iDy
Q′

1

Ez
Q′

1
F y

Q′
1

iDx
Q′

1

iDy
Q′

1
−iDx

Q′
1

F z
Q′

1

⎞
⎟⎠ 6

P4̄

⎛
⎝ F x

Q1
Ez

Q1
−iDy

Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

⎛
⎜⎝

F x
Q′

1
Ez

Q′
1

−iDy
Q′

1

Ez
Q′

1
F y

Q′
1

iDx
Q′

1

iDy
Q′

1
−iDx

Q′
1

F z
Q′

1

⎞
⎟⎠ 6

(not) combined with the time-reversal operation, which results
in the different (same) nonzero components of Eq and Dq. In
the magnetic representations (A)–(E), the axial vector repre-
sentations do not have the off-diagonal components, which
results in no constraint on Fq.

In Sec. II B 1, we use the axial vector representation by
setting |xs〉 ‖ |x〉, |ys〉 ‖ |y〉, and |zs〉 ‖ |z〉, where (|x〉 , |y〉 , |z〉)
is the basis set of the crystal lattice shown in Fig. 2(a). Then,
the axial vector representation has the off-diagonal compo-
nents depending on the symmetry of the space group and the
wave vector, which results in different constraints on the in-
teractions. Equation (11) is obtained by using the permutation
representation for (±Q1,±Q2) or (±Q1,±Q2,±Q3) space.

2. Multisublattice case

Similar to the primitive-lattice case, we rewrite the interac-
tion in Eq. (7) in an extended space. For example, we show
here the two-sublattice case, where the interaction is given by

S̃
T

⎛
⎜⎜⎝

0 XAA;q 0 XAB;q

X ∗
AA;q 0 X ∗

AB;q 0
0 X ∗

AB;q 0 XBB;q

XAB;q 0 X ∗
BB;q 0

⎞
⎟⎟⎠S̃, (A13)

with

S̃ = (SAq, SA−q, SBq, SB−q)T . (A14)

The symmetry constraint is obtained by using the mag-
netic representation �(P) for the operation P, which is
given by

�(P) = �sub(P) ⊗ �perm(P) ⊗ �ax(P). (A15)

Here, 2 × 2 matrix �sub(P) is the permutation representation
for the sublattices A and B, 2 × 2 matrix �perm(P) is the
permutation representation for q and −q, and 3 × 3 matrix
�ax(P) is the axial vector representation for the three spin
components. �perm(P) and �ax(P) are given in the previous
section. As mentioned in Sec. II A 2, the symmetry constraint
is imposed by the point-group symmetry (i) fixing or (ii) in-
terchanging the sublattices A and B. In terms of the magnetic
representation, the case (i) and (ii) point-group symmetry is
represented by using

�I
sub =

(
1 0
0 1

)
, �II

sub =
(

0 1
1 0

)
, (A16)

respectively.
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In the n-sublattice (n � 3) case, the symmetry constraints
are obtained as well as the two-sublattice case. Then, the
interaction matrix is written in extended space with

S̃ = (SAq, SA−q, SBq, SB−q, . . . , Snq, Sn−q)T . (A17)

The magnetic representation is common to Eq. (A15), where
only �sub depends on the number of sublattices. For exam-
ple, in the three-sublattice case, the symmetry constraint is
imposed by the point-group symmetry that (i) fixes the sub-
lattices A, B, and C; (ii) interchanges the sublattices A and B
but fixes the sublattice C; and (iii) cyclically interchanges the
sublattices A, B, and C. The corresponding representations are
given by

�
(i)
sub =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, �

(ii)
sub =

⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠,

�
(iii)
sub =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠. (A18)

It is noted that the point-group symmetry belonging to the
same class as the point-group symmetry (i)–(iii) also imposes
the symmetry constraint.

APPENDIX B: EFFECTIVE SPIN MODEL WITH THE
INTERACTIONS AT LOW SYMMETRIC WAVE VECTORS

IN TETRAGONAL, HEXAGONAL, AND TRIGONAL
CRYSTAL SYSTEMS

We present here the model in Eq. (10) with the low sym-
metric wave vectors in tetragonal, hexagonal, and trigonal
crystal systems. Figure 14(a) [14(b)] shows the schematic
pictures of the low symmetric wave vectors for the tetragonal
(hexagonal and trigonal) crystal systems. In the P4/mmm,
P422, P4̄2m, P4̄m2, and P4mm (P4/m, P4, and P4̄) crys-
tals, there are four (two) equivalent wave vectors Q1, Q2,
Q′

1, and Q′
2 (Q1 and Q2) connected by the crystal symme-

try; the effective spin model in Eq. (10) is described as
having the interactions at {Q} = {±Q1,±Q2,±Q′

1,±Q′
2}

({Q} = {±Q1,±Q2} or {±Q′
1,±Q′

2}). Meanwhile, in the
P6/mmm, P622, P6̄m2, P6̄2m, P6mm, P3̄m1, P3̄1m, P321,
P312, and P3m1 (P6/m, P6̄, P6, P3̄, and P3) crystals, there
are six (three) equivalent wave vectors Q1, Q2, Q3, Q′

1,
Q′

2, and Q′
3 (Q1, Q2, and Q3) connected by the crystal

TABLE X. Interaction matrices XQ1
and XQ′

1
and the number of independent components Nc in the hexagonal crystal systems for the low

symmetric wave vectors Q1 and Q′
1 shown in Fig. 14(b). The spin coordinates xs, ys, and zs are taken along the x, y, and z directions in Fig. 14(a),

respectively.

Q1 Q′
1

Space group H XQ1
Nc XQ1

Nc

P6/mmm

⎛
⎝F x

Q1
Ez

Q1
0

Ez
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 4

⎛
⎝ F x

Q1
−Ez

Q1
0

−Ez
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 0

P622

⎛
⎝ F x

Q1
Ez

Q1
−iDy

Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

⎛
⎝ F x

Q1
−Ez

Q1
iDy

Q1−Ez
Q1

F y
Q1

iDx
Q1−iDy

Q1
−iDx

Q1
F z

Q1

⎞
⎠ 0

P6̄m2

⎛
⎝ F x

Q1
Ez

Q1
+ iDz

Q1
0

Ez
Q1

− iDz
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 5

⎛
⎝ F x

Q1
−Ez

Q1
+ iDz

Q1
0

−Ez
Q1

− iDz
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 0

P6̄2m

⎛
⎝ F x

Q1
Ez

Q1
+ iDz

Q1
0

Ez
Q1

− iDz
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 5

⎛
⎝ F x

Q1
−Ez

Q1
− iDz

Q1
0

−Ez
Q1

+ iDz
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 0

P6mm

⎛
⎝ F x

Q1
Ez

Q1
−iDy

Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

⎛
⎝ F x

Q1
−Ez

Q1
−iDy

Q1−Ez
Q1

F y
Q1

−iDx
Q1

iDy
Q1

iDx
Q1

F z
Q1

⎞
⎠ 0

P6/m

⎛
⎝F x

Q1
Ez

Q1
0

Ez
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 4

⎛
⎜⎝

F x
Q′

1
Ez

Q′
1

0

Ez
Q′

1
F y

Q′
1

0

0 0 F z
Q′

1

⎞
⎟⎠ 4

P6̄

⎛
⎝ F x

Q1
Ez

Q1
+ iDz

Q1
0

Ez
Q1

− iDz
Q1

F y
Q1

0
0 0 F z

Q1

⎞
⎠ 5

⎛
⎜⎝

F x
Q′

1
Ez

Q′
1
+ iDz

Q′
1

0

Ez
Q′

1
− iDz

Q′
1

F y
Q′

1
0

0 0 F z
Q′

1

⎞
⎟⎠ 5

P6

⎛
⎝ F x

Q1
Ez

Q1
−iDy

Q1

Ez
Q1

F y
Q1

iDx
Q1

iDy
Q1

−iDx
Q1

F z
Q1

⎞
⎠ 6

⎛
⎜⎝

F x
Q′

1
Ez

Q′
1

−iDy
Q′

1

Ez
Q′

1
F y

Q′
1

iDx
Q′

1

iDy
Q′

1
−iDx

Q′
1

F z
Q′

1

⎞
⎟⎠ 6
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TABLE XI. Interaction matrices XQ1
and XQ′

1
and the number of independent components Nc in the trigonal crystal systems for the low

symmetric wave vectors Q1 and Q′
1 shown in Fig. 14(b). The spin coordinates xs, ys, and zs are taken along the x, y, and z directions in Fig. 14(a),

respectively.

Q1 Q′
1

Space group H XQ1
Nc XQ1

Nc

P3̄m1

⎛
⎝F x

Q1
Ez

Q1
Ey

Q1

Ez
Q1

F y
Q1

Ex
Q1

Ey
Q1

Ex
Q1

F z
Q1

⎞
⎠ 6

⎛
⎝ F x

Q1
−Ez

Q1
−Ey

Q1−Ez
Q1

F y
Q1

Ex
Q1−Ey

Q1
Ex

Q1
F z

Q1

⎞
⎠ 0

P3̄1m

⎛
⎝F x

Q1
Ez

Q1
Ey

Q1

Ez
Q1

F y
Q1

Ex
Q1

Ey
Q1

Ex
Q1

F z
Q1

⎞
⎠ 6

⎛
⎝ F x

Q1
−Ez

Q1
Ey

Q1−Ez
Q1

F y
Q1

−Ex
Q1

Ey
Q1

−Ex
Q1

F z
Q1

⎞
⎠ 0

P321

⎛
⎝ F x

Q1
Ez

Q1
+ iDz

Q1
Ey

Q1
− iDy

Q1

Ez
Q1

− iDz
Q1

F y
Q1

Ex
Q1

+ iDx
Q1

Ey
Q1

+ iDy
Q1

Ex
Q1

− iDx
Q1

F z
Q1

⎞
⎠ 9

⎛
⎝ F x

Q1
−Ez

Q1
− iDz

Q1
−Ey

Q1
+ iDy

Q1−Ez
Q1

+ iDz
Q1

F y
Q1

Ex
Q1

+ iDx
Q1−Ey

Q1
− iDy

Q1
Ex

Q1
− iDx

Q1
F z

Q1

⎞
⎠ 0

P312

⎛
⎝ F x

Q1
Ez

Q1
+ iDz

Q1
Ey

Q1
− iDy

Q1

Ez
Q1

− iDz
Q1

F y
Q1

Ex
Q1

+ iDx
Q1

Ey
Q1

+ iDy
Q1

Ex
Q1

− iDx
Q1

F z
Q1

⎞
⎠ 9

⎛
⎝ F x

Q1
−Ez

Q1
+ iDz

Q1
Ey

Q1
+ iDy

Q1−Ez
Q1

− iDz
Q1

F y
Q1

−Ex
Q1

+ iDx
Q1

Ey
Q1

− iDy
Q1

−Ex
Q1

− iDx
Q1

F z
Q1

⎞
⎠ 0

P3m1

⎛
⎝ F x

Q1
Ez

Q1
+ iDz

Q1
Ey

Q1
− iDy

Q1

Ez
Q1

− iDz
Q1

F y
Q1

Ex
Q1

+ iDx
Q1

Ey
Q1

+ iDy
Q1

Ex
Q1

− iDx
Q1

F z
Q1

⎞
⎠ 9

⎛
⎝ F x

Q1
−Ez

Q1
+ iDz

Q1
−Ey

Q1
− iDy

Q1−Ez
Q1

− iDz
Q1

F y
Q1

Ex
Q1

− iDx
Q1−Ey

Q1
+ iDy

Q1
Ex

Q1
+ iDx

Q1
F z

Q1

⎞
⎠ 0

P31m

⎛
⎝ F x

Q1
Ez

Q1
+ iDz

Q1
Ey

Q1
− iDy

Q1

Ez
Q1

− iDz
Q1

F y
Q1

Ex
Q1

+ iDx
Q1

Ey
Q1

+ iDy
Q1

Ex
Q1

− iDx
Q1

F z
Q1

⎞
⎠ 9

⎛
⎝ F x

Q1
−Ez

Q1
− iDz

Q1
Ey

Q1
− iDy

Q1−Ez
Q1

+ iDz
Q1

F y
Q1

−Ex
Q1

− iDx
Q1

Ey
Q1

+ iDy
Q1

−Ex
Q1

+ iDx
Q1

F z
Q1

⎞
⎠ 0

P3̄

⎛
⎝F x

Q1
Ez

Q1
Ey

Q1

Ez
Q1

F y
Q1

Ex
Q1

Ey
Q1

Ex
Q1

F z
Q1

⎞
⎠ 6

⎛
⎜⎝

F x
Q′

1
Ez

Q′
1

Ey
Q′

1

Ez
Q′

1
F y

Q′
1

Ex
Q′

1

Ey
Q′

1
Ex

Q′
1

F z
Q′

1

⎞
⎟⎠ 6

P3

⎛
⎝ F x

Q1
Ez

Q1
+ iDz

Q1
Ey

Q1
− iDy

Q1

Ez
Q1

− iDz
Q1

F y
Q1

Ex
Q1

+ iDx
Q1

Ey
Q1

+ iDy
Q1

Ex
Q1

− iDx
Q1

F z
Q1

⎞
⎠ 9

⎛
⎜⎝

F x
Q′

1
Ez

Q′
1
+ iDz

Q′
1

Ey
Q′

1
− iDy

Q′
1

Ez
Q′

1
− iDz

Q′
1

F y
Q′

1
Ex

Q′
1
+ iDx

Q′
1

Ey
Q′

1
+ iDy

Q′
1

Ex
Q′

1
− iDx

Q′
1

F z
Q′

1

⎞
⎟⎠ 9

symmetry. In this case, the dominant exchange interactions
in the effective spin model in Eq. (10) are described by
ones at {Q} = {±Q1,±Q2,±Q3,±Q′

1,±Q′
2,±Q′

3} ({Q} =
{±Q1,±Q2,±Q3} or {±Q′

1,±Q′
2,±Q′

3}).
Tables IX–XI show the results of XQ1

and XQ′
1

in the tetrag-
onal, hexagonal, and trigonal crystal systems, respectively. In
addition, the number of independent components (Nc) of the
interaction matrix is shown. In all cases, XQ1

has at least four
independent components (Nc � 4). In the P4/mmm, P422,
P4̄2m, P4̄m2, P4mm, P6/mmm, P622, P6̄m2, P6̄2m, P6mm,
P3̄m1, P3̄1m, P321, P312, and P3m1 crystals, Nc of XQ′

1
is

zero since the components of XQ′
1

are related to those of XQ1
.

For example, nonzero components of XQ′
1

are obtained from
those of XQ1

by using the twofold rotation about the x axis, the
mirror reflection on the xz plane, the time-reversal operation
after the twofold rotation about the y axis, or the time-reversal
operation after the mirror reflection on the yz plane depending
on the space group. The other relevant interactions at the
symmetry-related wave vectors in {Q} are obtained by using
Eq. (11) in a similar way.

APPENDIX C: EFFECTIVE HAMILTONIAN OF THE
ANISOTROPIC PERIODIC ANDERSON MODEL

We show the details of the low-energy effective model
in Eq. (28) of the multiband anisotropic periodic Anderson
model. The spin-dependent term, H′

mσ ;m′σ , is given by

H′
mσ ;m′σ =

∑
k,q,α

ε̃α
mk+qm′kSα

q c†
mk+qσ

cm′kσ

+
∑

k

ε̃mm′kc†
mkσ

cm′kσ , (C1)

where

ε̃α
mkm′k′ = C(1)

mkm′k′

[
V α

m′k′V 0∗
mk + V α∗

mk V 0
m′k′

− i
∑
β,γ

εαβγV β

m′k′V
γ ∗

mk

]
, (C2)

ε̃mm′k = C(2)
mm′k

(
V 0

m′kV 0∗
mk + V m′k · V ∗

mk

)
, (C3)
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FIG. 15. First column: Snapshots of the spin configurations of (a) the 2Q′-CS state at H = 0, (b) the 3Q′-SkX state at H = 0.3, the
(c) 3Q-SkX state at H = 0.75, and (d) the 3Q-Ch state at H = 1.5. The arrows and contours show the xy and z components of the spin,
respectively. Second column: The scalar chirality configurations of the spin configurations shown in the first column. Third and fourth columns:
The in-plane and out-of-plane magnetic moments in momentum space, respectively. The hexagons with a solid line show the first Brillouin
zone. The q = 0 component is removed for better visibility. The first and second columns in (b) and (c) are the same as Figs. 11(a) and 11(b),
respectively.

with

C(1)
mkm′k′ = 1

2 (Bmk + Bm′k′ ), (C4)

C(2)
mm′k = −1

2

(
Amk + Bmk

2
+ Am′k + Bm′k

2

)
. (C5)

The first term with m �= m′ (m = m′) in Eq. (C1) hybridizes
different bands (the same band) at different wave vectors,
while the second term with m �= m′ (m = m′) hybridizes
different bands (the same band) at the same wave vectors.
However, these terms keep the degeneracy in terms of the
itinerant electron spin σ , so they cannot be the origin of the
anisotropic exchange interactions.

The spin-dependent terms, Hex
mσ ;m′σ ′ and HSOC

mσ ;m′σ ′ , include
the hybridization of the different bands, which are neglected
in the main text, although they also become the origin of
the anisotropic exchange interactions. When considering the
hybridization, the expression of the anisotropic exchange
interactions in Sec. III C becomes more complex. In the fol-
lowing, we show the details of the spin-dependent terms. The
exchange interaction, Hex

mσ ;m′σ ′ , is given by

Hex
mσ ;m′σ ′ = 1√

N

∑
k,q,α,β

Jαβ

mk+qm′kc†
mk+qσ

σ α
σσ ′cm′kσ ′Sβ

q , (C6)
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where

Jαβ

mkm′k′ = J ISO
mkm′k′δαβ + [

JS
mkm′k′

]αβ + [
JAS

mkm′k′
]αβ

(C7)

with

J ISO
mkm′k′ = C(1)

mkm′k′
(
V 0

m′k′V 0∗
mk − V m′k′ · V ∗

mk

)
, (C8)

[JS
mkm′k′ ]αβ = C(1)

mkm′k′
(
V α

m′k′V β∗
mk + V α∗

mk V β

m′k′
)
, (C9)

[JAS
mkm′k′]αβ = C(1)

mkm′k′ i
∑

γ

εαβγ

(
V γ

m′k′V 0∗
mk − V γ ∗

mk V 0
m′k′

)
. (C10)

The effective SOC, HSOC
mσ ;m′σ ′ , is given by

HSOC
mσ ;m′σ ′ =

∑
k

gmm′k · c†
mkσ

σσσ ′cm′kσ ′ , (C11)

where

gα
mm′k = C(2)

mm′k

[
V α

m′kV 0∗
mk + V α∗

mk V 0
m′k − i

∑
β,γ

εαβγV β

m′kV γ ∗
mk

]
.

(C12)

APPENDIX D: MAGNETIC PHASES IN THE CASE OF THE
INTERACTIONS AT Qη

We show the details of the multiple-Q states in the
model with the interactions at {Q} = {±Q1,±Q2,±Q3} in
Sec. V C 3. As shown in Fig. 10, we find the 2Q′-CS state,
3Q′-SkX, 3Q-SkX, and the 3Q-Ch state in addition to the
3Q′-Ch-II state and the fully polarized state. Here, CS rep-
resents a chiral stripe characterized by a single peak of χq

FIG. 16. Skyrmion density configurations of (a) the 2Q′ state at
H = 0, (b) the 3Q′-Ch-I state at H = 0.1, (c) the 3Q′-Ch-I state at
H = 0.15, and (d) the 3Q′-Ch-II state at H = 0.5.

[75,156,157], and 3Q stands for the same intensity of Q1,
Q2, and Q3 components in the magnetic moments. Figure 15
shows the real-space spin and chirality configurations and the
q-space magnetic moments for the 2Q′-CS state, the 3Q′-SkX,
the 3Q-SkX, and the 3Q-Ch state. Their skyrmion density
configurations are shown in Fig. 16.
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