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Dynamics of a pair of magnetic dipoles with nonreciprocal interactions due to a moving conductor
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Recently it was demonstrated theoretically and experimentally that the presence of a moving conductor can
break the reciprocity in the interactions between magnetic dipoles. In this article we investigate the influence
of nonreciprocity on the dynamics of a pair of rigid XY dipoles, which have been realized in experiments. In
particular, we focus on the energy nonconservation, which is a consequence of the nonreciprocity. We find that
the dynamics indeed has regimes, wherein the kinetic energy grows quadratically. However, whether energy
absorption occurs depends strongly on the initial conditions on the dipoles. Simulations for various initial
conditions reveal an intricate dependence, resulting in a rich structure of the energy absorbing regime in the
initial condition space. Nevertheless, we provide a qualitative explanation of these observations, interpreting the
absence of energy absorption as a confinement of the dynamics in phase space.
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I. INTRODUCTION

It has been well known for centuries, that currents are
induced in a conductor moving through a (static) magnetic
field [1]. These so-called eddy currents can lead to heating
of the conductor, effectively transforming kinetic into thermal
energy. This effect has been used in industrial applications,
for instance, magnetic brakes for decades [1], with new ap-
plications such as velocimetry being proposed/implemented
more recently [2]. Very recently, the effects on the interactions
between multiple dipoles close to a moving conductor have
been investigated theoretically and experimentally [3]. In this
work it was demonstrated for the first time that in setups with
a pair of dipoles and a moving conductor magnetic reciprocity
can be broken.

The term nonreciprocity is used rather broadly in the
literature, typically referring to some sort of inequivalence
of interactions between different parts of a system, and we
will define the exact conditions for magnetic nonreciprocity
later. A more well-defined, and closely related, concept is the
breaking of Newton’s third law, “actio est reactio.” Since
all fundamental interactions are reciprocal, nonreciprocity can
only arise in an effective description. In our case for example,
we will focus on the dipolar. degrees of freedom and treat the
conductor as an environment, whose sole effect is to modify
the interactions. Systems in which nonreciprocity and/or the
breaking of Newton’s third law have been discussed range
from particles in a plasma [4] and acoustic surface waves
[5] to robotic metamaterials [6]. Overviews and reviews of
different phenomena can be found in Refs. [7–9] and in
Refs. [10,11], with the latter focusing on electromagnetic
phenomena.
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In Refs. [7,9] it was shown, that the framework of statistical
physics can be extended to incorporate nonreciprocal systems.
In particular, in linear nonreciprocal systems, whose dynam-
ics can be described by a non-Hermitian matrix, exceptional
points can be used to define phases and investigate phenomena
such as synchronization of rotors. Fundamental differences
to Hamiltonian (Hermitian) systems exist, however—for ex-
ample, due to energy nonconservation, the system can absorb
energy from the environment [8]. In this article we will focus
on this effect for a pair of dipoles.

In Sec. II we will describe the setup in which magnetic
reciprocity is broken and give a precise definition of reci-
procity for magnetic dipoles in terms of the coupling matrix.
We then briefly analyze the coupling matrix in our setup in
Sec. III, describe how to compute the coupling matrix numeri-
cally, and show some numerical results supporting reciprocity
breaking. In Sec. IV, the main part of the article, we ana-
lyze the dynamics of a pair of rigid XY dipoles motivated
by the experimental setup in Refs. [12–14]. We derive the
equations of motion, which turn out to be a system of coupled
nonlinear equations and solve these numerically. Here we will
demonstrate that there can be a dynamical regime, wherein the
pair absorbs (kinetic) energy but also show that the occurrence
of absorption is strongly dependent on the initial condition and
that there are also nonabsorbing regimes. Finally, we offer a
qualitative explanation for the existence of both regimes by
analyzing the dynamics in phase space. This analysis suggests
that the regimes are related to confinement of the dynamics in
phase space.

II. SETUP AND NONRECIPROCITY

In Ref. [3] it was shown that a setup consisting of a semi-
infinite conductor moving at constant velocity and magnetic
dipoles in a parallel plane leads to nonreciprocal interactions
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FIG. 1. Geometry of the system: A conductor with static con-
ductivity σ covers the lower half-space and is moving at a constant
velocity along the negative x axis. Magnetic dipoles with three-
dimensional magnetic moments mi of constant magnitude are in
a coplanar configuration at a distance z = z0 with respect to the
interface. The interaction of a pair of dipoles depends on their relative
position expressed by the distance r and the angle θ .

between the dipoles. We follow this approach to reciprocity
breaking by treating magnetic dipoles with magnetic moments
mi of constant magnitude m, located at a distance z0 > 0
above a nonmagnetic (relative magnetic permeability μ = 1)
conductor with static conductivity σ that moves at a constant
velocity v < 0, with respect to the dipoles, along the x axis.
The conductor extends over a half-space with an interface
that coincides with the xy plane at z = 0. The entire setup
is sketched in Fig. 1. This model neglects transmissions and
reflections from the finite geometry of the conductor, which
we expect to be negligible for conductors with a sufficiently
large static conductivity [3,15]. Furthermore, we will neglect
any feedback on the conductor, which could lead to kinetic
energy losses and subsequent slowing down, including losses
due to the aforementioned eddy currents, as well as losses due
to the energy absorption to be discussed later.

A. Single-dipole field

First, imagine a single dipole above the conductor. Due to
the motion, the conductor experiences a changing magnetic
field, leading to the induction of eddy currents, which in turn
create an additional scattered magnetic field [1,2,16]. The total
field is then given by the sum of the original and the scattered
field and can be described by the coupling matrix K,

B(r) = K(r)m, (1)

where we assume the dipole to be located at the origin. The
original field of a dipole, also leading to the reciprocal dipole-

dipole interaction, corresponds to the coupling matrix [17,18]

Kdpl(r) = μ0

4π

3r̂ ⊗ r̂ − I

r3
, (2)

where r = |r|, r̂ = r/r, I is the identity matrix and ⊗ denotes
the outer product of two vectors.

The scattered field in similar setups has been investigated
using different analytic and numeric techniques [2,3,16,19].
We will follow the derivation presented in Ref. [3], which
provides the coupling matrix for an arbitrary orientation of the
dipole and velocity of the conductor, although in this work
we focus on nonrelativistic velocities and hence the results
correspond to the first terms in the appropriate expansion.
Hereafter, we outline the important steps of the derivation,
which can be found in more detail in Appendix A. We
model the linear electrodynamic response of the conductor
by an isotropic and complex relative permittivity ε(ω) = 1 +
iσ/(ε0ω) [20], where ε0 denotes the vacuum permeability. In
conjunction with the dyadic Green’s function for a conducting
half-space [15], we can express the total electromagnetic field
as a function of the source, which, in the rest-frame of the
moving conductor, consists of a dipole with electric and mag-
netic dipole moment. This allows us to derive an analytical
expression for the magnetic (and electric) field emanating
from the dipole, including the contribution of the induced cur-
rents Kind. In the nonrelativistic limit, the contributions from
the electric terms become vanishingly small and can safely be
neglected. Therefore, the interaction between multiple dipoles
is dominated by the magnetic field. We will discuss the result
for Kind in detail in Sec. III, but let us first mention some
general aspects of magnetic nonreciprocity.

B. Magnetic nonreciprocity

To begin the discussion we note, that due to the linear-
ity of the Maxwell equations, the induced currents in case
of multiple dipoles are a superposition of the single dipole
case and the same holds for the scattered fields. Therefore,
the field of each individual dipole can still be described by
Eq. (1) using the single dipole coupling matrix, with r shifted
appropriately [21]. In Ref. [3] it was argued that for dipoles
the magnetic reciprocity condition is broken if m1B2 �= m2B1.
Here, the fields Bi denote the field created by the ith dipole.
This condition has also been experimentally tested in Ref. [3]
by measuring the fields for some selected orientations of the
dipoles.

The condition has a simple interpretation, in view of the
expression for the energy of a dipole in a field [17,22],

E = −mB. (3)

As one can see, breaking of the reciprocity condition occurs
if the energy is different, depending on which dipole is taken
as the source of the field. If both energies do not coincide,
then the dynamics is not governed by a (global) Hamiltonian.
Furthermore, Newton’s third law is broken, since the force
∇(mB) on each dipole is not equal and opposite in general
if the expressions do not coincide. By inserting Eq. (1), we

174435-2



DYNAMICS OF A PAIR OF MAGNETIC DIPOLES WITH … PHYSICAL REVIEW B 106, 174435 (2022)

obtain the reciprocity condition for the coupling matrix [23],

−m2K(r)m1
!= −m1K(−r)m2

⇔ m1K
T (r)m2

!= m1K(−r)m2

⇒ KT (r)
!= K(−r). (4)

As we will see in Sec. III, the equality is generally violated in
our setup.

III. COUPLING MATRIX

As shown in Appendix A, the induced coupling matrix can
be formally expressed using a double integral,

Kind(r) = μ0

8π2z3
0

∫ ∞

0
dξ e−2ξ ξ 2

∫ 2π

0
dφ rs(ξ, φ)ei ξ

z0
r·eρM(φ),

(5)
where rs denotes reflection coefficient of an infinite conduct-
ing half-space [15],

rs(ξ, φ) = ξ −
√

ξ 2 − iRξ cos(φ)

ξ +
√

ξ 2 − iRξ cos(φ)
(6)

and the matrix in the integrand is

M(φ) = (eρ + iez ) ⊗ (eρ − iez ) (7)

with eρ = (cos(φ), sin(φ), 0)T , ez = (0, 0, 1)T . We analyze
the integral expression in detail in Appendix B and constrain
the discussion to the main results in the following.

First, we note that we can decompose the full coupling
matrix (including the dipole-dipole interactions) into four
terms, corresponding to different parities on (spatial) inver-
sion [K(r) → K(−r)] and transposition [K(r) → KT (r)].
Only two of these fulfill the reciprocity condition stated in
Eq. (4) and since all four contribute in general, the total cou-
pling matrix is nonreciprocal. In the following, we will denote
the terms with even/odd parity under inversion by K+/−.

The reciprocal terms can be identified as [24–28] a (sym-
metric) exchange term resulting from the reciprocal part
of K+, an antisymmetric exchange (Dzyaloshinsky-Moriya)
term resulting from the reciprocal part of K−, and a single-ion
anisotropy corresponding to the limit limr→0 K+. In general
the nonreciprocal parts do not vanish and can be of compa-
rable magnitude as the reciprocal ones. However, in case of
the “perfect conductor” (σ → ∞) they do [29]. Furthermore,
in this limit the integrals can be evaluated analytically as
shown in Appendix C. A notable result from this calculation is
that the exchange terms decay as r−3 and the Dzyaloshinsky-
Moriya terms as r−4 (in this limit), in agreement with the
method of images [17].

A. Numerical evaluation

Except for this limiting case, one needs to evaluate the
integrals using numerical methods. If the variables in the

coupling integrals are measured appropriately (r →
r/a, z0 → z0/a, q → qa), then the resulting matrix K is
dimensionless. For the computations we set dimensionless
units by introducing a length scale a and by using μ0/32π2a3

as a base unit for the couplings. In Appendix F we discuss
the real values of these parameters in a possible experimental
setup.

After appropriate variable transformations (see Ap-
pendix B for details), the angular and radial integrals are
of a form suitable in principle for Gauss-Chebyshev (mea-

sure
√

1 − u2−1
) and generalized Gauss-Laguerre quadrature

(measure x2e−x), respectively [30]. These methods approxi-
mate an integral by a sum

∫ b

a
f (x) dx ≈

n∑
i=1

wi f (xi ),

where wi are the weights, xi the nodes, and n the order of the
quadrature. A quadrature of order n is exact for integrating
polynomials up to degree 2n − 1 multiplied by the measure
if the nodes and weights are chosen correctly (in our case
we obtain them using inbuilt SciPy routines). The integra-
tion boundaries a, b vary based on the measure; the relevant
boundaries in our case are shown in Eq. (B6). However, while
Gauss-Chebyshev quadrature can indeed be used efficiently
for the angular integral, the weights for generalized Gauss-
Laguerre quadrature start to be limited by numerical precision
at an order of around 200, which is not enough to resolve
the high spatial frequency in the exponential exp(i ξ

z0
r · eρ ) for

many parameter choices. Therefore, the radial integral needs
other methods, and we settled for an adaptive integration
approach, to be discussed in the following. The single-ion
anisotropy terms, however, do not have this oscillatory be-
havior and therefore can be evaluated using a Gauss-Laguerre
quadrature.

1. Radial integral

Due to the scattering function having a singularity at its
derivative for x → 0 (and the further complication due to the
semi-infinite domain), usual methods for strongly oscillatory
integrals such as Levin or Filon type approaches [31] are
not applicable to our best understanding. Thus, we settle for
a brute-force approach by truncating the integral at a finite
xmax and taking enough points to resolve the oscillations. The
truncation is based on the maximum of the measure 2

R . We find
that taking a factor of 10 is sufficient in all regimes discussed
in this work. Within this region, though, one needs to resolve
the oscillations with frequency 
, which we accomplish by
adaptively choosing the number of integration points, such
that each period is resolved with at least 100 points. To be
precise, given the truncation and the frequency, the exact num-
ber of points is selected such that it is suitable for Romberg
integration (2n + 1 points) [30]. Furthermore, at least 8193
points are used by default, irrespective of the parameters.

2. Angular integral

As discussed above the angular integral can be evaluated
using Gauss-Chebyshev quadrature. The necessary order de-
pends on the parameters and on the distance r, up to which the
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FIG. 2. Full couplings for radii r � 10 with z0/a = 0.1 and qa = 0.1 (a) and qa = 10 (b). In (a) the dipole-dipole interactions dominate,
while in (b) the induced interactions are strongest. The major differences are the induced xz and yz couplings and the axial features around the
x axis. Reciprocity is visibly broken in (b), for instance, Kyy(−r) �= Kyy(r).

couplings are to be evaluated. Generally the necessary order
increases with r, q, 1

z0
and needs to be obtained from manual

convergence analysis, whereby the couplings are evaluated
with different orders for some fixed angles θ . The order for
all computations in this article is 10 000, which we found to
be sufficient for the range of parameters.

B. Visualization

The spatial dependence of the full interactions can be vi-
sualized using polar plots as in Fig. 2. Here we see the full
coupling matrix at a small (qa = 0.1) and a large (qa = 10)
value of qa. The couplings are labeled by the components of
the dipole moments that they would couple through the inter-
action −m2Km1; for example, Kxy is the coefficient of mx

2my
1

in the resulting sum. In the plots, the couplings are displayed
as a function of distance and the angle between dipoles (with x
and y axes defined as in Fig. 1). At qa = 0.1, the dipole-dipole
interactions dominate with respect to the induced terms. Since
these only include the couplings Kxx, Kxy = Kyx, Kyy, and Kzz,
the others are barely noticeable even on a logarithmic (color)
scale. The total couplings are also nearly reciprocal, but first
slight deviations are visible. At qa = 10, the other couplings
are clearly visible and of comparable strength at some an-
gles. Furthermore, most of the symmetric exchange terms
are significantly modified, featuring strong axial features. The
inversion r → −r corresponds to a half-turn (θ → θ + π )
and the transposition KT to an exchange of component indices
Kab → Kba. Therefore, the breaking of reciprocity based on
the condition from Eq. (4) is clearly visible at qa = 10, for
example, in Kyy.

IV. DYNAMICS OF RIGID PLANAR DIPOLES

Having seen how dipoles interact with each other in the
presence of the conductor, we now investigate the conse-
quences of nonreciprocity for the dynamics of a pair. In
various experimental setups [12–14,32,33], two-dimensional
magnetic moments (XY rotors) can be realized. Especially,
given that the scales in the setup of Refs. [12–14] could be
suitable to observe the effects of nonreciprocity, as discussed
in Appendix F, we will look into this type of setup more
closely in the following. The main features are rigid-body
dipoles (rods in the experiment), i.e., the magnetic moment
is “locked” to a spatial orientation of the rigid body and
the constraint of the moments to two dimensions (here the
xy plane). Both of these factors influence the form of the
equation(s) of motion (EOM), as we will see below, but apart
from the form of the EOM, the following treatment does not
use further experimental details.

A. Equation of motion

The EOM for a single dipole can be derived from the torque
on a magnetic dipole in a field [17,22]

T = m × B (8)

and the dynamical equation for a rigid body [34] rotating
around the z axis,

Tz = Iϕ̈, (9)

with the moment of inertia I and the angle ϕ representing the
orientation of the dipole relative to the x axis. Introducing a
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TABLE I. Initial conditions for the trajectories in Fig. 4.

a b c d e

ϕ+(0) 0.5π 0.2π 1.0π 1.5π 1.75π

ϕ−(0) 0.8π 1.4π 1.6π 0.9π 0.05π

further friction term appearing in the experiments [12–14], the
EOM reads

Iϕ̈ = (m × B) · ez − ηϕ̇. (10)

An alternative derivation using the Euler-Lagrange equation is
presented in Appendix D.

Note that here we do not use the standard formula for
Larmor precession [18] ṁ = T, because that assumes the
magnetic moment to be directly related to the angular momen-
tum m ∝ L, which is, for instance, the case if the magnetic
moment results from an electron in orbit. In case of the rigid
body, however, the angular momentum stems from the rigid-
body rotation.

B. Pair of dipoles

In the following section, we focus on the dynamics of a
dipole pair and show that depending on the initial orienta-
tions of dipoles initially at rest (zero angular velocity), they
can either be in an “oscillating” regime or in an (energy)

“absorbing” regime, absorbing energy from the conductor
in the latter. This energy absorption is a direct consequence
from the nonreciprocity and the aforementioned inability to
define a Hamiltonian, allowing energy nonconservation in the
dipolar system. For the remainder of the section, we neglect
the single-ion anisotropy, since a correct determination of
the torque from this self-interaction would need to take into
account the geometry of the rigid body. A discussion of the
effect, showing that it does not change the main conclusions
qualitatively, is presented in Appendix E.

The dipoles are characterized by the angles ϕ1/2 and r =
r2 − r1. We set r = 1, meaning that the length scale a in-
troduced in Sec. III corresponds to the physical distance of
the dipoles. Hence, r reduces to θ , the angle relative to the x
axis. Again, we would like to choose units such that the EOM
becomes dimensionless. For this, we introduce a timescale

set by the system parameters tsys =
√

32π2Ia3

μ0m2 , where m is the

magnitude of the magnetic moment, and scale t to τ = t/tsys.
In this way, all scales relevant for the couplings and for the
description of the dipoles are captured by a single timescale.
With damping we would have a second timescale tdamp = I/η
and the dimensionless damping factor would be tsys/tdamp.
We discuss all relevant scales in view of the aforementioned
experiments in Appendix F.

It turns out that it is favorable to transform to the sum
and difference variables ϕ± = ϕ1 ± ϕ2 for which the EOM,
expressing the field using the couplings, can be written as

d2ϕ+
dτ 2

= K+
xy(r) cos(ϕ+) + K+

yy (r) − K+
xx(r)

2
sin(ϕ+) + K−

yy (r) + K−
xx(r)

2
sin(ϕ−)

d2ϕ−
dτ 2

= −K−
xy(r) cos(ϕ+) + K−

xx(r) − K−
yy (r)

2
sin(ϕ+) − K+

yy (r) + K+
xx(r)

2
sin(ϕ−). (11)

At this point we can already make an important observation:
in case of reciprocal interactions, the K−

ab terms vanish [35].
Therefore, the equations decouple, i.e., ϕ̈± is only a function
of ϕ±. We note in passing that the equation of ϕ̈− coincides
with the EOM of a simple pendulum without the small-angle
approximation in that case. The nonreciprocal couplings also
couple the sum and difference components, such that in gen-
eral we are dealing with a system of second-order coupled
nonlinear ODE’s. To our best knowledge, there are no analyt-
ical methods to solve such equations, and therefore we resort
to numerical methods.

To be precise, we simulate the dynamics using SciPy start-
ing from various initial conditions for the angles ϕ±(0) and
the dipoles being initially at rest ω±(0) = 0, where ω denotes
the angular frequency, and focus on the parameters z0/a = 0.1
and 0 � qa � 1000. For most orientations of the dipoles in
space θ and values of qa we can distinguish two dynami-
cal regimes. The different behavior can be seen in Fig. 3,
wherein the dynamics of the angles ϕ̇± and angular velocities
ω̇± are shown for θ = 45◦ and qa = 1. The plots show the
dynamics for a simulation time of τfinal = 20 starting from
the initial conditions ϕ+(0) = 0.65π, ϕ−(0) = 1.85π , and
ϕ+(0) = 0.8π, ϕ−(0) = 1.4π . In the first case, the motion of

all quantities is oscillatory around the initial values, while in
the second a linear growth (modulo perturbations) of ω− is
observed, with ω+ oscillating around 0.

The (linear) growth of ω− also leads to a (quadratic) growth
of the kinetic energy (density) T = I (ω2

+ + ω2
−)/2L. This

nonconservation of energy is a further signature of nonre-
ciprocal behavior, since, as we argued in Sec. II, there is no
Hamiltonian to be conserved in the nonreciprocal case. As
seen in Fig. 3, the contribution from ω− dominates in case
of a large energy absorption. In this case, the average angular
acceleration (slope of the linear growth) can be approximated
from the energy (density) by

ϕ̈− = ω̇− ≈ 2
√

T/τfinal.

In the following, we present the results of simulations of this
quantity for varying initial conditions and try to get another
point of view on the dynamics by looking at them in the ϕ±
plane; we will refer to this plane as phase space even though
it is only a part of the full four-dimensional phase space.

All of this is shown in Fig. 4: In the main plot on the bottom
left we plot ω− obtained from the energy density for various
initial conditions and in the other subplots some trajectories
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FIG. 3. Dynamics of a pair of dipoles with θ = 45◦, z0/a = 0.1, qa = 1. The plots show the evolution of the angular variables and the
frequencies for two different initial conditions. The top plots correspond to oscillatory motion, while the bottom plots feature a linear growth
of ω−.

for select initial conditions; all for an orientation of the dipoles
of θ = 45◦, z0/a = 0.1, qa = 1, and τfinal = 100. The select
initial conditions labeled a to e are specified in Table I.

In the main plot we can see that the average acceleration
ranges over several orders of magnitude and one can identify
regions of high acceleration (orange) and low acceleration
(purple/black). These regions show intricate features around
the edges and also in their bulk for ϕ+ ≈ 3π/2, which will
be explained shortly. One should note though that some of the
intricacies may result from averaging over a finite simulation
time, which is probably responsible for the “stripy” pattern in
the purple/black regions corresponding to oscillatory dynam-
ics.

In the following we will build up a qualitative understand-
ing for the different regimes by analyzing the phase-space
trajectories (visually). The trajectories show the evolution
of ϕ± as a function of time. The color corresponds to the

evolution time; red being the start and green the end of the
simulation. Let us quickly summarize some observation in
plots a to e before relating the trajectories to the energy gain.
At this point one should also remember that both angular
parameters are circular and hence the parameter space is es-
sentially a torus, leading to the appearance of a “cutoff” in
some trajectories.

(1) a: The trajectory lies within a narrow strip along the
ϕ+ axis and traverse the entire ϕ− axis. For this trajectory the
energy gain is particularly large.

(2) b: The trajectory seems to lie within a slightly bent
rectangular region, which is longer across the ϕ− axis. Here
the energy gain is negligible.

(3) c: Similarly to b, but with a “straighter” and more
“squareish” rectangle.

(4) d: The trajectory seems to traverse the entire phase
space. The energy gain seems reasonably high, but overall the
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FIG. 4. Average angular acceleration and trajectories for θ = 45◦, z0/a = 0.1, and qa = 1. In the main plot (bottom left) the average
angular acceleration for τfinal = 100 starting from different initial conditions is shown. The orange colored regions correspond to a large
acceleration, while the purple/black regions correspond to essentially no acceleration (oscillatory motion). The smaller plots show trajectories
for five select initial conditions (see Table I for the exact values) and τfinal = 20. The coloring indicates the evolution time going from red (start)
to green (end). Here qualitatively different behavior is observed—see the main text for a detailed discussion and interpretation.

initial condition lies in a region where the growth appears to
be very sensitive to the initial conditions.

(5) e: The trajectory is within a stripe as in a; however, the
stripe is now along the ϕ+ axis, as opposed to the ϕ− axis. The
energy growth is very low.

To understand this behavior, we take a second look at the
trajectories a, b, and e in Fig. 5; this time plotted on top of
a background showing the acceleration function ϕ̈±(ϕ+, ϕ−),
with ϕ̈+ at the top and ϕ̈− at the bottom. The trajectories are
colored according to the time again but this time going from
white to black as time passes. Looking at the background,
one can get a visual intuition for the qualitatively different
dynamics. Here we can make some observations explaining
the appearance of energy growth and the general structure
of the main plot in Fig. 4. At first, we remember that in the

reciprocal case Eqs. (11) decouple, meaning that, for example,
ϕ̈+ is a function of ϕ+ only. Visually, this would mean that the
background would have the same coloring along ϕ−. In this
case a Hamiltonian can be defined, and energy conservation
defines boundaries in both directions. This would result in a
bounding rectangle. Furthermore, we notice that in this case
there will be a stable and an unstable fixed point in both
ϕ̈+ and ϕ̈−. For ϕ̈+ the stable one lies at ϕ̈+ = π/2 and the
unstable one at ϕ̈+ = 3π/2. For ϕ̈− they lie at 0 and π . The
final observation is that the coloring for ϕ̈+ is much more
saturated than its counterpart, indicating that the addition of
nonreciprocal terms affects ϕ̈− more strongly.

With these ideas the interpretation of the dynamics is
the following: In the case of energy growth the reciprocity
breaking leads to a breakdown of confinement along the ϕ−
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FIG. 5. Dynamics in phase space based on the initial conditions a, b, and e as in Fig. 4 and Table I. The total evolution time is τfinal = 20
with the passing of time indicated by color (white to black). In the background the accelerations ϕ̈±(ϕ+, ϕ−) are plotted. In the left plot the
motion is confined in ϕ+ but traverses ϕ−, corresponding to an energy growth. Then, in the second plot the dynamics is confined to a bend
rectangle, corresponding to oscillatory motion. Finally, in the third plot the dynamics is confined in ϕ−. This, however, does not correspond to
a (significant) energy growth.

direction. The reason is that the nonreciprocal terms change
the acceleration function, such that acceleration and deceler-
ation are not canceled anymore, as in the conserving case.
One can see this visually in the left plot in Fig. 5, wherein
along the strip decelerating portions clearly dominate ϕ̈−, and
hence the angular frequency increases constantly. The growth
rate can presumably be related to a quantity like the integral
over the strip. In the oscillatory case, such as the middle plot,
the confinement in both directions is preserved, although the
nonreciprocal terms lead to a bending of the rectangle. In both
plots the initial condition lies close to the stable fixed point
of ϕ̈+, with the stable/unstable fixed point of ϕ− leading to
oscillatory/growth behavior respectively. The initial condition
in the last plot is close to the unstable fixed point of ϕ̈+
and the stable one for ϕ̈−; consequently, the dynamics is
confined along ϕ− while traversing the full ϕ+ range. The
energy growth is small though, presumably due to the still
near cancellation of acceleration and deceleration along the
ϕ+ direction.

The fixed points also explain the regions of large energy
growth in the main plot in Fig. 4. The region with high growth
form exactly around those fixed points, with the stable fixed
point in ϕ̈+ leading to a rather well-defined region, while the
unstable one is surrounded by more intricate dependencies on
the initial conditions.

In Fig. 6 we show similar plots for various values of qa,
shifting the axes, such that the stable fixed point (in both
directions) is at the center and the unstable ones form the

boundary. In the figure one observes that the region of large
growth increases in size initially but shrinks subsequently
at larger values of qa. This can be explained by realizing
that qa → ∞ corresponds to a perfect conductor, which as
discussed in Appendix C has reciprocal couplings.

C. Long-time dynamics

The results presented in the previous section were based
on simulation times of τfinal = 20 or τfinal = 100. We have
seen in Fig. 5 that this time is already enough to explore an
extended region in phase space thoroughly. Yet the question
remains whether the dynamics ultimately leaks into further
parts of phase space. Trying to answer this, we analyze the
dynamics for much larger times of up to τfinal = 10 000;
hence several thousands of “cycles” given that the oscil-
lation frequency of ϕ+ is of order one (see for instance
Fig. 3). In Fig. 7 we plot the resulting average accelera-
tion for a single initial condition (ϕ+ = 3π/2, ϕ− = 0) but
varying simulation times and values of qa. In the figure one
can (roughly) identify converging and decaying behaviors of
the rate. From earlier observations, we recognize that the
decay corresponds to oscillatory behavior, while the con-
vergence occurs due to growth as discussed in Sec. IV.
Though it is unclear what would happen in a case, wherein
the entire phase space is explored. In any case, we see that
confinement at some parameter values persists even to very
long times. Whether it remains up to infinite times can,
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FIG. 6. Averaged angular acceleration rate for θ = 45◦ and z0/a = 0.1 starting from different initial conditions. The total evolution time is
τfinal = 100. We observe orders of magnitude differences between different initial conditions. The absorbing regime is strongest at intermediate
qa, since qa = 0, ∞ both feature reciprocal couplings.

of course, not be answered by numerical simulations defi-
nitely. However, in reality one does not expect these times
to be practical anyway due to damping, which is discussed
next.

FIG. 7. Long-time behavior of the average acceleration rate with
θ = 45◦, z0/a = 0.1, and initial condition ϕ+ = 3π/2, ϕ− = 0. Dif-
ferent simulation times τfinal are plotted. We observe three different
types of behavior: decay with τfinal mostly at the edges, conver-
gence with τfinal around the middle, and a convergence followed by
a decay at isolated points. Decay can be explained by oscillatory
motion/confined motion in phase space, while the convergence in-
dicates motion corresponding to an energy growth.

D. Dynamics with damping

Finally, we consider the dynamics including damping.
Simulations for various parameter values and values for the
(dimensionless) damping coefficient η̃ = tsys/tdamp suggest
that with damping a steady state is reached by the dynamics.
For strong damping this steady state is essentially a rest state,
but for values of η̃ ≈ 1 a steady state with finite angular fre-
quency (modulo some oscillations) can be reached, with some
energy being absorbed in the process. The magnitude of the
damping is chosen based on a reasonable experimental setup,
as outlined in Appendix F. In Fig. 8, we again plot the average
acceleration as a function of the initial conditions for select
values of qa. Three different simulation times are plotted,
since with damping we expect the averaged acceleration to
depend on the simulation time even in the case of initial en-
ergy growth. We again observe clear regions wherein energy is
absorbed by the dipoles; however, many of the more intricate
features appear to be “washed out” by the damping. In fact, for
qa = 10 the entire diagram seems uniform across the initial
conditions. The strong dependence on the simulation time,
as seen in the colors, signifies that the timescale of reaching
the steady state is comparable to the times depicted in the
figure.

In phase space the steady state seems to correspond to
motion on a curve, as can be seen in Fig. 9. The curve is
strongly confined on the ϕ+ axis, while being open along
the ϕ− axis. However, visualizing the values for ω± shows a
steady state with some oscillations on top; therefore, deceler-
ation and acceleration with respect to ϕ̈− should be balanced
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FIG. 8. Average acceleration with damping (η̃ = 1) with θ = 45◦ and z0/a = 0.1 for qa = 10 (upper) and qa = 100 (lower) based on
different simulation times. Even with damping there is still an energy absorption, even though it is strongly suppressed for qa = 100. The
average acceleration depends on the simulation time, indicating that the steady state is reached or nearby for the chosen times. Compared to
the undamped case many of the more intricate dependencies on the initial conditions appear to be washed out.

along the path, even though visually it is not clear how this
balancing occurs exactly.

V. CONCLUSION

Overall, we have analyzed the dynamics of a pair of rigid
XY dipoles with nonreciprocal interactions due to a moving
conductor in detail, building on the work of Prat-Camps et al.
[3]. We have shown that the nonreciprocal terms have a sig-
nificant effect on the dynamics leading to the possibility of
energy absorption from the conductor. Here we found a very
strong dependence on the initial conditions and provided a
qualitative interpretation in terms of phase-space confinement.
These phenomena may be related to notions in dynamical
systems such as chaos [36]. Furthermore, we have also argued
that many of these effects could well be observable in experi-
ments, for example, in setups as in Refs. [12–14]. The results
on statistical physics of nonreciprocal systems [7,9] motivate
the experimental and theoretical study of the described system
as well as possible future studies of many-body systems with
nonreciprocal magnetic interactions.

The question remains, though, of how the presented results
might transfer to many-body systems. In particular, the strong
dependence on initial conditions may lead to a “washing out”
of the absorption effect, but the opposite could also be true.
However, thinking about this question, one can make the
observation that the number of degrees of freedom can be
reduced by preparing the system in specific initial states on a
lattice. Consider, for example, an initial state with all dipoles

at rest and with the same orientation on a square lattice: The
torques on all dipoles are equal, and thus the entire dynamics
will be equal for any single dipole. Therefore, in this case, we
would have an exact mean-field description, which could be
reduced to the degrees of freedom of a single dipole. Since
the square lattice is a bipartite lattice, we could also get a
reduction to a pair of dipoles by preparing a state with equal
orientations on each sublattice. As the couplings decay fast,
the resulting model would most likely be close to the bare
two-dipole case that we focused on throughout this article.
Clearly, this idea can be generalized to an increasing number
of dipoles, with an appropriate choice of the lattice. Therefore,
we expect that the few-body effects can persist in the many-
body case and thus their study can also be motivated from this
perspective.

The data and code for this article is freely accessible in
Ref. [37].
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FIG. 9. Dynamics in parameter space with damping η̃ = 1 at
qa = 10, θ = 45◦, and z0/a = 0.1 starting from the initial condition
ϕ+ = π/2, ϕ− = 0. The total evolution time is τfinal = 100. The dy-
namics converges onto a curve with a very small extent in ϕ+ (note
the small range in ϕ+ depicted in the plot). Visualizing the data in
different ways suggests that a steady state is reached.

APPENDIX A: DERIVATION OF THE COUPLING MATRIX

In this section we derive the coupling matrix K of a copla-
nar configuration of magnetic dipoles based on the setup
presented in Sec. II and Fig. 1. As discussed in Sec. III,
in principle only the field of a single dipole needs to be
derived; however, here we explicitly include all dipoles to
emphasize that the total field is a superposition. Although we
are interested in the nonrelativistic limit β ≡ v/c  1, where

c denotes the speed of light in vacuum, we first apply a fully
relativistic treatment to the problem and perform all limits on
the final expressions.

1. Electromagnetic field generated by the dipoles

Our goal is to obtain the electromagnetic field generated by
the dipoles in the rest frame of the conducting half-space, i.e.,
laboratory frame. The magnetization M′(r′) = ∑

i m′
iδ(r′ −

r′
i ) in the lattice frame translates, via a Lorentz transformation,

to a polarization P(r, t ) = ∑
i piδ(r − ri ) and magnetiza-

tion M(r, t ) = ∑
i miδ(r − ri ) in the laboratory frame. Each

dipole i is characterized by its position,

ri = (vt + xi/γ )ex + yiey + z0ez, (A1)

and its electric and magnetic moment,

pi = (β/c)
( − mz

i ey + my
i ez

)
, (A2)

mi = (mx
i /γ )ex + my

i ey + mz
i ez, (A3)

where γ −1 =
√

1 − β2 denotes the Lorentz factor [45]. The
polarization and magnetization give rise to a charge den-
sity ρ(r, t ) = −∇ · P(r, t ) and a current density j(r, t ) =
∂t P(r, t ) + ∇ × M(r, t ). It immediately follows that the elec-
tric and magnetic field generated by dipole i can, in the
spectral domain, be expressed in terms of the dyadic Green’s
function G(r, r′, ω),

Ei(r, ω) = iμ0ω

∫
R3

dr′G(r, r′, ω) · ji(r′, ω), (A4)

Bi(r, ω) = μ0∇ ×
∫
R3

dr′G(r, r′, ω) · ji(r′, ω), (A5)

where μ0 denotes the vacuum permeability. Note that
throughout this derivation we use the convention f (r, ω) =∫
R dt f (r, t ) exp(iωt ) for the Fourier transform. The dyadic

Green’s function is the solution of the the inhomogenous
Helmholtz equation

∇ × ∇ × G(r, r′, ω) − (ω/c)2ε(r, ω)G(r, r′, ω)

= δ(r − r′)I, (A6)

with the relative permittivity ε(r, ω) = 1 + [ε(ω) −
1]�(−z). We evaluate the electromagnetic fields in the
upper half-space, i.e., z > 0, where the Green’s function
can be subdivided into a bulk part and a scattering part
G(r, r′, ω) = Gb(r, r′, ω) + Gs(r, r′, ω) for z, z′ > 0.
The bulk Green’s function describes the evolution of
electromagnetic fields in free space, whereas the scattering
Green’s function describes the evolution of electromagnetic
fields scattered by the conducting half-space. The total
electromagnetic field reads

E(r, t ) =
∑

i

[Eb
i (r, t ) + Es

i (r, t )], (A7)

B(r, t ) =
∑

i

[Bb
i (r, t ) + Bs

i (r, t )]. (A8)

One can derive the bulk part of the electromagnetic field by
either using the well-known bulk Green’s function for free
space and calculate the field via Eq. (A4) and Eq. (A5) or by
simply Lorentz transforming the static magnetic field created
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by the coplanar configuration of magnetic dipoles to the labo-
ratory frame. Both approaches are straightforward and lead to
the same well-known expressions [17]. The scattering Green’s
function for a half-space has a well-known expression is also
known [15] and using it one can obtain an expression for the
coupling matrix.

2. Coupling matrix

In the nonrelativistic regime, where β  1 and γ � 1 the
electric contribution is vanishingly small and can safely be
neglected when compared to the magnetic contribution, and
we arrive at the coupling matrix

Kdpl(r) = μ0

4π

3r̂ ⊗ r̂ − I

r3
.

As expected, in the nonrelativistic regime, this expression
agrees with well-known free-space dipole-dipole interaction
term.

For the scattering part, a lengthy but straightforward calcu-
lation shows that in the nonrelativistic regime the induced part
of the coupling matrix reads

Kind(r) = μ0

8π2z3
0

∫ ∞

0

∫ 2π

0
dξdφ e−2ξ ξ 2rs(ξ, φ)ei ξ

z0
r·eρM(φ),

(A9)
with the magnetic Reynolds number R = μ0σvz0 and the
cylindrical unit vectors eρ, eφ, ez. Before analyzing the ex-
pression in detail, we note that this derivation can easily be
generalizing to the non-co-planar case (zi �= z j). In the general
case, the term exp(−2ξ ) that needs to be replaced by exp(zi jξ )
with zi j ≡ (zi + z j )/2.

Note that the integrand decays exponentially in ξ due to
the factor exp(−2ξ ). The relative permittivity will therefore
contribute appreciably in a region around the characteris-
tic frequency of the system ωc ≡ γ v/z0. For nonrelativistic
velocities up to v � 103 m s−1 and distances down to z0 �
10−9 m the characteristic frequency is ωc � 1012 s−1. Typical
relaxation times for metals are on the order of τ � 10−14 s
[20] which leads to ωcτ � 10−2. Therefore, we can safely ap-
proximate the relative permittivity by ε(ω) � 1 + iσ/(ε0ω).

APPENDIX B: DETAILS ON COUPLINGS

1. Decomposition

The expression for the coupling matrix can be decomposed
into contributions with different parity on (spatial) inversion
and transposition. To decompose it we start by expanding the
matrix in the integrand

(eρ + iez )(eρ − iez ) (B1)

= M+(φ) + iM−(φ)

=
⎡
⎣ cos2(φ) cos(φ) sin(φ) 0

cos(φ) sin(φ) sin2(φ) 0
0 0 1

⎤
⎦

+ i

⎡
⎣ 0 0 − cos(φ)

0 0 − sin(φ)
cos(φ) sin(φ) 0

⎤
⎦, (B2)

with the even and odd matrices under transposition M±
also satisfying M+(φ + π ) = M+(φ) and M−(φ + π ) =
−M−(φ). Using this and that eρ (φ + π ) = −eρ (φ) and
rs(ξ, φ + π ) = r∗

s (ξ, φ), we can reduce the angular integral
from 0 to 2π to an integral from 0 to π

∫ 2π

0
dξdφ rs(ξ, φ)ei ξ

z0
r·eρ (eρ + iez )(eρ − iez )

= 2Re(rs)

[
cos

(
ξ

z0
r · eρ

)
M+ − sin

(
ξ

z0
r · eρ

)
M−

]

− 2Im(rs)

[
cos

(
ξ

z0
r · eρ

)
M− + sin

(
ξ

z0
r · eρ

)
M+

]
.

(B3)

We can now decompose this further into an even and an odd
part under inversion

K+(r) = μ0

4π2z3
0

∫ ∞

0
dξ e−2ξ ξ 2

∫ π

0
dφ

×
[

Re(rs) cos

(
ξ

z0
r · eρ

)
M+ − Im(rs)

× cos

(
ξ

z0
r · eρ

)
M−

]

K−(r) = − μ0

4π2z3
0

∫ ∞

0
dξ e−2ξ ξ 2

∫ π

0
dφ

×
[

Re(rs) sin

(
ξ

z0
r · eρ

)
M−

+ Im(rs) sin

(
ξ

z0
r · eρ

)
M+

]
. (B4)

As we can see, each combination off inversion and transposi-
tion symmetry is represented in the expressions. Finally, the
single-ion anisotropy is the limit A = limr→0 K+(r)

A = μ0

4π2z3
0

∫ ∞

0
dξ e−2ξ ξ 2

∫ π

0
dφ [Re(rs)M+ − Im(rs)M−],

(B5)
where one can check that by symmetry only the diagonal
components Axx, Ayy, Azz are nonvanishing.

2. Reflection symmetries

Analyzing the trigonometric functions in the integral ex-
pression of the couplings, one can show that the spatial
dependence of individual couplings K±

ab does not only have
an inversion symmetry but even a quadrant symmetry with
respect to θ . A convenient way to derive the appropriate sym-
metries is to consider reflections of r along the x or y axis,
described by the reflection matrices Rx/y. We do not present
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the relatively straightforward derivations here and state the
results instead:

K+
xx(Rx/yr) = K+

xx(r), K−
xx(Rx/yr) = −/ + K−

xx(r)

K+
xy(Rx/yr) = −K+

xy(r), K−
xy(Rx/yr) = +/ − K−

xy(r)

K+
xz (Rx/yr) = K+

xz (r), K−
xz (Rx/yr) = −/ + K−

xz (r)

K+
yy (Rx/yr) = K+

yy (r), K−
yy (Rx/yr) = −/ + K−

yy (r)

K+
yz (Rx/yr) = −K+

yz (r), K−
yz (Rx/yr) = −/ + K−

yz (r)

K+
zz (Rx/yr) = K+

zz (r), K−
zz (Rx/yr) = +/ − K−

zz (r).

Note that for K±
ba the relationship is the same, since the trans-

pose symmetry acts on both sides of the equation in the same
way. These allow to reduce the computations of the couplings
by a factor of four but can also be used to test the numerical
integration, which we did during the process.

3. Transformation

To bring the expressions into a form suitable for numer-
ical integration by quadrature, we use the transformations
x = 2ξ/R and u = cos(φ) (from 0 to π sin(φ) = √

1 − u2)
to rewrite the matrices as

K+(r) = μ0q3

32π2

∫ ∞

0
dx e−Rxx2

∫ 1

−1

du√
1 − u2

cos

[
qrx

2

(θ, u)

]
[Re(rs)M+ − Im(rs)M−]

K−(r) = − μ0q3

32π2

∫ ∞

0
dx e−Rxx2

∫ 1

−1

du√
1 − u2

sin

[
qrx

2

(θ, u)

]
[Re(rs)M− + Im(rs)M+], (B6)

wherein the “frequency,”


(θ, u) = u cos(θ ) +
√

1 − u2 sin(θ ),

the scattering function,

rs(x, u) = x − √
x2 − 2iux

x + √
x2 − 2iux

, (B7)

and

M+ =
⎡
⎣ u2 u

√
1 − u2 0

u
√

1 − u2 (1 − u2) 0
0 0 1

⎤
⎦

M− =
⎡
⎣0 0 −u

0 0 −√
1 − u2

u
√

1 − u2 0

⎤
⎦. (B8)

APPENDIX C: PERFECT CONDUCTOR

In case of a perfect conductor (σ → ∞), the scattering
function rs = −1 is purely real [15], and the couplings can
be calculated exactly (for instance, using Mathematica). The
couplings obtained in this way are reciprocal. To evaluate the
integrals analytically we first start with the integral over x,

q3
∫ ∞

0
(−1)e−Rxx2 exp

[
i
qr

2
ωx

]
dx = − 2(

z3
0 − i r

2ω
)3 , (C1)

whose real and imaginary parts correspond to the cos and sin
integrals. Using this, the angular integrals can be evaluated to

Kxx = 4π
(
3r2 cos(2θ ) + r2 − 8z2

0

)
(
r2 + 4z2

0

)5/2

Kyy = 4π
( − 3r2 cos(2θ ) + r2 − 8z2

0

)
(
r2 + 4z2

0

)5/2

Kzz = 8π
(
r2 − 8z2

0

)
(
r2 + 4z2

0

)5/2

Kxy = 12πr2 sin
(
2θ

)
(
r2 + 4z2

0

)5/2

Kxz = 48πrz0 sin
(
θ
)

(
r2 + 4z2

0

)5/2

Kyz = 48πrz0 cos
(
θ
)

(
r2 + 4z2

0

)5/2 .

We can identify the length scale � =
√

r2 + 4z2
0; however, at

the moment it lacks a physical interpretation. The single-ion
anisotropy can be obtained by taking the limit r → 0 and
gives

Axx = Ayy = Azz

2
= −4π

z3
0

. (C2)

The x and y components are equal and half as large as the z
component. Therefore, in a Hamiltonian description we ex-
pect an effective XY model. The reason for this is that due
to the negative sign, z components of the magnetic moments
have a higher energy cost than xy components. An analysis
of the relevant terms shows that the angular dependence of
the induced couplings is similar to the dipole-dipole one.
Therefore, we expect only a slight change in the physics and
do not analyze this setup in detail.

APPENDIX D: DERIVATION OF THE EQUATIONS
OF MOTION

1. Derivation from torque

Using the couplings defined above we can expand the right-
hand side

(mn × Bn) · ez =
∑
k �=n

(mn × Bk ) · ez

=
∑
k �=n

(mn × K(rkn)mk ) · ez
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= m2
∑
k �=n

Kxy(rkn) cos(ϕk + ϕn)

+ Kyy(rkn) sin(ϕk ) cos(ϕn)

− Kxx(rkn) cos(ϕk ) sin(ϕn). (D1)

In the derivation m is the norm of the dipole moment |mn| =
m ∀n, and we use that Kxy = Kyx.

2. Alternative derivation

For reciprocal systems we can derive the equation from the
Euler-Lagrange equations or Hamilton’s equation. Through-
out the derivation we assume that the dipole moments are
confined to the xy plane. The kinetic energy is given by

T = I

2

(
ω2

1 + ω2
2

)
(D2)

and the potential energy by

V = −m2B1 = −m2K(r)m1, (D3)

where r is the displacement from m1 to m2. Expanding the
expression we get

V = −m2K(r)m1

= −m2[Kxx cos(ϕ1) cos(ϕ2) + Kyy sin(ϕ1) sin(ϕ2)

+ Kxy sin(ϕ1 + ϕ2)].

The Euler-Lagrange equations for L = T − V are

∂L
∂qi

= d

dt

∂L
∂ q̇i

. (D4)

In our case qi ≡ ϕi and q̇i ≡ ωi. The right-hand side reads

d

dt

∂L
∂ q̇i

= Iω̇i = Iϕ̈i (D5)

and the left-hand side matches the EOM derived from torque
(without damping). In the nonreciprocal case the formalism
can still be used to obtain the EOM of one dipole in the field
of the other. In this way Eq. (D1) will be obtained for each
individual dipole.

3. Sum and difference variables

For a pair of dipoles, it can be advantageous to consider
the dynamics using the variables ϕ± = ϕ1 ± ϕ2 and the corre-
sponding angular velocities. Rewriting the EOM (D1) in these
variables yields

ϕ̈+ = K+
xy(r) cos(ϕ+) + K+

yy (r) − K+
xx(r)

2
sin(ϕ+)

+ K−
yy (r) + K−

xx(r)

2
sin(ϕ−)

ϕ̈− = −K−
xy(r) cos(ϕ+) + K−

xx(r) − K−
yy (r)

2
sin(ϕ+)

− K+
yy (r) + K+

xx(r)

2
sin(ϕ−), (D6)

where the upper signs again denote the even and odd part
on inversion. We can see that for general reciprocal couplings

(the transpose is symmetric in the x/y-couplings subspace)
these equations decouple, and we expect oscillatory solutions,
in the sense that the kinetic energy is bounded by energy
conservation.

APPENDIX E: EFFECTS OF THE SINGLE-ION
ANISOTROPY

In the simulations thus far, we have neglected the effects
of the single-ion anisotropy. The reason is that while it is
formally easy to include it in the EOM, by simply adding the
field, physically the situation is not so clear. In fact to create a
torque, a rigid body has to be acted on the side, while formally
the single-ion anisotropy act at the center of the dipole. This is
hidden somewhat in the derivations by the implied assumption
that the field from other dipoles does not vary too much across
the physical extent of the dipole. In fact, a discrepancy can
be seen by comparing the EOM contribution of the field Am
in the torque derivation or the Lagrangian derivation. The
Lagrangian derivation leads to a factor of 2, due to square
terms like sin2(ϕ1) instead of sin(ϕ1) sin(ϕ2). Intuitively, the
Lagrangian derivation is more reliable, and since the effect
of the new terms is stronger we use this in the simulations.
Since the single-ion anisotropy is a reciprocal interaction, we
expect it to favor a confined motion and to suppress energy
absorption. Nevertheless, energy growth can be observed, as
seen in Fig. 10, even though the shapes of the absorbing
regions are changed significantly.

APPENDIX F: PARAMETER VALUES

In the experiments [12–14] cylindrical magnetic
neodymium rods constrained to move in the xy plane act
as magnetic dipoles. The parameters vary across the cited
works, with the ones in Ref. [12] seeming most favorable for
our setup, and therefore we will use these here. The length of a
rod is � ≈ 1.9 × 10−2 m, the diameter d ≈ 1.5 × 10−3 m, the
mass M ≈ 0.28 × 10−2 kg, and the saturation magnetization
Msat ≈ 1.2 × 106 A m−1. From these one can derive moment
of inertia I = 1

12 M�2 ≈ 8.4 × 10−9 kg m2, the “magnetic
charge” Q = π ( d

2 )2Msat ≈ 2.03 A m and subsequently the
magnetic moment m = Q� ≈ 3.9 × 10−2 A m2.

Given these values, the timescale tsys =
√

32π2Ia3

μ0m2 intro-

duced in Sec. IV can be estimated to

tsys ≈ 38a
3
2 s,

where a is the distance between dipoles measured in meters.
The damping timescale tdamp = I/η is approximately 1 s. In
dimensionless units the damping coefficient is

η̃ = tsys/tdamp ≈ 38a
3
2 .

As described in the main text, values for qa where the
nonreciprocity can have substantial effects lie within the range
of 10−1−103 for the investigated distance to the plate z0/a =
0.1. For the most conductive nonmagnetic metals (relative
permeability μ ≈ 1) such as copper, aluminum, gold, and
silver, typical values for the conductivity (at room tempera-
ture) are around σ ≈ 4−6 × 107 S m−1, from which we get
qa = μ0σva ≈ 50−75va s m−2.

174435-14



DYNAMICS OF A PAIR OF MAGNETIC DIPOLES WITH … PHYSICAL REVIEW B 106, 174435 (2022)

FIG. 10. Average acceleration rate with single-ion anisotropy for an angle of 45◦, z0/a = 0.1, and three different values of qa based on a
simulation time of τfinal = 100. We observe regions with significant absorption, even though the shape of these regions is significantly changed
compared to the case without a single-ion anisotropy.

Let us conclude with providing some estimates for ex-
perimental parameters needed to realize the values for the
damping constant and other parameters used in Sec. IV D. As-
suming that the experimental values for the magnetic moment,
the moment of inertia, and damping are set, one can adjust
the damping by setting the distance a to ≈1 dm. As a conse-
quence, the velocity should be on the order of 1 m s−1 to reach

reasonable values of qa. The choice of a implies that z0 ≈
1 cm, which might pose an experimental challenge but seems
still realistic overall. Furthermore, near-field effects could
arise from both the distance to the plate and the distance of the
dipoles to each other; however, given that a is a multiple of �

and z0 a multiple of d , these might not have a too-large influ-
ence, but this would need to be checked for a concrete setup.
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