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Using the corner-transfer matrix renormalization group to contract the tensor network that describes its
partition function, we investigate the nature of the phase transitions of the hard-square model, one of the
exactly solved models of statistical physics for which Baxter has found an integrable manifold. The motivation
is twofold: assess the power of tensor networks for such models, and probe the 2D classical analog of a 1D
quantum model of hard-core bosons that has recently attracted significant attention in the context of experiments
on chains of Rydberg atoms. Accordingly, we concentrate on two planes in the 3D parameter space spanned by
the activity and the coupling constants in the two diagonal directions. We first investigate the only case studied
so far with Monte Carlo simulations, the case of opposite coupling constants. We confirm that, away and not
too far from the integrable 3-state Potts point, the transition out of the period-3 phase appears to be unique
in the Huse-Fisher chiral universality class, albeit with significantly different exponents as compared to Monte
Carlo. We also identify two additional phase transitions not reported so far for that model, a Lifshitz disorder
line, and an Ising transition for large enough activity. To make contact with 1D quantum models of Rydberg
atoms, we then turn to a plane where the ferromagnetic coupling is kept fixed, and we show that the resulting
phase diagram is very similar, the only difference being that the Ising transition becomes first-order through
a tricritical Ising point, in agreement with Baxter’s prediction that this plane should contain a tricritical Ising
point, and in remarkable, almost quantitative agreement with the phase diagram of the 1D quantum version of

the model.
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I. INTRODUCTION

Commensurate-incommensurate (C-IC) transitions have
recently attracted renewed attention due to their experimen-
tal realisation in Rydberg atoms [1,2]. Their nature has
long been debated and studied in both classical [3—13] and
quantum systems [14-22]. The problem was initially intro-
duced in the context of adsorbed monolayers [23-26]. The
physics at C-IC transitions is controlled by domain walls and
dislocations, and it becomes a subtle problem when walls
between domains A | B and B | A have different energies.
Their average distance defines the pitch or wave vector g,
which goes to the commensurate value with a power law
described by the critical exponent B (¢ — go ~ t?). Based on
scaling arguments, Huse and Fisher [27] first proposed the
existence of a unique transition for p = 3,4, which would
be characterised by the fact that the product of the wave
vector along the incommensurate direction with the correla-
tion length goes to a strictly positive constant at criticality,
&(q — qo) — cst > 0 (or equivalently by the fact that v =
B, where v characterises the power-law divergence of the
correlation length along the incommensurate direction). This
contrasts with the usual isotropic transitions for which such
a product is believed to go to zero at the critical tempera-
ture (B > vj). Studies treating the dislocations perturbatively
have shown that for p > 2, the transition can also take place
through a two-step process separated by a floating phase:
first through a Pokrovsky-Talapov (PT) [28] transition charac-

terised by critical exponents (v, vy, 8) = (1/2, 1, 1/2) at low
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temperature, then through a Kosterlitz-Thouless (KT) [29]
transition characterised by the exponential divergence of the
correlation length coming from high temperature [30]. For a
two-step transition, the product £(q — go) thus diverges ap-
proaching the floating phase, and this leaves three different
scenarios for the C-IC transition, which can all be distin-
guished by the behavior of the product & (g — qo).

Originally introduced by Baxter [31,32], the hard-square
model is one of the paradigmatic models to study this issue
because it hosts commensurate melting from period-2 and
period-3 phases, and because it contains an integrable man-
ifold inside which transitions have been fully characterized
by Baxter: the melting of the 2 x 1 phase occurs via an Ising
tricritical transition while the 3 x 1 phase melts through a
3-state Potts transition. Away from the 3-state Potts points,
Huse [33] argued that a chiral perturbation is present, and
that the transition has to change nature and could become
chiral. Since away from the 3-state Potts point the model
is not integrable along the transition line, the only way to
test Huse’s prediction is to resort to numerical approaches.
This has been attempted with Monte Carlo simulations by
Bartelt et al. [38] in the late eighties, for the model with
diagonal and antidiagonal interactions respectively attractive
and repulsive and of the same intensity. The results are con-
sistent with a chiral transition close to the Potts point, with
an exponent B ~ 0.8. This exponent disagrees with later re-
sults on other models [3,34] and with experimental results on
reconstructed surfaces [35], which all point to an exponent

B =2/3.
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In the present paper, we revisit the hard-square model using
the corner transfer matrix renormalization group (CTMRG), a
method introduced in the mid-nineties by Nishino and Oku-
nishi [36] and used recently on the chiral Potts [34] and
Ashkin-Teller [37] models. As we shall see, this approach
confirms and complements the Monte Carlo investigation by
Bartelt ef al. [38] of the model with opposite diagonal and
antidiagonal interactions, with in particular an estimate of
B = 2/3 in better agreement with other results, and the iden-
tification of a disorder line and an Ising transition at larger
activity and temperature. We also study another cut through
the parameter space of the hard-square model that corresponds
to the 2D classical version of a 1D bosonic quantum model
recently studied in the context of chains of Rydberg atoms
[15-17], with a phase diagram in excellent agreement with its
1D counterpart.

The paper is organised as follows. In Sec. II we describe
the model and recall some of the exact results and previous
work. In Sec. III, we present our main results for the model
along the cut initially studied with Monte Carlo, as well as
the phase diagram for the other cut that corresponds to the
1D quantum bosonic model. The results are put in perspective
in Sec. IV. The technical aspects of the method, which has
already been used for other models [34,37], are recalled in the
appendices, as well as the mapping between the 1D quantum
bosonic model and the hard-square model.

II. THE MODEL

The hard-square model with diagonal interactions is de-
fined on a square lattice with spins on the vertex taking value
n € {1, 0}. If n = 1, the spin is said to be filled while if n = 0
the spin is said to be empty. The model is defined in the grand
canonical ensemble by

BH = _Mznx,ynx-&-l,y-&-l - LGx,ynﬂ—l,y—l (1)

X,y X,y

with B the inverse temperature and M = BJ; and L = 8J;
where J; and J, are the respective diagonal and antidiago-
nal coupling constants. The hard-core constraint forbids two
neighboring spins from both be filled, leading to the partition
function

Z= l_[(l —mnj)e P nz”", 2)
{n} (i.)) i

where the activity is defined as z = e**, with  usually referred
to as the chemical potential. Baxter [31] showed that there
exists an integrable surface in the three dimensional manifold
(z, M, L) parametrised by

2= —e B —e™M)/(eF™ — b — M), 3)
On this manifold, the phase transitions occur at

Z

1
m=5(11+5«/§). 4

The solutions for which M,L > 0 were shown [39] to
be Ising tricritical points, while solutions for which
M>0,L<0 or M<O0,L>0 belong to the three-state
Potts universality class described by the critical exponents
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FIG. 1. Phase diagram of the model on the integrable manifold as
derived by Baxter. The z value on this manifold is not constant but is
given by Eq. (3). The shaded area corresponds to the nonphysical
parameter range z < 0. The cut with opposite interactions on the
diagonals and the antidiagonals corresponds to M = —L > 0 and has
only one integrable phase transition in the 3-state Potts universality
class, while a cut L = c¢st > 0 has an additional integrable Ising
tricritical point.

(v, a, B) = (5/6,1/3,5/3). The projection of these lines onto
the (M, L) plane are shown in Fig. 1.
The critical density is also known and given by

pe = (5 —+/5)/10 ~ 0.27639. 5)

More recently, Sachdev and Fendley [15] revisited the model
through its one dimensional quantum equivalent Hamiltonian
defined by

H =Y —od;+d)+Uhj+ Vi

with the constraints #;7;+1 = 0 and #;(77; — 1) = 0. The 1 +
1 correspondence is done via the transfer matrix formalism.
One recovers the classical partition function from the quantum
Hamiltonian in the infinite anisotropic limit. More precisely,
one needs to take the diagonal transfer matrix in the L — oo
and z, M — O limits in such a way that

Vv

== M2,
w

Ty (6)
w

are kept constant, with ¢ = 1 — zel'. The x + y direction then
plays the role of the time direction and the hard-core con-
straint translates into 7;7;,; = 0 while the constraint 7;(1 —
;) = 01is due to the spin taking value into {0, 1}. We illustrate
the mapping in Fig. 2. More details on how such a correspon-
dence is established are given in Appendix D.

We note that throughout the whole study, due to practical
reasons explained in the appendices, we are only able to
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FIG. 2. Correspondence between the hard-core boson and the
hard-square model in the 3 x 1 phase with the red and blue arrows
respectively representing the repulsive and attractive interactions.

measure the correlation length and the wave vector along the x
and y directions. This is unfortunate since the commensurate
direction lies along the x + y axis, but one can live with
this restriction, as we now explain. Indeed, if the transition
is conformal with anisotropic exponent v, /vy, =1 as for the
three-state Potts point, the direction along which the correla-
tion length and wave vectors are measured does not matter and
one always recovers its critical exponents. Now, if the transi-
tion is anisotropic along the x & y directions with v,_, # V.,
the analysis of the correlation length in the x or y direction
will both give the same critical exponent v = min(v,_y, vyt ),
which we expect to be equal to v,_, if the incommensurate
correlations are in the x —y direction from our experience
with other models. Besides, ,BXH is not defined due to ¢
being strictly constant everywhere along the x + y direction.
This in turn gives B,_, = B, = B, and the investigation of
will not be hampered. This means that it will be possible to
check the criterion for a chiral transition B,_, = vET . The
only thing that will not be directly accessible is the dynamical
exponent Z = V.4, /Vy_,, but we can get information on it with
hyperscaling and an estimate of the specific heat exponent «.
More details are provided in the Appendices.

III. RESULTS
A. Ferro-antiferromagnetic case

We first address the M = —L case with J; =1 and J, =
—1, which amounts of having attractive and repulsive interac-
tions in the x + y and x — y directions respectively, favoring
sites on the diagonal to either be all full or all empty while the
sites on the antidiagonal will have a filling 1/3. Equation (4)
with M = —L has only one solution for which M > 0 and
L < 0, thus belonging to the three-state Potts universality
class. This cut of the three-dimensional phase diagram has
already been studied with Monte Carlo [38] in the vicinity
of the incommensurate-27 /3-commensurate transition. We
complete the study by mapping the whole two-dimensional
phase diagram and present the results in Fig. 3.
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FIG. 3. Phase diagram of the model for M = —L where we have
plotted: (o) the three-State Potts point, (0) the Ising transition, (o) the
chiral /PT transitions, (©) the order-disorder line, () the integrable
line, and (—) the 277 /3 commensurate line that terminates at the Potts
point. The red arrow at the top represents the hard-core lattice gas
critical activity. Black lines are guides to the eyes.

We note that in the infinite temperature limit for M = —L,
we recover the hard-core square lattice gas, which transition
occurs at z, = 3.7962 4 0.0001 [40] and is believed to belong
to the Ising universality class [41]. We expect this transition
to persist at finite temperature, and to either stay in the Ising
universality class or to become a first-order transition at an
Ising tricritical point.

1. Benchmark: Three-state Potts point

We now turn to the investigation of the phase diagram
and benchmark our algorithm on the three-state Potts
points, whose exact location is known and given by
(z¢, T.) >~ (0.7414,0.6504). The numerical results are
summarised in Fig. 4. We found from the ordered and
disordered phase v = 0.832 £ 0.001 and v = 0.828 £+ 0.002
respectively, in good agreement with the exact result 5/6. We
further measure B, = 1.63 & 0.01 and B, = 1.64 £ 0.01, also
in reasonable agreement with the theoretical value 5/3. We
note that due to a better extrapolation with respect to the gaps
of the transfer matrix, the exponents B, obtained at a given
temperature have smaller error bars than exponents .. Thus,
from now on, we will focus on By and v, rather than By and vy.

2. Ising transition

At finite temperature, and in the high chemical potential
limit, one enters a 7-commensurate phase in which only two
types of domains walls are possible. The transition is thus
expected to either be first order or to belong to the Ising
universality class. The numerical evidence is clearly in favor
of Ising. In particular, at z = 6, we found that the inverse
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FIG. 4. Effective exponent B (b) and v, (a) when approaching
the Potts point. We do not show v, since it is exactly equal to v, by
symmetry. Error bars and extrapolated exponents are computed with
a linear fit (dashed line) on the last three points. For the sake of clarity
we do not show the extrapolation on f,. Simulations were done with
x € [100, 200].

correlation length from both sides of the transition goes to
zero linearly, in agreement with critical exponent v = 1. In
that case, the critical temperature can be fixed by the inter-
section from a linear fit of the inverse correlation length with
the temperature axis. We can see on Fig. 5 that such fits
intersect the temperature axis at the same point from both
sides of the transition in agreement with a unique critical
temperature. We found similar results all along the transition
and have studied it up to the largest temperature, 7 = 2.5. If
we recall that in the infinite temperature limit one recovers the
hard-square lattice gas, which transition is believed to belong
to the Ising universality class as well, then we can conclude
that the transition from the infinite temperature up to at least
z = 6 belongs to the Ising universality class, and that if in the
large activity limit it becomes a first-order one, the tricritical
point would be located at z > 6.

3. Lifshitz C-IC transition

We found the IC and 7-commensurate phases to be sepa-
rated by a disorder line of the first kind [42]. Such transitions
are characterised by an asymmetric temperature dependence
of the correlation length, with infinite slope from the commen-
surate side and a finite derivative from the incommensurate
one. We present in Fig. 6 the results obtained along the
z = 1.52 cut, where these features can clearly be observed.
Simulations were done for finite bond dimension y = 100 and
x = 150. The results are indistinguishable, a consequence of
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FIG. 5. Inverse correlation length as a function of temperature at
z = 6. Linear fits from both sides of the transition give two critical
temperatures that only differ from each other by about 5 x 1073,

the very small value of the correlation length, and we have
thus not performed calculations for other values of x.
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FIG. 6. Correlation length and wave vector as function of tem-
perature at z = 1.52. The black line represents the 7 constant
line. We can observe a 7 commensurate—incommensurate transition
around 7 = 1.9.
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FIG. 7. Exponents B and v, as a function of T — T, atz = 5, with
a critical temperature 7, = 0.7714 £ 10~*. For B, a linear extrapola-
tion on the two last points gives g = 0.54 4 0.03. For v/”, we have
extrapolated on the four last points due to the larger noise and found
vET = 0.52 £ 0.02. The error bars result from a linear fit of the upper
and lower values given by the error bars of the effective exponents
at a given temperature. One can clearly identify the beginning of the
divergence of v, from the incommensurate phase.

4. Two-step transition

We recall that for the Pokrovsky-Talapov transition char-
acterised by v, =1,v,_, = 1/2, one expects to observe
vy, = 1/2. In contrast, for the Kosterlitz-Thouless transition,
due to the exponential divergence of the correlation length in
both x &£ y directions, one expects v, as well as v, to diverge
from the incommensurate phase at the critical temperature.

As expected, in the large z limit we found a two-step tran-
sition in agreement with a PT transition from low temperature
and a KT transition from high temperature. We discuss the
z = 5 case in details but similar results were obtained for other
activities. By setting the critical temperature Tpr such that
B = vyLT, we found B = 0.54 £ 0.03 and U;T =0.52 +0.02,
both in reasonable agreement with the PT universality class
exponents. Furthermore, v, from the incommensurate phase
diverges, in agreement with a KT transition. The floating
phase is however too narrow to determine Tx7. Indeed, an
exponential fit of the correlation length would not be able to
distinguish the two critical temperatures. We summarize the
results in Fig. 7.

5. Chiral transition

We now move to the investigation of the transition close to
the Potts point. Over a parameter range covering larger and
smaller activities in the vicinity of the Potts point, we found
a unique transition, with numerical evidence that it is char-
acterized by B =2/3 and a = 1/3. Results are summarised
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FIG. 8. Exponents B and v, as a function of T — 7,. The blue
and red lines represent the 5/6 and 2/3 values. (a) Simulation done
to the right of the Potts point at z = 1 with critical temperature 7. =
0.7013 &5 x 1073, (b) Simulations to the left of the Potts point are
not done at z or M constant but along a line that crosses the transition
at z. = 0.57 with critical temperature 7, = 0.603916 £ 5 x 10-°.
For both activities we found a unique transition characterised by the
Potts exponent v and B = 2/3. Linear fits on the last three points for
z=1 and z = 0.57 lead respectively to B = 0.6540.03 and B =
0.64 +0.04.

in Figs. 8 and 9. In particular, we found a unique transition
with critical exponent B = 0.64 4 0.04 and B8 = 0.65 & 0.03
at activities z = 0.57 and z = 1 respectively. We notice that
in this parameter range we recover an exponent v, in relative
agreement with its three-state Potts value v = 5/6. This is
most probably due to a strong crossover effect in the cor-
relation length, as predicted [26] and observed numerically
in systems where chiral transitions are believed to take place
[34].

In order to measure the exponent «, it is more accurate to
study the singularity of the energy rather than the divergence
of the specific heat. This allows one to bypass the error due
to the numerical derivative of the energy at the expense of an
additional, smaller source of error coming from the estimate
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FIG. 9. Effective exponent of the energy singularity 1 — o across
two points where the transition out of the period-3 phase is direct.
For simulations at the critical activity z. = 0.57, t = z — z., while
for simulations at z = 1, + = T — T,. Simulations were performed at
x = 200 and with a convergence criteria of 8E = 10~°. Error bars
comes form the estimate of the critical energy. As the simulations
were performed at finite bond dimension, we do not extrapolate the
exponent but rather show that its behavior is in agreement with o =
1/3. We attribute the noise in the 3 x 1 phase to the translational
symmetry breaking.

of the critical energy. The singularity of the energy, whose
exponent is equal to 1 — «, is in good agreement with a critical
exponent « = 1/3 all along the transition. Hence we found
evidence for o to keep its three-state Potts value along the
chiral transition. We note that this behavior has already been
observed numerically on models along transitions, which are
believed to be chiral [16,34,43].

The accuracy of the exponent B over a large range of pa-
rameter excludes the possibility of the transition belonging to
the three-state Potts universality class. Also, the convergence
to a unique limit of v from both sides of the transition together
with B > 1/2 excludes the two-step transition scenario. We
thus conclude that the melting must occur through a unique
chiral transition.

6. Phase diagram

The phase diagram is presented in Fig. 3. We found
m-commensurate and 2w /3-commensurate phases separated
by an incommensurate one. The m-commensurate and in-
commensurate phases are separated by a disorder line (also
sometimes referred to as a Lifshitz transition). Within the
m-commensurate phase, we found an Ising transition whose
critical temperature increases upon reducing the activity z,
consistent with a divergence at the hard-square lattice gas
critical activity z = 3.7962. In contrast, the nature of the
2m /3-commensurate—incommensurate transition depends on
the activity. In particular, along the integrable line, we found

the transition to belong to the three-state Potts universality
class in agreement with Baxter’s derivation. We note that
the 27 /3-commensurate line leads straight away to the Potts
point, in agreement with the chiral operator vanishing at that
special point, with ¢ > 27 /3 to the right of the line and
q < 2m /3 to its left. On the other hand, in the high activity
limit we found a two-step transition separated by a narrow
floating phase bounded by a KT transition and a PT transition
respectively in the high and low temperature regime. We note
that to the left of the Potts point at z = 0.31 we found a critical
exponent B = 0.59, significantly smaller then the believed
chiral value B = 2/3 value. This could be explained by the
presence of a floating phase to the left of the Potts point as
well, in which case we measure a crossover from the PT value
B = 1/2. This is in agreement with the numerical results in the
hard-boson model [16] where a floating phase on both sides
of the Potts point has already been observed. Finally, in the
vicinity of the Potts point, we found evidence for a unique
transition characterised by 8 = 2/3 and « = 1/3. Note that
we were not able to determine the position of the Lifshitz
point with precision. This is due partly to the fact that the
floating phase is extremely narrow, and to the fact that we do
not have access to the correlation and wave-vector along the
commensurate direction.

7. Discussion

This cut was already studied by N. C. Bartelt et al. [38]
in the late eighties with Monte Carlo techniques. In particular
they studied the melting of the 3 x 1 ordered phase at different
activities to the right of the Potts point and gave evidence
for a chiral melting to take place, with a critical exponent
B =~ 0.8, while our results are more consistent with 8 = 2/3.
Quite logically, they have computed correlations along the
x £ y directions, something we cannot do, so we are unable to
compare our correlation length and wave-vector with theirs.
However, we can still compare energies. They computed the
energy along the z = 2.5 cut, which we display in Fig. 10 to-
gether with our result. As expected, our critical temperatures,
as measured by the change of convexity, are comparable. At
high energy, the difference is small, and it is plausible that this
is a finite-size effect of Monte Carlo simulations. However, at
low temperature, the difference gets too large to be accounted
for by finite size corrections. We believe that this is due to the
lost of ergodicity in the Monte Carlo simulations, a problem
that could also explain why the product (¢ — gp)& remains
finite instead of going to zero in the commensurate phase
(Fig. 7 in Ref. [38]).

B. Results for L =2

Cuts at fixed L have not been studied before. As explained
above, such cuts are interesting because they are closer to the
1D quantum version of the model, but also because they are
expected to reveal the full richness of the critical properties of
the model, with the presence of both an Ising tricritical point
and a three-state Potts point. Indeed, Eq. (4) has two solutions,
one for which M > 0 belonging to the Ising tricritical univer-
sality class, and one with M < 0 that belongs to the three-state
Potts universality class. So we have performed an exhaustive
numerical investigation of the L = 2 cut. The phase diagram

174433-6



TENSOR NETWORK INVESTIGATION OF THE ...

PHYSICAL REVIEW B 106, 174433 (2022)

-0.1 : ,
(x)(
o ©
-0.2} 0000 8
¢
OO@ o ¢
oR
0.3} o ©0° o 1
. o [o) (o) o]
&
= -0.4 - 4 1
¢
&
¢
05+ Py ,
¢
¢
0.6 o O Monte Carlo
e o ¢ CTMRG, y = 100 i
® ¢ CTMRG, x = 150
¢
_07 L 1 1 1
0.65 0.7 0.75 0.8 0.85 0.9
T

FIG. 10. Comparison of Monte Carlo and CTMRG energies as a
function of temperature at z = 2.5. The CTMRG energy is converged
with respect to the bond dimension. The Monte Carlo data come from
Ref. [38] and were extracted with the use of [44].

of that model as a function of z and M is shown in Fig. 11. All
the boundaries have been calculated as for the other cut, and
we do not show details for conciseness. The only qualitative
difference is the presence of a first-order transition above the
Ising tricritical point. Its location is known exactly because
it lies in the integrable manifold. Still, for completeness, we

. - -
| First order
1.5 1\ transition

T

Tricritical

2 x 1 periodic

Potts
point

-1.5+

0 0.1 0.2

FIG. 11. Phase diagram of the model with L =2 where we
have plotted (o) Ising transition, (o) chiral/PT transition, (©) order-
disorder line, and () integrable line. Black-solid lines are guide to
the eyes.
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FIG. 12. Energy across the transition at M = 1.5 and finite bond
dimension. The black line represents the integrable point. The energy
has converged with respect to the bond dimension, and we clearly
observe a discontinuity, in agreement with the presence of a first-
order transition.

have calculated the energy with CTMRG across this cut, as
shown in Fig. 12, where we plot the energy as a function of z
for M = 1.5, and it indeed has an abrupt jump at the transition,
as expected for a first-order transition.

As expected, the phase diagram of this cut is very similar
to that of the hard-core bosons [15,16]. Interestingly, the two
ways of approaching essentially the same problem are not
redundant but complementary, and taken together, the results
of CTMRG on the classical problem and of density-matrix
renormalization group (DMRG) on the quantum problem lead
to a solid and consistent picture regarding the nature of the
transition out of the period-3 phase. Far enough from the Potts
point, and on both sides, the transition takes place through
a very narrow floating phase. For that issue, DMRG simu-
lations on very long chains are superior, and floating phase
widths smaller than 1072 could be explicitly determined [16],
something out of range for our CTMRG simulations. Close
to the Potts, both approaches lead to the conclusion that the
transition is chiral, but the CTMRG simulations consistently
find an exponent B ~ 2/3 with very good accuracy, while
the precise determination of B with DMRG is more difficult.
Assuming that the hyperscaling relation vy, + v,y =2 — «
holds, and taking for granted that o keeps the value of the
Potts point « = 1/3 along the chiral transition, as suggested
by CTMRG, the emerging picture is that of a Potts point
surrounded by a chiral transition with exponents B = 2/3,
a =1/3, and a dynamical exponent v,,,/v,_, = 3/2, with
further away a transition through a very narrow floating phase.
The only remaining open issue seems to be the precise loca-
tion of the Lifshitz point that separates the chiral transition
from the floating phase.
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IV. DISCUSSION

The equivalence between quantum models in dimension
D and classical models in dimension D + 1 has proven to be
extremely powerful to identify the universality class of phase
transitions. In particular, 1D quantum models are equivalent
to 2D classical models, and if they are conformal, transitions
can be expected to belong to one of the minimal models of 2D
conformal field theory such as Ising, tricritical Ising, 3-state
Potts, etc., or to have a central charge ¢ = 1. If the transition
is continuous but nonconformal, as the chiral commensurate-
incommensurate transition proposed by Huse and Fisher, the
equivalence still holds, but there is no general classification
scheme. So to study the 2D classical version of a 1D quantum
problem or vice versa might seem to be a pointless exercise.
The results reported here show that this can still be rewarding
because very sophisticated numerical approaches have been
developed for 1D quantum problems and for 2D classical
problems, and they appear as complementary to study differ-
ent aspects of the problem.

For the hard-square model studied here, direct evidence of
a floating phase far enough from the Potts point could not
be obtained directly, but this information could be obtained
with DMRG simulations of the 1D quantum version of the
model. When it comes to the exponents of the chiral transition
close to the Potts points however, the CTMRG investigation
of the classical 2D problem is definitely more accurate. This
suggests to see CTMRG not only as a powerful alternative to
Monte Carlo for classical problems, but as a complementary
tool to study subtle issues in 1D quantum physics. From that
point of view, it would be for instance very interesting to
use CTMRG to study the 2D classical version of the further-
neighbor blockade models [43] that have been proposed as
effective models for the higher commensurability phases of
chains of Rydberg atoms.
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APPENDIX A: CTMRG

Although mainly used nowadays for contraction of wave-
function in two dimensional quantum systems, the corner
transfer matrix algorithm was first introduced by Nishino and
Okunishi [36] as a combination of Baxter’s corner transfer
matrices [45] and Steve White’s density matrices [46] in
the context of two-dimensional classical system as a con-
traction algorithm for partition functions. Indeed, one can
write the partition function in the thermodynamic limit as an
infinite tensor network of local tensor a as shown in Fig. 14.
Multiple choices of the local tensor a exist and we choose
this tensor such that it describes a plaquette rather than a site.
We show the diagrammatic representation of a in Fig. 13. The

i () @ (%) i

Aiyiy)(isiy)(isie)(izig) — @?(@
i2 % i6

(o)

i3 iy

FIG. 13. Definition of the local tensor a representing a plaquette
configuration.

Boltzmann weights Q' are defined by

0 1 el 1 Mol
=(1 1) o=(7 )ma @=(7 1)
(A1)

where Q° represents the hard-core constraint while 0?
and Q' represent respectively the diagonal and antidiagonal
interactions. And § takes the value e*/# if all indices are equal
to one and zero otherwise. Written in this way, the tensor a is
of dimension 4 x 4 x 4 x 4.

The CTMGR algorithm contracts the infinite tensor net-
work into an environment of 8 different tensors E =
{C, T, Cy, Tr, G5, T3, Cy4, Ty} with corner tensors C; of dimen-
sion x X x and row/column tensors 7; of dimension y x 4 x
x . The parameter y is referred to as the bond dimension. In the
infinite-bond dimension limit, one recovers the exact result.
Thus, x controls the approximation of the algorithm. We show
in Fig. 14 the partition function written as a contraction of
the environment and of the local tensor. When divided by the
partition function, this environment becomes a measure over
observables defined on the unit cell a. CTMRG thus gives
an easy way to compute expectations of local observables.
It works through a two-step iterative process referred to as
extension and truncation [47], which we describe below and
illustrate in Fig. 15.

Extension: In order to increase the number of sites, to each
corner tensor one adds a column, a row, and a local tensor a.
Similarly, to each column and row tensor one adds a local

FIG. 14. Partition function first written as an infinite tensor net-
work and then contracted to an environment made of 8 tensors. The
thin lines represent bonds of dimension 4 while bold lines have
dimension .
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FIG. 15. Full iteration for the corner tensor C, and row tensor 7.
Other tensors are grown similarly.

tensor. One is then left with corner tensors of dimension 4y x
4y and row, column tensors of dimension 4y x 4 x 4.

Truncation: If the extension was repeated unchecked, the
dimensions of the tensors would grow exponentially. Thus,
one needs to project the tensor in a relevant subspace. Such
projectors are commonly denoted as isometries and are com-
puted through the singular value decomposition of some
density matrices. Multiple choices of density matrices are
possible and will lead to different convergence. We choose
the one originally introduced by Nishino and Okunishi as

USV, = CiC,CICL, ULSVs = CLCLCICl,

USVs = C,C|C4Ch. ULSVy = CIC)CIC,. (A2)

where the isometries U; are obtained by keeping the x largest
singular values. Repeating those two steps will increase the
size of the lattice until convergence, at which point one con-
siders the thermodynamic limit to have been reached. The
convergence is checked through the difference of energy per
site between two iterations.

APPENDIX B: CORRELATION LENGTH
AND WAVE VECTOR

The main advantage of the CTMRG method is that it gives
direct access to the transfer matrices, which in turn give ac-
cess to the correlation length and to the wave vector. Indeed,
denoting the ordered normalised eigenvalues by

Aj=e T j=1,2,... (B1)

one can show that the correlation length and wave vector are
given by

s=€, q=¢. (B2)

§

In the generic situation where the correlation decays with a
power-law prefactor, the spectrum of the transfer matrix is
expected to converge to a continuum above the first gap in
the infinite bond dimension limit. This was first proposed by
Rham et al. [48] as a mean of extrapolation. More precisely,
they suggested that the inverse correlation length behaves
linearly with any gap § of the transfer matrix as

&(x) = 1/";:exact + bé. (B3)

We can define a similar extrapolation scheme for the wave
vector,

d2(x) = Gexact T bs'. (B4)

Although in principle any gap could be used, in practice we
favor smaller ones. For the incommensurate phase we system-

0.045 | M |
0.04 - MO 1

0.035 H_H_,_@—ee"e"e

0.03 £ . . L
0 5 10 15
0 %1073

1/¢

FIG. 16. Extrapolation of the inverse correlation length with
respect to gaps in the spectrum of the transfer matrix for bond
dimensions x between 100 and 200. The simulations have been
performed for z = 1.4 in the period-3 phase. Each color represents
a different temperature in the ordered phase. Due to a level crossing
in the transfer matrix, we used two different gaps, § = €; — €4(+)
and § = €9 — €4(0).

atically used

d=¢ — e,
8 = ¢4 — ¢o.

We notice that due to level crossings in the transfer matrix one
might need to use different gaps for the extrapolation. We give
an example of such a case in Fig. 16.

We note that, with a defined as in Fig. 13, the CTMRG
algorithm will give the transfer matrices in the x and y direc-
tion. We then have access to the correlation length and wave
vectors only in those two directions.

The error bars on the critical exponent v(7') are computed
via a Taylor expansion as

( ST, 3&(T)
Sv=v
| T—-T.1 &)

(B5)

(T —dT)+0&6(T +dT)>
E(T +dT)—&(T —dT) )’
(B6)

The error bars on the other critical exponents are estimated in
a similar way.

APPENDIX C: TRANSLATIONAL SYMMETRY BREAKING

In the 3 x 1 phase, the system becomes 27 /3 commensu-
rate and breaks translational invariance into three sublattices.
As we are computing a measure over a plaquette, the algo-
rithm will then converge to a different environment at each
iteration modulo three, such that the CTMRG will converge
to: Ey > E; - E3 — E; — ... and so on.

We note that we cannot mix the different environments.
Furthermore, single site operators have no reason to be equal
if computed under different environments, and in general one
has (O(x))g, # (O(x))g, for i # j. However, the correlation
length and the wave vector are expected to be independent
of E;. We illustrate the differences between observables in
Fig. 17 where the density and energy have been computed as

p = (n), (ChH

E = <nx,ynx+l,y+l> - (nx,ynerl,yfl)‘ (C2)
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FIG. 17. Temperature dependence of various observables at y =
50 and at the three-state Potts critical activity z. with M = —L. Each
color represents the environment in which the observable was com-
puted. We can see that in the 3 x 1 phase, the density and the energy
both depend on the environment in which they are computed. By
contrast, their ratio does not. We further check that the critical density
is recovered at the transition for all environments. The vertical-black
lines represent the critical temperature.

We further notice that the ratio of the two does not depend on
the environment in which it is computed as shown in Fig. 17
(third panel). This can be explained by the simple fact that if
a sublattice holds a larger number of particles, the absolute
value of the energy increases accordingly.

APPENDIX D: CRITICAL TEMPERATURE AND
EFFECTIVE EXPONENT

The investigation of phase transitions and their universal-
ity classes is usually done by fitting algebraically decaying
quantities close to criticality. Unfortunately, most of the time,
due to various corrections and crossovers, the power law de-
scribing the latter is not exact. Hence, a naive fit will give
different results depending on the parameter range used. We
thus choose a different approach based on the study of effec-
tive exponents and their behaviors in the critical limit. For an
algebraically diverging quantity A o<| T — T, |7, we define its
associated effective exponent as

dlog(A)
dlog(t)
with t =| T — T, |. We note that as the temperature ap-
proaches the transition, one recovers the critical exponent. It

turns out that we can distinguish between a two-step transition
and a unique one simply by analyzing the critical limit of

Octt = (D1)

the effective exponent ves. Indeed, if the transition is unique,
one expects the exponents from both sides of the transition
to converge to a unique value at criticality. This criterion can
also be used to fix 7. By contrast, if the transition is a two-step
one, setting a unique limit will result in v > 1 because of the
Kosterlitz-Thouless nature of the transition at high tempera-
ture. Such a large value of the exponent is not expected in
this model and one can conclude that the transition occurs
in two steps. In that case, one expects the low-temperature
transition to be described by the Pokrovsky-Talapov critical
exponent and we can fix 7pr such that vi{ = B or vi7 =1
at the transition with LT denoting the exponents defined in the
low-temperature regime.

APPENDIX E: QUANTUM-CLASSICAL
CORRESPONDENCE

Consider the rescaled hard-core boson Hamiltonian given
by
N
Ao u, V_.
H = Z —(dj +dj') + —n; + —Njnjip.
- 1) 1)
We denote by | n;) the eigenstate of 7; with eigenvalue n;.
Then the partition function is given by
Z =Tre !
Hy _H 1
= Zn(nll T Pk 0(—) Ini*' . on)
ny 1 "
(ED)
with
v, V_. :
HOZZ;nj+;nji’lj+2 and le_z(dj+dJ)
(E2)

where the second equality in (E1) is derived using the Trotter
decomposition and becomes exact only in the n — oo limit.
We now drop the O(1/n) term and consider the results to hold
only in the large n limit. One notes that Hy has eigenstates

|n’1 .. .n§v+1) and the terms in (E1) thus become
! P A I+1
<n1...nN|e n " n |n1 So.ny )
= [Te wiu ]f”§+2(nll ...nMe‘HT] nithonh.
i
(E3)

One further notes that d i+ 3; =o0; and its exponential
acts as
e“f/”|n§-+1) = Aey‘nj-H) + Ae‘y|1 — nj-“)
with

1 1 ) ) 1 1
y = ——logtanh{ — ), and A“=sinh{ - |cosh| —).
2 n n n

Thus, the overlap with (n§| can be written as

<n§_|ea‘;/n|n§+l> — Aey(Zni.—l)(an/.“—l)
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x
o} /n

and the product of ¢

i 1 or/n |, I+1 I+1\ _ AN Y. y@ai—1)2n't —1)
<n1...nN|l_[el |n1 ...nN)—Ae A j .
i

simply becomes

Finally, combining the above equation with Egs. (E3) and (E1)
allows one to write the partition function as

U iV ol ! I+1
7 = AN § 1—[ezi—mnj—an/nj”-&-y(an—l)(an —l).
{n} 1

One recognises the diagonal transfer matrix of the hard-square
model and can identify V, U and y with M, L, and u as
Vv

- =M,
wn

U
4y =L, log(z)=—4y — —. (E4)
wn

In the large n limit, we approximate tanh(%) ~ % and the sec-
ond equality of the above equation gives e %/ = 1 leading

to

K = M2,
w

Finally, using the third equality in (E4) and a Taylor expansion
around —Ze~1/2 gives

4y _UgLp2 _
z=e Ve w =1 -
1)

U U
—eL/z)—>—=(1 — zeL)eL/z.
W

We recover Eq. (6), mapping the hard-core boson to the hard-
square model. The bosonic hard-core constraint 7;71;+; = 0
naturally translates into forbidding two neighboring sites to
be both filled.
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