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Field-driven domain wall motion in ferrimagnetic nanowires
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Magnetic domain wall (DW) propagation in nanowires is an important problem whose applications require
stable high speeds that are very difficult to achieve with ferromagnets due to the existence of the Walker
breakdown, which separates a rigid-body motion from an oscillatory motion. One of the recent fascinating
discoveries in magnetism is the high-speed DW motion along ferrimagnetic (FiM) nanowires near the angular
momentum compensation point (AMCP). A clear understanding of this fascinating phenomenon is still lacking.
Here we use the energy conservation principle and generic FiM dynamics to reveal the physics behind the DW
motion and the absence of the Walker breakdown and precessional torque at the AMCP. An almost exact DW
velocity formula beyond the Walker breakdown field is obtained that agrees with experiments and simulations.
This theory provides useful guidance for the design of high-speed spintronic DW devices.
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I. INTRODUCTION

Magnetic domain wall (DW) dynamics in nanowires has
attracted much attention for its rich physics [1–5] and promis-
ing device applications such as racetrack memories [6]. One
important goal in DW applications is the realization of high
stable DW speed that requires a delay or removal of the
Walker breakdown [7]. The endeavor of increasing DW ve-
locity leads to the studies of DW motion in antiferromagnetic
nanowires [8–10], and very recently, in ferrimagnetic (FiM)
nanowires [11–27]. A ferrimagnet has at least two spin sub-
lattices antiferromagnetically interacting with each other. It
has two special states called the angular momentum com-
pensation point (AMCP) at which the angular momenta of
the two sublattices cancel each other, and the magnetization
compensation point at which two magnetizations cancel each
other. One class of ferrimagnets is rare-earth-transition-metal
alloys whose AMCP and magnetization compensation point
are different in general and can be tuned by compositions,
other than the temperature. Unlike an antiferromagnet that
is inert from external magnetic fields, FiM states provide a
wider tunability and greater manipulability [11]. Also, unlike
a ferromagnet, the net magnetization of a ferrimagnet can be
very small but not zero, especially around an AMCP such
that it is susceptible to the magnetic field with small Zeeman
energy. The current understanding of experimentally observed
very high DW speed of thousands of meters per second in
compensated FiM nanowires near the AMCP [12–14] is from
collective-coordinate approximation.

Although FiM dynamics should be described by partial
differential equations for at least two sublattice magnetiza-
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tions antiferromagnetically coupled, existing theories treat a
FiM wire either as a ferromagnet whose dynamics follows
Landau-Lifshitz-Gilbert (LLG) equation [13,14], or an anti-
ferromagnet with the Néel order governed by a second-order
partial differential equation [12,15,20,24–26]. DW dynam-
ics is then obtained from converting the partial differential
equations into ordinary differential equations for the collec-
tive coordinates of DW center and DW-plane canting angle
[12,15,20,24–26]. Indeed, existing theories have enriched our
understanding of DW dynamics in ferrimagnets in many as-
pects. However, these theories are based on the assumption
that the DW structure must keep its spin profile during its
motion. The assumption is surely valid below the Walker
breakdown field. Beyond the breakdown, it is known that
the DW plane precesses and the DW width oscillates, and
in the case of a large transverse hard-axis anisotropy, spin
wave emissions can accompany the DW propagation [1,2].
Also, the Thiele equation [28], based on collective-coordinate
approximation, does not automatically explain the fascinating
findings of DW motion in FiM nanowires. A unified theory,
which works for the full range of magnetic field, is highly
desired.

In this paper, the origin of high DW speed and absence of
Walker breakdown field at the AMCP of a FiM nanowire are
explained based on generic dynamics for coupled sublattice
magnetizations of a ferrimagnet with a general Rayleigh dis-
sipation. We show that a static DW between two domains with
different energy densities does not exist. Spins in the DW must
move in a field that creates such an energy density difference.
Moving spins must dissipate energy due to the inevitable
coupling between spins and their environment described by
Gilbert damping in magnetization dynamics. The dissipated
energy must be compensated by the Zeeman energy released
from the DW propagation toward domain of the higher energy
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FIG. 1. Schematic of a head-to-head DW in a FiM nanowire.
Region I and III are two uniform FiM domains, separated by a DW
(region II) whose width is �. DW structure can be very complicated.
H is the external field. Colors denote the spin orientations: red for
spins along ẑ and light blue for spins along −ẑ.

density. At the AMCP, precessional torque vanishes due to
the zero angular momentum and the Walker breakdown field
becomes infinity, leading to the high DW speed. Furthermore,
a universal relationship between DW velocity and DW struc-
ture is obtained, and an almost exact formula for high-field
DW velocity is derived, providing insight from the energy
conservation principle.

II. MODEL

We consider a head-to-head DW in a FiM nanowire
consisting of two antiferromagnetically interacting spin sub-
lattices, whose easy axis is along the wire defined as the z
axis as shown in Fig. 1. M1 and M2 are the magnetizations
of the two sublattices, respectively. The total magnetic energy
of the wire in the presence of a uniform magnetic field H is
E = ´

ε d3x with the energy density of

ε = JM1 · M2 +
∑
�=1,2

[A�(∇M�)2 + f�(M�) − μ0M� · H],

(1)
where J > 0 is the antiferromagnetic inter-sublattice spin cou-
pling constant. A� and f� are respectively the ferromagnetic
exchange stiffness and magnetic anisotropic energy density of
sublattice � (� = 1, 2), μ0 is the vacuum permeability. f� is
assumed to have two equal minima at M� = ±M�ẑ.

The FiM magnetization dynamics is governed by the fol-
lowing equations [29,30]:

1

γ1

∂M1

∂t
= −M1 ×

(
H1 − α11

γ1M1

∂M1

∂t
− α12

γ1M1

∂M2

∂t

)
,

1

γ2

∂M2

∂t
= −M2 ×

(
H2 − α22

γ2M2

∂M2

∂t
− α21

γ2M2

∂M1

∂t

)
,

(2)

where H� = −μ−1
0 δE/δM� and γ� = g�μBμ0/h̄ (� = 1, 2)

are the effective field and the gyromagnetic ratio for M�,
respectively. g�, μB, and h̄ are the Landé g factor of sublattice
� (� = 1, 2), the Bohr magneton, and the Planck constant,
respectively. α11, α22 and α12, α21 are intra-sublattice and
inter-sublattice damping coefficients. We have α12/γ1M1 =
α21/γ2M2 due to the action-reaction law. s� = M�/γ� is the
spin density of sublattice � (� = 1, 2). γ1 �= γ2 in a general
ferrimagnet because of the difference in Landé g factors
of sublattices. For example, in GdFeCo alloys, gGd � 2,
gFeCo � 2.2 [12].

III. THEORETICAL RESULTS

We prove first that no static DW is allowed in the presence
of a magnetic field along the z direction, except at the mag-
netization compensation point. If a static DW solution exists,
the DW structure should satisfy equations M� × H� = 0 (� =
1, 2). As proved in Appendix B, it implies M�(x, t ) (� = 1, 2)
satisfying following equation:

‹
∂	

[
ε1 −

i=x,y,z∑
�=1,2

2A�(∇M�,i ) ⊗ (∇M�,i )

]
· dσ = const.,

(3)

where ∂	 is the surface of any chosen volume, 1 is the 3 × 3
unit matrix, and ⊗ denotes the dyadic product. Equation (3)
cannot be true for a DW with M1 = M1ẑ, M2 = −M2ẑ on
its left and M1 = −M1ẑ, M2 = M2ẑ on its right as shown in
Fig. 1, or vice versa, because it requires (M1 − M2)H = 0.
Thus, a static DW can only exist either with H = 0 or M1 =
M2. In other words, a static DW cannot exist between two
domains with different energy densities. This result can also
be understood from the following argument: Assume M�(x)
is a static DW that separate a left domain with a lower energy
density ε1 from the right domain with a higher energy density
ε2(> ε1). The energy change by shifting DW to the right by
a distance L, i.e., M�(x) → M�(x − Lẑ), is LS(ε1 − ε2) < 0,
here S is the cross-section area of the wire. The DW is not
stable against a rigid shift to the right because this small
change in spin structure always lowers the system energy.
Thus a DW must vary with time under a magnetic field.

When J is much larger than the Zeeman energy, M1 and M2

are always antiparallel to each other. We define Meff = (M1 −
M2)m, where m is the unit vector of M1. Then m satisfies the
following equation:

(s1 − s2)
∂m
∂t

= − (M1 − M2)m × Heff + αm × ∂m
∂t

, (4)

where Heff = (M1H1 − M2H2)/(M1 − M2). In terms of m,
the total energy is E [m] = ´

[A(∇m)2 + f (m) − μ0(M1 −
M2)m · H]d3x with A = A1M2

1 + A2M2
2 , f (m) = f1(M1m) +

f2(−M2m). Denote α = α11s1 + α22s2 − α12s2
γ2

γ1
− α21s1

γ1

γ2
,

the thermodynamic second law requires α > 0 to ensure the
Rayleigh dissipation functional R = μ0α

2

´
( ∂m

∂t )2d3x [29–32]
to be positive-definite. Equation (4) says that the change of
spin angular momentum (left-hand side) equals the net torque
(right-hand side) that is the sum of a torque from an ef-
fective field on the net magnetization (M1 − M2 �= 0) and a
dissipative torque from the motion of m. At the AMCP, the
dissipative torque cancels the field torque.

Equation (4) can be recast as an effective LLG equa-
tion [14,24,33–35],

∂m
∂t

= −γeffm × Heff + αeffm × ∂m
∂t

, (5)

with an effective gyromagnetic ratio γeff = |M1 − M2|/(s1 −
s2) and an effective Gilbert damping αeff = α/(s1 − s2).
γeffαeff is always positive because a moving magnetization
must dissipate its energy to its environment [see Eq. (6)
below]. s1 > s2 and s1 < s2 correspond to sublattice-1 and
sublattice-2 dominate cases. Following a similar derivation in
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the literature [36], the energy dissipation rate is [37,38]

dE

dt
= − αeffγeffμ0(

1 + α2
eff

)
(M1 − M2)

ˆ
(Meff × Heff )2d3x. (6)

We divide the wire into three regions as shown in Fig. 1: I
for the domain with Meff parallel to H , II for the DW, and III
for the domain with Meff antiparallel to H . Energy dissipation
occurs only in the DW region (region II) where Meff and Heff

are not collinear [37,38]. The change rate of energies, EI and
EIII, of region I and III comes from the DW propagation along
the wire, and should be d (EI+EIII )

dt = −2μ0(M1 − M2)HvS,
where v is the DW velocity. DW energy EII must be around a
certain value. Thus the time-averaged energy change rate must
be zero. In another word, dEII/dt is either zero or oscillates
with zero average. The energy conservation requires

v = αeffγeff

2HS
(
1 + α2

eff

) ˆ (m × Heff )2d3x

+ 1

2μ0(M1 − M2)HS

dEII

dt
.

(7)

This is a universal relationship between DW velocity and the
DW structure and can serve as a proper definition of instan-
taneous DW velocity. The second term on the right-hand side
should be identically zero in the case of a rigid DW motion
such that the DW velocity is constant. In the case that a DW
deforms itself during its propagation, the energy dissipation

rate and DW energy EII oscillates with time and dEII
dt = 0,

where the bar denotes the time average. This results in an
oscillatory DW speed whose time-averaged value is

v̄ = αeffγeff

2HS
(
1 + α2

eff

)ˆ (m × Heff )2d3x. (8)

We note (m × Heff )2 = H2
eff,θ + H2

eff,φ , where Heff,θ and
Heff,φ are two field components perpendicular to m in the local
coordinate framework (em, eθ , eφ ). θ (x, t ) and φ(x, t ) are the
polar and the azimuthal angles of m. Heff,θ and Heff,φ are
given by

Heff,θ = −H sin θ + G,

Heff,φ = − 1

μ0(M1 − M2) sin θ

∂ f

∂φ

+ 2A

μ0(M1 − M2) sin θ

∂

∂z

(
sin2 θ

∂φ

∂z

)
, (9)

where G = 1
μ0(M1−M2 ) [2A ∂2θ

∂z2 − ∂ f
∂θ

− 2A sin θ cos θ ( ∂φ

∂z )2].
Equation (5) along eθ , eφ becomes

∂θ

∂t
= γeffHeff,φ − αeff sin θ

∂φ

∂t

sin θ
∂φ

∂t
= −γeff Heff,θ + αeff

∂θ

∂t
.

(10)

Eliminating time-derivative of θ from Eq. (10), we have

(
1 + α2

eff

)
sin θ

∂φ

∂t
= γeff (αeff Heff,φ − Heff,θ ). (11)

If the DW propagates as a rigid-body along the z direc-
tion, in the case of a field below the Walker breakdown
[7], i.e., ∂φ

∂z = 0, ∂2φ

∂z2 = 0, and ∂φ

∂t = 0, using Eq. (9), we

have 2A ∂2θ
∂z2 − ∂ f

∂θ
= 0, so that Heff,θ = −H sin θ , whose max-

imal allowed external field is the Walker breakdown field.
For (M1 − M2), (s1 − s2) �= 0, ∂φ

∂t = 0 obviously requires
αeffHeff,φ = Heff,θ . This means that the DW-plane cants an
angle to generate a nonzero Heff,φ to coherently vary θ

such that the DW propagates along the wire. Below we
consider a biaxial model of magnetic anisotropy f (θ, φ) =
−Kz cos2 θ + Ky sin2 θ sin2 φ, the Walker breakdown field
is HW = max( αeff Ky sin 2φ

μ0(M1−M2 ) ) = αKy

μ0|(M1−M2 )(s1−s2 )| . Both γeff and

αeff diverge as (s1 − s2)−1 near the AMCP. The limit of
Eq. (11) under s1 − s2 → 0 (α2

eff , γeffαeff ∼ (s1 − s2)−2) gives
Heff,φ = 0 and φ = 0 when ∂φ

∂t = 0. Thus the DW plane re-
mains in the xz plane and never rotates, leading to an infinite
HW at the AMCP. One can also see this point by consider-
ing an equivalent form of Eq. (5), ∂m

∂t = − γeff

1+α2
eff

m × Heff −
γeff αeff

1+α2
eff

m × (m × Heff ). At the AMCP, the precessional torque

vanishes since γeff

1+α2
eff

→ 0 as (s1 − s2) → 0 while the damp-

ing torque is finite because of lim(s1−s2 )→0
γeff αeff

1+α2
eff

= (M1−M2 )
α

�=
0. This means that the precessional motion is completely pro-
hibited, and m at any point inside the DW rotates coherently
toward external field, leading to a rigid DW propagation along
the wire.

Equation (5) with our biaxial magnetic anisotropy has
the well-known Walker DW solution [7] of θ (z, t ) =
2 arctan{exp[(z − ´ t

0 v(τ )dτ )/�(t )]}, where � is the DW

width. It gives dEII
dt = − 4AS

�2
d�
dt = 0 for a rigid-body DW

propagation. Heff,θ = αeffHeff,φ = −H sin θ , (m × Heff )2 =
H2

eff,θ + H2
eff,φ = (1 + α2

eff )H2 sin2 θ/α2
eff . Substituting DW

width definition of
´

sin2 θd3x = 2S� into equation (7), one
has v = (M1−M2 )�

α
H and DW speed at Walker breakdown field

vW = Ky�

μ0(s1−s2 ) , independent of the damping coefficient and
divergent at the AMCP.

Away from the AMCP, HW is finite. A DW shall precess
around wire axis during its propagation along the wire when
H > HW . From Eqs. (8) and (9), we have the average DW
velocity (see Appendix C for detailed derivation)

v̄ = c1H + c1

α2
eff

(
H −

√
H2 − H2

W

)
, (12)

where c1 = αeff γeff

2S(1+α2
eff )

´
sin2 θd3x = (M1−M2 )α�̄

(s1−s2 )2+α2 is peaked at the
AMCP. Equation (12) is exact under very sensible assump-
tions, and all coefficients in Eq. (12) are fully determined
by the model parameters. Equation (12) predicts a nega-
tive differential DW mobility in the range of HW < H <

α2
eff +1√

α4
eff +2α2

eff

HW . This prediction is also true for ferromagnetic

case.
Figure 2 illustrates three types of DW motion. For H <

HW , the DW plane cants a fixed angle φ and propagate rigidly
along the wire at a constant velocity such that the damping
torque cancels the torque from the applied field along the
wire, as shown in Fig. 2(a). Energy dissipation comes from the
unbalanced transverse (to the wire) field that causes coherent
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FIG. 2. Illustration of three types of DW motions. (a) H <

HW (s1 �= s2), the DW plane cants an angle φ and the DW propagates
rigidly along the wire at a constant velocity. (b) H > HW (s1 �= s2),
the DW plane precesses around wire axis during DW propagation
along the wire. (c) At the AMCP, the DW plane does not cant and
stay in the x-z plane (initial configuration). The red, blue, green, and
purple arrows denote m, magnetic field, DW propagation direction,
and DW plane precession, respectively.

spin rotation inside the DW (the dashed violet arrows) to facil-
itate DW propagation along the wire. For H > HW (s1 �= s2)
as shown in Fig. 2(b), the DW plane precesses around wire
axis (the dashed light-blue arrows) during DW propagation
along the wire. In this mode, part of the applied field is unbal-
anced (by damping torque) and provides a torque to rotate the
DW plane around the wire. The unbalanced transverse field
due to the transverse anisotropy provides a torque to coher-
ently rotate spins inside the DW (the dashed violet arrows).
DW velocity oscillates with time. Figure 2(c) is for s1 = s2.
The precessional torque is absent as explained above, and
only nonzero dissipative torque exists under an applied field.
Thus the DW always undergoes a rigid-body motion no matter
how large the external field is as long as the field does not
destroy the DW structure, or HW = ∞. The net field provides
coherent spin rotation (the dashed violet arrows) such that the
DW propagates rigidly along the wire. This explains the high
DW speeds observed in FiM wires at the AMCP.

IV. MICROMAGNETIC SIMULATIONS

In order to find out how accurate of Eq. (12) is for
H > HW , we use MuMax3 [39] to numerically solve Eq. (2)
for synthetic FiM strip wires [40] as shown in Fig. 1 that
consist of two antiferromagnetically coupled ferromagnetic
layers of 1nm thick each. Different layers represent different
sublattices, thus the sublattice index � is also used as layer
index. The strip size is 16 nm × 2 nm × 1024 nm. The cell
size in simulations is chosen to be 1 nm × 1 nm × 1 nm. To
mimic a rare-earth-transition-metal alloy (such as GdFeCo,
GdFe, GdCo) [12,13,15,18,41–44] the model parameters are
J = 1.2 × 10−4 J A−2m−1, A1 = 9.8 × 10−24 J m A−2, A2 =
1.23 × 10−23 J m A−2, biaxial anisotropies are considered for
each layer, f� = −K�,z

M2
�

M2
�,z + K�,y

M2
�

M2
�,y, � = 1, 2, K1,z = K2,z =

0.65 MJ/m3, α12 = α21 = 0. K�,y and α�� (� = 1, 2) are used
for simulating different systems as labeled by Set 1–6 in
Table I. Note that Kz = K1,z + K2,z, Ky = K1,y + K2,y. The
gyromagnetic ratios are γ1 = γ2 = 1.76 × 1011 μ0 s−1T−1 ex-
cept for the AMCP case, the saturation magnetizations are
M1 = 1010 kA/m, M2 = 900 kA/m. The coupling field be-
tween two sublattices is of hundreds of Tesla to guarantee
the collinearity of two spin sublattices. Different from a
natural ferrimagnet, inter-sublattice coupling is only along
the y direction in our synthetic ferrimagnet. To simulate
the AMCP, we take γ2 = 1.76 × 1011 μ0 s−1T−1 and γ1 =
1.975 × 1011 μ0 s−1T−1 such that M1/γ1 = M2/γ2 and the
net angular momentum is zero. All other parameters remain
unchanged. Although MuMax3 does not allow to set differ-
ent gyromagnetic ratios for different FM layers directly, this
γ1 �= γ2 case can be realized by rescaling the effective field
in layer 1 (H1) with a factor γ1/γ2. The reason is that the
dynamical equation ∂M1

∂t = −γ1M1 × H1 + α11
M1

M1 × ∂M1
∂t is

equivalent to ∂M1
∂t = −γ2M1 × ( γ1

γ2
H1) + α11

M1
M1 × ∂M1

∂t .
In the simulation, a DW is first created at the center of

nanowire, then a uniform magnetic field is applied in the
+ẑ direction. The velocity is obtained from the linear fit of
time-evolution curve of the DW center (where mz = 0). For
fields above the Walker breakdown, the average velocities
are obtained from data accumulated for more than 4 velocity
oscillating periods.

We consider six different systems with various K�,y and
α�� (� = 1, 2). The detail values of the model parameters are
given in Table I. Because of large velocity difference, Fig. 3(a)
plot v̄ vs μ0H for three systems with the same α�� = 0.02 and

TABLE I. Ky,1, Ky,2, α11, and α22 are model parameters. αeff , Ky, μ0HW , �̄, and c1 are computed quantities.

Data set Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

K1,y ( MJ/m3) 0.05 0.035 0.02 0.1 0.1 0.1
K2,y ( MJ/m3) 0.05 0.035 0.02 0.1 0.1 0.1
α11 0.02 0.02 0.02 0.005 0.01 0.015
α22 0.02 0.02 0.02 0.005 0.01 0.015
αeff 0.3473 0.3473 0.3473 0.0868 0.1736 0.2605
Ky ( MJ/m3) 0.1 0.07 0.04 0.2 0.2 0.2
μ0HW (T) 0.3157 0.2210 0.1263 0.1579 0.3157 0.4736
�̄ (nm) 3.85 3.87 3.89 3.79 3.75 3.79
c1 (μ0 m s−1T−1) 210.00 211.13 212.34 57.48 111.37 162.69
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different K�,y, label as Set 1, 2, 3. Figure 3(b) is the similar
plots for three systems with the same K�,y = 0.1 MJ/m3, but
different α��, label as Set 4, 5, 6. The corresponding values of
c1, αeff , and HW computed from this theory are also given in
Table I. The perfect agreement between the simulation results
(the symbols) and theoretical prediction (the solid curves)
demonstrates that Eq. (12) is almost exact. The insets are DW
velocities at the AMCP obtained from simulations (symbols),
and from theoretical prediction v = (M1−M2 )�

α
H (the solid

lines), which accords well with the simulations without any
fitting parameter. No Walker breakdown phenomena occurs at
the AMCP, as explained in Sec. III.

V. DISCUSSION AND CONCLUSIONS

Before conclusion, we would like to make a few remarks.
(1) The relationship between the instantaneous DW velocity
and the DW structure is exact that explains why our high-field
DW velocity formula without any fitting parameters agrees
perfectly with simulation results. (2) The theory is applicable
to all types of DWs since no collective-mode approximation
is used. (3) High DW velocity is a result of the absence of
the Walker breakdown field at the AMCP. This explains the
observed high DW speed of more than 1.5 km/s at the AMCP
although the mobility μ = (M1−M2 )�

α
for H < HW itself is

comparable to or even smaller than that for a ferromagnetic
wire [45,46]. (4) The general principle presented in this paper
should be applicable to all kinds of magnetic spin texture
whose dynamics are governed by LLG-like equation(s). Thus,
it is prospective to describe the dynamics of other spin textures
(such as skyrmions) using our approach.

In summary, a generic theory of field-driven DW motion
in FiM wires is presented. A static DW cannot exist in a
homogeneous ferrimagnetic nanowire when a uniform static
magnetic field or any other external force creates an energy
density difference between two domains separated by the DW.
Spins in the DW must vary with time under the external mag-
netic field such that the system energy is dissipated due to the
Gilbert damping. The dissipated energy must be compensated
by the Zeeman energy released from moving the DW toward
the domain with the higher energy density. High DW speed
near the AMCP is the consequence of the absence of preces-
sional torque and infinite high Walker breakdown field at the
AMCP. A lower Zeeman energy density and a high energy
dissipation rate contribute also to the high DW speed at a
reasonably lower field near the AMCP. Away from the AMCP,
our approach can not only obtain the exact DW velocity below
the Walker breakdown field, but also an almost exact veloc-
ity formula beyond the Walker breakdown field. This theory
agrees with all existing experiments [12,15,18], simulations,
and provides useful guidance to DW manipulation and opens
an avenue for designing high-speed spintronic devices.
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FIG. 3. Average DW velocity of a head-to-head DW as a func-
tion of applied field along the +ẑ direction. Symbols are MuMax3
simulation results and solid curves are theoretical formula without
any fitting parameter. (a) Three systems (denoted as Set 1, 2, 3)
with the same α11 = α22 = 0.02 but different K�,y. (b) Three systems
(denoted as Set 4, 5, 6) with the same K�,y = 0.1 MJ/m3 but different
α�� (� = 1, 2). Their values are listed in Table I. The insets are
DW velocities at AMCP (M1/γ1 = M2/γ2) with all other parameters
unchanged. The black-dashed lines indicate the Walker breakdown
fields in the main figures.

RGC Grants (No. 16301518, No. 16301619, No. 16302321,
and No. 16300522).

APPENDIX A: ENERGY DISSIPATION RATE AND
RAYLEIGH DISSIPATION FUNCTIONAL

It has been proved in Refs. [29,30] that a general Rayleigh
dissipation functional R for FiM magnetization dynamics
takes form of

R(Ṁ1, Ṁ2) = μ0

ˆ (
α11Ṁ1 · Ṁ1

2γ1M1
+ α22Ṁ2 · Ṁ2

2γ2M2

+ α12Ṁ1 · Ṁ2

γ1M1

)
d3x, (A1)

which gives rise to the damping torques in Eq. (2) in the main
text. The dots denote time derivatives. Under the approxima-
tion that M1 and M2 are always antiparallel to each other, the
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Rayleigh dissipation functional becomes

R = μ0α

2

ˆ (
∂m
∂t

)2

d3x, (A2)

where α = α11s1 + α22s2 − α12s2
γ2

γ1
− α21s1

γ1

γ2
. Using an

equivalent form of Eq. (5) in the main text,

∂m
∂t

= − γeff

1 + α2
eff

m × Heff − γeffαeff

1 + α2
eff

m × (m × Heff ),

(A3)

one can derive the energy dissipation rate of dE
dt = −2R [47],

dE

dt
= −μ0α

ˆ (
∂m
∂t

)2

d3x

= −μ0αγ 2
eff

1 + α2
eff

ˆ
(m × Heff )2d3x

= − αeffγeffμ0(
1 + α2

eff

)
(M1 − M2)

ˆ
(Meff × Heff )2d3x.

(A4)

This is the same as Eq. (6) in the main text. Not-
ing that m × Heff ⊥ m × (m × Heff ), (m × (m × Heff ))2 =
(m × Heff )2. In the last step, we have used the definition
of effective parameters, γeff = (M1 − M2)/(s1 − s2), αeff =
α/(s1 − s2), and Meff = (M1 − M2)m.

APPENDIX B: DERIVATION OF EQ. (3) IN THE
MAIN TEXT

A static DW structure is a stable spin texture of M�,
� = 1, 2, separating two domains. Our magnetic energy is
E = ´

ε d3x with the energy density of

ε = JM1 · M2 + A1(∇M1)2 + A2(∇M2)2 + f1(M1)

+ f2(M2) − μ0(M1 + M2) · H. (B1)

In terms of polar and azimuthal angles, M� =
M�(sin θ� cos φ�, sin θ� sin φ�, cos θ�), � = 1, 2, the energy
density becomes ε = JM1M2[sin θ1 sin θ2 cos(φ1 −
φ2) + cos θ1 cos θ2] + A1M2

1 [(∇θ1)2 + sin2 θ1(∇φ1)2] +
A2M2

2 [(∇θ2)2 + sin2 θ2(∇φ2)2] + f1(θ1, φ1) + f2(θ2, φ2) −

μ0M1H cos θ1 − μ0M2H cos θ2. Stable spin structures satisfy
following partial differential equations:

δE

δθ�

= ∂ε

∂θ�

− ∇ · ∂ε

∂ (∇θ�)
= 0, (B2)

δE

δφ�

= ∂ε

∂φ�

− ∇ · ∂ε

∂ (∇φ�)
= 0. (B3)

Eq. (B2) ×∇θ�+ Eq. (B3) ×∇φ� and summing over �, one
has ∑

�=1,2

{
∂ε

∂θ�

∇θ� −
[
∇ · ∂ε

∂ (∇θ�)

]
∇θ� + ∂ε

∂φ�

∇φ�

−
[
∇ · ∂ε

∂ (∇φ�)

]
∇φ�

}
= ∇ · T

↔ = 0, (B4)

where T
↔ = ε1 − ∑

� 2A�M2
� (∇θ� ⊗ ∇θ� + sin2 θ�∇φ� ⊗

∇φ�), or T
↔ = ε1 − ∑i=x,y,z

�=1,2 2A�(∇M�,i ) ⊗ (∇M�,i ). Here, 1
is the 3 × 3 unit matrix, and ⊗ denotes the dyadic product.
Equation (B4) can also be recast as Eq. (3) in the main text,‚

∂	
T
↔ · dσ = const., where ∂	 is the closed surface of an

arbitrarily chosen volume in the system, dσ is the differential
area on ∂	 pointing normally outward of the enclosed space.
For a ∂	 intercepting domains on the both side of a DW, this
requires energy densities in the two domains to be equal, i.e.,
(M1 − M2)H = 0. Thus, a static DW can only exist when
H = 0 or M1 = M2.

APPENDIX C: DERIVATION OF HIGH-FIELD AVERAGE
DW VELOCITY

In this Appendix, we derive the averaged DW velocity of
Eq. (12) in the main text for H > HW .

1. Averaged DW velocity and effective fields

We start from Eq. (8) in the main text

v̄ = αeffγeff

2HS
(
1 + α2

eff

)ˆ (m × Heff )2d3x. (C1)

Sinceˆ
(m × Heff )2d3x =

ˆ (
H2

eff,θ + H2
eff,φ

)
d3x, (C2)

and from Eq. (9) of the main text, we have, by substituting
above expressions into Eq. (C1),

v̄ = αeffγeff

2HS(1 + α2
eff )

ˆ (
H2 sin2 θ − 2GH sin θ + G2 + H2

eff,φ

)
d3x. (C3)

Equation (C3) can be recast as

v̄ = c1H − c1

�̄

ˆ
G sin θdz + c1

2�̄H

ˆ
G2dz + c1

2�̄H

ˆ
H2

eff,φdz, (C4)

where

c1 = αeffγeff

2S
(
1 + α2

eff

)ˆ sin2 θd3x = αeffγeff�̄(
1 + α2

eff

) = (M1 − M2)α�̄

(s1 − s2)2 + α2
. (C5)
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FIG. 4. (a) φ(t ) curve of Eq. (C11) for various h ≡ H/HW . (b) sin 2φ(t ) and cos 2φ(t ) computed from φ(t ) in (a). (c) Field-dependence of
� sin2 2φ

�̄
obtained from numerical integrations (symbols) and h2 − h

√
h2 − 1 of Eq. (C12) (the solid curve).

DW width definition of 2S� = ´
sin2 θd3x is used above.

Equation (C4) is an exact expression for v̄, depending on H
and internal fields of G and Heff,φ .

2. Estimation of G and
´

H2
eff,φdz

To find the explicit field-dependence of v̄, we consider
a biaxial model of magnetic anisotropy f = −Kz cos2 θ +
Ky sin2 θ sin2 φ. For this model, ∂ f

∂θ
= 2 sin θ cos θ (Kz +

Ky sin2 φ), ∂ f
∂φ

= Ky sin2 θ sin 2φ. The integrals in Eq. (C4) de-
pends on the DW structure, in order to estimate them, we need
to make several assumptions, which are verified by micromag-
netic simulations later in Appendix D. (1) θ (z, t ) is described
by a Walker DW profile, i.e., θ (z, t ) = 2 arctan{exp[(z −´ t

0 v(τ )dτ )/�(t )]}. This assumption allows us to compute
∂θ
∂z = sin θ

�
, ∂2θ

∂z2 = sin θ cos θ
�2 . (2) Spins inside the DW approxi-

mately lie in a plane during the DW propagation and periodic
deformation of the DW structure. (3) A DW can adjust its
structure to the change of magnetic anisotropy instantaneously
during its precession as long as H is not more than 5HW .

Thus the DW width � is �(t ) =
√

A
Kz+Ky sin2 φ(t )

. Under these

approximations φ does not depend on z such that ∂φ

∂z = 0,
∂2φ

∂z2 = 0. G and Heff,φ become

G = 2 sin θ cos θ

μ0(M1 − M2)

[
A

�2
− (Kz + Ky sin2 φ)

]
, (C6)

Heff,φ = − 1

μ0(M1 − M2) sin θ

∂ f

∂φ
= −Ky sin 2φ sin θ

μ0(M1 − M2)
.

(C7)

G � 0 since �(t ) =
√

A
Kz+Ky sin2 φ

. In another word, G does not

contribute to v̄ in Eq. (C4). In later section, G � 0 will be
verified in our micromagnetic simulations.

The last term of Eq. (C4) can be recast as

c1

2�̄H

ˆ
H2

eff,φdz = c1

�̄H

K2
y � sin2 2φ

μ2
0(M1 − M2)2

= c1H2
W

α2
effH

� sin2 2φ

�̄
.

(C8)

To further simplify Eq. (C8), we use Eq. (11) in the main
text to find φ(t ) and its field dependence. Substituting ex-
pressions of Heff,θ , Heff,φ , G � 0, and Walker breakdown field
HW = αeff Ky

μ0(M1−M2 ) into Eq. (11) in the main text, we have

(
1 + α2

eff

)
sin θ

∂φ

∂t
= γeff (−HW sin 2φ sin θ + H sin θ ).

(C9)
Without losing generality, M1 − M2 > 0, s1 − s2 > 0 is as-
sumed here. Multiply both side of Eq. (C9) by sin θ and
integrate over z, one has

∂φ

∂t
= γeffHW(

1 + α2
eff

)( H

HW
− sin 2φ

)
. (C10)

Equation (C10) has an analytical solution, in terms of
dimensionless time t̃ = γeff HW

(1+α2
eff )

t and dimensionless field
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FIG. 5. (a) Spin profiles of DW for wires specified by Set 1 (circles), Set 2 (triangles), and Set 3 (squares) at t = 8, 22 ps (open and filled
circles); t = 19, 30 ps (open and filled triangles); and t = 32, 66 ps (open and filled squares). The magnetic field is μ0H = 1 T for Set 1, 0.8 T
for Set 2, and 0.65 T for Set 3. m̄z(z) is the averaged mz of the top layer over the x direction. The solid curves are the Walker profile with the
parameter at each given time. [(b1)–(b3)] Time evolution of DW width. The symbols are from simulations for Set 1 under μ0H = 1 T (b1); Set

2 under μ0H = 0.8 T (b2); and Set 3 under μ0H = 0.65 T (b3). The solid curves are the DW width in the Walker solution, �(t ) =
√

A
Kz+Ky sin2 φ

.

FIG. 6. tan φ1 vs z. (a) Simulation results for Set 1 at t = 60 ps (orange), 70 ps (dark blue), 80 ps (yellow), 100 ps (violet), 150 ps (green),
180 ps (light blue), and 240 ps (crimson). (b) Simulation results for Set 2 at t = 70 ps (dark blue), 100 ps (orange), 130 ps (yellow), 170 ps
(green), 190 ps (violet), 240 ps (crimson), and 270 ps (light blue). (c) Simulation results for Set 3 at t = 70 ps (dark blue), 120 ps (orange),
160 ps (yellow), 180 ps (violet), 580 ps (light blue), 620 ps (crimson), and 820 ps (green). Only DW region of [−20 nm, 20 nm] are shown
with DW center shifted to z = 0. The magnetic field is μ0H = 1 T for Set 1, 0.8 T for Set 2, and 0.65 T for Set 3.

FIG. 7. Time averaged
´

H 2
eff,φdz (violet circles),

´
G2dz (pink circles), and

´
GH sin θdz (golden circles) from the spin configurations

of MuMax3 simulations of DW motion in three wires specified by Set 1 (a), 2 (b), and 3 (c).
´

H 2
eff,φdz accords well with the prediction of

Eq. (C14) (dashed line) and the saturation values �̄

α2
eff

H 2
W are 3.18 nm T2/μ2

0 for (a), 1.57 nm T2/μ2
0 for (b), and 0.51 nm T2/μ2

0 for (c).
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h = H
HW

> 1,

φ(t̃ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

arctan

{
1+√

h2−1 tan
[√

h2−1t̃−arctan
(

1√
h2−1

)]
h

}
t̃ ∈ [0, t̃1)

arctan

{
1+√

h2−1 tan
[√

h2−1t̃−arctan
(

1√
h2−1

)]
h

}
+ nπ t̃ ∈ [t̃n, t̃n+1), n = 1, 2, 3, ...

, (C11)

where t̃n = 1√
h2−1

[ (2n−1)π
2 + arctan( 1√

h2−1
)]. φ is continuous and differentiable. The piecewise expression of φ is purely because

arctangent function is defined in the range of [−π
2 , π

2 ]. φ(t ) for several choice of h > 1 are plotted in Fig. 4(a). Near critical value
of h = 1, φ(t ) shows a fast-slow motion and stays around (n + 1/4)π (the plateaus) most of time. For h 
 1, φ(t ) increases
linearly with time, showing a DW precession around wire axis at an almost constant angular velocity. Correspondingly, sin 2φ(t )
and cos 2φ(t ) deviate from the sine functions only for h not too larger than 1, but are almost perfect sine functions in time for
h = 5 as shown in Fig. 4(b).

Equation (C11) enables us to analyze the field dependence of time averaged
´

H2
eff,φdz. The period of φ-precession is T̃ =

2π√
h2−1

in unit of 1+α2
eff

γeff HW
. Define k = Ky/Kz and let us first consider the limit case where Kz → ∞ (i.e., k → 0 but HW is finite),

then � = �̄ in this limit. The time average of the right-hand side of Eq. (C8) is

lim
Kz→+∞

� sin2 2φ

�̄
→ sin2 2φ = 1

T̃

ˆ T̃
0

sin2 2φdt̃ =
√

h2 − 1

2π

ˆ 2π

0

sin2 2φ

h − sin 2φ
dφ

=
√

h2 − 1

2π

(
2πh2

√
h2 − 1

− 2πh

)

= h2 − h
√

h2 − 1.

(C12)

(h2 − h
√

h2 − 1) → 1 when h → 1, which is the Walker breakdown threshold. (h2 − h
√

h2 − 1) → 1
2 when h → ∞, an

infinitely large field. For an arbitrary h > 1,

� sin2 2φ

�̄
=

´ 2π

0
sin2 2φ

(h−sin 2φ)
√

1+k sin2 φ
dφ

´ 2π

0
1

(h−sin 2φ)
√

1+k sin2 φ
dφ

, (C13)

are hard to evaluate analytically, but, surprisingly, it is very close to h2 − h
√

h2 − 1 for a wide range of k as shown in Fig 4(c).
The numerical integrations of Eq. (C13) for various k ranging from 0.01 to 1 fall on the curve of y = h2 − h

√
h2 − 1.

With this approximate result, Eq. (C8) becomes

c1

2�̄H

ˆ
H2

eff,φdz = c1H2
W

α2
eff H

⎡
⎣(

H

HW

)2

− H

HW

√(
H

HW

)2

− 1

⎤
⎦ = c1

α2
eff

(
H −

√
H2 − H2

W

)
. (C14)

Put all approximations together, the averaged DW velocity
given in the main text is obtained

v̄ = c1H + c1

α2
eff

(
H −

√
H2 − H2

W

)
. (C15)

APPENDIX D: VERIFICATION OF EXCELLENT
APPROXIMATIONS IN APPENDIX C VIA SIMULATIONS

To verify excellent approximations used in deriving high-
field velocity formula, we use MuMax3 [39] to solve the
generic FiM dynamical equations [Eq. (2) in the main text]
in a synthetic ferrimagnet [40] mentioned in Sec. IV.

1. Fast DW relaxation

We demonstrate below that the DW structure can fol-
low the potential change during DW precession at least for
H < 5.5HW used in our simulations. We show first analyti-
cally that DW relaxation is much faster than DW precession

around the wire axis for H < 5.5HW . Thus, G in Heff,θ has
a negligible contribution to the average velocity. Then, we
use MuMax3 to numerically obtain several snapshots of DW
spin profile and the time-dependence of DW width and com-
pare them with the Walker profile and theoretical DW width

�(t ) =
√

A
Kz+Ky sin2 φ(t )

, to valid whether a DW width can re-

spond instantaneously to the potential change during the DW
precession.

DW width �(t ) is governed by the following equation [48]:

d�

dt
= 12γeff

π2μ0(M1 − M2)αeff

[
A

�
− (

Kz + Ky sin2 φ
)
�

]
.

(D1)

Using
√

A
Kz

and [π2μ0(M1−M2 )αeff

12γeff Kz
] as length and time units,

Eq. (D1) can be written as

d�

dt
=

{
1

�
− �

[
1 + k sin2 φ(ξ t )

]}
, (D2)
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where ξ = [π2μ0(M1−M2 )αeff

12γeff Kz
]/( 1+α2

eff
γeff HW

) = π2α2
eff Ky

12(1+α2
eff )Kz

is the ratio
between the relaxation time of DW width and typical time
scale of φ motion, k ≡ Ky/Kz. In most cases, ξ � 1, thus we
can treat [1 + k sin2 φ(ξ t )] as a constant (adiabatic approxi-
mation), i.e., φ(t ) is a slow motion compared to the relaxation

of �. In this case, � ≈
√

1+ke−2t[1+k sin2 φ(ξ t )] sin2 φ(ξ t )
1+k sin2 φ(ξ t )

. We choose
ξ ∼ 0.01 in the micromagnetic simulations presented here.
We found no visible retardation in DW width as shown in
Figs. 5(a) and 5(b1)–5(b3). The symbols in Fig. 5(a) are the
snapshots of averaged m̄z(z, t ) = 1

16

∑
x=1,16 mz(x, 2, z, t ) in

the top layer for the wires specified by Set 1, 2, and 3 (squares)
at several moments. The material parameters are listed in
Table I, and applied magnetic field is μ0H = 1 T for Set 1,
0.8 T for Set 2, and 0.65 T for Set 3.

The solid curves are the Walker DW profile of �(t ) =√
A

Kz+Ky sin2 φ
. The symbols in Figs. 5(b1)–5(b3) are �(t )

directly obtained from MuMax3 simulations for wires de-
noted as Set 1 (b1), Set 2 (b2), and Set 3 (b3). The
curves are �(t ) =

√
A

Kz+Ky sin2 φ
. The overlap of simulation

results and theoretical formula of both the Walker profile and
�(t ) demonstrates that DW width can follow the potential
change.

2. Validity of DW-plane and internal field contributions
to DW velocity

From MuMax3 simulations of wires labeled as Set 1,
2, and 3 mentioned above, we can numerically show that
spins inside DW lie in a plane during its propagation and
precession. In order to do so, we can compute φ1(z, t ) ≡
1

32

∑
x=1,2,...,15,16

∑
y=1,2 φ(x, y, z, t ), where φ(x, y, z, t ) is the

azimuthal angle of magnetization in each cell labeled by
(x, y, z) and at time t . Figure 6 are tan φ1(z, t ) vs z
at t = 60, 70, 80, 100, 150, 180, 240 ps for Set 1 (a), t =
70, 100, 130, 170, 190, 240, 270 ps for Set 2 (b), and t =
70, 120, 160, 180, 580, 620, 820 ps for Set 3 (c). The flat lines
demonstrate that all spins lie indeed in a plane.

In order to numerically show that G does not contribute to
v̄ and Heff,φ has an important contribution to the average DW
velocity that leads to negative DW mobility, we also compute
the time averaged

´
H2

eff,φdz,
´

G2dz, and
´

GH sin θdz under
various magnetic fields using the spin configurations obtained
from MuMax3 simulations for wires of Set 1, 2, and 3. The
results are plotted in Figs. 7(a), 7(b), and 7(c) for Sets 1, 2,
and 3, respectively. Indeed,

´
GH sin θdz is almost zero, and´

G2dz is negligibly small for all three wires.
´

H2
eff,φdz ac-

cords well with the prediction of Eq. (C14) (dashed line) and
the saturation value is �̄

α2
eff

H2
W . In summary, all the assumptions

we made in Sec. C 2 are valid.

APPENDIX E: COMPARISON OF THEORY, EXISTING
EXPERIMENTS, AND SIMULATIONS

In this section, we compare our theory with existing exper-
iments [12,15,18] and simulations [12] in the literature. The
data are extracted from the original figures in Refs. [12,15,18]

FIG. 8. Comparison of our theory with existing experiments
and simulations. The symbols are experimental results from
Refs. [12,15,18], and solid curves are theoretical fittings. (a) v̄-μ0H
relations at different temperatures. (b) v̄-T relations under differ-
ent magnetic fields. (c) Numerical simulations v̄-μ0H relations for
9 sets of data extracted from Ref. [12]. (d) DW mobility at different
temperatures around the AMCP.

using an online digitization tool WebPlotDigitizer [49]. All
the experiments are done at high external magnetic fields far
above the Walker breakdown (μ0H 
 μ0HW ), thus we use
the high field limit of Eq. (12) to fit the experimental data.

Figure 8(a) is the velocity-magnetic field relation at dif-
ferent temperatures given in [12]. We use v̄ = c1H + vd

to fit the data (circles), where c1 is the DW mobility at
high field limit, vd is a correction velocity, taking into
account the pinning effects, thermal fluctuations, and other de-
tection inaccuracies. For T = 270, 290, 310, 330, 350 K, we
have c1 = 0.945, 4.807, 19.490, 3.846, 1.335 μ0 km s−1T−1,
vd = 19.28, 15.75,−226.60, 88.28, 29.02 m/s respectively.
The fitting results are shown by the solid lines. The angular
momentum compensation temperature TA is 310 K.

Figure 8(b) shows the comparison of our theory with the
velocity-temperature relation under different magnetic fields
given in Ref. [12] (circles) and Ref. [15] (squares). Recalling
the expression of c1 = (M1−M2 )α�̄

(s1−s2 )2+α2 , in order to convert it to
the temperature dependence, we assume that, in the vicinity
of TA, (s1 − s2) ∝ (T − TA), and Meff (T ) = M1(T ) − M2(T )
is linear in T , these assumptions are indeed valid according
to the information given in Refs. [12,15]. Thus we use
v̄ = C0Meff (T )

(T −TA )2+T0
2 μ0H to fit the v − T curve, where Meff (T ) is

obtained from another linear fitting of the net magnetization
data, TA and μ0H are known from the experimental
condition, and C0 and T0 are two fitting parameters. The
blue, green, purple, and black circles coming from Ref. [12]
correspond to μ0H = 40, 60, 80, 100 mT respectively, with
C0 = 61.1718, 57.5517, 47.4968, 48.2884 m2K2s−1T−1A−1,
and T0 = 14.1216, 12.8628, 10.9641, 11.1489 K, where
TA = 310 K, Meff (T ) = [593.8(K−1) T − 140600] A/m. The
fitting results are given by the solid curves. The light blue
squares coming from Ref. [15] correspond to μ0H = 85 mT,
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which gives C0 = 56.28 m2K2s−1T−1A−1, T0 = 10.31 K,
where TA = 241 K, and Meff (T ) = [489.3(K−1) T −
92550] A/m. The fitting result is shown by magenta
dashed curve.

Figure 8(c) shows a comparison of our theory (solid
line) and the numerical simulation results for H > HW

in Ref. [12] (circles). We use Eq. (12) to fit the data,
treating c1 and αeff as fitting parameters. The dataset in-
dices 1–9 are exactly the same as the in Ref. [12],
The Walker breakdown fields of dataset 1, 2, 3, 4, 6,
7, 8, 9 are known as μ0HW = 1.7112, 2.2635, 3.2816,
6.1191, 5.5126, 2.6859, 1.5300,1.0600 mT, The respective
fitting parameters are c1 = 2.1980, 3.2770, 5.5830, 10.3700,
9.9560, 5.0040, 2.6860, 1.6190 μ0 km s−1T−1, and αeff =

0.3186, 0.4614, 0.7298, 1.4190, 1.4380, 0.7493, 0.4311,
0.3090. For dataset 5, which is at AMCP, we use v̄ =
c1H to fit, a larger mobility c1 = 14.8700 μ0 km s−1T−1 is
obtained.

Figure 8(d) shows the mobility-temperature relation given
in Ref. [12,18], compared to a fitting based on our theoretical
result of mobility μ = C0Meff (T )

(T −TA )2+T0
2 . The green squares are

from Ref. [12], with C0 = 43.10 m2K2s−1T−1A−1 and
T0 = 9.78 K, compared to the red dashed line (fitting). The
Meff (T ) here is same as Fig. 8(b). The blue circles are
results of Ref. [18], with C0 = 42.82 m2K2s−1T−1A−1

and T0 = 9.66 K, where Meff (T ) = [544.3(K−1) T +
42190] A/m. The fitting result is shown by the golden-solid
curve.
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