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Field-induced spin reorientation transitions in antiferromagnetic ring-shaped spin chains
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Easy axis antiferromagnets are robust against external magnetic fields of moderate strength. Spin reorien-
tations in strong fields can provide insight into more subtle properties of antiferromagnetic materials, which
are often hidden by their high ground-state symmetry. Here, we investigate theoretically effects of curvature
in ring-shaped antiferromagnetic achiral anisotropic spin chains in strong magnetic fields. We identify the
geometry-governed helimagnetic phase transition above the spin-flop field between vortex and onion states. The
curvature-induced Dzyaloshinskii–Moriya interaction results in the spin-flop transition being of first or second
order, depending on the ring curvature. Spatial inhomogeneity of the Néel vector in the spin-flop phase generates
weak ferromagnetic response in the plane perpendicular to the applied magnetic field. Our paper contributes
to the understanding of the physics of curvilinear antiferromagnets in magnetic fields and guides prospective
experimental studies of geometrical effects relying on spin-chain-based nanomagnets.
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I. INTRODUCTION

Antiferromagnets (AFMs) represent a broad class of mul-
tisublattice magnetic materials, whose magnetic symmetry
group contains an element of sublattice permutation [1–3].
In addition to their application potential for high-speed and
low-power magnetic memory and logic devices [3–5], AFMs
are complex nonlinear systems, which makes them appealing
for fundamental research. This includes studies of material
properties considering crystal symmetries [6], magnetization
dynamics, and topological solitons [7,8]. Being robust against
moderate magnetic fields, AFMs possess a family of spin-flop
transitions characterized by the reorientation of the Néel order
parameter in sufficiently strong fields. The spin-flop phase is
a characteristic property of the given AFM, in which the ener-
getically preferable orientation of the primary order parameter
is perpendicular to the easy axis of anisotropy [7,9]. Transi-
tion to the spin-flop phase reveals the presence of additional
anisotropy axes [10,11] and can support magnetic solitons
[7,8,12]. In the vicinity of or as a consequence of the phase
transition, magnetic responses of AFMs can be modified.
Indeed, entering the spin-flop phase reduces the potential bar-
rier for magnetoelectric switching [13], enables long-distance
spin transport [14], enhances the skyrmion lifetime [15],
and strengthens the magnetoelectric coupling [16]. These
effects have been intensively studied for bulk AFMs, ex-
tended two-dimensional systems, and straight spin chains [2].
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In particular, in the case of a straight anisotropic 1D wire with
easy axis anisotropy, the spin flop is the first-order transition
between different uniform states. Furthermore, there are stud-
ies which address quantum effects and cover the influence
of sample boundaries and defects on the spin-flop transition
[17,18].

The geometry of a magnetic sample provides an additional
degree of freedom to tune its anisotropic and chiral responses
[19–22]. Geometrical bends and twists in intrinsically achiral
antiferromagnetic spin chains enable helimagnetic responses
in the ground states [23]. Geometry-governed modifications
of the linear spin dynamics suggest a possibility to form
Bose–Einstein condensates for magnons in k space in helix-
shaped chains [23] and allow tuning the propagation direction
of spin waves of different polarizations [24]. Being highly
sensitive to boundary conditions, AFMs support a variety of
noncollinear spin textures in the ring geometry, including the
Möbius state [25]. AFM domain walls [26] and skyrmions
[27] in curvilinear antiferromagnetic thin films are affected by
curvature gradients. Beyond the effects predicted for curvilin-
ear antiferromagnets within the σ -model [23,26], curvilinear
AFM spin chains bring about the geometry-governed weak
ferromagnetism [28]. However, spin reorientation transitions
in curvilinear AFMs exposed to strong magnetic fields remain
unexplored.

Here, we investigate field-induced spin reorientation
transitions in curvilinear ring-shaped intrinsically achiral
anisotropic antiferromagnetic spin chains with even number
of spins. This includes the highly symmetric case of the field
applied along the ring axis and a finite angle between this
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FIG. 1. Antiferromagnetic (AFM) spin chain shaped as a ring exposed to an external magnetic field applied perpendicular to the ring plane.
(a) Schematics of the discrete model with arrows of blue and orange colors corresponding to the two AFM sublattices. (b) AFM ring in the
ground (binormal) state. Double green arrow represents the orientation of the Néel vector n. Azimuthal angle α measures coordinate along the
ring. (c) TNB and local magnetic reference frames. (d) Tilt of the anisotropy axes. The green plane indicates the easy plane for the Néel vector.
(e) Relation between the geometry-governed anisotropic (Kani, Kx, Knd) and chiral (d) contributions in the energy functional. (f) Equilibrium
magnetic textures in field h applied perpendicular to the ring plane. Symbols represent the data obtained from spin-lattice simulations. Solid
black line corresponds to the spin-flip field hx = 1/ς and red line is the spin-flop field.

axis and magnetic field. Using the methodology of curvilinear
magnetism, we show that the spin-flop state in a ring geometry
enables a helimagnetic transition between the locally homo-
geneous (vortex) and periodic (onion) AFM textures, which is
controlled by the ring curvature. The spin-flop transition for
a large enough curvature is supplemented by an intermediate
canted state, which we associate with the curvature-induced
exchange-driven Dzyaloshinskii–Moriya interaction (DMI).
The description of the curvature-induced weak ferromagnetic
response in the spin-flop phase is provided as well.

The paper is organized as follows. In Sec. II, the model
of ring-shaped AFM spin chains is introduced. In Sec. III,
spin-flop phases in the magnetic field applied along the ring
axis (the most symmetric case) are discussed. The behavior of
the spin chain in the field applied under an angle to the ring
axis is considered in Sec. IV. Estimations of the characteristic
parameters for real nanomagnets are provided in Sec. V. In
the Appendices, we summarize further details of spin-lattice
simulations (Appendix A), offer information on the transition
between the discrete and continuum model (Appendix B), and
describe the spin-flop vortex phase (Appendix C).

II. THE MODEL

We consider an intrinsically achiral ring-shaped spin chain
with an even number of magnetic moments N and the

nearest-neighbor AFM exchange integral J . This leads to the
appearance of two ferromagnetically ordered sublattices with
opposite directions of magnetic moments, see Fig. 1(a). The
lattice can be considered as a set of dimers with antiparallel
orientation of spins in each dimer. The latter allows us to use
an alternative representation of the magnetic ordering in terms
of the reduced Néel vector n(r) and reduced magnetization
vector m(r) (with r being the radius vector) introduced as
the difference and sum of magnetic moments of each AFM
dimer along the chain, respectively [Fig. 1(b)]. These order
parameters can be introduced for a 1D AFM system in such a
way to obey the relations n · m = 0 and n2 + m2 = 1. In the
following, we limit our discussion to the case of the single-ion
anisotropy with the hard axis of anisotropy along the tan-
gential direction to the ring and spin-lattice coefficient K .
The sample’s geometry is characterized by the curvature κ =
2π/(Na0) with a0 being the distance between the neighboring
magnetic moments, represented by spins of length S. The
local reference frame (referred to as the TNB frame) consists
of the tangential eT, normal eN and binormal eB vectors, see
Figs. 1(b) and 1(c). The azimuthal angle α, which measures
the coordinate along the ring, is counted counterclockwise
starting from the x axis [Fig. 1(b)].

Micromagnetic description of a spin lattice in terms of
continuous functions n(r) and m(r) is possible if the spa-
tial variation of the order parameter is much larger than the
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characteristic length scale represented by a magnetic length
� = a0

√|J /K | � a0, which determines the competition
between the exchange and anisotropy energies. In this case,
the magnetic energy of the ring reads

E/E0 =
∫

(Ex + Ean + Ef )dα, (1)

with E0 = K S2/(2a0), see Appendix A for the respec-
tive spin-lattice Hamiltonian and details of simulations. The
exchange energy density Ex = m2/ς2 + 2(n′2 − m′2) + 2n′ ·
m/ς includes the uniform exchange assuring the absence of
magnetization in equilibrium, the inhomogeneous exchange
responsible for the stabilization of the uniform ground state
without external fields, and the lifting term specific for 1D
antiferromagnets and responsible for the appearance of the fi-
nite magnetization at noncollinear textures [28,29]. The prime
denotes the spatial derivative n′ = κ∂αn with κ = κ� being
the dimensionless curvature. The so-called expansion coeffi-
cient ς = a0/(2�) = √|K /(4J )| characterizes the relation
between the effective exchange and anisotropy fields. Associ-
ating the Néel vector with the first magnetic moment in each
dimer, the intrinsic anisotropy reads Ean = Kanin2

T + KndnTnN,
where Kani = 1 for the dimensionless energy density and
Knd = 2ςκ [28]. Here, the hard axis eani = eT is taken into
account. The second term in Ean, with Knd being the coeffi-
cient of nondiagonal components of the effective anisotropy
matrix, reflects the numbering of moments (see Appendix B)
and the variation of the anisotropy axis within each AFM
dimer. The last term in energy Eq. (1), Ef = −(2/ς )m · h,
represents the interaction of magnetic moments with the
normalized external magnetic field h = H/H0, where the
characteristic field H0 = (S/μB)

√|J K | and μB is the Bohr
magneton.

Within the σ -model (case of m � 1), the expression
for the exchange energy density simplifies to Ex = n′2 =∑

i=T,N,B n2
i + Ean

x + EDM
x [23,28]. Here, Ean

x = −Kxn2
B with

Kx = κ
2 is the curvature-induced anisotropy stemming from

exchange. Using the Einstein summation rule, the last term
reads EDM

x = εi jkdin jn′
k , with εi jk being the Levi–Civita sym-

bol and d = 2κeB by its symmetry represents the curvature-
induced DMI for components of n in the curvilinear reference
frame [23]. This expression for n′2 can be used in a general
case as well.

The field-driven reorientation phase transitions are primar-
ily determined by the anisotropic properties of the sample. For
example, at the micromagnetic level, the dipolar interaction
leads to the same hard-tangential anisotropy as the one intro-
duced above. The strength of this anisotropy is independent
of the geometry. For convenience, we normalize each energy
term in Eq. (1) to this anisotropy, see purple line in Fig. 1(e)
(Kani = 1). The exchange energy in curvilinear AFM spin
chains provides the chiral DMI-like response, whose strength
is characterized by κ [orange line in Fig. 1(e)], and the
anisotropic response, which scales as κ

2 and induces the easy
axis along eB, see red line (Kx) in Fig. 1(e). The geometry-
governed anisotropic contribution with the coefficient Knd

provides a tilt of the in-plane anisotropy axes, see green line
in Fig. 1(e) and schematics in Fig. 1(d).

III. REORIENTATION PHASE TRANSITIONS IN
MAGNETIC FIELD APPLIED ALONG THE RING AXIS

Figure 1(f) shows spin reorientation phase transitions in
AFM rings of different curvatures κ exposed to an external
magnetic field h applied along eB (perpendicular to the ring
plane). The diagram includes five different phases. The easy
axis of anisotropy stemming from exchange enables the spin-
flop transition at field hsf. Below hsf, there is the only ground
state with n oriented along eB [binormal state, blue region in
Fig. 1(f)] [23]. Fields stronger than hsf induce the reorientation
of n and develop a static finite magnetic moment of the ring

m = ςn × [(h − n′) × n] + O (ς2) (2)

for h � hsf, where the term n′ is responsible for the geometry-
governed weak ferromagnetism [28]. We find that the field
configuration h ‖ eB supports two equilibrium states in the
spin-flop phase, depending on the ring radius. If the sample
is sufficiently large (i.e., curvature is less than the critical
one discussed below, κ < κc), the vortex state appears for
h > hsf = κ [pink shaded region in Fig. 1(f)], see details in
Ref. [28]. In rings with curvature larger than κc, there appears
a magnetic texture of other symmetry, which is referred to as
the onion state [green shaded region in Fig. 1(f)]. In each
ground state in the spin-flop phase, the distribution of the
Néel vector lies in the ring plane. In strong enough fields,
the sample becomes completely saturated experiencing the
spin-flip transition [brown shaded region in Fig. 1(f)].

In the vicinity of the spin-flop phase transition, the magne-
tization Eq. (2) is small [30]. In this case, the magnetic energy
of the ring reads

E = E0

∫
Edα, E = n′2 + n2

T + KndnTnN − h2 + O (ς2).

(3)
To find the equilibrium distributions of the order parame-

ters, we parametrize the Néel vector as n = eT sin ϑ cos ϕ +
eN sin ϑ sin ϕ + eB cos ϑ with ϑ and ϕ being the polar and
azimuthal angles in the local spherical reference frame. In
the spin-flop phase, n lies in the ring plane corresponding
to ϑ = π/2. The spatial distribution of n is described by
ϕ(α). As a consequence of the curvature-induced tilt of the
anisotropy axes from the TNB directions, it is convenient to
describe the n(α) distribution by measuring the dependence of
the angle between n and the in-plane anisotropy axis, Φ(α) =
ϕ(α) − (1/2) arctan 2ςκ. Minimization of energy (3) with
respect to Φ gives the following equation:

κ
2∂ααΦ + sin Φ cos Φ = 0. (4)

The vortex state solution with spatially homogeneous dis-
tributions of m and n in the local reference frame is
stable for the case of small curvatures. This corresponds
to Φ = π/2 [28] and the energy of the vortex state
reads Evor/E0 = 2π (κ2 − h2) + O (ς2). A spatially inhomo-
geneous solution of (4), Φ = −am(x, k), with x = 2K(k)

π
α

which is characterized by the following distribution:

n = eTcn(x, k) − eNsn(x, k) + O (ς ), (5)

where cn(•, k) and sn(•, k) are the elliptic cosine and sine
with modulus k, respectively [31], see Figs. 2(a) and 2(b). In
line with states exhibiting similar symmetry in ferromagnetic
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FIG. 2. Onion state in the ring with curvature κ = 0.75 exposed
to the magnetic field h = 0.74eB. (a) Components of the Néel vec-
tor n. (b) Schematics of the Néel vector n for the onion texture.
(c) Gradient components of n. (d) Schematics of the magnetization
vector m for the onion texture. (e) Components of the magnetization
vector m. (f) Superimposed Néel and magnetization vectors (not
to scale). In panels (a) and (e), symbols represent data obtained
from spin-lattice simulations, solid lines correspond to Eqs. (5)
and (7).

rings [32–34] and spherical shells [35,36], we refer to the
distribution Eq. (5) as the onion state. In this expression, it is
taken into account that opposite directions of n are physically
equivalent. The ring geometry imposes the boundary condi-
tion on Φ, from which the value of k for the given curvature
is determined,

2κkK(k) = π, (6)

where K(k) is the complete elliptic integral of the first
kind [31]. This gives the energy of the onion texture to be
equal to Eon/E0 = 8κE(k)/k + 2π (1 − 1/k2 − κ

2 − h2) +

O (ς ), with E(k) being the complete elliptic integral of the sec-
ond kind [31]. The critical curvature κc ≈ 0.657 separates the
vortex and onion states. Its value is the solution of the equa-
tion Evor(κ) = Eon(κ). The boundary between these states in
simulations is κ

num
c = 0.669 ± 0.014 and remains constant up

to strong fields of h ∼ 7. We note that for ferromagnetic rings
in the absence of the external magnetic field, a similar geomet-
rical phase transition between textures of different symmetries
is observed with the critical curvature close to κc [34].

The presence of large spatial derivatives of the components
of the Néel vector [Fig. 2(c)] along the tangential direction
in the onion state is reflected in the appearance of the local
magnetization. Substituting the expression Eq. (5) in Eq. (2),
the local direction of the magnetization vector reads

m = ±ς

[
1

k
dn(x, k) − κ

]
[eTsn(x, k) + eNcn(x, k)]

+ eBςh + O (ς2), (7)

where dn(•, k) is the delta amplitude [31], see Figs. 2(d)
and 2(e). In contrast to the spin-flop vortex state with the
locally homogeneous magnetization [28], the local magnetic
moment of the onion state is nonuniform and depends on
κ, cf. Figs. 2(c) and 2(e). The binormal component of m is
determined by h. The tangential and normal projections of m
are even and odd functions of α, respectively. We note that
the energy is degenerate with respect to the sign change of n
as well as the in-plane components of m. Schematics of both
order parameters in the rings are shown in Fig. 2(f).

The transition to the spin-flop phase from the uniform
ground state in bulk AFMs may occur either as the first-order
phase transition with a jumplike change of magnetization
along the external field direction or as two second-order tran-
sitions through the so-called canted phase. For a bulk AFM
with a spatially homogeneous texture below and above the
spin-flop transition, an appearance of the canted phase can
be a consequence of the interplay between the exchange and
single-ion anisotropy [2], higher-order anisotropy terms (e.g.,
cubic in addition to the uniaxial anisotropy) [9], or DMI
[37–39]. In the case of ring-shaped AFM spin chains, the for-
mation of the onion state is assured by the curvature-induced
DMI with the energy density EDM

x and the Dzyaloshinskii
vector d = 2κeB. Being part of the expression for Ex, the
curvature-induced DMI allows rotation of n in the ring
plane; see orange line in Fig. 1(e) [23]. The canted state
in AFM rings is observed for curvatures κ > κcant ≈ 0.585,
see yellow shaded region in Fig. 1(f) and details of the state
compared with the onion in Figs. 3(a) and 3(b). We asso-
ciate the appearance of the canted state with the competition
between the Zeeman energy term Ef, curvature-induced easy-
axis anisotropy Kx, and DMI EDM. In this phase, the total
magnetic moment of the ring in the field direction normalized
by the number of magnetic sites, M , grows with the exter-
nal field faster than in the spin-flop phase, see Fig. 3(c) for
magnetization and Fig. 3(d) for the differential susceptibility
χ = ∂hM . This is accompanied by a nonlinear decay of the
total Néel vector Nz measured along h, see Fig. 3(e). The
canted state is spatially inhomogeneous due to the compe-
tition between the spatially varying anisotropy axis eani and
homogeneous magnetic field h, see schematics in Fig. 3(f)
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FIG. 3. Canted state in fields h ‖ eB. (a) Components of the mag-
netization vector m in the canted state for the ring with κ = 0.683
exposed to the magnetic field h = 0.66. (b) Same for the onion state
for the ring with κ = 0.683, h = 0.79. The magnetic field depen-
dence of (c) the equilibrium magnetic moment normalized by the
number of magnetic sites, (d) the differential magnetic susceptibility,
and (e) the total n component along the field direction Nz normalized
by the number of magnetic sites. (f) Schematics of distribution of
the Néel vector in the canted state. Dashed line coincides with the
direction eB. The angle θ between n(r) and h is indicated as well.
Its spatial distribution is shown in panel (g). In all panels, symbols
correspond to the results of simulations; lines are guides to the eye.

and the distribution of the angle between n and h, θ , along
the azimuthal angle around the ring in Fig. 3(g).

Being exposed to the magnetic field of the order of the
exchange field, h ∼ hx = 1/ς , spin chains experience the
spin-flip phase transition after which the magnetic ordering
becomes ferromagnetic; brown shaded region in Fig. 1(f). The
Néel vector vanishes and the total magnetic moment of the

ring in the field direction reaches its saturation. Within the
limit of the analytical model, which is linear with respect
to ς , the spin-flip field hspin-flip = hx. The critical transition
fields, obtained from spin-lattice simulations (Appendix A),
are reduced up to 0.4% of hx, see the hspin-flip line in Fig 1(f).
We associate this small deviation with effects in O (ς2). The
in-plane magnetization components, which emerged from n′,
produce local spatial modulation of the length of the magneti-
zation vector in the onion state up to 12% in the vicinity of the
spin-flop transition. The amplitude of this modulation decays
with the increase of the field and is beyond the linear theory
for the high-field states.

Approaching the spin-flip field, the critical curvature sep-
arating the spin-flop vortex and onion phases is reduced to
κ

flip
c ≈ 0.582, see Fig 1(f). We attribute this change to the

curvature-induced DMI, similarly to the appearance of the
canted state near the vortex phase.

IV. REORIENTATION PHASE TRANSITIONS
IN TILTED FIELDS

A finite external field applied under a certain angle to the
ring axis, h = x̂hx + ẑhz, breaks the rotational symmetry of
the system, see Fig. 4(a). In uniaxial bulk AFMs (chiral and
achiral), this can lead to the appearance of metastable states
confined within the astroid-shaped region on the diagram of
states in (hx, hz ) coordinates [2,9,37]. In a curvilinear AFM,
lowering of the system symmetry is accompanied by the lift-
ing up of the translational symmetry of the system due to the
spatial inhomogeneity of eani. In the following, we discuss
the field-induced states of a ring with curvature κ > κc being
in the onion state if h ‖ eB. The field-induced transformation
of the spin-flop vortex state with the field h = x̂hx + ẑhz is
presented in Appendix C.

The (hx, hz) diagram of equilibrium states in the tilted
magnetic field for the ring of curvature κ = 0.75 is shown in
Fig. 4(b). The equilibrium states and their stability regions are
determined by analyzing the dependence of the differential
susceptibility χ on hz measured along the field direction for
different hx [Fig. 4(e)].

Even below the spin-flop transition, the tilted field develops
a component of the total magnetic moment along h supple-
mented by the spatially inhomogeneous texture for the Néel
vector. At low hz, the state which is referred to as the tilted
one is developed from the binormal state and is similar to the
state in the canted phase [cf. Figs. 3(f) and 4(a)]. Reflecting
the symmetry of a ring, a representative distribution of the
deviation angle of n with α has two pronounced minima, see
Fig. 4(c). The maximum deviation from the field axis θmax

is plotted as function of hz for different hx in Fig. 4(d). It
depends on the relation between hx and hz. If hz � hx, keeping
the ring in the tilted state, the deviation angle is close to π/2.
The θmax decreases with the increase of hz and reaches a fixed
value for the given hx. In the tilted state, the total moment M
initially decreases because of the effective anisotropy along eB

[Fig. 4(f)]. The respective regions of negative susceptibility
are shown in Fig. 4(b) with light blue (decreasing negative
χ with increasing hz) and dark blue (increasing nonpositive
χ with increasing hz). The locus of fields corresponding to
χ = 0 is shown with open rhombuses.
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FIG. 4. AFM ring of curvature κ = 0.75 > κc exposed to the magnetic field h tilted from the easy axis. (a) Schematics of the distribution
of the Néel vector in the tilted state. (b) The diagram of equilibrium states for different field directions. Simulations are performed with steps
�hx = 0.037 and �hz = 0.015. (c) Spatial distribution of θ for hx = 0.04 and hz = 0.83. (d) Maximum angle θmax between the Néel vector
and field direction as function of hz for fixed hx . (e) Differential susceptibility χ as function of the field component hz shown for two different
values of hx . The magnetic field dependence of (f) the total magnetic moment normalized by the number of sites and (g) the magnetic moment
along x̂ axis for the same values of hx as used in panel (e). The change of the components of the magnetization vectors with the azimuthal
angle α for the (h) onion, (i) canted, and (j) tilted states. In all panels, lines are guides to the eye and symbols correspond to simulation results.
In panels (e)–(g), every third symbol from simulations is shown.

The region of the canted phase expands into regions of
the tilted and onion states with larger hx, see Fig. 4(b). The
boundaries of the canted state in Fig. 4(b) are determined by
the inflection points for the susceptibility χ (hz ). Proceeding
to the canted state by the increase of hz is characterized by the
increase of θmax. The amplitude of the spatial distribution of
the angle between n and h (θmax − θmin) reaches its maximum
in the canted state (up to ≈ 0.2 rad for small hx) and becomes
smaller with θmax approaching π/2 in the onion state. Open
triangles in Fig. 4(b) correspond to values of hx and hz at
which the differential susceptibility χ reaches its maximum
[Figs. 4(b) and 4(e)]. The tilted and canted states are similar
with respect to the distribution of the magnetization vector,
cf. Figs. 4(i) and 4(j). Still, we note that the mechanism of
their stabilization reflected in the behavior of the magnetic
susceptibility is different. The onion state in the tilted field
is qualitatively similar to the one discussed for the field along
eB, cf. Figs. 4(h) and 2(e).

The change of the total magnetic moment of the ring in
a tilted field is shown in Figs. 4(f) and 4(g). There are three
well-distinguished phases for sufficiently small hx, namely,
almost constant M , rapidly growing M , and slowly growing
M . The transition between phases becomes smoother with an
increase of hx. The component of the magnetic moment along
the x̂ direction has a pronounced maximum within the canted
state, see Fig. 4(g).

V. DISCUSSION

To summarize, we describe field-induced reorientation
transitions of the Néel vector n in an AFM spin chain consist-
ing of an even number of spins arranged in a ring. The model
accounts for the isotropic exchange, hard-axis anisotropy with
the axis tangential to the ring and Zeeman interaction. Hav-
ing intrinsic hard-axis anisotropy, such rings have a ground
state with the Néel vector perpendicular to the ring’s plane
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independent of curvature in absence of external magnetic
fields [23]. The critical fields, characteristic of the spin re-
orientation transitions, are determined by the curvature. The
spin-flop state consists of vortex and onion phases for rings
of small and large curvatures, respectively. The spin-flop tran-
sition behaves as the first-order one for rings with curvatures
κ < κcant ≈ 0.585. Otherwise, the transition is of the second
order and happens via the intermediate canted state. The re-
gion of the canted state is expanded in fields applied under an
angle to the ring axis. Approaching the spin-flip transition,
the critical curvature between the vortex and onion states
decreases to κ

flip
c ≈ 0.582. The onion state is characterized

by a weak ferromagnetic response. The strength of the weak
ferromagnetism is determined by n′. The respective moment
lies in the plane of n′.

This paper provides insight into the influence of the geo-
metric curvature on the spin reorientation transitions induced
by external magnetic fields in curvilinear AFM spin chains. A
spin chain arranged along plane curves is a paradigmatic ex-
ample, which allows us to follow the phase transitions driven
by the geometry for the case when the intrinsic anisotropy
has its hard axis along the tangential direction. This hard axis
anisotropy can be modified by or originate from the dipolar in-
teraction [23]. Our results can be used to analyze the spin-flop
transitions for other geometries and types of anisotropy, where
the ground state is not necessarily uniform. We note that
monitoring the curvature-dependent critical field, which is
needed to induce the change of the magnetic state, provides a
complementary method to determine material parameters for
low-dimensional AFMs based on molecular magnets [40,41],
DNA-based systems [42,43], or fabricated by means of atom-
by-atom engineering [44,45].

The strength of the AFM exchange coupling in spin chains
varies over several orders of magnitude, e.g., ∼10−24 J for
Cu chains with monochloride bridges [46], ∼10−23 J for
pyridine-based Cu chains [47], and ∼10−22 J for molecular
wheels Cr8Cd [48–50]. The latter is about an order of magni-
tude smaller than the exchange in the bulk Cr2O3 (∼10−21 J)
[51]. Assuming that a certain nanomagnet possesses the hard-
axis intrinsic anisotropy with the strength of the same order
as reported for Cr8Cd [48,49], it is possible to estimate the
magnetic length � to be about 5 to 10 lattice constants and
characteristic fields H0 to be about 3.5 T, which is readily
achievable in laboratory experiments. Such a molecular ring
with eight atoms is expected to be in the spin-flop onion
state. Parameters of the spin-flop transition can be also tuned
in systems prepared by atom-by-atom engineered relying on
the proper selection of the substrate and spin-carrying atoms
[52]. Further experimental investigations of these systems and
the comparison with the theoretical predictions of this paper
should also give insight into the role of quantum effects in
curvilinear low-dimensional AFMs. Lowering of the spin-flop
and spin-flip fields in spin chains due to strong anisotropy,
in comparison with bulk AFMs, paves the way toward re-
configurable spintronic devices, whose operational modes are
different below and above the spin-flop transition.

The influence of the curvature-induced DMI on the spin-
flop transition requires further analysis. In particular, it is
insightful to compare the results presented above with the
antiferromagnets in rolled-up geometries [53], which repre-

FIG. 5. Dependence of the weak ferromagnetic response on the
spatial localization of the discrete order parameter along the curve
γ . (a) ith AFM dimer consisting of μ2i and μ2i+1 magnetic mo-
ments. Three possible orientations of ni and mi are shown for pairs
of {ni, mi} with centering of the order parameters at (A) 2ith site,
(B) central point on the curve γ between the chain sites, and (C)
(2i + 1)th site. (b) The change of the direction of the magnetization
vectors for the ring with κ = 1.3 exposed to the magnetic field
h = 0.83eB in the onion state. In both panels, the lengths of the
vectors are not to scale.

sent a development of the ring geometry into a tube. In planar
chains, the presence of the Lifshitz invariant proportional to
curvature is reflected in the appearance of the canted phase
in external field for large ring curvatures. In contrast, AFM
spin chains arranged along space curves have two Lifshitz in-
variants and possess the geometrically-governed helimagnetic
phase transition driven by the Lifshitz invariant proportional
to torsion in the absence of the field [23]. The presence of DMI
terms of different symmetries in 3D curved spin chains should
make the diagram of field-induced states richer. We anticipate
that this behavior could be comparable with the spin-flop of a
planar ring in the tilted field, since the homogeneous magnetic
field does not coincide with the easy axis of a 3D spin chain.

ACKNOWLEDGMENTS

The authors thank Dr. Nina Elkina (HZDR) for support
with simulations. Numerical calculations are performed us-
ing the OpenStack and Hemera facilities at the HZDR [54].

174426-7



YELYZAVETA A. BORYSENKO et al. PHYSICAL REVIEW B 106, 174426 (2022)

FIG. 6. Spin-flop vortex phase in the ring of curvature κ = 0.4 < κcant exposed to a tilted external magnetic field. (a) The diagram of
equilibrium states for different field directions. (b) The total magnetic moment normalized to the number of sites as function of the field hz for
two different values of hx . The magnetic field dependence of (c) the differential susceptibility and (d) the magnetic moment along the x̂ axis
for values of hx as in (b). Components of the magnetization vectors for the (e) vortex state in h ‖ eB, (f) vortex state in the tilted field, and (g)
tilted states. (h) Schematics of the distribution of the Néel vector in the vortex state for hx = 0.78 and hz = 1.75. (i) The spatial distribution
of the angle between the Néel vector and the field direction for hx = 0.26 and hz = 0.83. (j) Maximum angle between the Néel vector and the
field direction as function of hz for fixed hx . In panels (b)–(g) and (j), every third symbol from simulations is shown.
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APPENDIX A: SPIN-LATTICE SIMULATIONS

To perform numerical analysis of curvilinear AFMs, we
use the in-house developed SLaSi package [23,55]. The
Landau–Lifshitz–Gilbert equation

dμi

dt
= 1

h̄S
μi × ∂H

∂μi
+ αG

dμi

dt
, i = 1, N (A1)

is solved numerically to obtain equilibrium magnetization
states. Here, μi is the unit vector of the magnetic moment for
the ith chain site, h̄ is the reduced Planck’s constant, αG is the
Gilbert damping, and N is the number of sites in the chain.

The spin-lattice Hamiltonian reads

H = J S2

2

(
N−1∑
i=1

μi · μi+1 + μN · μ1

)

+ K S2

2

N∑
i=1

(
μi · ei

T

)2 − 2μBS
N∑

i=1

μi · H. (A2)

The length of all magnetic moments is the same, |μi| = 1,
i = 1, N , and ei

T is the unit vector determining the tangen-
tial direction for the ith chain site. The sign of J depends
on the definition of the exchange part of the Hamiltonian.
Here, J > 0 favors the antiparallel orientation of μi, μi+1
in Eq. (A2). For all simulations, we used αG = 0.5, S =
1, a0 = 0.3 nm, J = 1×10−22 J, K = 4×10−20 J, which
gives � = 5a0 and ς = 0.1. The system is considered to be
in equilibrium if max |dμi/dt | < 10−14 Hz.

To determine the preferable equilibrium state for the given
magnetic field, the relaxation is done for different initial
states: With the Néel vector distribution being homogeneous
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in the local or laboratory reference frames, namely, states
n ‖ eB, n ‖ eN and n ‖ x̂. After relaxation, their resulting dis-
tributions and energies are compared. The equilibrium state
is considered to be the one possessing the lowest energy. To
determine the boundary between the vortex and onion states,
as well as boundaries between the states when the ring is
exposed to a tilted magnetic field, additional simulations were
done with the initial distribution set as in Eq. (5) for the given
curvature. In the canted state region, every initial distribution
relaxes to the canted state (vortex and onion states are not
stable in this region). This is in contrast to the case of fields
above the canted state, where the onion and vortex states can
be metastable ones. The boundary of the region corresponding
to the canted state in Fig. 1(f) is built based on the results of
simulations with � = 10a0 for J = 4×10−22 J to provide a
denser set of numerically obtained points.

APPENDIX B: DISCRETE ORDER PARAMETERS

In the continuum description, the Néel vector n(r) and
magnetization vector m(r) are defined at each point r of the
curve. To compare respective micromagnetic models with
spin lattice simulations, it is crucial to take into account that
the ith AFM unit cell for spin chains is a dimer {μ2i,μ2i+1}.
Furthermore, the anisotropy axis changes its direction for each
of the magnetic moments within this dimer. The anisotropy di-
rection per each magnetic moment is determined by the chain
shape via its local atomistic surrounding and coordinates of
the neighboring moments. Following the micromagnetic tran-
sition from the discrete to continuum models described in Ref.
[28], in this paper, we associate the discrete order parameters

ni = (μ2i − μ2i+1)/(2μ) and mi = (μ2i + μ2i+1)/(2μ) with
the spatial localization of the moment μ2i. This is reflected
in Ean. One can rewrite the energy density of the intrinsic

anisotropy as nK̂n, where K̂ =
∥∥∥∥ 1 Knd/2 0

Knd/2 0 0
0 0 0

∥∥∥∥ [28]. For

the chosen location of the order parameters in the dimer,
Knd = 2ςκ. Other possibilities for a dimer placed on the
curve γ are shown in Fig. 5. For a ring possessing a constant
curvature, the point in the geometrical center of the dimer
along γ has the tangential direction e2i+1/2

T along the line con-
necting 2ith and (2i + 1)th sites (Knd = 0). This is a special
case of high symmetry specific for the ring geometry, which
is absent for curves of arbitrary geometry.

APPENDIX C: SPIN FLOP VORTEX PHASE

The diagram of equilibrium states in a tilted field for the
ring of curvature κ < κcant possessing the spin-flop vortex
state in hx = 0 is shown in Fig. 6(a). An increase of the total
magnetic moment with h reveals the first-order phase transi-
tion, see Fig. 6(b). The finite jumps in χ (hz ) in Fig. 6(c) are
related to the discrete set of points to determine the phase tran-
sition by the difference scheme. A jump of the total magnetic
moment along x̂ as a function of hz being the consequence of
the first-order transition is clearly seen in Fig. 6(d).

For nonzero hx values, the tilted state is qualitatively simi-
lar to the tilted state discussed for κ > κc. The vortex state
in the tilted field [Fig. 6(h)] is topologically equivalent to
the spin-flop state in h ‖ eB [28] and exists for sufficiently
large values of the field tilt angles. The deviation of the Néel
vector from the symmetry plane measured by the angle θ as
in Figs. 4(c) and 4(d) is shown in Figs. 6(i) and 6(j).
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