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Frustrated mixed-spin ladders: Evidence for a bond-order wave phase
between rung-singlet and Haldane phases
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In frustrated spin ladders, the interplay of frustration and correlations leads to the familiar Haldane (H) and
rung-singlet (RS) phases. The nature of the transition between these two phases is still under debate. In this
paper we tackle this issue using tools of quantum information theory. We consider frustrated mixed-spin-(1,
1/2) ladders with antiferromagnetic leg, rung and diagonal couplings, and calculate various quantities, such as
the entanglement entropy (EE), the Schmidt gap, and the level degeneracy of the entanglement spectrum (ES).
We use two numerical techniques, the infinite time-evolving block decimation (iTEBD) and the density matrix
renormalization group (DMRG). We demonstrate that there exists an intermediate phase in which the ES levels
do not exhibit the characteristic degeneracies of the H and RS phases. To understand the underlying physics in
this phase, we investigate short-range spin correlations along legs, rungs and diagonals and show that in this
intermediate phase long-wavelength modulations occur, akin to bond-order waves.

DOI: 10.1103/PhysRevB.106.174419

I. INTRODUCTION

Low-dimensional frustrated spin systems have attracted
great interest due to their importance for the understanding
of emergent phenomena, such as reentrant phase transitions
[1], flat-band physics [2], anomalous robustness of topological
order [3–5], and spin liquid phases [6–10]. Frustrated spin
ladders have received special attention for several reasons: (i)
due to their low dimensionality, the interplay of frustration
and quantum correlations leads to a variety of topological
and nontopological phases such as the Haldane phase, dimer
order and various spin liquids [11–26]; (ii) they are quasi-
one-dimensional, and show characteristics of both one- and
two-dimensional systems [27], and (iii) powerful numeri-
cal and analytical methods are available for studying their
low-energy properties [28,29].

Most studies of spin ladders have considered a single type
of spin, in particular, σ = 1/2. Ladders with two types of
spin (τ > σ ), so-called mixed-spin ladders, have received less
attention, although this heterogeneity produces qualitatively
new effects [30–35]. In this paper, we study the ground state
phase diagram of a mixed-spin (1, 1/2) ladder with coupling
constants Jl , Jr, Jd (illustrated in Fig. 1), focusing on the
effects of diagonal interactions (Jd ). We limit ourselves to
Jl � 0, Jd � 0 but admit both ferromagnetic and antiferro-
magnetic rung couplings Jr .

Some knowledge about the ground state can be gained
thanks to the Lieb-Mattis theorem [36], which fixes the total
spin S for cases where the lattice can be subdivided into
sublattices A and B in such a way that Ji j = 0 if i, j ∈ A or
i, j ∈ B and Ji j � 0 if i ∈ A and j ∈ B. Then S = |SA − SB|,
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where SA and SB are the largest possible values of the spin on
sublattices A and B, respectively. Figure 2 shows three cases
where this separation is particularly simple. In the special case
of vanishing diagonal coupling, Jd = 0 (but Jl > 0, Jr > 0),
the ladder can be viewed as two zigzag chains, whereas for
vanishing coupling on the legs, Jl = 0 (but Jr > 0, Jd > 0),
the two legs can be taken as subsystems A and B. In both
cases SA = SB = 3

2 N , where N is the number of unit cells,
and therefore the Lieb-Mattis theorem predicts a spin-singlet
ground state. For vanishing rung coupling, Jr = 0 (but Jl >

0, Jd > 0), the sites with spin 1 may be taken as subsystem A
and those with spin 1/2 as subsystem B. In this case, SA = 2N
and SB = N , and therefore the ground state is a ferrimagnet
with total spin S = N .

A previous study [37] of our ladder model in the range
Jl = Jr = 1, 0 � Jd � 1.5 has revealed four different phases,
a rung-singlet phase (RS) for 0 � Jd � 0.710, a Haldane
phase (H) for 0.710 � Jd � 0.875 and two ferrimagnetic
phases for Jd � 0.875. The authors of this study also sug-
gested that for 0 � Jd � 0.875 the mixed-spin ladder can be
mapped onto the homogeneous spin 1/2 ladder with modified
couplings J ′

l , J ′
r, J ′

d . The (frustrated) spin 1/2 ladder has been
intensively studied and is essentially understood. Its ground
state exhibits the RS and H phases and the location of the
RS-H transition is in good agreement with that found for
the mixed-spin ladder, thus lending further support to the
mapping proposed in Ref. [37].

The detailed nature of the RS-H transition in the frustrated
spin 1/2 ladder has been a matter of debate. A first-order
transition is well established in a wide region of parameter
space, but for weak interchain coupling an intermediate phase,
a “columnar dimer phase,” has been conjectured [38]. Numer-
ous studies have since tried to find evidence for this phase,
with little success [23,25,26,39,40]. More recent calculations
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FIG. 1. Pictorial representation of a mixed-spin ladder with dif-
ferent intra- and interleg exchange couplings. The blue and red dots
represent the σ and τ spins, respectively. The index i numbers the
unit cells.

fully agree with a single transition, of first order for not too
small couplings [41–43]. Similarly the RS-H transition found
for the mixed-spin model has been interpreted as a single
first-order transition due to a level crossing of the RS and H
singlet ground states, at the same time “some peculiarities of
the RS-H transition in the mixed-spin system, as compared to
the uniform-spin case” were noticed [37].

Our aim is to shed light on the RS-H transition in the
mixed-spin ladder, using tools of quantum information the-
ory, which are better suited for investigating subtle details of
ladders [44] than, e.g., the dependence of bond energies on
coupling parameters, as used in Ref. [37]. The remarkable
concept of entanglement combined with new algorithms has
improved our understanding of many-body systems in gen-
eral and quantum phase transitions in particular [45–52]. The
best-known measure of entanglement is the von Neumann
entanglement entropy (EE) which is widely used to detect
quantum phase transitions [53] as well as topological proper-
ties of many-body states [54,55]. Moreover, the entanglement
spectrum (ES), the eigenvalues of reduced density matrices, is
a remarkable tool in the characterization of topological phases
of matter [56–59]. Actually, the study of the low-lying part
of the ES allows us to detect the topological properties of
a state or gives direct access to the excitation spectrum of
edges. Using two numerical techniques, iTEBD and DMRG,
we obtain the EE and ES of the ground state of mixed-spin (1,
1/2) ladders, and demonstrate that the RS and H phases are

FIG. 2. Sublattices A (full symbols) and B (empty symbols)
for three special cases: (a) Jd = 0, Jl > 0, Jr > 0, (b) Jl = 0,

Jr > 0, Jd > 0, and (c) Jr = 0, Jl > 0, Jd > 0.

separated by an intermediate phase with a different ES level
degeneracy.

To identify the intermediate phase, we also calculate short-
range spin correlations along rungs, legs and diagonals. The
bond pattern differs markedly from that of a columnar dimer
phase, and we attribute it to a long-wavelength incommen-
surate bond-order wave (BOW), which breaks translational
symmetry. Bond order, a well-known concept of quantum
chemistry, measures the strength of chemical bonds. Bond
alternation in conjugated polymers, a sequence of “single”
and “double” bonds, is in reality a sequence of weakened and
strengthened bond orders, a commensurate BOW. While this
phenomenon is usually attributed to the bond length depen-
dence of overlap integrals, it was realized that it can also be
produced by electron-electron interactions, where a priori one
would only expect a competition between spin-density waves
(SDW) and charge-density waves (CDW). In fact, Nakamura
[60,61] and, shortly after, Sengupta and collaborators [62]
realized that in the one-dimensional extended Hubbard model
a BOW phase exists in a narrow strip between CDW and
SDW phases for small to intermediate coupling strengths. The
notion BOW can be extended to spin systems, where it repre-
sents again a modulation of bond energies. A BOW phase was
found in the familiar zigzag spin-1/2 Heisenberg chain with
frustrated antiferromagnetic exchange [63–66]. Its nature is
particularly transparent at the Majumdar-Ghosh point where
the ground state is an exact dimer state, a product of singlet-
paired spins.

The paper is organized as follows. In Sec. II, we introduce
the Hamiltonian of our mixed-spin ladder and define various
spin correlation functions. Section III discusses the exact so-
lution for the elementary plaquette. Section IV treats the limits
of weak and strong rung couplings using perturbation theory.
In Sec. V, the numerical iTEBD technique and its general-
ization to the mixed-spin ladder are explained. Section VI
presents a comprehensive study of the ground state phase
diagram of the ladder in the absence of diagonal interactions,
in terms of the EE and the ES level degeneracies. In Sec. VIII,
the focus is on the intermediate phase, using DMRG. A brief
summary and suggestions for further studies are presented in
Sec. IX. The model is explicitly diagonalized on the plaquette
in Appendix A and some details on the perturbative approach
are provided in Appendix B.

II. MODEL

We consider a frustrated mixed-spin (τ = 1, σ = 1/2) lad-
der, embodied by the Hamiltonian

H = Hl + Hr + Hd , (1)

with

Hl = Jl

∑
n=1,2

∑
i

(
σ

(n)
i · τ

(n)
i + τ

(n)
i · σ

(n)
i+1

)
,

Hr = Jr

∑
i

(
σ

(1)
i · σ

(2)
i + τ

(1)
i · τ

(2)
i

)
,

Hd = Jd

∑
n �=n′

∑
i

(
σ

(n)
i · τ

(n′ )
i + τ

(n)
i · σ

(n′ )
i+1

)
,
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where n and n′ label the legs, and the summations
∑

i run
over unit cells (see Fig. 1). Here, Jl is the intra-leg exchange
interaction between spins σ and τ , and the other two couplings
refer to the inter-leg interactions, Jr on the rungs and Jd across
the diagonals.

The Hamiltonian (1) has several symmetries, including
SU(2), time-reversal, “leg-swap”, inversion and discrete trans-
lations. Some of them may be explicitly broken by boundary
conditions. Nevertheless, for long enough ladders these sym-
metries may be partially restored (well inside the ladder if
a correlation length exists which is much smaller than the
number of unit cells).

If some symmetry is spontaneously broken we can define
appropriate order parameters. Important additional informa-
tion about the ground state can be gained from spin correlation
functions. Those across the rungs are defined as

Sσ (i) := 〈
σ

(1)
i · σ

(2)
i

〉
Sτ (i) := 〈

τ
(1)
i · τ

(2)
i

〉
, (2)

where 〈. . . 〉 denotes the expectation value with respect to
the ground state. The “columnar” correlation functions (those
along legs) are conveniently labeled by rung numbers � (in-
stead of cell numbers i),

Sln(�) :=
{〈

σ
(n)
i · τ

(n)
i

〉
� = 2i − 1〈

τ
(n)
i · σ

(n)
i+1

〉
, � = 2i

, (3)

where n = 1, 2 numbers the legs and � runs from 1 to L = 2N .
Similarly, the “diagonal” correlation functions are

Sd1(�) :=
{〈

σ
(1)
i · τ

(2)
i

〉
� = 2i − 1〈

τ
(1)
i · σ

(2)
i+1

〉
, � = 2i

(4)

and

Sd2(�) :=
{〈

σ
(2)
i · τ

(1)
i

〉
� = 2i − 1〈

τ
(2)
i · σ

(1)
i+1

〉
, � = 2i

. (5)

These correlation functions satisfy the inequalities

− 3
4 � Sσ (i) � 1

4 , −2 � Sτ (i) � 1 ,

−1 � San(�) � 1
2 , a = l, d, n = 1, 2. (6)

If the spatial symmetries are preserved in the ground state, the
rung correlations are independent of the cell number i, and
both columnar and diagonal correlations do not depend on the
rung number � (nor on n).

III. FRUSTRATED MIXED-SPIN PLAQUETTE

It is instructive to consider first the building block of the
mixed-spin ladder, consisting of four spins on the corners of a
square, two with spin 1 and two spin 1/2. Eigenstates of both
the total spin and the Hamiltonian can be deduced analytically.
The results may serve as a starting point for the construction
of effective low-energy Hamiltonians.

We consider the general case where the rung couplings can
be different (Jr → Jσ , Jτ ). The Hamiltonian

H = Jσ σ1 · σ2 + Jττ1 · τ2 + Jl (τ1 · σ1 + τ2 · σ2)

+ Jd (τ1 · σ2 + τ2 · σ1), (7)

FIG. 3. Ground state phase diagram of the mixed-spin plaquette
for Jl = 1, Jσ = Jτ in the Jσ − Jd plain.

commutes with the total spin

S = τ1 + τ2 + σ1 + σ2, (8)

and is invariant with respect to an interchange of spin opera-
tors, τ1 ↔ τ2, σ1 ↔ σ2 (“leg-swap symmetry”).

We classify the states of the 36-dimensional Hilbert space
according to the eigenstates of S2, Sz and the leg-swap oper-
ation. This basis is constructed explicitly in Appendix A. For
Sz = 0 we obtain five states which are even under the leg-swap
operation (one with S = 3, one with S = 2, three with S = 1)
and five states which are odd (two with S = 2, one with S = 1,
two with S = 0). The Hamiltonian is block-diagonal in this
basis, with a 3 × 3 matrix as largest block.

The ground state symmetry depends on the coupling con-
stants. If all couplings are equal, Jl = Jd = Jσ = Jτ = J , the
Hamiltonian is directly related to the total spin,

H = J

2

(
S2 − 11

2

)
, (9)

and the ground state has S = 3 for J < 0 and S = 0 for J > 0.
The diagonalization of the Hamiltonian (Appendix A)

yields the phase diagram of Fig. 3. In this paper, we con-
centrate ourselves mostly on the parameter region Jl = Jσ =
Jτ = 1. Fig. 4 shows the energy spectrum for this case. Re-
markably, all eigenvalues are linear functions of Jd . At the
fully symmetric point the lines collapse to the values predicted
by Eq. (9). The ground state is always a spin singlet, but of
different character above and below Jd = 1, where the singlet
levels cross. It is worthwhile to add that for generic parameter
sets the two singlet levels repel each other and are separated
by a gap.

The spin correlation functions defined by Eqs. (2) to (4)
provide valuable insight into the character of the eigenstates.
They are readily evaluated using the Hellman-Feynman theo-
rem. As a simple example we first consider the eigenstate with
S = 3, which has an energy Jl + Jd + 1

4 Jσ + Jτ and therefore
correlation functions Sl = Sd = 1/2, Sσ = 1/4, and Sτ = 1.
These are just the upper bounds of Eq. (6). We now turn to the
ground state. The correlation functions are calculated using
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FIG. 4. Energy spectrum for the plaquette for coupling parame-
ters Jl = Jσ = Jτ = 1. Colours represent different spin values, S = 3
(red), 2 (green), 1 (blue), and 0 (black). Doubly degenerate eigenval-
ues occur for S = 1 (middle line) and S = 2 (downgoing line).

the relations

Sa = 1

2

∂E−
∂Ja

, a = l, d, Sb = ∂E−
∂Jb

, b = σ, τ, (10)

where E− is given by Eq. (A7). The result for the parameter
region of Fig. 4 is presented in Table I. Remarkably, the cor-
relation functions do not depend on Jd , except at the crossing
point where they exhibit steps. Moreover, the “rung spins”
have the same “lengths,”

〈(σ1 + σ2)2〉 = 〈(τ1 + τ2)2〉 =
{ 2

3 , Jd < 1

4
3 , Jd > 1

. (11)

A glance at Eqs. (A7) reveals that this equality is generally
valid for the two singlet states. It has also been found for
the ladder in Ref. [37] in the RS phase and interpreted as a
signature of “zero weight of rung quintet states”.

It is worthwhile to mention the homogeneous case where
both σ - and τ -operators have spin 1/2. There are six eigen-
states of S2 for Sz = 0, four of which are even (one with
S = 2, one with S = 1, two with S = 0) and two are odd
(with S = 1). For Jl = Jσ = Jτ = 1, the energy eigenvalues
are again linear functions of Jd . The ground state is a singlet
with different spin correlations below and above the symmet-
ric point Jd = 1, as in the mixed-spin case.

TABLE I. Spin correlations as functions of Jd for Jl = Jσ = Jτ =
1.

Jd < 1 Jd > 1

Sl −5/6 1/3
Sd 1/2 −1
Sσ −5/12 −1/12
Sτ −5/3 −4/3

IV. WEAK AND STRONG RUNG COUPLINGS

We return now to the mixed-spin ladder. In this section,
we investigate the limits of weak and strong rung couplings,
which can be understood analytically. We limit ourselves to
the unfrustrated ladder, Jd = 0, and consider three special
cases, weak antiferromagnetic rung coupling, ferromagnetic
rung coupling and strong antiferromagnetic rung coupling.
Our mixed-spin ladder is invariant under the exchange of leg
and diagonal couplings [40], i.e., H (Jl , Jr, Jd ) = H (Jd , Jr, Jl ),
therefore the entire discussion below can be applied to the case
of Jl = 0 and Jd > 0, by replacing Jl by Jd .

A. Weak antiferromagnetic rung coupling

In the limit of vanishing rung coupling, the ladder is
decoupled into two equivalent mixed-spin (1,1/2) chains. Ac-
cording to the Lieb-Mattis theorem [36], each chain has a
total spin Stot = N/2, where N is the number of unit cells,
and thus exhibits ferrimagnetic long-range order. Since the
elementary cell (of a chain) consists of two spins, linear spin
wave theory yields two types of magnons, a gapless “acoustic”
branch with dispersion ω−

k /Jl = − 1
2 + ( 1

4 + 2 sin2 k)1/2 (∼k2

for small k), and a gapped “optical” branch with dispersion
ω+

k /Jl = 1
2 + ( 1

4 + 2 sin2 k)1/2 [67–69]. When an antiferro-
magnetic rung coupling is switched on, spin wave theory
predicts a linear dispersion of the gapless mode, reflecting
the antiferromagnetic character of the ladder system, whereas
the optical mode moves upward [70]. However, DMRG cal-
culations show that a spin gap opens, which first increases
quadratically as a function of Jr up to Jr ∼ 0.3, and then grows
linearly [70].

B. Ferromagnetic rung coupling

For Jr < 0 and Jl = 0, the σ spins form rung triplets and
the τ spins form rung quintets, therefore the ground state is
a product of rung-triplet and rung-quintet states. Low-energy
excited states are rung singlets for σ spins and rung triplets for
τ spins, separated from the ground state by energy gaps of Jr

and 2Jr , respectively. As soon as leg couplings are switched
on, when Jl 
 |Jr |, the ladder behaves like a ferrimagnetic
spin (1, 2) chain, with long-range order, a total spin Stot = N ,
an acoustic mode and an optical mode (at ω+

0 = 2Jl ). In the
opposite limit of weak ferromagnetic rung coupling (|Jr | 

Jl ), the magnetic moments of the two chains are aligned,
giving again Stot = N , while the low-energy excitation spec-
trum remains essentially that of two independent chains, with
acoustic and optical modes as described above. Hence we
expect the two limits of weak and strong ferromagnetic rung
couplings to be smoothly connected.

C. Strong antiferromagnetic rung coupling

For Jr > 0 and Jl = Jd = 0, the ground state is a prod-
uct of local rung singlets, with an energy (per unit cell) of
−(11/4)Jr . The first excited states are triplets, separated from
the ground state by a finite energy gap of size Jr . With increas-
ing leg coupling Jl the energy gap decreases monotonically.
Appendix B shows that first-order perturbation theory in Jl

does not give any contribution from quintets (S = 2) on the
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FIG. 5. MPSs representation for the mixed-spin (1,1/2) ladder.
The rungs with spins σ = 1/2 (τ = 1) are indexed by A and C (B
and D). A spin-1/2 (1) rung has a local Hilbert space with dimension
dA = dC = 4 (dB = dD = 9).

rungs hosting τ -spins. This implies that quintets are not in-
volved in the ground state energy up to second order. We have
also checked that the expectation values of σi and τi vanish,
in agreement with the Lieb-Mattis theorem. Quintet states
appear in second-order perturbation theory for the ground
state and are thus expected to play a role for Jl of the order
of Jr .

V. NUMERICAL METHODS

A. Matrix product states

Matrix product states (MPSs) [71,72] provide an efficient
representation of the ground state of one-dimensional systems
obeying the area law, for which the entanglement entropy
grows with the boundary of a specific area rather than its
volume [73]. To use MPSs for our model, we map the ladder
onto a chain and consider each rung as a supersite with a larger
Hilbert space. In Vidal’s representation [46], a generic state of
a one-dimensional system is described in terms of two sets of
matrices. We choose four pairs of matrices (�A, �B, �C, �D)
and (λA, λB, λC, λD), which allow us to include phases show-
ing a doubling of the unit cell, such as a dimer solid or
the ferrimagnetic state [2, 1, 1, 1, . . . , 2, 1, 1, 1] [37]. In this
representation, illustrated in Fig. 5, an arbitrary state of our
ladder is

|ψ〉 =
∑

i1,··· ,iN

[ · · ·�im
A λA�

im+1
B λB�

im+2
C λC�

im+3
D λD · · · ] |i1〉

⊗ · · · ⊗ |iN 〉, (12)

where in numbers the states of rung n (in = 1, . . . , 4 for σ -
rungs and in = 1, . . . , 9 for τ -rungs). The λ’s are diagonal
matrices with the non-negative “Schmidt coefficients” λi on
the diagonal, and λ2

i are the eigenvalues of the reduced den-
sity matrix (ρred = TrB(A)|ψ〉〈ψ |, where A and B are two
halves of the ladder). The EE is directly connected to these
eigenvalues thorough

S = −
∑

i

λ2
i ln λ2

i . (13)

The matrices � in (12) correspond to transformations between
different Schmidt bases. The dimension χ of the matrices
is a key parameter in tensor network states, called bond di-
mension, and the accuracy of the state (12) is controlled by
this quantity. For weakly entangled states, a fairly small bond
dimension is sufficient to obtain sensible results. But there
are situations where very large bond dimensions are required,
such as gapless critical systems [74].

B. Time-evolving block decimation

One of the efficient MPS-based algorithms for simulating
one-dimensional quantum many-body systems is the iTEBD
technique [46,48,75–77]. In iTEBD, using the imaginary time
evolution of a quantum state we can find the ground state of
the Hamiltonian H through the relation

|GS〉 = lim
β→∞

exp(−βH )|ψ0〉, (14)

where |ψ0〉 is an initial “guess state,” chosen in the form of
Eq. (12). If |ψ0〉 is orthogonal to |GS〉, for instance because it
has a different symmetry, the ground state cannot be reached
by this method. Practical difficulties may appear in the vicin-
ity of a continuous phase transition, where a judicious choice
of the guess state is of crucial importance. However, for a
first order transition between two gapped phases, such as that
between RS and H phases, the method is expected to work
well.

To proceed, we first rewrite the Hamiltonian (1) as

H =
∑

i

(
h(σ )

i + h(τ )
i

)
, (15)

where

h(σ )
i = Jrσ

(1)
i · σ

(2)
i + Jl

∑
n

σ
(n)
i · τ

(n)
i + Jd

∑
n �=n′

σ
(n)
i · τ

(n′ )
i ,

h(τ )
i = Jrτ

(1)
i · τ

(2)
i + Jl

∑
n

τ
(n)
i · σ

(n)
i+1 + Jd

∑
n �=n′

τ
(n)
i · σ

(n′ )
i+1 .

(16)

If the “time” β is divided into a large number of intervals of
width δ one can use the (first-order) Suzuki-Trotter decompo-
sition

e−δ H ≈
∏

i

e−δ h(σ )
i e−δ h(τ )

i . (17)

Starting with an initial guess state of the form (12), we apply
the operator e−δ H iteratively to update the matrix product
representation, until the ground state energy or the entropy
converges. In our ladder system, we use the second-order
Suzuki-Trotter decomposition. The simulations are started
with a time step δ = 0.5, which gradually is decreased to
δ = 10−5. A key feature of the iTEBD algorithm is that it
directly treats the infinite system by exploiting translational
invariance, therefore it is free of finite-size effects.

C. DMRG

We also use the DMRG technique, especially to study the
ground state in the vicinity of transition points. Unlike iTEBD,
DMRG is a variational method. In other respects, the two
methods have many steps in common. We iteratively optimize
the MPSs of two neighboring sites to minimize the ground
state energy, and then project the Hamiltonian onto a varia-
tional space. We use an iterative algorithm such as Lanczos to
lower the energy. The two-site update is repeated for each pair
of neighboring sites until the wave function converges to the
ground state.
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FIG. 6. Scaled ground state energy of the unfrustrated ladder
(Jd = 0) per unit cell as a function of R, obtained by iTEBD with
χ = 100 and 120. The curves tend to the exactly known limits for
R → ±1, namely to −5/4 for R → −1, the total energy of a spin-1/2
rung-triplet and a spin-1 rung-quintet, and to −11/4 for R → +1,
the total energy of a spin-1/2 and a spin-1 rung-singlet, whereas for
R = 0 the energy of a mixed-spin (1,1/2) chain is reproduced. The
inset depicts the energy as a function of bond dimension for R = 0.5.

VI. UNFRUSTRATED LADDER

In the absence of diagonal interactions, our mixed-spin lad-
der (1) is unfrustrated and, as discussed in Sec. IV, its ground
state is ferrimagnetically long-range ordered in the limit of
strong ferromagnetic rung couplings and magnetically disor-
dered in the limit of strong antiferromagnetic rung couplings.
In order to obtain the complete ground state phase diagram,
we introduce the dimensionless parameter R = Jr/(Jl + |Jr |).
The limits R = ±1 correspond to the strong rung coupling
regimes, whereas R = 0 is the limiting case of two decoupled
mixed-spin chains.

A. iTEBD

We first discuss results obtained by the iTEBD method.
The ground state energy is shown in Fig. 6 for two different
bond dimensions, χ = 100 and 120. The results for the two
cases are almost the same. The inset of Fig. 6 confirms that
the energy has well converged for χ = 120. The cusp at R = 0
points to a phase transition of first order. Some insight on the
two sides of the transition can be gained by calculating the
magnetic moments on the rungs. We find in the entire range
−1 � R < 0 a nonvanishing magnetization and a ground state
in the sector [1, 2, . . . , 1, 2], where numbers stand for spin 1
on the σ -rungs and spin 2 on the τ -rungs. We refer to this
phase as F1, in agreement with Ref. [37].

For R = 0, the ladder is decoupled into two equiva-
lent mixed-spin-(1,1/2) chains with ferrimagnetically ordered
ground states in the sector [1/2, 1, . . . , 1/2, 1]. For R > 0,
the ground state must be a spin singlet, because of the Lieb-
Mattis theorem, applied to the case of Fig. 2(a). For R � 0.1,
we do find a nonmagnetic ground state, but for very small
positive R we routinely obtain finite local moments for a
randomly chosen initial state. This is understandable because
for R = 0 the ground state is infinitely degenerate (for infinite

FIG. 7. EE for the unfrustrated ladder (Jd = 0) vs R, obtained by
DMRG for 60, 90, and 120 rungs, with χ increasing from 300 to
1000. The discontinuity at R = 0 indicates a phase transition of first
order. The EE vanishes at the two end points, R = ±1.

chains), which implies a huge density of states for low-energy
excitations at very small R. Large values of both β and χ

would therefore be required to reach a faithful ground state.
We have verified that the contentious region indeed shrinks
if the bond dimension is increased. However, for very small
positive values of R a bond dimension χ � 120 is required to
obtain satisfactory results, even if a nonmagnetic initial state
is chosen.

B. DMRG

We now discuss results obtained with DMRG, which is
less sensitive to initial guess states than iTEBD. Computa-
tions were performed for ladders of different sizes with open
boundary conditions. For greater efficiency we increased the
bond dimension to 1000. The ground state energies obtained
with DMRG (after extrapolation) match perfectly those cal-
culated with iTEBD, except in the tiny region of R discussed
above, where the DMRG values are in general smaller.

The EE is obtained by cutting the ladder into two halves,
and tracing out the degrees of freedom of one of the halves.
The results presented in Fig. 7 exhibit a discontinuity at R = 0
where a phase transition of first order occurs from the fer-
rimagnetically ordered F1 phase to the RS phase (where all
magnetic order parameters are zero).

The degeneracy of the ES levels offers a versatile tool
both for identifying different phases and for locating quantum
phase transitions [57,58,78–80]. As seen in Fig. 8, the level
degeneracy of the ES is odd (1 or 3) in the RS phase (0 <

R � 1), while in the F1 phase (−1 < R � 0) the ES levels are
nondegenerate.

VII. FRUSTRATED LADDER

We now consider the case where all three exchange cou-
plings are finite. Some regions in parameter space can be
understood without detailed calculations, especially those
with no or small frustration. Thus for Jd = Jl our ladder model
can be mapped onto a generalized mixed-spin Heisenberg
chain. Its ground state can be guessed in a simple way both for
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FIG. 8. Low-lying ES levels and their degeneracies vs R, ob-
tained by DMRG with χ = 800 for an unfrustrated ladder (Jd = 0) of
120 rungs. Circles indicate the degeneracy. The RS phase is charac-
terized by odd degeneracies, and the F1 phase has no degenerate ES.

Jr < 0 and for 0 < Jr 
 Jl . Regions with strong frustration,
such as those where the three coupling parameters are all
positive and of a similar size, are of course difficult to handle
using qualitative arguments. We therefore resort to numeri-
cal calculations, limiting ourselves to the region Jl = Jr = 1,
Jd > 0.

A. Generalized Heisenberg chain

For Jd = Jl , it is convenient to introduce rung spins

Si := σ
(1)
i + σ

(2)
i , Ti := τ

(1)
i + τ

(2)
i , (18)

because in this case the Hamiltonian can be written in terms
of these operators,

H = Jr

2

∑
i

(
S2

i + T2
i

) + Jl

∑
i

(Si · Ti + Ti · Si+1), (19)

where we have neglected an additive constant. The rung spin
operators do not have a fixed “length”, but can assume the
values Si = 0, 1, Ti = 0, 1, 2. For Jr < 0, the first term has the
lowest eigenvalue if both Si and Ti are as large as possible,
i.e., Si = 1 and Ti = 2. But this is also true for the second
term (it is obvious for classical spins or for the Néel state).
Therefore the ground state is expected to be ferrimagnetic
(F1) if Jl < 0 (and Jl = Jd > 0). For positive Jr the first term
in the Hamiltonian favors singlet rung spins, in contrast to
the second term which is lowest for maximal rung spins. The
system is frustrated. However, for very small positive values
of Jr the first term can be neglected and we obtain again a
ferrimagnetic phase of type F1.

Our numerical analysis of nearest-neighbor-spin correla-
tions on the rungs imply that 〈T2

i 〉 ≈ 〈S2
i 〉 for 0 � Jd � 0.86,

which implies that the rung-quintet states on the spin-1 rungs
have negligible weight and can be projected out. This lends
support to the mapping of the frustrated mixed-spin (1, 1/2)
ladder onto a frustrated uniform spin-1/2 ladder, as proposed
in Ref. [37].

FIG. 9. Ground state energy per unit cell vs Jd for Jl = Jr = 1,
obtained with iTEBD for χ = 100 and 120. (Inset) Enlarged view
for 0.65 < Jd < 0.9.

B. iTEBD

We have studied numerically the ground state energy, both
the EE and the Schmidt gap (the difference between the two
largest eigenvalues of the reduced density matrix [81]), as
well as the level degeneracy of the ES. We first present the
overall picture obtained with iTEBD. More details will be
given in Sec. VIII for DMRG results, in particular regarding
the intermediate phase.

Figure 9 shows the ground state energy as a function of Jd .
Cusps at certain values of Jd (indicated by the dashed verti-
cal lines), are indicative for phase transitions. Corresponding
jumps in the EE are more pronounced, and found to occur at
Jd � 0.71, 0.74, 0.86, and 1.17. The gross features of the
ground state energy – an almost linear increase for Jd � 0.7
and a linear decrease for Jd � 0.7 – match the behavior found
for the plaquette (Fig. 4). The different values of the “critical
points” can be attributed to the fact that in the ladder a site is
connected to two neighbors by Jd and only to one in the pla-
quette. The situation is reminiscent of that encountered for the
antiferromagnetic XX chain in a transverse field h, where the
transition to the ferromagnetic state occurs at J = 2h for two
sites, but already at J = h for the chain. An additional similar-
ity between the plaquette and the ladder is the vanishing of the
excitation gap at criticality, observed as a level crossing in the
case of the plaquette and by numerical evidence in the case of
the ladder (for the same specific coupling parameters as used
here) [37].

We have also studied both the ES and local order pa-
rameters in the different phases. No magnetic order was
found both for 0 � Jd < 0.71 and for 0.74 < Jd � 0.86.
The low-lying levels of the ES are odd-degenerate for 0 �
Jd < 0.71 (as in the RS phase [57,78]), and even-degenerate
for 0.74 < Jd � 0.86 (as in the H phase). For Jd > 0.86
the ES is nondegenerate and magnetic order does exist. A
sharp first-order transition at Jd ≈ 1.17 separates two different
magnetic phases, the F1 phase corresponding to the sector
[1, 2, . . . , 1, 2] for Jd � 1.17, and the F2 phase correspond-
ing to the sector [1, 1, 1, 2, . . . , 1, 1, 1, 2] for 0.86 < Jd �
1.17. The F2 phase breaks the translational symmetry and
can be considered an intermediate phase between the H and

174419-7



AHMADI, ABOUIE, HAGHSHENAS, AND BAERISWYL PHYSICAL REVIEW B 106, 174419 (2022)

F1 phases. This picture agrees with the phase diagram of
Ref. [37], although the transition point between F1 and F2

phases is somewhat different.
In the narrow interval 0.71 � Jd < 0.74, the ES levels

are not found to exhibit any characteristic degeneracy, nei-
ther of the RS-type nor of the H-type, and we often detect
magnetic order. We attribute the erratic data to limitations
of the method. In fact, the spin gap seems to be very small
in this region [37], therefore one would need both a large
parameter β and a large bond dimension χ to obtain consistent
results, very much like in the unfrustrated case for Jd = 0,

|Jr | 
 Jl . Moreover, in our ansatz we included a possible
period doubling, which allowed us to reproduce the F2 phase,
but excluded ground states with longer periods, for which
we find good evidence on the basis of DMRG data (to be
discussed below).

VIII. INTERMEDIATE SINGLET PHASE

As discussed above, for 0 < Jd � 0.86 the ground state of
our model appears to be well represented by that of a frus-
trated spin-1/2 ladder (with couplings J ′

l , J ′
r, J ′

d ) [37], which
has been intensively investigated using both analytical and nu-
merical methods [18,25,26]. An intermediate columnar-dimer
phase has been reported only in a narrow neighborhood of
J ′

r = 0.38 (for J ′
l = 1 and J ′

d = 0.2) [26], i.e., in a “weak cou-
pling” region in parameter space which does not correspond
to the “strong coupling” region of our intermediate phase.
This apparent discrepancy is less serious if one keeps in mind
that the low-energy excitations are quite different in the two
models (the spin gap remains finite at the RS-H transition in
the spin-1/2 ladder [40], in contrast to the softening observed
in the mixed-spin ladder [37]). Therefore the (approximate)
mapping between the ground states of the two models cannot
be used to rule out a strong-coupling intermediate phase in the
mixed-spin ladder.

We now discuss DMRG data for the frustrated mixed-
spin ladder, focusing on the parameter region Jl = Jr = 1,
0.4 < Jd < 1. All magnetic order parameters 〈τ (n)

i 〉 and 〈σ (n)
i 〉

vanish for Jd � 0.86, and the existence of an intermediate
phase is confirmed on the basis of spatially modulated spin
correlations.

A. EE, Schmidt gap and ES

We first use tools of quantum information theory for pin-
pointing the intermediate singlet phase. Results for the EE as
well as the Schmidt gap are presented in Fig. 10. The sharp
changes of the EE at Jd � 0.707 and Jd � 0.73 indeed are
clear signatures for a distinct phase, squeezed in between RS
and H phases. It will be shown later that dimerization plays
a role, and therefore we refer to this new ground state as the
D phase. At the first boundary, Jd = 0.707, the EE changes
continuously, which points to a second-order transition from
the RS to the D phase. At the second boundary, Jd = 0.73, a
discontinuous jump indicates a first-order transition from the
D to the H phase. The Schmidt gap is almost constant in the
RS phase, decreases gradually in the D phase, and tends to 0
in the H phase.

FIG. 10. EE (top) and Schmidt gap (bottom) vs Jd , for different
sizes, L = 120, 180, and 240, obtained by DMRG with χ gradually
increased from 300 to 1000.

The ES is illustrated in Fig. 11. The low-lying ES levels
have odd and even degeneracies in the RS and H phases, re-
spectively, and are nondegenerate in the ferrimagnetic phases.
In the D phase, the ES levels have a mixed even-odd
degeneracy.

FIG. 11. DMRG results for the low-lying ES levels and their
degeneracies (marked by circles).
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FIG. 12. Spin correlations across τ -rungs (upper panel) and
across σ -rungs (lower panel), as functions of the cell number i,
obtained by DMRG.

B. Short-range spin correlations

Figure 12 displays the rung correlations as functions of the
cell number i for different values of Jd . Clearly, boundary
effects are limited to a few cells. Both for Jd � 0.707 and
for Jd > 0.73, the data do not depend on i; for small Jd they
are close to their lower (singlet) bounds while for Jd � 0.8,
they approach values corresponding to spin 1. In the D phase,
0.707 < Jd < 0.73, the rung correlations are no longer con-
stant but oscillate with a Jd -dependent wave vector.

Both columnar and diagonal correlation functions, de-
picted in Fig. 13, are �-independent outside the D phase and
show incommensurate modulations inside. However, there is
an additional rapid oscillation—a weak dimerization—which
breaks the inversion symmetry. Both correlation functions are
found to be independent of n, therefore the leg-swap sym-
metry is not broken. The translational symmetry is of course
broken both by the slow incommensurate modulations and by
the dimerization.

We have repeated our computations for ladders of larger
sizes (for example, L = 240) and also for ladders with odd L.
The main features, in particular the oscillations in the bulk,
remain the same.

Similar incommensurate oscillations have been seen in
DMRG results for an SU(3) spin ladder, where they appear
in an intermediate phase between a valence-bond crystal for
small rung couplings and a critical Luttinger liquid for large
rung couplings [82].

FIG. 13. Spin correlations along diagonals (top) and legs (bot-
tom) as functions of the rung number �, calculated with DMRG for
n = 1 (the results for n = 2 are identical).

C. Interpretation

To quantify the rapid oscillations of columnar and di-
agonal correlation functions, we introduce staggered order
parameters

Sa(i) :=
∑

n

[San(2i − 1) − San(2i)], a = l, d. (20)

Both Sl (i) and Sd (i) vanish in the RS and H phases, but
are finite in the D phase. Figure 14 shows that these func-
tions oscillate, actually with the same wave vectors q as
the rung correlations (Fig. 12). The oscillations are sinu-
soidal and therefore we could also state that the original
correlation functions San(�) have an oscillatory component
with wave vector π − 2q. This reminds us of the BOW in
nearly half-filled Peierls systems, where a commensurate-
incommensurate transition from bond alternation at half
filling to an incommensurate harmonic oscillation away from
half filling occurs. Very close to half filling the bond-order
wave is not simply sinusoidal but has the form of a “soliton
lattice,” consisting of relatively wide regions with constant
order parameter and narrow domain walls in which the order
parameter changes rapidly. We do not see any evidence for
domain walls, maybe simply because when q approaches 0
the amplitude also tends to 0.

We have deduced the wave vector q for the staggered order
parameters by fitting sinusoidal functions to the data points
far from the edges of the ladder. The result shown in Fig. 15
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FIG. 14. Staggered bond orders along legs (top) and diagonals
(bottom).

is consistent with a slow increase from zero at the lower
boundary of the intermediate phase and a rapid fall to zero
at the upper boundary, similarly to the behavior reported in
Ref. [82]. Figure 15 also shows the “BOW parameter” B, the
oscillation amplitude at the center of the ladder. Clearly B is
only nonzero in the D phase.

An important question is whether finite size effects are
responsible for the intermediate phase. This has been an issue
in the context of the Hubbard model on the honeycomb lat-
tice, for which Meng and coworkers reported an intermediate
spin liquid phase for relatively small system sizes [83], while
subsequent work by Sorella and others showed that this phase
disappears in larger systems [84]. Therefore we have investi-
gated the size dependence of the oscillation amplitudes. The
results for the BOW parameter B, shown in Fig. 15, indicate
that the intermediate phase survives in the thermodynamic
limit. However, the limiting value of B is rather small and
therefore additional studies for larger system sizes would be
very useful for strengthening the case for these incommensu-
rate spin patterns.

IX. SUMMARY AND OUTLOOK

In this paper, we have described our study of a frustrated
mixed-spin ladder, consisting alternatively of spin 1/2 and
spin 1 rungs. We have used tools from quantum information,
in particular the entanglement entropy (EE), the Schmidt gap
and the entanglement spectrum (ES), as well as correlation
functions to characterize the various phases. Three types of
interactions were taken into account, one along legs (coupling

FIG. 15. (Top) BOW parameter B and wave vector q vs Jd . The
smooth increase of B from zero above the RS-D boundary indicates a
continuous phase transition, whereas the jump at the D-H boundary
points to a first order transition. (Bottom) Dependence of the BOW
parameter on the number of rungs and extrapolation to the thermo-
dynamic limit for Jd = 0.715.

Jl ), one on rungs (Jr) and one on diagonals (Jd ). We limited
ourselves mostly on the region Jl = Jr = 1, Jd � 0. Three
distinct nonmagnetic phases were identified, a gapped RS
phase with odd degeneracy of the ES levels (for Jd � 0.7),
a gapped H phase with even degeneracy of the ES levels (for
Jd � 0.7), and an intermediate D phase with mixed even-odd
degeneracies of the ES levels (for Jd ≈ 0.7).

The overall behavior of short-range correlation functions
is depicted in Fig. 16. Three bonds are quite prominent, the
singlet bond on the τ rung and the “magnetic” bonds on the
diagonals, both in the RS phase, as well as the triplet bond
on the σ rung in the H phase. Therefore, with one exception,

FIG. 16. Pictorial representation of spin correlations in the unit
cell (defined in Fig. 1) for coupling constants Jl = Jr = 1 and Jd =
0.5 (left figure, RS phase), Jd = 0.715 (middle figure, D phase), Jd =
0.85 (right figure, H phase). The grayscale reaches from the white
shade (lower bound of the correlations – singlet bonds) to the black
shade (upper bound of the correlations – magnetic bonds).
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the bonds are far from being singlets, the favorite state of two
antiferromagnetically coupled spins. This is a clear signature
for frustration.

The most striking features of our study are the incom-
mensurate spatial oscillations of spin correlation functions,
observed only in the D phase. Their wave vector depends on
the coupling strength. Their amplitude can serve as an order
parameter; its behavior close to the phase boundaries suggests
that the transition is continuous at the RS-D boundary and of
first order at the D-H boundary.

Our choice of coupling parameters is quite special, as
became apparent in our calculations for the elementary pla-
quette (Sec. III). In fact, for this choice the energy spectrum
of the plaquette is “integrable” (level crossing but no level
repulsion), for other couplings it is generically nonintegrable
(level repulsion but no level crossing). Therefore it would be
desirable to study the ladder in a wider region of parameter
space.

We have used relatively small system sizes. It is true that
the extrapolation to the thermodynamic limit did preserve a
finite order parameter in the D phase, at the same time its small
value is worrisome. Clearly, additional calculations for larger
systems would be very useful.

ACKNOWLEDGMENTS

RH acknowledges support for this work from the US
Department of Energy, Office of Science, via Award No. DE-
SC0019374. We have used Uni10 [85] and ITensor [86] as
middleware libraries to build up the ansatz.

APPENDIX A: DIAGONALIZATION
OF THE PLAQUETTE HAMILTONIAN

The ten eigenstates of the Hamiltonian (7) with Sz = 0 can
be grouped into even and odd states (with respect to the leg-
swap operation), namely,

|a〉± = 1√
2

(| + 0 ↓↓〉 ± |0+ ↓↓〉),

|b〉± = 1√
2

(| + − ↑↓〉 ± | − + ↓↑〉),

|c〉± = 1√
2

(| + − ↓↑〉 ± | − + ↑↓〉),

|d〉± = 1√
2

(|0− ↑↑〉 ± | − 0 ↑↑〉),

|e〉± = 1√
2

(|00 ↑↓〉 ± |00 ↓↑〉). (A1)

Once the eigenstates in this subspace are determined, those
for Sz �= 0 are easily obtained by applying S+ and S−. These
new states are uninteresting as long as we are just searching
for the eigenvalues of S2 and H , because if |�〉 is an eigen-
state of S2 and H , the same holds for S±|�〉, with the same
eigenvalues.

It is straightforward to calculate eigenstates and eigen-
values of S2 in this basis. We find one state with S = 3,
one with S = 2 and three with S = 1 from the even basis

states,

|3, 0〉 = 1√
5

[
|a〉+ + |d〉++ 1√

2
(|b〉+ + |c〉+) +

√
2|e〉+

]
,

|2, 0〉+ = 1√
2

(|a〉+ − |d〉+),

|1, 0〉(1)
+ = 1√

2
(|b〉+ − |c〉+),

|1, 0〉(2)
+ = 1

2
(|a〉+ + |d〉+ −

√
2|e〉+),

|1, 0〉(3)
+ = 1√

5

[
1

2
(|a〉+ + |d〉+) −

√
2(|b〉+ + |c〉+)

+ 1√
2
|e〉+

]
. (A2)

The odd basis states yield two eigenstates of S2 with S = 2,
one with S = 1 and two singlet states,

|2, 0〉(1)
− = 1√

6
[|a〉− + |d〉− +

√
2(|b〉− + |c〉−)],

|2, 0〉(2)
− = 1√

6
(|b〉− − |c〉− + 2|e〉−),

|1, 0〉− = 1√
2

(|a〉− − |d〉−),

|0, 0〉(1) = 1√
3

[
|a〉− + |d〉− − 1√

2
(|b〉− + |c〉−)

]
,

|0, 0〉(2) = 1√
3

(|b〉− − |c〉− − |e〉−) . (A3)

We now determine the eigenstates and eigenvalues of the
Hamiltonian using these basis states. We find for the “nonde-
generate” states

H |3, 0〉 = (
Jl + Jd + 1

4 Jσ + Jτ

)|3, 0〉,
H |2, 0〉+ = [ − 1

2 (Jl + Jd ) + 1
4 Jσ + Jτ

]|2, 0〉+,

H |1, 0〉− = [ − 1
2 (Jl + Jd ) + 1

4 Jσ − Jτ

]|1, 0〉−. (A4)

For the “doubly degenerate” states, we obtain

H |2, 0〉(1)
− =

[
1

2
(Jl + Jd ) + 1

4
Jσ − Jτ

]
|2, 0〉(1)

−

+ 1√
2

(Jl − Jd )|2, 0〉(2)
− ,

H |2, 0〉(2)
− = 1√

2
(Jl − Jd )|2, 0〉(1)

− −
(

3

4
Jσ − Jτ

)
|2, 0〉(2)

− ,

(A5)

H |0, 0〉(1) = ( − Jl − Jd + 1
4 Jσ − Jτ

)|0, 0〉(1)

+
√

2(Jd − Jl )|0, 0〉(2),

H |0, 0〉(2) =
√

2(Jd − Jl )|0, 0〉(1) − (
3
4 Jσ + 2Jτ

)|0, 0〉(2),

(A6)
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TABLE II. Eigenvalues of the plaquette Hamiltonian for Jl =
Jσ = Jτ = 1.

S Parity E1 E2 E3

3 + 9
4 + Jd

2 + 3
4 − 1

2 Jd

1 + 1
4 − 2Jd − 5

4 − 1
2 Jd − 11

4 + Jd

2 - 3
4 − 1

2 Jd − 3
4 + Jd

1 - − 5
4 − 1

2 Jd

0 - − 3
4 − 2Jd − 15

4 + Jd

and therefore we have just to diagonalize 2 × 2 matrices. For
the singlet states, we find

E = 1
2

(
h11 + h22 ±

√
(h11 − h22)2 + 4h2

12

)
, (A7)

where

h11 = −Jl − Jd + 1
4 Jσ − Jτ ,

h22 = − 3
4 Jσ − 2Jτ ,

h12 =
√

2(Jd − Jl ). (A8)

The remaining “triply degenerate” states satisfy the eigen-
value equation

H |1, 0〉(α)
+ =

3∑
β=1

hαβ |1, 0〉(β )
+ , α = 1, 2, 3 (A9)

with matrix elements

h11 = −
(

3

4
Jσ + Jτ

)
,

h12 = h21 = 1

2
(Jd − Jl ),

h13 = h31 =
√

5

2
(Jd − Jl ),

h22 = 1

4
[−5(Jl + Jd ) + Jσ + 2Jτ ],

h23 = h32 =
√

5

4
(−Jl − Jd + 2Jτ ),

h33 = 1

4
(−Jl − Jd + Jσ − 6Jτ ). (A10)

Miraculously, for the particular parameter set Jl = Jσ =
Jτ = 1 all eigenvalues are simple linear functions of Jd , as
shown in Table II and illustrated in Fig. 4.

APPENDIX B: EXPANSION IN POWERS
OF Jl/Jr FOR Jr > 0

We use perturbation theory to evaluate the ground state
for antiferromagnetic rung coupling, Jr > 0, and small leg
coupling, Jl 
 Jr . A rung with σ -spins has four states, a
singlet (S = 0)

|sσ 〉 = 1√
2

(| ↑〉| ↓〉 − | ↓〉| ↑〉), (B1)

and three triplet states (S = 1)

|t+
σ 〉 = | ↑〉| ↑〉, |t−

σ 〉 = | ↓〉| ↓〉,∣∣t0
σ

〉 = 1√
2

(| ↑〉| ↓〉 + | ↓〉| ↑〉), (B2)

where we have used the convention that in the product states
the first ket is on chain 1, the second on chain 2.

A rung with τ -spins has nine states, a quintet (S = 2)

∣∣q±2
τ

〉 = |±〉|±〉,∣∣q±1
τ

〉 = 1√
2

(|±〉|0〉 + |0〉|±〉),

∣∣q0
τ

〉 = 1√
6

(|+〉|−〉 + 2|0〉|0〉 + |−〉|+〉), (B3)

a triplet (S = 1)

∣∣t±
τ

〉 = ± 1√
2

(|±〉|0〉 − |0〉|±〉),

∣∣t0
τ

〉 = 1√
2

(|+〉|−〉 − |−〉|+〉), (B4)

and a singlet (S = 0)

|sτ 〉 = 1√
3

(|0〉|0〉 − |+〉|−〉 − |−〉|+〉), (B5)

where |±〉 and |0〉 are the eigenstates of τz with eigenvalues
±1 and 0, respectively.

The ground state for Jl = Jd = 0 and Jr > 0 is a product of
rung singlets

⊗
i |sσ 〉i|sτ 〉i. To first order in Jl we have to apply

the operator σ (1) · τ (1) + σ (2) · τ (2) to each pair of adjacent
rungs. We find

(σ (1) · τ (1) + σ (2) · τ (2) )|sσ 〉|sτ 〉

=
√

2

3
(|t+

σ 〉|t−
τ 〉 + |t−

σ 〉|t+
τ 〉 − ∣∣t0

σ

〉∣∣t0
τ

〉
). (B6)

Triplets appear in first-order perturbation theory for the
ground state, but there are no quintets.

To second order in Jl three different terms are generated. If
the operator σ (1) · τ (1) + σ (2) · τ (2) acts on four distinct rungs,
the expression (B6) simply appears twice and no quintets are
produced. If the same operator is applied twice to a single
pair of rungs, quintets neither appear. This is easily understood
by applying σ (1) · τ (1) + σ (2) · τ (2) to Eq. (B6). In the third
case, where three neighboring rungs are involved, say, at sites
i − 1, i, i + 1, quintet states do appear.
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