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Prethermalization via self driving and external driving of extensive subsystems
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We investigate the nonequilibrium states of an interacting multicomponent quantum system when only an
extensive subsystem is quantum quenched or driven from the ground state. As a concrete example, we consider
a system where two XXZ spin chains are coupled to a transverse field Ising (TFI) chain, and only the transverse
field in the TFI chain is quantum quenched or periodically driven in time, starting from an initially ordered
state. This system is studied using density matrix renormalization group simulations and various entanglement
entropy diagnostics. In the case of quantum quenching, when the transverse field is suddenly switched on to
become the largest energy scale, the resulting internal dynamics leads to a prethermal steady state with persistent
oscillating magnetization (“self driving”) and emergent conservation laws. Upon applying the time-dependent
drive to the TFI chain (“external driving”), sufficiently fast drive gives rise to a prethermal steady state with
finite magnetization, whereas a slow drive generates a high-temperature disordered state. We briefly discuss the
experimental implementation of our protocol in organic materials with quantum-tunneling hydrogen atoms.
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I. INTRODUCTION

Our ability to understand nonequilibrium quantum states
of interacting quantum matter would significantly expand
the scope of accessible quantum phases of condensed mat-
ter and cold atom systems [1–3]. Of particular interest are
the prethermal states that may persist for an exponentially
long period of time and arise as a consequence of emergent
quasiconservation laws. For example, in closed systems, the
Floquet-type (periodic in time) drive may, in general, heat up
the system to the infinite-temperature state [4–6]; however,
the integrable systems [7,8] and many-body localized (MBL)
systems [9–11] show prethermal steady states in accordance
with associated conserved quantities. Alternatively, quantum
quenching in certain systems may lead to quasiconserved
quantities, which can then give rise to long-lived prethermal
steady states. Yet, most of the previous studies are limited
to cases in which the entire system is quenched or driven
together (see, e.g., Refs. [2,12–15]). Many condensed matter
and cold atomic systems, however, consist of multiple degrees
of freedom, and different parts of the system may possess dis-
tinct natural time scales. In this setting, one may ask whether
quenching or driving only a subsystem would necessarily heat
up the entire system or whether there may be a different limit
in which nontrivial dynamic states can be realized. Moreover,
we may also ask how one could effectively characterize the
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nonequilibrium states in such subsystem-driven interacting
quantum systems.

In this paper, we consider an interacting spin model, where
two XXZ spin chains are coupled to a transverse field Ising
(TFI) spin chain and only the latter is quenched or driven by a
time-dependent transverse field; see the schematic illustration
in Fig. 1. This model is partially motivated by the theory
of organic materials in which layers of electronic degrees of
freedom are coupled via hydrogen bonds; quantum tunneling
between the bistable ground-state configurations of the hy-
drogen bonds can then be modeled by transverse field Ising
spins [16,17]. Using the density matrix renormalization group
(DMRG), we study both equilibrium and nonequilibrium sce-
narios in our model. First, we establish the equilibrium phase
diagram as a function of the time-independent transverse field
strength in the TFI chain and the exchange interaction scales
in the system. It is demonstrated that there exists a direct
transition from an ordered state (ordered in both the XXZ and
TFI subsystems) to a fully quantum disordered state, where
neither of the subsystems shows finite magnetization. We then
consider a quantum-quench protocol where a large transverse
field in the TFI chain is suddenly turned on, starting from an
ordered ground state. It is found that when the transverse field
becomes the largest intrinsic energy scale, the entire system
enters a prethermal state with oscillating magnetization in
both the XXZ and TFI chains. We explain this phenomenon
by constructing an effective Hamiltonian where emergent de-
coupling between the XXZ and TFI chains occurs and new
quasiconservation laws arise. Next, by imposing a periodic
drive on the transverse field in the TFI chain and starting from
an ordered ground state of the whole system, we investigate
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FIG. 1. Coupled three-chain model. (a) The top and bottom
chains (yellow sites) are XXZ models with exchange constants Jx and
Jz. The middle chain (blue sites) is a TFI chain with interaction J and
on-site time-dependent transverse field h(t ). The chains interact via
a term gσ z

i (σ z
i,t − σ z

i,b); see text for details. (b) Quench protocol with
a sudden onset of the transverse field. (c) Periodic driving protocol.

how the resulting nonequilibrium state evolves as a function of
the driving frequency. We demonstrate that the low- and high-
frequency drives of the TFI subsystem lead to very different
behaviors of the composite model. We show that if the drive
frequency is sufficiently large, the system may remain in a
long-lived, symmetry-broken prethermal regime and maintain
its finite magnetization. Remarkably, the polarizable environ-
ment of XXZ chains significantly enhances the stability of the
prethermal regime when compared with an isolated TFI chain.

II. MODEL

We investigate a model of three coupled spin chains that
consists of a transverse field Ising (TFI) chain at the center
and two XXZ spin chains at the top (t) and bottom (b) of the
system as illustrated in Fig. 1. The Hamiltonian of the full
system reads H = HTFI + HXXZ,t + HXXZ,b + Hint , where the
TFI and XXZ terms are given by

HTFI = J
∑

〈i, j〉
σ z

i σ z
j + h(t )

∑

i

σ x
i ,

HXXZ,α =
∑

〈i, j〉
Jx

(
σ x

i,ασ x
j,α + σ

y
i,ασ

y
j,α

) + Jzσ
z
i,ασ z

j,α. (1)

Here, 〈i, j〉 denote nearest-neighbor lattice sites i and j within
each chain, α = t, b discriminates the top and bottom chain,
and σγ are the Pauli matrices with γ = x, y, z. The three
spin chains are locally coupled via an interaction term Hint =
g
∑

i σ
z
i (σ z

i,t − σ z
i,b), which couples the local magnetization σ z

i
of the TFI chain to the local magnetization difference of the
two XXZ chains via the interaction constant g. In addition
to the symmetries corresponding to the U(1) rotation about
the z axis separately in the top and bottom chains, there
exists also a global Ising symmetry corresponding to σ z

i �→
−σ z

i , σ z
i,α �→ −σ z

i,α . Note that the top and bottom XXZ chains
do not interact directly. We fix J = 1, Jx = 1, and g = 0.5
and investigate the role of varying h(t ) and Jz in this paper.
Our rationale behind fixing J = 1 and Jx = 1 is to induce two
inherently different types of spin chains that nonetheless have
the same characteristic energy scale: Both the TFI chain and
the XXZ chains exhibit quantum phase transitions at h = 1
and Jz, respectively, between their ordered and disordered
phases. Similarly, choosing an interchain coupling of g = 0.5
ensures that the dominant energy scale is set by the interaction

FIG. 2. Quench dynamics after a sudden shift in the mag-
netic field from h = 0 to various values h = 2, 5, 15. Data shown
are for finite chain length L = 30 with periodic boundary condi-
tions, interaction Jz = 0, and maximum bond dimension χmax = 512.
(a) Evolution of the staggered magnetization in the XXZ subsystem.
The inset shows data for larger system size L = 100. The dashed
line depicts data for Jz = 0.5. (b) Staggered magnetization in the
TFI chain. The inset shows the short-time dynamics for h = 15.
(c) Conserved quantity χ yz in the TFI chain. (d) Bipartite entan-
glement entropy at the cut between the (top) XXZ chain and the
remainder of the system; these data are for L = 10 and χmax = 1024.
The inset illustrates the layout of the MPS using thick gray lines; the
bipartitioning cut is colored red.

within each individual chain; yet it remains non-negligible in
determining the qualitative behavior of the system. Such in-
termediate coupling strength is believed to be appropriate for
the modeling of hydrogen-bond-mediated exchange between
electronic degrees of freedom in organic materials [17]—a
class of materials that inspired our model Hamiltonian in
Eq. (1).

III. METHOD

Our calculations of the equilibrium ground state are
based on the density matrix renormalization group (DMRG)
method [18–20]. For this purpose, unless indicated otherwise,
the three-chain model is mapped onto a one-dimensional
matrix product state (MPS) by winding the MPS along the
first XXZ chain, then along the TFI chain, and finally along
the second XXZ chain [see inset of Fig. 2(d)]. To study
the quantum quench or periodic driving from the ground
states, we employ the time-dependent variational principle
(TDVP) [21]. For characterizing the entanglement between
different subsystems, in addition to more conventional
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measures, we calculate the “quantum disentanglement liquid”
(QDL) diagnostic [22–25]. The QDL diagnostic is designed
to extract an effective entanglement between two subsys-
tems of a tripartite system: We consider the whole system
as a union of three subsystems A, B, and C and project the
subsystem C into a given basis state, X ≡ {xc}, resulting in
a state |ψX

AB〉 ≡ ⊗
c∈C〈xc|ψ〉. Then, the QDL diagnostic is

defined as SQDL ≡ ∑
X pX SX

AB, where pX ≡ 〈ψX
AB|ψX

AB〉 and
SX

AB ≡ −Tr(ρX
A ln ρX

A ) is the entanglement entropy (EE) of the
reduced density matrix ρX

A ≡ TrB(|ψX
AB〉〈ψX

AB|). Consequently,
the QDL diagnostic reflects an effective entanglement be-
tween subsystems A and B, and as shown in Ref. [25] it also
bounds the conditional entanglement between the subsystems.
See Supplemental Material (SM) for further details on the
QDL diagnostic [26].

IV. GROUND-STATE PHASE DIAGRAM

We first carve out the ground-state phase diagram of the
three-chain model as a function of h ≡ h(t ) and Jz. We ob-
serve two possible ground-state phases of the three-chain
model. At small values for the transverse field h (< J ), or
large values of Jz (> Jx ), the ground state is a composite mag-
netic order where the global Ising symmetry is broken and all
three chains obtain a finite magnetization along the z axis. In
the opposite limit, i.e., h > J and Jz < Jx, the magnetization
vanishes across all three chains as they remain disordered;
note that in this parameter regime the chains would also
be disordered in the absence of any interchain interaction,
i.e., g = 0, where the XXZ (TFI) chains form a Luttinger
liquid (paramagnet) [27–30]. The detailed phase diagram is
discussed in the SM. We note that our ground-state phase
diagram has strong resemblance to that for models of organic
materials such as κ-H3(Cat-EDT-TTF)2 [16,17], whereby the
XXZ chains play the role of electronic spins, while the TFI
chain spins play the role of hydrogen atoms tunneling in a
double-well potential.

V. “SELF-DRIVEN” PRETHERMALIZATION
VIA QUANTUM QUENCHING

We imagine a scenario where we start from an ordered
ground state of the entire system at vanishing transverse
field in the TFI chain and then suddenly change the trans-
verse field to become finite—a so-called quantum quench
[schematically depicted in Fig. 1(c)]. In this setting we shall
investigate the time evolution of the magnetization in the
XXZ chains for various strengths of the transverse field.
While for small transverse field strength the time evolution
is expected to be chaotic and therefore difficult to predict
in detail, we are able to formulate an analytically reasoned
expectation for the case when the transverse field is much
larger than all other interaction scales in the system. For
our analysis we employ the following mapping [31,32]. Let
us write H = h

∑
i σ

x
i + V and utilize the interaction picture

with V treated as a perturbation to the transverse field term.
The interaction picture many-body wave function |ψ I (t )〉 is
given by i d|ψ I (t )〉

dt = V I (t )|ψ I (t )〉, where V I (t ) = U (t )VU (t )†

and U (t ) = exp(ith
∑

i σ
x
i ). As one may readily check, U (t +

2π/h) = U (t ), and thus V I (t ) is time periodic with fre-

quency ω ≡ T −1 = h/2π , despite H not having any such
periodicity. One can now borrow the results on prethermal-
ization in time-periodic systems [31–34] to understand the
behavior of |ψ I (t )〉. The essential point is that when h is
much larger than all other intrinsic energy scales in the prob-
lem, then for times that are exponential in h, the interaction
picture wave function |ψ I (t )〉 will evolve with an effec-
tive, time-independent Hamiltonian Veff = V I (t ) that equals
the time-averaged V I (t ). Explicitly, |ψ I (t )〉 = e−iVeff t |ψ I (0)〉.
One can then obtain the time dependence of any observable O
using the relation 〈O〉(t ) = 〈ψ I (t )|OI (t )|ψ I (t )〉. For our prob-
lem, we obtain Veff = HXXZ,t + HXXZ,b + J

2

∑
〈i, j〉(σ

y
i σ

y
j +

σ z
i σ z

j ). Remarkably, in this effective description, the three
chains decouple into three separate integrable systems, and
furthermore there now exists an emergent U(1) symmetry in
the TFI chain which corresponds to arbitrary rotations around
the x axis.

We are now equipped to calculate the local magnetization
in the (bottom) XXZ chain and in the TFI chain. We an-
ticipate a qualitative distinction between the XXZ and TFI
magnetizations: The local magnetization operator in the XXZ
chain σ z,I

b (t ) = Uσ z
bU † = σ z

b is independent of time since U
and σ z

b commute, while for the TFI chain it is explicitly time
dependent, σ z,I (t ) = σ z cos(2ht ) + σ y sin(2ht ) (note that we
suppressed the site labels to improve readability). Therefore
the local magnetization in the XXZ chain 〈σ z

b 〉 is fully deter-
mined by the quench dynamics in an integrable XXZ chain
while in the TFI chain 〈σ z〉 will exhibit oscillations with
period T = π/h in addition to its behavior determined by
the TFI chain quench dynamics. As an example, we con-
sider the case Jz = 0. Using results from Ref. [35], one finds
〈σ z

b 〉(t ) ≈ cos(8Jxt − π/4)/
√

t for t < cL, where c is a con-
stant. For t > cL, the finite-size effects take over and lead to
oscillations whose time period is proportional to the finite-
size gap ∼8πJx/L. Indeed, in our numerical simulations we
observe systematic oscillations in the staggered magnetization
mXXZ

z ≡ 1
L

∑
i(−1)iσ z

i,t of the XXZ subsystem with period
T ≈ π/(4Jx ) [see Fig. 2(a)], which corresponds to L = 30.
Since oscillations are cut off by finite-size effects at time
O(L), we also studied much larger system size, L = 100, and
found agreement with the prediction that T ≈ π/(4Jx )—see
the inset of Fig. 2(a). The same inset also shows the effect of
including nonzero Jz = 0.5, in which case it is expected that
the magnetization decays exponentially, modulated with weak
oscillatory behavior [35], in line with our observation.

Turning next to the TFI chain, we find that the staggered
magnetization mTFI

z ≡ 1
L

∑
i(−1)iσ z

i oscillates with period
T = π/h in agreement with our prediction [Fig. 2(b)]. Two
additional predictions of the prethermal physics encapsulated
in Veff can be made: (i) The emergence of the conserved quan-
tities χ yz ≡ 1

L

∑
〈i, j〉(σ

y
i σ

y
j + σ z

i σ z
j ) and mTFI

x ≡ 1
L

∑
i σ

x
i and

(ii) the decoupling of the three chains. We have verified nu-
merically that the quantity χ yz remains constant after a quench
to strong transverse field h = 15, as depicted in Fig. 2(c).
Similarly, we also observe the conservation of mTFI

x (see SM).
To detect the decoupling of the three chains, we studied the
entanglement between the top XXZ chain and the remainder
of the system and find that it remains constant for sufficiently
strong transverse field; see Fig. 2(d). By symmetry, the entan-
glement between the bottom chain and the remainder of the
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system shows the same behavior, implying a decoupling of all
three chains.

VI. EXTENSIVE SUBSYSTEM DRIVE

We now consider a periodic steplike transverse field h(t )
akin to the driving protocol illustrated in Fig. 1(c). During
a single period T , we chose h(t ) = hmax for t < T/2 and
h(t ) = 0 for T/2 < t < T . A translationally invariant closed
quantum system subject to an external drive is generally ex-
pected to heat to infinite temperature in the long-time limit.
A slow drive is indeed generally associated with fast heating.
In contrast, the heating rate can become exponentially small
in rapidly driven systems, resulting in long-lived prethermal
states [31–34]. Such prethermalization behavior is typically
studied when the whole system or a nonextensive subsystem
is driven externally, and the case of an extensive subsystem
drive has not received much attention. Here, we address the
question of whether an extensive subsystem drive can also
be associated with prethermal behavior and study how the
system evolves under the slow (ω = 0.5) and fast (ω = 5)
subsystem drives with hmax = 1.5. We first consider the case
when the system is initially prepared in an eigenstate of the
time-averaged Hamiltonian, i.e., it is an eigenstate of the
equilibrium model with h(t ) ≡ hmax/2. We keep track of three
quantities during the time evolution: The magnetization, the
bond dependence of the bipartition EE, and the QDL diagnos-
tic for the effective entanglement between a single XXZ chain
and the TFI chain.

For a slow drive (ω = 0.5), the magnetization in both TFI
and XXZ subsystems rapidly decays to half its initial value
on the time scale of just a single period T . Over the course of
approximately ten periods, the magnetization vanishes almost
entirely, which is indicative of fast heating towards a triv-
ial high-temperature paramagnetic state. In strong contrast,
with the fast drive (ω = 5) we find signatures of a long-lived
prethermal state which preserves the finite magnetization of
the ground-state configuration [Fig. 3(a)]. In both the TFI
and XXZ subsystems a finite magnetization is maintained for
more than 250 periods of the extensive subsystem drive, which
is the maximum time duration in our numerical simulation.

We substantiate the qualitative difference between the slow
drive and the fast drive by considering two different entan-
glement diagnostics. First, we calculate the dynamics of the
bipartite EE, which reveals that under the slow drive the sys-
tem becomes maximally entangled such that the EE scales as
SvN = n ln 2 in the long-time limit, where n is the bond index
in the matrix product state (MPS) representation of the system
[Fig. 3(b)]. Such volume-law scaling of the EE is implied by a
heating of the system to infinite temperature; note that the fi-
nite bond dimension χmax of the MPS causes a deviation from
the scaling near the center (n = 15) of the chain when the
EE approaches its theoretical upper bound ln χmax ≈ 7. In the
fast-driven case, when ω = 5, the bipartite EE plateaus far be-
fore reaching the upper bound and does not seem to follow the
volume law. This implies that the system does not thermalize
within a moderate time scale, and the system instead remains
in a prethermal phase. As a second entanglement measure we
calculate the QDL diagnostic, which provides a more detailed
characterization of entanglement in a multicomponent sys-

FIG. 3. Time evolution of the system under fast (ω = 5) and
slow (ω = 0.5) periodic driving. Data shown are for L = 30 and
χmax = 256. (a) Staggered magnetization in the XXZ and TFI sub-
systems. (b) Bipartition EE as a function of the bond index n, where
n = 1 denotes the end of the MPS and n = 15 is the center; the inset
shows the MPS structure used in this calculation. Data in this panel
are for L = 10 and χmax = 1024. (c) QDL diagnostic for the effec-
tive entanglement between subsystems A and B shown in the inset.
(d) Staggered magnetization in the XXZ and TFI subsystems when
the initial configuration is not an eigenstate of the time-averaged
Hamiltonian.

tem. Unlike the bipartite EE, the QDL diagnostic allows us
to extract the effective entanglement between two arbitrary
subsystems, which do not necessarily need to combine to the
entire system. Let us consider STFI-XXZ, which corresponds to
the entanglement between the top XXZ chain and the TFI
chain after a projective measurement on the bottom XXZ
chain [see the definition of the QDL diagnostic in Sec. III and
the inset of Fig. 3(c)]. For the slow drive, we observe a steep
growth in the QDL diagnostic, indicating that spins on each
chain—which are close to a product state initially—become
strongly entangled in a short time [Fig. 3(c)]. In contrast, for
the fast drive, the QDL diagnostic remains vanishingly small
for the entire time scale observed, in line with our expectations
for a prethermal regime.

Finally, we briefly address the case when the initial config-
uration of the system is not an eigenstate of the time-averaged
Hamiltonian. To this end, we prepare the system in the ground
state of the equilibrium model at h(t ) ≡ 0 and subsequently
apply the periodic drive. Generally, one would not expect a
prethermal regime to arise. However, in analogy to the results
discussed above, we still observe persistent magnetization
for fast driving ω = 5; the steady-state magnetization is only
slightly reduced when compared with its initial value [see
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Fig. 3(d)]. We speculate that this rigidity against alteration
of the initial configuration is a consequence of small varia-
tion of the ground-state wave function on finite-sized systems
within the ordered phase of our three-chain model; for an
isolated TFI chain, which shows greater variation throughout
the ordered phase, such rigidity is not observed (see SM). We
conclude that the environment of polarizable XXZ chains adds
extra stability not only to the ground-state magnetization of
the embedded TFI chain, but also to its time evolution.

VII. DISCUSSION

In this paper, we ask whether an interacting quantum
system can enter a long-lived prethermal steady state when
quantum-quench protocols or time-dependent drives are ap-
plied only to an extensive subsystem. Using the DMRG and
TDVP for time evolution, we study the example of two XXZ
spin chains coupled to a TFI chain, where only the TFI chain
is quantum quenched or driven from a fully ordered ground
state. In the case of sudden onset of the transverse field, when
the strength of the transverse field is bigger than any other
energy scale, it is shown that a prethermal steady state arises
due to emergent quasiconservation laws. In a similar spirit,
when a sufficiently fast time-dependent drive of the transverse
field is applied, the system develops a prethermal state where
the magnetization remains finite across the system and the
entanglement between the spin chains remains small.

While the scenario of a prethermal state after a quantum
quench is well captured within the framework of dynamic
decoupling of chains [31,32], a universal description of the
mechanism behind the formation of a prethermal state un-
der a sufficiently fast extensive subsystem drive is currently
lacking. However, we point out that the system under an
extensive subsystem drive behaves like a fictitious substitute
system that is subject to a global external drive: If the drive is
slow, the system rapidly thermalizes, but if the drive is fast,
the entanglement growth is impeded and the system enters
a prethermal state. At least for a global external drive, such
behavior is known to generalize across a large set of Hamilto-
nians. It remains an open question for future research whether
our findings for an extended subsystem drive are similarly
generalizable.

Our coupled spin-chain model is partly motivated by recent
experiments on the organic material κ-H3(Cat-EDT-TTF)2

(“H-Cat”) and its deuterated analog. In those materials, lay-
ers of interacting electron systems (represented by XXZ spin
chains in our model) are coupled via hydrogen bonds, where
protons tunnel quantum mechanically in a double-well poten-
tial (spanned by bistable hydrogen bond configurations and
modeled by transverse field Ising spins in our setup) with
an intrinsic time scale. In first-principles calculations, the
estimated tunnel barrier in H-Cat implies a tunneling rate of
1011–1014 Hz [16]. While the actual tunneling rate may be
affected by the presence of other molecules attached to the
hydrogen bond [16], it is conceivable that the phonon-assisted
optic mode associated with the hydrogen tunneling would
couple to infrared light [36,37]. It would thus be interesting
to explore whether an external optical drive in the infrared
regime can be utilized to study the dynamic properties of H-
Cat and the possibility to stabilize a prethermal regime (in the
sense of our extensive subsystem drive model) in these organic
compounds. Furthermore, if the tunneling rate of the hydrogen
atoms can be tuned to be larger than all other scales, then even
in the absence of any external driving, the system behaves
as if it were being “self-driven” at a frequency given by the
hydrogen tunneling rate. Therefore, if one prepares the system
in the ground state of the symmetry-broken phase and evolves
it with the time-independent Hamiltonian corresponding to a
large tunneling rate, one still expects a prethermal symmetry-
broken regime whose time now scales exponentially with the
hydrogen tunneling rate.
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